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Introduction: Rotavirus-associated diarrheal diseases significantly burden 
healthcare systems, particularly affecting infants under five years. Both Rotarix™ 
(RV1) and RotaTeq™ (RV5) vaccines have been effective but have distinct 
application schedules and limited interchangeability data. This study aims to 
provide evidence on the immunogenicity, reactogenicity, and safety of mixed 
RV1-RV5 schedules compared to their standard counterparts.

Methods: This randomized, double-blind study evaluated the non-inferiority in 
terms of immunogenicity of mixed rotavirus vaccine schedules compared to 
standard RV1 and RV5 schedules in a cohort of 1,498 healthy infants aged 6 to 
10  weeks. Participants were randomly assigned to one of seven groups receiving 
various combinations of RV1, and RV5. Standard RV1 and RV5 schedules served 
as controls of immunogenicity, reactogenicity, and safety analysis. IgA antibody 
levels were measured from blood samples collected before the first dose and 
one month after the third dose. Non-inferiority was concluded if the reduction 
in seroresponse rate in the mixed schemes, compared to the standard highest 
responding scheme, did not exceed the non-inferiority margin of −0.10. 
Reactogenicity traits and adverse events were monitored for 30  days after each 
vaccination and analyzed on the entire cohort.

Results: Out of the initial cohort, 1,365 infants completed the study. 
Immunogenicity analysis included 1,014 infants, considering IgA antibody 
titers ≥20  U/mL as seropositive. Mixed vaccine schedules demonstrated non-
inferiority to standard schedules, with no significant differences in immunogenic 
response. Safety profiles were comparable across all groups, with no increased 
incidence of serious adverse events or intussusception.
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Conclusion: The study confirms that mixed rotavirus vaccine schedules are 
non-inferior to standard RV1 and RV5 regimens in terms of immunogenicity 
and safety. This finding supports the flexibility of rotavirus vaccination strategies, 
particularly in contexts of vaccine shortage or logistic constraints. These results 
contribute to the global effort to optimize rotavirus vaccination programs for 
broader and more effective pediatric coverage.

Clinical trial registration: ClinicalTrials.gov, NCT02193061.
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Introduction

Rotavirus is the leading cause of severe gastroenteritis in children 
below five years, responsible for almost 40% of hospitalizations in this 
age group. Despite a global decline in rotavirus-associated mortality 
following vaccine introduction, a substantial burden remains, with 
129,000 deaths among children under five occurring globally in 2016 
(1). From 2016 to 2019, the trend in deaths associated with rotavirus 
infection demonstrated a decline and exhibited a negative correlation 
with the sociodemographic index; regions with higher 
sociodemographic indexes experienced a lower burden (2). To prevent 
rotavirus infection, the World Health Organization (WHO) initially 
recommended the inclusion of the rotavirus vaccine in national 
immunization programs in Europe and the Americas in 2006, 
extending the recommendation worldwide in 2009 (3).

In regions like Latin America and the Caribbean, the 
implementation of rotavirus vaccines has been particularly impactful 
(4). In Brazil and Mexico, as two of the most populous countries, have 
witnessed substantial benefits from the implementation of universal 
rotavirus vaccination. These benefits manifest in decrease in hospital 
admissions, outpatient visits, cases of severe dehydration, and, most 
critically, in reducing diarrhea-related deaths among children under 
the age of five, ranging from 22 to 50% (5–8).

The efficacy of the two licensed rotavirus vaccines, RotaTeq™ 
(RV5) and Rotarix™ (RV1), in combating severe rotavirus-related 
illness has been well-established through various studies. Clinical 
trials and observational studies in high-income settings have 
demonstrated that these oral rotavirus vaccines offer more than 90% 
efficacy against severe rotavirus gastroenteritis in infants (9). In 
middle-income settings, including regions of Latin America, the 
efficacy ranges from 72 to 83% (10, 11). This variation in efficacy 
between different settings is apparent for RV1 and RV5 (11).

A comprehensive review, incorporating data from 24 countries post-
vaccine licensure, reported that the median effectiveness of RV1 ranged 
from 57 to 84% across regions with varying child mortality rates. In 
contrast, RV5’s effectiveness was noted at 90% in low-mortality settings 
but dropped to 45% in high-mortality ones. This variation underscores 
the need for context-specific vaccination strategies (12).

Reduced immunogenicity of vaccines and diminished protection 
from natural infection are primary factors compromising efficacy in 
challenging settings (13). In high-income countries, seroconversion 
frequencies for serum anti-rotavirus immunoglobulin A (IgA) with 
RV1 and RV5 vaccines typically range between 87 and 95%. However, 

these rates are notably lower in other settings, with figures being 34.2–
63.9% for RV1 (14) and 93.2% for RV5 (15). Consequently, the 
potential benefits of the introduction of a third dose in low-income 
countries, which usually follow a 2-dose RV1 schedule, have been 
proposed to enhance vaccine immunogenicity (11, 16).

Beyond RV1 and RV5, newer rotavirus vaccines like ROTAVAC™ 
(Bharat Biotech, Hyderabad, India) and RotaSIIL™ (Serum Institute 
of India, Pune, India), both with a three-dose schedule, have received 
WHO prequalification (17). These vaccines are expected to scale up 
globally, improving certain aspects of availability, stability, reduced 
cold chain requirements, and costs (17). Efficacy against severe 
rotavirus gastroenteritis in the first year of life for these vaccines has 
been reported in countries such as India (18) and Nigeria (19). 
Notably, a recent study from India based on a non-inferiority analysis 
of immunogenicity and a comparative safety profile indicates that 
ROTAVAC™ and RotaSIIL™ might be used interchangeably (20).

In Mexico and some Latin American countries, only RotaTeq™ 
(RV5) and Rotarix™ (RV1) are available through the national 
immunization program. RV1 was used from 2006 to 2011, succeeded 
by RV5 since 2011. In 2019, RV1 was partially re-introduced (21). 
These vaccines differ in composition and administration schedules: 
RV5, a pentavalent, live human-bovine reassortant oral vaccine 
covering serotypes G1, G2, G3, G4, and P8, is given in three-dose at 
2, 4, and 6 months of age. Conversely, RV1 is a monovalent live 
attenuated human oral vaccine with the G1P[8] serotype, administered 
in a two-dose series at 2 and 4 months of age (22).

The existence of two vaccines with distinct characteristics, technical 
requirements, and schedules allows for the possibility of infants 
receiving a combination of both, especially in regions with limited 
supply. This is crucial when completing a vaccination schedule with just 
one vaccine is impractical due to various constraints. However, 
international recommendations on vaccine interchangeability are not 
consistent. For instance, Australia’s NPS MedicineWise discourages 
mixing the vaccines, whereas the American Academy of Pediatrics 
deems RV1 and RV5 interchangeable, given specific dose conversion 
recommendations. This is based on a 2017 clinical trial that concluded 
that three mixed schedules were not inferior to single RV1 and RV5 
schedules in terms of immunogenicity and safety in a high-income 
country with very low child mortality rate (23).

The extrapolation of RV1 and RV5 vaccine interchangeability 
requires important considerations. In Mexico and other Latin 
American countries, responses to oral vaccines are often less robust 
compared to those observed in children from high-income settings 
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(11). The immune response and efficacy of these vaccines are dose-
dependent, and host or environmental factors may influence the effect 
of vaccine doses, potentially leading to reduced immunogenicity (13). 
Further research is necessary to determine vaccine interchangeability 
in various settings, considering comparative immunogenicity and 
safety profiles. Our study aims to evaluate the non-inferiority of five 
mixed vaccination schedules in terms of immunogenicity compared 
to the standard administration of RV1 and RV5, as well as to assess the 
reactogenicity and safety profiles of these schemes in Mexican infants.

Materials and methods

Trial design and participants

We conducted a randomized, double-blinded study (blinding of 
parents and observers) from November 2013 to July 2015, testing the 
hypothesis of non-inferiority in immune seroresponse rate and 
geometric means concentrations (GMC) for IgA neutralizing 
antibodies one month post the final vaccine dose when administered 
in the two standard schedules and five mixed schedules.

The study was coordinated and executed in Instituto Nacional de 
Pediatria (INP), a tertiary children’s hospital in México City. Infants 
were referred from the following hospitals: Hospital General Ajusco 
Medio, Hospital Materno Infantil “Magdalena Contreras,” and 
Hospital General “Dr. Manuel Gea González.” Healthy infants who 
met the criteria of medical history and physical examination were 
considered as eligible subjects.

The study protocol was thoroughly reviewed and received 
approval from the Ethics in Research Review Board of the Instituto 
Nacional de Pediatría (INP), and the Regulatory Agency in Mexico 
(COFEPRIS). The protocol adhered to the principles outlined in the 
Declaration of Helsinki and followed the International Conference on 
Harmonization Good Clinical Practice guidelines. Prior to enrollment, 
written informed consent was obtained from either the parents or 
legally acceptable representatives of the participants.

Healthy infants aged 6 to 10 weeks were enrolled and randomly 
assigned to one of seven study groups in balanced blocks, with each 
group following a distinct vaccine schedule.

Exclusion criteria included a history of allergic reactions to 
vaccine components, gastrointestinal diseases (acute or chronic), 
primary or secondary immunodeficiencies, hematological-oncological 
disorders, immunosuppressive medication use (e.g., prednisone for 
≥2 weeks), receipt of blood transfusion or blood products 
(immunoglobulin) within four weeks before vaccination, participation 
in another study within the previous 30 days, or a gestational age of 
less than 37 weeks.

Infants presenting with acute illness, a rectal temperature ≥ 38.0°C 
within 24 h before vaccination, acute diarrhea, or antibiotic 
administration within 3 days prior to vaccination were rescheduled. 
Similarly, those who had received other vaccines within the last 
28 days before the study were also rescheduled.

Randomization and blinding

Subjects were randomized to one of seven rotavirus vaccine study 
groups in a 1:1 ratio in balanced blocks. The randomization codes 

were generated by a researcher (R-FJ) not involved in the study’s 
clinical procedures, data collection, or statistical analysis using the 
Excel function RANDBETWEEN(1,1498). These identifiers were 
unique to each participant, with a strict protocol in place to prevent 
any duplication or reassignment of numbers, ensuring the integrity of 
the randomization process. Access to the randomization system was 
limited to study personnel assigned and was used strictly in 
accordance with the protocol at each point of vaccine administration.

The trial employed a double-blind design, concealing the group 
assignments from both medical investigators and parents. Nurses 
responsible for administering the vaccines were the only individuals 
not blinded in the study.

Interventions

This clinical trial utilized two rotavirus vaccines available in 
México and all Central American countries: RotaTeq™ (Merck & Co., 
Inc.; RV5), administered as a three-dose series at 2, 4, and 6 months of 
age, and Rotarix™ (GlaxoSmithKline Biologicals; RV1), given in a 
two-dose series at 2 and 4 months of age (5).

Rotarix™ was supplied by the National Vaccination Program, 
whereas RotaTeq™ was procured with funding allocated for the study. 
Each vaccine batch was meticulously documented by number and 
expiration date to ensure traceability.

The trial involved two groups that followed the standard schedules 
of RV1 and RV5. The other five groups received mixed schedules, 
combining doses of RV1 and RV5. To maintain the blinding integrity 
due to the differing doses between the Rotarix™ and RotaTeq™ 
vaccines, a placebo composed of 5% glucose solution was administered 
the third dose in the standard RV1 schedule group.

The specific vaccine schedules were as follows: Group 1 received 
RV1 + RV1 + placebo; Group 2 received RV5 + RV5 + RV5; Group 3 
received RV1 + RV5 + RV5; Group  4 received RV5 + RV1 +  
RV1; Group  5 received RV5 + RV5 + RV1; Group  6 received 
RV5 + RV1 + RV5; and Group  7 received RV1 + RV5 + RV1 
(Supplementary Table S1).

Follow-up procedures

Subjects received the first vaccine dose on Day 1 (at 2 months of 
age ± 2 weeks), the second dose during visit 2 (at 4 months ±2 weeks), 
and the third dose or placebo (for Group 1) at visit 3 (at 6 months of 
age ± 2 weeks).

On day 1, pre-vaccination serum samples were collected before 
the administration of the vaccine and clinical history and physical 
examination were performed for all subjects.

Additionally, parents were provided with a diary to record 
temperature, diarrhea, stool characteristics, vomiting, local pain or 
redness, or any other symptoms experienced by the child in the month 
following vaccination. They were also given a thermometer and 
instructed on accurately recording temperatures in the diary.

At each subsequent visit, vital signs and general examination were 
conducted before each vaccine or placebo administration dose. 
Researchers reviewed the diary to assess solicited and unsolicited 
adverse events. Parents were encouraged to contact the study site or 
visit the hospital emergency department in case of any doubts, illness 
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of the infant, or if they deemed it necessary, and to immediately report 
such incidents to the research team. Regular phone calls were made 
each month to follow up on adverse events or serious adverse events, 
remind parents of their next visit, or reschedule visits as necessary.

Concomitant vaccinations included the pentavalent vaccine 
(Haemophilus influenzae type b, diphtheria, tetanus toxoid, acellular 
pertussis, and inactivated polio [Hib/IPV/TDaP], Pentaxim; Sanofi 
Pasteur), administered intramuscularly in the right anterolateral 
thigh, and two doses of the 13-valent pneumococcal conjugate vaccine 
(PCV13; Prevenar 13, Pfizer Inc.), administered intramuscularly in 
the left anterolateral thigh. The hepatitis B vaccine was given at two 
and six months of age, with the influenza vaccine applied during the 
winter season (doses according to AAP annual recommendations).

Visit 4, was scheduled to collect the symptoms diaries and final 
serum sample one month following the administration of the last 
vaccine dose.

Study objectives

The primary objective of this study was to evaluate the 
non-inferiority in immunogenicity of five mixed rotavirus vaccine 
schedules compared to the standard RV1 and RV5 schedules.

The secondary objective assessed and compared the 
reactogenicity-related symptoms and safety profiles across the 
different vaccination groups.

Outcomes

The primary outcome was immunogenicity as measured by 
seroresponsiveness. Seroresponse was defined by the detection of an 
anti-rotavirus serum IgA concentration ≥ 20 U/mL (seropositive) at 
the post-vaccination sampling timepoint in infants with an IgA 
concentration < 20 U/mL (seronegative), at the pre-vaccination time point.

The non-inferiority margin was set at −0.10. We established this 
value following a conservative approach that considers the lower 
confidence interval limit from seroresponse rate comparing RV1 (72.1 
to 81.9%) and RV5 (87 to 94.9%) schedules (24). The estimated 
difference between the RV1 and RV5 seroresponse rate is −14%, with a 
95% confidence interval ranging from −20.24% to −7.76% (23). By 
taking the lower limit of this interval as our conservative benchmark 
and factoring in a preserved fraction of 50% of the comparative 
immunogenicity on mixed schedules, we  derived a non-inferiority 
margin of −10%. This margin aims to retain a significant proportion of 
RV5’s protective effect while accommodating the variability inherent in 
mixed vaccination schedules with interchangeability with RV1 doses.

To establish non-inferiority, the lower limit of the 95% confidence 
interval for the difference in seroresponse proportion between each 
mixed schedule minus its corresponding standard schedule needed to 
be above the −0.10 threshold.

The secondary outcomes were the frequency of reactogenicity-
related symptoms and safety assessments across all study groups.

Immunogenicity assessment

Serum samples (4 mL each) were collected from participants prior 
to the first vaccine dose and one month after completing the 

vaccination schedule. The measurement of serum anti-rotavirus IgA 
levels was performed using the ELISA method at the Laboratory for 
Specialized Clinical Studies (LSCS) of Cincinnati Children’s Hospital.

The assay used was based on the assay described by Ward et al. 
(25, 26), which itself is a modification of the technique developed by 
Bishop et al. (27).

Microtiter plates were coated with purified rabbit anti-rotavirus 
polyclonal IgG to serve as the capture antibody. Rotavirus lysate from 
the WC3 strain and mock-infected lysate from the MA104 cell line 
were alternately added to the coated microtiter plates to assess 
non-specific binding. The plates were then incubated to allow for 
binding. Following incubation, the plates were washed with 
phosphate-buffered saline containing 0.05% Tween 20 (PBST) (Fisher 
Scientific, Pittsburgh, PA).

Reference standards, controls, and samples were diluted in a 
diluent composed of PBST with 1% non-fat dry milk. After another 
washing step, 50 μL of each reference standard, control, and serum 
sample were added to two wells pre-treated with either the rotavirus 
or mock-infected lysate. Plates were washed, and biotinylated goat 
anti-human IgA (Jackson Laboratories) was added, followed by 
another incubation period.

Post-incubation, the plates were washed, and peroxidase-
conjugated avidin-biotin (Vector Laboratories, Inc., Burlingame, CA) 
diluted in wash buffer was added. The substrate O-phenylenediamine 
(OPD) (Sigma) was added after a final washing step. The reaction was 
halted after 30 min with 100 μL per well of 1.0 M sulfuric acid (H₂SO₄). 
Absorbance was read at 492 nm using a Molecular Devices SpectraMax 
190 plate reader.

A four-parameter logistic regression function, implemented 
through SoftMax software, was used to model the standard curve. The 
reference standard, a human serum pool, was assigned a value of 
1,000 units per milliliter (U/mL) for anti-rotavirus IgA. This standard 
established a range of concentrations to represent serial dilutions used 
for building the standard curve.

The concentration of anti-rotavirus IgA in test samples was 
determined by extrapolating from the OD values of sample wells to 
the standard curve. The assay’s lower limit of quantitation, which is 
the minimum concentration that can be measured reliably, was set at 
7.5 U/mL for anti-rotavirus IgA.

The reported data resulting from this method has been thoroughly 
reviewed and audited in accordance with LSCS procedures (SOP No. 
96), adhering to current Good Laboratory Practice (cGLP) and Good 
Clinical Practice (cGCP) guidelines.

The technical assay’s cut-off point was established at 20 U/mL IgA 
(28). This threshold has been used as a criterion for determining 
seropositive status at the individual level in vaccine clinical trials (20, 
23, 29). It has also been used as evidence of a natural rotavirus 
infection (30, 31) and is correlated with efficacy outcomes, specifically 
a lower risk of gastroenteritis among vaccinated children (32–34).

Reactogenicity and safety

Prospective surveillance was carried out following the 
administration of each dose of the vaccine to monitor for adverse 
events associated with vaccination, with comparisons made between 
groups. Parents or legal guardians recorded any instances of fever, 
diarrhea, or vomiting in a symptom diary within 30 days after each 
vaccine dose to monitor for symptoms related to reactogenicity. 
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Follow-up visits were scheduled on day 60 post-vaccination, during 
which a medical researcher reviewed the completed symptom diaries. 
Fever was defined as a rectal temperature of 38.0°C or higher.

The safety analysis included any serious adverse events, 
intussusception, hospitalizations, or emergency visits reported 
throughout the study. The reactogenicity and safety of the vaccine 
schedules were assessed in the total vaccinated cohort, which 
comprised infants who received at least one dose of either of the 
rotavirus vaccines.

Sample size

The sample size was calculated for this non-inferiority trial to 
ensure adequate power to detect a pre-specified non-inferiority margin.

The determination of the sample size assumed a minimum 80% 
seroresponding rate after the administration of a complete schedule. 
To achieve 80% power to demonstrate non-inferiority, with a 
one-sided 5% alpha level and the non-inferiority margin set according 
to clinical significance (−0.10), a sample size of 214 subjects per group 
is required. This calculation considers the potential for dropouts and 
non-compliance, ensuring that the trial is adequately powered to 
assess the primary outcome measures.

Statistical methods

Demographic characteristics of the sample were summarized as 
count and percentage for categorical variables (sex) and median with 
interquartile ranges (25th to 75th percentile) for continuous variables 
(age, birth weight, and gestational age). These demographic variables 
were compared between groups using the Pearson Chi-square test and 
the Kruskal-Wallis equality of populations rank test for categorical 
and continuous variables, respectively.

We conducted a non-inferiority analysis to compare the 
concentrations of anti-rotavirus IgA in samples collected pre- and post-
vaccination (one month after the last dose) from all sequential mixed 
vaccine groups against the two single vaccine reference groups (Groups 
1 and 2). Groups 3 and 7 were compared with Group 1, and Groups 4, 
5, and 6 with Group 2. This per-protocol analysis was limited to infants 
who adhered to the vaccination protocol and the specified sample 

collection intervals. We calculated the percentages of infants with post-
vaccination IgA antibody concentrations ≥20 U/mL, along with their 
95% confidence intervals (CIs), and determined the IgA geometric 
mean concentrations (GMC) with 95% CIs. Our study’s non-inferiority 
criterion hinged on the lower bound of the two-sided 95% CI for the 
seroresponse difference between each mixed vaccine schedule and its 
corresponding single vaccine reference. We  set a pre-established 
noninferiority margin of −0.10, and a lower bound exceeding this 
threshold indicated non-inferiority. To evaluate immunogenicity, 
we used the two-sample test of proportions under the non-inferiority 
hypothesis (unilateral test for the difference between mixed schedule 
and standard reference group greater than zero).

Safety and reactogenicity analyses were conducted on the entire 
vaccinated cohort, which included all infants who received at least one 
dose of either the RV1 or RV5 vaccine. We tabulated the number and 
percentages of infants reporting each solicited and unsolicited adverse 
event. Differences in frequencies across groups were evaluated using 
a test of proportions as described above.

All statistical procedures were performed with a type I  error 
threshold set at 5% (α = 0.05) using Stata version 18 for Mac, which 
was also utilized for the creation of graphical representations of 
the data.

Results

Between November 2013 and July 2015, 2,371 infants were 
assessed for eligibility. Of these, 873 were excluded: 257 did not meet 
inclusion criteria, and 616 declined to participate. The remaining 
1,498 participants were enrolled and randomized into one of the seven 
groups (Table 1). Each group comprised 214 allocated participants. 
The participant flow and attrition at each stage of the trial were 
systematically documented in line to CONSORT guidelines, including 
the adherence to each vaccine dose and post-vaccination visits 
(Figure 1).

Group 1 received a standard RV1 regimen, concluding with a 
placebo dose. All participants received the first RV1 dose, 198 received 
the second, and 190 attended the post-vaccination visit. 
Immunogenicity analysis was conducted on 143 participants.

In Group  2, participants were scheduled for a standard RV5 
regimen. All received the first RV5 dose; however, for one participant 

TABLE 1 Demographic characteristics of subjects enrolled.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Total 
sample

p-
value*

N 214 214 214 214 214 214 214 1,498

Girls, n (%) 100 (46.7) 122 (57.0) 106 (49.6) 104 (48.6) 104 (48.6) 109 (50.9) 111 (51.9) 756 (50.5) 0.455

Age, days 53

(47–60)

51

(46–60)

54

(48–60)

54

(48–60)

53

(46–61)

54

(47–62)

54

(47–61)

53

(47–61)

0.409

Birth weight, 

kg

3.11

(2.79–3.36)

3.04

(2.79–3.30)

3.10

(2.84–3.39)

3.09

(2.80–3.42)

3.07

(2.85–3.35)

3.04

(2.76–3.34)

3.06

(2.80–3.56)

3.07

(2.80–3.37)

0.585

Gestational 

age, weeks

39

(38–40)

39

(38–40)

39

(38.1–40)

39

(38–40)

39

(38–40)

39

(38–40)

39

(38–40)

39

(38–40)

0.890

Frequencies of female participants are presented to represent sex distribution in each intervention group. For numerical variables, medians along with the 25th and 75th percentiles (P25–P75) 
are provided. *The Pearson chi-square test was used for comparison of sex distribution, and the Kruskal-Wallis test was applied for comparisons of numerical variables across groups.
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we did not obtain sample for pre-immunization antibody analysis, 206 
received the second dose, 202 receiving the third dose, and 198 
completing the post-vaccination follow-up. Immunogenicity analysis 
was performed on 148 subjects.

Groups 3 to 7 were assigned mixed schedules involving RV1 and 
RV5 doses. In the mixed groups, the retention also remained high, 
suggesting that the type of schedule did not significantly impact 
participant retention for the final analysis.

In total, 1,363 infants successfully completed the follow-up four 
visits. Discontinuations primarily occurred due to loss of follow-up, 
often related to changes in residence. Withdrawals of consent or 
protocol deviations, such as non-study medical interventions (e.g., 
blood transfusions or administering vaccine doses at non-protocol 
sites), were less frequent reasons for discontinuation. It is important 

to note that there were no cases in which the withdrawal of subjects 
from the study was related to the presence of adverse events 
attributable to the vaccines (Supplementary Table S2).

We defined the protocol complete for each participant when, in 
addition to attending follow-up visits, blood samples were successfully 
collected both pre- and post-vaccination (Figure 1).

Regarding sample loss, which led to some samples being excluded 
from the final analysis, the reasons included sample coagulation 
(n = 10), insufficient blood sample volume (n = 1), and venipuncture 
failure (n = 5) (Supplementary Table S2).

Owing to limited assay availability, the first 1,110 randomized infants 
who completed the study were included in the immunogenicity analysis. 
From these, subjects with pre-existing IgA antibody titers of 20 U/mL or 
more before the first vaccine dose were eliminated to specifically assess 

FIGURE 1

Flow diagram of participants enrollment, allocation, follow-up, and losses by group. Participant losses are marked in white circles [○]. The elimination 
of participants for immunogenicity analysis due to sample loss (n  =  16) is indicated with triangles [▽] for each group. The final dataset for 
immunogenicity analysis (n  =  1,110) is detailed for each group in diamonds [◇]. The elimination of subjects with IgA <20  U/mL on the pre-vaccination 
sample (n  =  12) is represented in white circles [○], and subjects with missing serological data for immunogenicity analysis (n  =  84) are denoted with 
black circles [●].
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vaccine-induced seroconversion. This exclusion applied to 12 participants. 
Additionally, subjects with missing immunization serological data in the 
laboratory report (n = 84), either due to unprocessed samples for limited 
assay capacity or reports of non-compliance with standard quality 
requirements, such as hemolysis, were also removed from the analysis. 
These exclusions did not significantly affect the balance of the study 
cohort’s group composition (Figure 1).

Baseline data

The demographic characteristics of the infants enrolled in the 
seven study groups are presented in Table 1. The study comprised a 
total of 1,498 infants, with each group consisting of 214 participants. 
The demographic variables demonstrated a balanced distribution 
across all groups. Data is shown in Table 1.

Immunogenicity

From the initial cohort of 1,498 infants, a subsample of 1,110 was 
selected due to assay constraints. This immunogenicity subsample 
comprised the first 1,110 infants who were enrolled and completed the 
study protocol. We confirmed no significant differences between the 
subsample and excluded infants in terms of sex distribution (p = 0.831) 
and gestational age (p = 0.768). The groups were evenly represented, and 
birth weights were similar (p = 0.832), although a significant difference in 
median age was observed (p < 0.001) (Supplementary Table S3).

The per-protocol immunogenicity analysis involved 1,014 infants’ 
data of post-immunity antibody titers. Age at enrollment was 
considered as a potential confounder. Nonetheless, no significant 
differences were found in age at enrollment across the seven study 
groups (median 52 days, p = 0.434) (Supplementary Table S4).

The aim of the immunogenicity analysis was to assess the 
non-inferiority of the mixed vaccine schedules compared to the 
standard single vaccine reference groups. The immunogenicity 
response was quantitatively evaluated by analyzing all groups’ 
geometric mean antibody titers. Group 1 (RV1 + RV1 + Placebo) and 
Group 2 (RV5 + RV5 + RV5) were used as reference standards. Groups 
3 and 7 were compared with Group 1, while Groups 4, 5, and 6 were 
compared with Group 2.

Figure 2 illustrates the immunogenicity response for the vaccine 
schedules, depicting the proportion of subjects achieving different 
antibody titer levels (expressed as geometric mean) after vaccination. 
Panel A presents the curves of Group  1 (RV1 + RV1 + placebo), 
Group 3 (RV1 + RV5 + RV5) and Group 7 (RV1 + RV5 + RV1), with 
Group  3 showing the highest level of protection as indicated 
by its rightmost curve. Panel B shows the response curves for 
Group 2 (RV5 + RV5 + RV5), Group 4 (RV5 + RV5 + RV1), Group 5 
(RV5 + RV5 + RV1), and Group  6 (RV5 + RV1 + RV5), with 
Group  2 exhibiting the highest protection levels among these  
groups.

Group 2 (RV5 + RV5 + RV5)2 exhibited the highest increase in 
geometric mean concentrations of antibodies, indicative of a strong 
immunogenic response, while Group 1 (RV1 + RV1 + placebo) had the 
smallest increase when compared to all other schedules (Table 2). In 
comparison with Group 1, Groups 3 and 7 demonstrated significant 
differences in the proportion of seroresponding subjects after 
vaccination, as indicated in Table 2. The seroresponse rate for mixed 
schedules in Groups 3 and 7 was identical (0.97). The difference in 
proportion of seroresponding subjects of these mixed schedules 
compared to the RV1 standard schedule in Group 1 was 0.20, with a 
95% confidence interval (CI) for the difference ranging from 0.125 to 
0.275, as shown in Figure 3.

The mixed vaccine schedules of Groups 4, 5, and 6 achieved 
proportions of seroresponders that were non-inferior to the reference 
Group 2 (RV5 standard schedule) as the differences were above the 
non-inferiority criteria in terms of eliciting an immunogenic response 
(Figure 3).

It is important to note that the observed differences were 
significantly positive, favoring the mixed schedule groups (Figure 3). 
This outcome supports mixed schedules’ interchangeability in eliciting 
an immunogenic response.

Reactogenicity and safety

Our study’s safety profile was rigorously assessed across all seven 
groups, encompassing the entire vaccinated cohort. As depicted in 
Table 3, the reactogenicity-related symptoms—specifically diarrhea, 
vomiting, and fever—were recorded following each of the three 
vaccine doses administered.

FIGURE 2

Immunogenicity response. Geometric mean titers reached post-immunization across the vaccine schedule. (A) Mixed schedules for group 3 
(RV1  +  RV5  +  RV5) and group 7 (RV1  +  RV5  +  RV1) compared with group 1 (RV1  +  RV1  +  placebo) as reference group. (B) Mixed schedules for group 4 
(RV5  +  RV1  +  RV1), group 5 (RV5  +  RV5  +  RV1), and group 6 (RV5  +  RV1  +  RV5) compared with group 2 (RV5  +  RV5  +  RV5) as the reference group.
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Notably, fever was the most frequently reported symptom post-
vaccination, but the occurrences remained within the expected ranges 
for pediatric vaccinations.

The proportion of subjects with fever at any grade (>38°C) was 
higher in Group 3 compared to Group 1. However, this increase did 

not translate into a higher rate of hospitalization, which remained 
exceedingly low across all groups.

No increases were detected in the incidence of any severity of 
diarrhea and vomiting across the mixed groups compared with the 
standard schedules (Table 3).

FIGURE 3

Noninferiority analysis. Differences in the proportion of seroresponding subjects. The predefined noninferiority threshold for comparison between 
each mixed schedule and the single vaccine regimens (RV1, RV5) was set at −0.1 (dashed vertical line). Noninferiority is accepted if the lower bound of 
the 95% confidence interval for the rate of seroresponders in each group does not surpass the threshold of −0.1. Group 3 and Group 7 were compared 
with Group 1 (RV1  +  RV1  +  Placebo). Group 4, Group 5 and Group 6 were compared with Group 2 (RV5  +  RV5  +  RV5).

TABLE 2 Immunogenicity response.

GMC (95% CI) n/N* Proportion of subjects seroresponding (IgA≥20  U/mL) (95% CI)

Group 1

RV1-RV1-Placebo

109.7

(89.7, 134.3)

109/141 0.77

(0.7005, 0.8439)

Group 3

RV1-RV5-RV5

576.97

(477.7, 696.8)

141/146 0.97a

(0.9423, 0.9976)

Group 7

RV1-RV5-RV1

369.52

(298.7,457.2)

141/146 0.97a

(0.9423, 0.9976)

Group 2

RV5-RV5-RV5

766.0

(627.5, 935.1)

147/147 1.00

Group 4

RV5-RV1-RV1

516.0

(412.9, 644.8)

137/144 0.95

(0.9144, 0.9855)

Group 5

RV5-RV5-RV1

692.8

(574.4, 835.7)

143/147 0.97

(0.9144, 0.9855)

Group 6

RV5-RV1-RV5

582.6

(462.3, 734.2)

139/143 0.97

(0.9424, 0.9975)

Total 473.7

(434.8, 515.9)

958/1014 0.94

(0.9258, 0.9546)

*n, number of seroresponding subjects; N, total number of participants per group; GMC, Geometric mean concentrations of antibody titers; 95% CI, 95% confidence interval.
aDifference of proportion test p-value < 0.001 vs. Group 1 (RV1-RV1-placebo).
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TABLE 3 Proportion of subjects with reactogenicity-related symptoms in study groups.

Group Diarrhea Vomiting Fever

Dose 
1

Dose 
2

Dose 
3

Proportion Difference
Dose 

1
Dose 

2
Dose 

3

Proportion Difference
Dose 

1
Dose 

2
Dose 

3

Proportion Difference

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Group 1 14/206 2/195 10/191
0.12

Reference 4/206 1/195 2/191
0.03

Reference 68/206 80/195 34/191
0.85

Reference
(0.08,0.17) (0.01,0.07) (0.80,0.90)

Group 3 3/206 4/198 9/198
0.07 −0.05*

0/206 3/198 4/198
0.03 0

62/210 81/198 47/198
0.96 0.11*

(0.04,0.11) (−0.10,−0.009) (0.01,0.07) (−0.03,0.03) (0.92–0.98) (0.05,0.16)

Group 7 7/207 9/200 9/197
0.12 -0.009

1/207 5/200 3/197
0.03 0

70/207 82/200 43/197
0.91 0.06

(0.08,0.17) (−0.07,0.05) (0.01,0.07) (−0.03,0.03) (0.86–9.95) (‘-0.0004,0.12)

Group 2 8/210 6/204 13/201
0.13

Reference 3/210 1/204 3/201
0.03

Reference 65/207 86/204 46/200
0.91

Reference
(0.08,0.18) (0.01,0.07) (0.86,0.94)

Group 4 4/208 5/198 5/196
0.07 −0.06*

1/208 2/198 3/196
0.03 −0.005

65/207 85/198 42/196
0.90 −0.009

(0.04,0.11) (−0.12,-0.005) (0.01,0.06) (−0.04,0.03) (0.85,0.93) (‘-0.07, 0.05)

Group 5 6/209 7/199 6/197
0.09 −0.04

0/209 1/199 2/197
0.01 −0.02

58/209 79/199 37/197
0.82 −0.09*

(0.05,0.14) (−0.09,0.02) (0.003,0.04) (−0.05,0.01) (0.76,0.87) (−0.15,−0.02)

Group 6 7/207 5/200 11/198
0.11 -0.02

3/208 1/200 1/198
0.02 −0.009

76/208 98/200 36/198
0.98 0.075*

(0.07,0.16) (−0.08,0.04) (0.008,0.05) (−0.04,0.02) (0.95,0.99) (0.03,0.12)

Total 49/1453 38/1394 63/1378
0.08

12/1454 14/1394 18/1378
0.03

476/1453 591/1394 285/1377
0.94

(0.06,0.09) (0.02,0.04) (0.93,0.96)

*Difference of proportion test p-value < 0.05. Pairwise comparisons: Groups 3 and 7 are compared with Group 1; Groups 4, 5, and 6 are compared with Group 2.
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TABLE 4 Proportion of subjects with hospitalization events reported during the study by groups.

Group Hospitalization

Dose 1 Dose 2 Dose 3

Proportion Difference

(95% CI) (95% CI)

Group 1 0/205 2/194 0/190
0.010

Reference
(0.001, 0.03)

Group 3 0/206 2/198 0/198
0.010 0

(0.001, 0.03) (−0.02, 0.02)

Group 7 2/207 1/200 0/198
0.014 0.004

(0.003, 0.04) (−0.02, 0.02)

Group 2 0/210 1/204 0/201
0.005

Reference
(0.0001, 0.03)

Group 4 1/207 0/198 0/196
0.005 0

(0.0001, 0.03) (−0.013, 0.013)

Group 5 0/209 0/199 0/197
0 −0.006

(0.0, 0.02) (−0.02, 0.006)

Group 6 0/208 1/200 0/198
0.005 0

(0.0001, 0.03) (−0.013, 0.013)

Total 3/1452 7/1393 0/1378
0.007

(0.003, 0.01)

During the study, there were only ten hospitalization events 
reported, with none attributed to the vaccination regimen (Table 4). 
Following the first dose, there were three hospitalizations: two cases 
of bronchiolitis and one for a planned inguinal hernioplasty. After the 
second dose, there were seven hospitalizations due the bronchiolitis 
(1 case), pyelonephritis (2 cases), and community-acquired 
pneumonia (4 cases), one of which involved septic shock. No 
hospitalizations were reported following the third dose. Additionally, 
our study did not record any instances of intussusception or deaths. 
This underscores the tolerability and safety of the vaccine schedules 
under investigation.

Discussion

After its initial recommendation in 2006, the World Health 
Organization (WHO) reiterated in 2009 the crucial need to provide 
rotavirus vaccinations to infants globally. Additionally, in 2008, the 
Advisory Committee on Immunization Practices (ACIP) suggested 
that children who could not receive the same type of licensed rotavirus 
vaccine for follow-up doses should instead receive three doses 
comprising different vaccine types (35).

The cost of licensed vaccines and logistic challenges pose significant 
concerns. These factors could be deterrents to widespread availability in 
public health systems of many developing countries, where infants face 
a heavier burden of rotavirus-related morbidity and mortality compared 
to their counterparts in developed, high-income countries (36).

Extensive scientific evidence has established the efficacy of 
rotavirus vaccines RV5 (RotaTeq™) and RV1 (Rotarix™), which 
provide lasting protection against various strains, including those 
most predominantly circulating (37). Their efficacy extends to various 

clinical outcomes, including all-cause diarrhea, acute and severe 
gastroenteritis, and both any rotavirus-specific gastroenteritis and 
severe rotavirus-specific gastroenteritis. Additionally, these vaccines 
have been shown to reduce hospitalizations due to any cause of 
gastroenteritis and severe rotavirus gastroenteritis, maintaining 
sustained efficacy over one or more years post-vaccination. The 
efficacy data is supported by randomized controlled trials conducted 
in low- and high-mortality countries, comparing rotavirus vaccine 
schedules (RV1 or RV5) with a placebo (38, 39). Heterogeneity among 
studies is often attributed to differences in definitions of outcomes as 
severe illnesses. Notably, of head-to-head studies between RV1 and 
RV5 are lacking.

A Bayesian network meta-analysis, which reevaluated data from 
a 2012 Cochrane Review, addressed the indirect comparison of RV1 
and RV5 effectiveness. This study found no significant differences in 
effectiveness between RV1 and RV5 in preventing severe rotavirus 
diseases up to two years (OR 2.23, 95%CI 0.71–5.20) (40). However, 
the wide credible interval reported underscores the need for ongoing 
research, ideally including controlled trials for direct vaccine 
comparisons and updated data collection, particularly in regions with 
varying income strata and child mortality rates.

After the introduction of these vaccines, variations in their efficacy 
have led to observable differences in vaccine effectiveness, which also 
seem to be  context-dependent (41). Meta-analyses highlight a 
performance gradient in vaccine effectiveness, influenced by child 
mortality rates, with better outcomes in lower mortality settings (42). 
The varied levels of protection observed across different settings are 
acknowledged to be  multifactorial. Factors such as concurrent 
administration of live oral polio vaccine, bacterial or viral infections, 
nutritional status, microbiome composition, and maternal antibodies 
potentially lead to reduced immunogenicity (13, 41, 43).
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Moreover, the protective effect of vaccines is recognized as dose-
dependent (16). However, ensuring consistent access to vaccines from 
the same manufacturer for each dose in a standard schedule may not 
always be  feasible due to potential vaccine shortages after 
administering one or two doses. This uncertainty poses a significant 
concern in attaining adequate immune responses. Therefore, assessing 
the immune response to mixed vaccine schedules involving vaccines 
with different characteristics and dosing requirements is essential.

Over the years since the introduction of rotavirus vaccines, 
intestinal IgA response and its surrogate, serum IgA, have long been 
considered the principal correlates of protection for rotavirus vaccines 
(34, 44). A serum IgA level exceeding 20 U/mL is often cited as 
protective (32). A correlation has been reported between serum anti-
rotavirus IgA antibody titers and protection against clinical rotavirus-
related outcomes, although serum IgA itself is not the sole 
immunological effector of this protection (33).

Our study demonstrates that vaccination with combined dosing 
induces immune responses that are non-inferior to those elicited by 
complete RV5 or RV1 schedules. Additionally, RVI and RV5 were 
administered along with other routinely administered pediatric 
vaccines, thus allowing for safety and immunogenicity to be assessed 
as the mixed schedules would be administered in routine use.

This study demonstrates seroconversion rates for RVI and RV5 
schedules that are comparable to those reported in a clinical trial 
performed in a high-income country (United States). In that context, 
seroconversion frequencies based on anti-rotavirus IgA were found to 
be 0.77 (95%IC: 0.72–0.82) for RV1 and 0.91 (95%IC, 0.87–9.95) for 
RV5 (23). The comparison of seroresponse rates between our mixed 
and standard schedules groups revealed that the immune response 
induced by the mixed schemes was not-inferior to standard schemes, 
as the observed differences in seroconversion rates did not exceed the 
non-inferiority predefined margin of −0.10. This margin is an 
accepted criterion for vaccine schedule comparisons (20, 23, 24).

After vaccination, 94% of infants had titters higher than 20 U/
mL. Although GMCs for Group 1 were lower than those of the other 
groups, the GMC antibodies were 5.4-fold higher than the 20 U/
mL threshold.

A high proportion of infants tested positive for antibodies (≥ 
20 U/mL) in all study groups, with mixed vaccine schedules deemed 
non-inferior to the standard schedules using RV5 and RV1. The 
percentage of seropositive infants was higher in Group 2 (standard 
RV5 schedule). In contrast, Group  1 (standard RV1 schedule) 
exhibited lower immunogenicity parameters. It’s important to note 
that Group 1 effectively received only two doses of the vaccine, as the 
third was a placebo. However, the seroresponse rate in the RV1 
standard group was 0.77, aligning with previous studies (23, 45, 46). 
The observed equivalency in immunogenicity among groups receiving 
mixed schedules of RV1 and RV5 further supports the relevance of 
completing the schedules with the available vaccine.

Rotavirus-specific IgA is a surrogate marker of protection rather 
than an absolute correlate (47). Its association with protection varies 
across populations. Baker et  al. (34) found that higher post-
immunization rotavirus-specific IgA levels were associated with a 
reduced incidence of severe rotavirus gastroenteritis, with more 
pronounced protection in low child-mortality countries compared to 
high child-mortality I.

Research in middle-income settings like Mexico indicates an 
association between higher serum RV-IgA levels and reduced risk of 

rotavirus infection, diarrhea, and moderate-to-severe gastroenteritis 
(48, 49).

The evidence shows that in low-income countries this link appears 
less convincing (33, 41). Lee et al. observed that post-immunization 
rotavirus-specific IgA was not an optimal correlate of protection 
against rotavirus gastroenteritis among infants in Bangladesh, where 
the efficacy of rotavirus vaccines is around 50% (50). However, a study 
in Malawi, a country with a high rotavirus burden, indicates that low 
serum RV-specific IgA is associated with a greater risk of vaccine 
failure (47).

This suggests that while serum IgA is a valuable marker of vaccine 
immunogenicity, it may not fully encompass the complexity of the 
vaccine-induced immune response, nor is it necessarily a direct 
causative factor in protection (41). The immediate individual impact 
of vaccine interchangeability, particularly for already effective 
vaccines, is often assessed based on comparative immunogenicity, 
reactogenicity, and safety profiles (20, 23).

The relevance of imperfect immunological correlates increases as 
conducting extensive efficacy trials becomes more challenging (41). 
In the context of planned equivalence clinical trials featuring 
randomized designs to minimize potential confounders, measuring 
serological correlates within a defined 4–6-week window post-
vaccination is useful for discerning seroresponse profiles following 
mixed schemes of licensed vaccines. This step is essential in the short 
term. Future efficacy studies that integrate data on rotavirus-specific 
IgA, along with additional measurement of candidate serological 
correlates and RV-specific cellular parameters at the onset of rotavirus 
gastroenteritis (47), could provide valuable insights into the field of 
vaccine interchangeability.

Previous studies have shed light on the immunogenicity of 
mixed rotavirus vaccine schedules. A notable study in the 
United States investigated the noninferiority of immune responses 
to mixed schedules of RV1 and RV5 vaccines compared to single-
vaccine regimens. The study examined three mixed schedules 
(RV5-RV1-RV1, RV5-RV1-RV1, and RV1-RV5-RV5), revealing that 
the proportion of children seropositive to at least one vaccine 
antigen ranged from 77 to 96%, with no significant differences across 
groups (23).

A secondary analysis of surveillance data in the USA involving 
2,425 children indicated that 75 (3.1%) received a complete 3-dose 
rotavirus vaccination regimen with mixed RV5 and RV1 vaccines. 
These mixed schedules retained a statistically significant level of 
protection (80%) against rotavirus gastroenteritis, like that observed 
for complete, single vaccine–type schedules.

A case–control study in an urban, southeastern USA population 
reported that children with complete rotavirus vaccination, whether 
standard or mixed RV1 or RV5, were protected against rotavirus 
(complete mixed: OR 0.29, 95%CI 0.12–0.72; and complete RV5 and 
RV1: OR 0.21, 95%CI 0.14–0.31). Specific combinations of doses were 
not declared. Notably, children who received a complete mixed 
schedule did not exhibit significantly higher protection against 
rotavirus test-positive disease compared to unvaccinated children 
when factors such as age, race, ethnicity, insurance status, and disease 
severity were controlled. This finding was attributed to the small 
sample size of children who received complete mixed vaccine (n = 27, 
4.0%). The authors noted that that incomplete vaccination schedules 
were largely due to the availability of RV1 and RV5 vaccines from 
manufacturers (45).
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The complete 3-dose schedule for the RV5 exhibits logistical 
challenges due to its requirement for more doses and a larger volume 
per dose compared to RV1. This necessitates more extensive cold-
chain resources, which can impact its availability. Therefore, our 
design did not consider the inclusion of mixed schedules with the 
combination of RV1 and RV5 at two-dose series; this point is relevant 
to be able to conclude the possibility of reaching the immunogenicity 
goal with shorter mixed schedules (16). This is a perspective to probe 
strategies that increase flexibility while being evidence-based.

New vaccines have been developed and approved in some Asian 
countries, and even more, they have received WHO pre-qualification 
(RotaSIIL™ and ROTAVAC™). However, these vaccines are not 
available in Mexico. These vaccines are possibly lower cost vs. the 
studied RV5/RV1 options that might need to be  considered for 
rotavirus prevention in the future (51). Interestingly, a clinical trial at 
two sites in India recently reported interchangeability in terms of 
immunogenicity between ROTAVAC™ and RotaSIIL™. The safety 
profile was similar across the study groups (20).

Our study also demonstrates that RV1 and RV5 are safe when 
administered interchangeably. The safety assessment across all groups 
showed comparable reactogenicity profiles, with no new safety concerns 
detected. The overall incidence of fever, vomiting, and diarrhea was 
similar across groups, aligning with the established safety profiles of RV1 
and RV5. The slightly higher incidence of fever in some groups, 
potentially influenced by concurrent vaccinations, did not translate into 
increased hospitalization rates or other serious adverse events.

Our study found that the total proportion of diarrhea was 0.08 
(95% confidence interval 0.06–0.09). We also observed a slightly higher 
incidence of diarrhea related to vaccination in group 1, who received 
the complete RV1 schedule. The proportion of diarrhea in this group 
was 0.12, and the highest incidence was observed after the first dose, 
dropping to a single report after the second dose. Unexpectedly, 
diarrhea reporting increased after the placebo was used in this group. 
A previous study found similar incidence rates of approximately 0.14 
for both the Rotarix™ vaccine and the placebo (52). The proportion of 
diarrhea was comparable across all vaccine groups and was consistent 
with other studies based on mixed RV1 and RV5 schedules (23).

Our study did not report any vaccine-related hospitalization 
events nor identify any cases of intussusception, the rare adverse 
event historically associated with rotavirus vaccines (53). The 
adherence to a rigorous protocol comprehensive active monitoring 
of adverse events, and our intention-to-treat analysis form a strong 
foundation for our findings on reactogenicity and safety. This 
supports these vaccines’ safety when administered in mixed and 
standard schedules.

The findings from our study align with the emerging consensus 
on the comparable safety profile of these vaccines in different settings 
(40, 54) and underscore the potential for flexible vaccination strategies, 
especially in settings where vaccine availability may fluctuate.

This study contributes valuable insights into rotavirus vaccine 
immunogenicity and safety profiles using mixed schedules. Our 
results, in conjunction with the body of evidence already published, 
support the Advisory Committee in Immunization Practice (ACIP) 
recommendations to complete rotavirus vaccination schedules in 
children. The safety profile observed is adequate, and the achieving 
immunogenicity is promising.

However, we acknowledge certain limitations in our study. Our 
study cohort’s demographic and geographic specificity may limit our 

findings’ external validity or generalizability. Although we achieved a 
high retention rate of participants in the clinical follow-up (>87%), the 
limited availability of reagents for immunogenicity testing was a 
significant constraint. Approximately 75% of those attending post-
vaccination visits were included in the immunogenicity analysis across 
all groups, a factor that should be considered when interpreting our 
results. Additionally, the study had immunogenicity in the short term 
as the primary outcome and did not incorporate rotavirus-related 
gastroenteritis and other clinical outcomes.

A key area for future research is to assess whether these findings 
are consistently reflected in vaccine efficacy, particularly exploring 
schedules that might yield the most favorable clinical outcomes. These 
findings provide evidence to inform decision-makers and healthcare 
providers in the implementation of adaptable and effective rotavirus 
vaccination strategies.

Conclusion

Mixed rotavirus vaccine schedules have been demonstrated to 
be safe and non-inferior in eliciting immune responses compared to 
standard schedules using a single formulation of licensed rotavirus 
vaccines. This study offers valuable insights into the interchangeability 
and selection of rotavirus vaccines, thereby contributing significantly 
to the enhancement of global rotavirus vaccination strategies. 
Particularly in scenarios of vaccine shortages, these findings 
underscore the utility of mixed vaccine schedules in preventing 
rotavirus diarrhea. Such flexibility in vaccination approaches could 
be crucial in ensuring broader and more effective pediatric coverage 
against rotavirus globally.
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