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Valproic acid (VPA) has been widely used as an antiepileptic drug for decades.
Although VPA is effective and well-tolerated, long-term VPA treatment is usually
associated with hepatotoxicity. However, the underlying mechanisms of VPA-
caused hepatotoxicity remain unclear. In this study, a total of 157 pediatric
patients with epilepsy were recruited and divided into normal liver function
(NLF, 112 subjects) group and abnormal liver function (ABLF, 45 subjects)
group. We observed that MTHFR A1298C and MTHFR C677T variants may be
linked to VPA-induced liver dysfunction (p = 0.001; p = 0.023, respectively). We
also found that the MTHFR A1298C polymorphism was associated with a higher
serum Hcy level (p = 0.001) and a lower FA level (p = 0.001). Moreover, the serum
Hcy levels was strongly correlated with the GSH and TBARS concentrations
(r = −0.6065, P < 0.001; r = 0.6564, P < 0.001, respectively). Furthermore, logistic
analysis indicated thatMTHFR A1298C/C677T polymorphisms and increased Hcy
concentrations may be risk factors for VPA-induced liver dysfunction. These
results suggested that individual susceptibility to VPA-induced liver dysfunction
may result fromMTHFR A1298C/C677T polymorphisms and increasedHcy levels.
This study may be helpful for the prevention and guidance of VPA-induced liver
dysfunction.
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Introduction

Epilepsy, one of the most common central nervous system disorders, affects more than
70 million people worldwide (Thijs et al., 2019). Epilepsy is usually characterized by the
recurrence of unprovoked seizures, leading to neurological injury as well as psychosocial
and cognitive consequences. For most epileptic patients, anti-epileptic drugs (AEDs)
treatment is a priority modality. Valproic acid (VPA), a broad-spectrum AED, has been
prescribed predominantly for the treatment of epilepsy and bipolar disorder for decades
(Mishra et al., 2021). Although VPA was confirmed to be effective and well-tolerated, long-
termVPA treatment is usually accompanied by hepatotoxicity (Guo et al., 2019; Ezhilarasan
and Mani, 2022) However, the underlying mechanism for VPA-induced hepatotoxicity is
not fully understood.
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Accumulating evidence indicates that one-carbon metabolism
(OCM) is involved in the progression of alcoholic liver disease
(ALD) and nonalcoholic fatty liver disease (NAFLD) (Tsuchiya
et al., 2012; Radziejewska et al., 2020). One-carbon (1C) metabolism,
mediated by folate cofactors and co-substrates [Vitamin B6 (VB6),
Vitamin B12 (VB12)], serves multiple biological processes (Ducker and
Rabinowitz, 2017). In detail, folate and methionine cycles are included
in the progression of OCM (Raghubeer andMatsha, 2021). Specifically,
dietary folate acid (FA) is converted and reduced to tetrahydrofolate
(THF). THF is converted to 5,10-methyleneTHF and then to 5-
methylTHF via methylene tetrahydrofolate reductase (MTHFR) in
the folate cycle (Petrone et al., 2021). 5-methylTHF is used as a
methyl donor to generate methionine and its subsequent products
[such as S-adenosyl Methionine, S-adenosyl homocysteine (Hcy) and
Hcy] in the methionine cycle. This reaction is catalyzed by
methyltransferase (MTR) and methionine synthase reductase
(MTRR) with VB12 serving as a cofactor. Meanwhile, Hcy can also
entre the transsulfuration pathway to synthesize glutathione (GSH) to
defend against redox reactions (Figure 1) (McBean, 2012). However,
there are limited data about its relationship with VPA-induced
liver disease.

Previous study indicated that VPA treatment disrupted the
homeostasis of OCM in epileptic patients (Ni et al., 2018a).
Additionally, another study indicated that patients underwent long-
term VPA treatment were more susceptible to OCM dysmetabolism
than general population (Ni et al., 2017). However, due to the
complicated compositions of OCM, the mechanism in susceptibility
to VPA-induced liver dysfunction remains elusive. On the one hand,
OCM-related genetic polymorphisms, including MTHFR (C677T,
rs1801133) and MTR (A2756G, rs1805087) were associated with
DNA methylation in VPA-treated patients (Vurucu et al., 2008; Ni
et al., 2018b). Moreover,MTHFR A1298C andMTRR A66G were also
reported to be involved in the progression of liver diseases (Kasapoglu
et al., 2015; Peres et al., 2016). On the other hand, VPA therapy (once or
long-term) altered the levels of OCM-associated nutrients (FA, Hcy and
VB12) (Gidal et al., 2005; Zhu et al., 2022). Taken together, OCM-related
genetic variants and nutrient levels are highly correlated with VPA
treatment in epileptic patients. However, to the best of our knowledge,
there is no direct evidence supporting the association between OCM

and VPA-induced liver dysfunction. Alternatively, numerous studies
have demonstrated that Hcy can induce oxidative stress in molecular
and cellular aspects (Perna and De Santo, 2003; Scherer et al., 2011).
Moreover, oxidative stress is recognized as a key inducer of the
progression of VPA-induced liver dysfunction (Chang and Abbott,
2006). Based on these findings, we hypothesize that OCM-related
nutrients, genetic polymorphism and oxidative stress may contribute
to VPA-induced liver dysfunction, but the mechanism underlying
VPA-induced liver dysfunction remain unclear.

In this study, we systematically explored the associations between
OCM-related genetic polymorphisms and nutrient levels as well as
oxidative stress with VPA-induced liver dysfunction in epileptic patients.

Materials and methods

Patients

This study included 157 patients with a diagnosis of symptomatic
epilepsy based on the etiologic classification of epilepsy (Fisher et al.,
2014). All patients were recruited at Yuhuangding Hospital between
December 2021 to February 2023. For each patient, demographic
characteristics (age, BMI, VPA dose, concomitant drug therapy and
liver function) were recorded. In addition, patients were divided into a
normal liver function [NLF, the levels of all liver function indicators did
not exceed the upper limit of normal (ULN), 112 subjects] group and an
abnormal liver function (ABLF, at least one indicators exceed two-times
of the ULN, 45 subjects) group according to liver function indicators as
described previously (Chen et al., 2019). Meanwhile, patients with the
following conditions were excluded from this study: 1) pre-existing of
ABLF; 2) hyperhomocysteinemia; 3) other potential causes of liver
disease including hepatitis A/B/C, HIV- positive or metabolic disease 4)
smoking, alcohol or drug abuse; 5) less than 3-month of VPA-
based treatment.

This study was approved by the Ethics Committee of the
Affiliated Yuhuangding Hospital of Qingdao University (No.
QDU-HEC-2023108). Informed consents were signed by patients
or their legal guardians. Sample handling and data analysis protocols
followed the clinical principles of Yuhuangding Hospital.
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Blood collection and laboratory assays

After fasting overnight for approximately 10 h, venous blood
was collected from each patient using sterile clot activator tubes.
Blood samples were centrifuged at 3500 rpm for 5 min and then
analyzed within 30 min or stored at −80 °C for later analysis.

Liver function indicators, such as alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-
glutamyltransferase (γ-GT), total bilirubin (TBiL), total protein (TP),
albumin (ALB) andHcy were determined by an automatic biochemistry
analyzer (Au5800, Beckman Coulter, United States). The FA and
VB12 concentrations were determined by chemiluminescent
immunoassay using automated techniques (e601, COBAS, Roche,
Germany) based on the protocols given by the manufacturer.

Quantification of VPA concentrations

In this study, patients underwent more than 3 months of VPA-
based therapy to ensure a steady-state VPA concentration.
Ethylenediaminetetraacetic acid (EDTA)-2Na tubes were used to
obtain venous blood samples from each patient. To measure the
steady-state VPA concentration, blood samples were collected just
before the last VPA administration. Subsequently, the VPA
concentration was quantitatively measured using an automatic
fluorescence immunoassay system (Abbott, Chicago, United States)
as described previously (Ma et al., 2019).

DNA extraction and genotyping analysis

A total of 5 mL of peripheral blood was obtained from each
participant using an EDTA tube and stored at −20 °C. Genomic DNA
was extracted by DNA Extraction Kit (OMEGA, Norcross,
United States) according to the manufacturer’s protocols. The

MTHFR A1298C, MTHFR C677T, MTR A2756G and MTRR
A66G polymorphisms were detected directly by DNA sequencing
after PCR amplification using an automatic genetic analyzer (Applied
Biosystems, United States). Details of genetic polymorphisms and
sequences of primers used for genotyping procedures are presented in
Supplementary Table S1.

Measurement of oxidative stress and
antioxidative parameters

The concentration of GSHwas quantitatively measured according
to the protocol given by Chien’s study (Chien et al., 2016). Briefly,
10 μL of serum was mixed in 990 μL cold phosphate (10 μM)/EDTA
(5 μM) buffer. Then, add 1 volume ice trichloroacetic acid (TCA) into
5 volumes of sample, and centrifuge samples at 12,000 g for 5 min.
Next, the supernatant was neutralized by NaHCO3 and measured
spectrophotometrically at 405 nm. Serum SOD activity and TBARS
concentrations were determined by Beckman Coulter ACCESS ®
(Brea, CA, United States) and suitable kits according to the
manufacturer’s instructions.

Statistical analysis

The statistical analysis in this study was performed using SPSS
(version 20.0; IBM, United States). For demographic characteristic
analysis, Student’s t-test was used to evaluate significant differences
between the NLF and ABLF groups. The statistical significance of the
differences in VPA concentration and concomitant drug were
determined by Student’s t-test or Fisher’s exact test. Comparisons of
genotype frequencies were performed by χ2 (chi-square) tests. Logistic
regression was used to evaluate the risk factors for VPA-induced liver
dysfunction. Data are presented as the mean ± standard deviation.
p-value less than 0.05 indicated a statistically significant difference.

FIGURE 1
Schematic of One-Carbon metabolism related folate cycle, methionine cycle and transsulfration pathway. MTHFR, methylene tetrahydrofolate
reductase; MTR, methionine synthase; MTRR, methionine synthase reductase CBS, cystathionine beta-synthase; ROS, reactive oxygen species.
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Results

Demographic characteristics of the
epileptic patients

This study included 157 pediatric patients (aged: 6.93 ± 6.02 years in
the ABLF group and 6.16 ± 4.80 years in the NLF group) with VPA-

based therapy. Patients were divided into ABLF and NLF groups based
on the results of liver function tests. The demographic characteristics of
ABLF and NLF patients are summarized and listed in Table 1. Patients
inABLF group exhibited significantly higherALT,AST, γ-GT andTBiL
levels than those in NLF group (P < 0.05). Moreover, no differences in
age, BMI, TP, ALB or globulin (GLO) levels were observed between
ABLF and NLF groups (Table 1).

TABLE 1 Demographic characteristics and biochemical indicators of patients.

Demographic characteristics ABLF NLF p-value

Number of patients 45 (28.7%) 112 (71.3%) -

Age (years) 6.93 ± 6.02 6.16 ± 4.80 0.449

Height (cm) 120.11 ± 39.88 110.88 ± 32.48 0.172

Body weight (kg) 29.80 ± 15.80 25.28 ± 13.77 0.098

BMI (kg/m2) 21.05 ± 6.91 21.14 ± 10.88 0.956

TP (g/L) 68.67 ± 8.21 67.01 ± 5.52 0.215

ALB (g/L) 42.78 ± 8.21 42.44 ± 4.55 0.796

GLO (g/L) 25.89 ± 7.15 24.56 ± 5.11 0.192

TBiL (μmol/L) 9.79 ± 6.34 6.90 ± 2.76 0.005

γ-GT(U/L) 57.76 ± 71.67 20.04 ± 15.29 0.001

ALP (U/L) 188.98 ± 125.61 181.12 ± 64.48 0.691

ALT (U/L) 80.96 ± 42.79 13.66 ± 7.09 <0.001

AST (U/L) 92.91 ± 64.40 26.41 ± 8.97 <0.001

Data are presented as Mean ± S.D., The bolded data indicated p < 0.05.

Reference ranges: TP, 65–85 g/L, ALB, 40–55 g/L, TBiL = 3.4–20.5 μmol/L, γ-GT, 9–64 U/L, ALP, 40–375 U/L, ALT, 0–40 U/L, AST, 5–34 U/L.

TABLE 2 Comparisons of VPA concentrations, concomitant drugs and OCM-related nutrients in ABLF and NLF groups.

Items ABLF (n = 45) NLF (n = 112) p-value

VPA concentration (mg/mL) 67.37 ± 27.17 59.78 ± 22.99 0.103a

VPA daily doses (mg/kg) 27.23 ± 21.69 26.24 ± 27.75 0.831a

Adjusted VPA concentration ((mg/mL)/(mg/kg)) 3.16 ± 2.60 3.93 ± 3.21 0.159a

Carbamazepine 2 (4.4%) 4 (3.6%) 0.554b

Clonazepam 0 (0%) 2 (1.8%) 0.508b

Lamotrigine 2 (4.4%) 5 (4.7%) 0.679b

Levetiracetam 1 (2.2%) 3 (2.7%) 0.676b

Topiramate 2 (4.4%) 4 (3.6%) 0.554b

Oxcarbazepine 0 (0%) 1 (0.9%) 0.713b

Homocysteine (μmol/L) 9.43 ± 2.50 7.04 ± 1.37 <0.001a

Folate (ng/mL) 14.82 ± 2.72 19.95 ± 2.37 0.001a

Vitamin B12 (ng/L) 378.11 ± 182.28 445.54 ± 158.62 0.022a

Data are presented as Mean ± S.D.
aStatistical significance was determined by Student’s t-test for independent samples.
bStatistical significance was determined by the Fisher’s exact test.
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Comparisons of VPA concentrations,
concomitant drugs and OCM-related
nutrition levels between the ABLF and
NLF groups

In this study, all patients underwent VPA-based therapy
(monotherapy or polytherapy). We recorded the VPA dose and
concomitant drug used for each patient in ABLF and NLF
groups. Moreover, we analyzed the VPA concentration by an
automatic fluorescence immunoassay system. As shown in
Table 2, there were no significant differences in VPA dose,

VPA concentration or adjusted VPA concentration between
two groups, suggesting that neither the VPA dose nor the
concentration may be directly associated with VPA-induced
liver dysfunction.

In addition, carbamazepine (ABLF: 2, NLF: 4), clonazepam
(NLF: 2), lamotrigine (ABLF: 2, NLF: 5), levetiracetam (ABLF:
1, NLF: 3), topiramate (ABLF: 2, NLF: 4) and oxcarbazepine
(NLF: 1) were combined with VPA therapy. However, no
significant association was found between concomitant
drugs and liver dysfunction in the ABLF or NLF
groups (Table 2).

FIGURE 2
Associations between plasma VPA concentrations andOCM-related nutrition levels of all subjects (ABLF andNLF groups). Relationships between (A)
plasma VPA concentrations and folate levels. (B) plasma VPA concentrations and homocysteine levels. (C) plasma VPA concentrations and Vitamin
B12 levels.

TABLE 3 Comparisons of OCM-related genotypes frequencies between ABLF and NLF groups.

Genotypes ABLF NLF Odds ratio (95% CI) p-value

MTHFR A1298C

AA 16 (35.6%) 75 (67.0%) Referent

AC 22 (48.9%) 35 (31.2%) 1.342 (1.070–1.684) 0.004

CC 7 (15.5%) 2 (1.8%) 3.709 (1.088–12.637) 0.001

MTHFR C677T

CC 13 (28.9%) 50 (44.6%) Referent

CT 25 (55.6%) 55 (49.1%) 1.154 (0.951–1.402) 0.154

TT 7 (15.6%) 7 (6.3%) 1.587 (0.926–2.720) 0.023

MTR A2756G

AA 29 (64.4%) 76 (67.9%) Referent

AG 13 (28.9%) 30 (26.8%) 1.037 (0.825–1.305) 0.749

GG 3 (6.7%) 6 (5.3%) 1.281 (0.674–1.749) 0.714

MTRR A66G

AA 17 (37.8%) 42 (37.5%) Referent

AG 23 (51.1%) 60 (53.6%) 0.985 (0.798–1.215) 0.886

GG 5 (11.1%) 10 (8.9%) 1.068 (0.721–1.582) 0.732

The bolded data indicated p < 0.05.

Statistical significance was determined by the chi-square test.
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Comparisons of OCM-related nutrition
levels between the ABLF and NLF groups

To evaluate the association between OCM and VPA-induced
liver dysfunction, we first analyzed the levels of OCM-related
nutrients in the ABLF and NLF groups. As shown in Table 2,
there was a clear separation between the two groups. Patients in
ABLF group had significantly higher Hcy level than that in NLF
group (P < 0.05). In contrast, the FA and VB12 concentrations were
significantly lower in ABLF group than those in NLF
group (P < 0.05).

Then, we explored the effect of VPA treatment on OCM,
correlation analysis was performed and exhibited in Figure 2. As
shown in Figure 2, there was a significant negative correlation
between the plasma VPA concentration and FA concentration
(r = −0.2962, P < 0.05), and a significant positive correlation
between the plasma VPA concentration and Hcy concentration
(r = 0.4387, P < 0.05). Interestingly, although the VB12 concentration
displayed a separation between ABLF and NLF groups, there was no
significant correlation between the plasma VPA concentration and
VB12 concentration (p > 0.05). These results suggest that OCM
pathway contributes to VPA-induced liver dysfunction.

Associations between OCM-related genetic
polymorphisms and VPA-induced liver
dysfunction

To further elucidate the association between OCM and VPA-
induced liver dysfunction, we analyzed the OCM pathway-related
genetic variants (MTHFR A1298C, MTHFR C677T, MTR A2756G
and MTRR A66G) in the ABLF and NLF groups. The Hardy-
Weinberg equilibrium test and allele frequencies of the four
genes are listed in Supplementary Table S2. The associations
between the four gene polymorphisms and VPA-induced liver
dysfunction are listed in Table 3. In detail, the frequencies of AC

and CC genotypes in MTHFR A1298C were significantly higher in
ABLF group than those in NLF group (48.9% versus 31.2%, p =
0.004; 15.5% versus 1.8%, p = 0.001, respectively). Meanwhile, there
was a significantly increased frequency of TT genotype of MTHFR
C677T in ABLF group when compared to NLF group (15.6% versus
6.3%, p = 0.023). However, there were no statistically significant
correlations between the MTR A2756G or MTRR A66G genotype
and VPA-associated liver dysfunction (p > 0.05, Table 3). These
results suggested thatMTHFR A1298C andMTHFR C677T may be
risk factors for VPA-induced liver dysfunction.

Effect of OCM-related genetic
polymorphisms on nutrient levels in ABLF
and NLF patients

The associations between OCM-related genetic polymorphisms
and nutrient levels (FA, Hcy and vitamin B12) in ABLF and NLF
patients were analyzed. As shown in Table 4, we observed that the
MTHFR A1298C polymorphism was associated with serum Hcy
(AA: 7.25 ± 1.70; AC: 8.16 ± 1.93; CC: 9.63 ± 3.81, p = 0.001) and FA
(AA: 19.17 ± 2.89; AC: 17.92 ± 3.70; CC: 17.97 ± 3.56, p = 0.001)
levels. In addition, theMTHFR CC genotype resulted in higher Hcy
levels (P < 0.01) and lower FA levels (P < 0.01) than the AA genotype
(Figure 3). Interestingly, although MTHFR C677T showed a
different genotype frequency between the ABLF and NLF groups,
the differences in theMTHFR C677T polymorphism among OCM-
related nutrient levels were not statistically significant (p > 0.05,
Table 4; Figure 3).

We further analyzed the associations betweenMTRA2756G and
MTRR A66G polymorphisms and OCM-related nutrition levels.
However, there were no statistically significant differences between
MTR A2756G and MTRR A66G polymorphisms in OCM-related
nutrition levels (p > 0.05, Supplementary Table S3).

Associations between oxidative stress and
VPA-induced liver dysfunction

Oxidative stress is well known to be involved in the progression
of VPA-associated liver dysfunction (Chang and Abbott, 2006; Gai
et al., 2020). Hence, we examined oxidative stress-related
parameters. As shown in Table 5, a significantly higher TBARS
concentration and a lower GSH concentration were observed in
ABLF patients than in NLF patients (P < 0.05). These results
demonstrated that oxidative stress is associated with VPA-
induced liver dysfunction.

Considering the potential link between VPA administration and
oxidative stress, we next performed correlation analysis to explore
the influences of VPA concentration and oxidative stress. In this
study, the VPA concentrations was significantly positively correlated
with TBARS concentration (r = 0.2694, p = 0.006) and a significantly
negative correlation with GSH concentration (r = −0.2233, p =
0.0049, Figures 4A,B), suggesting that the VPA concentration is
associated with oxidative stress.

Importantly, Hcy is involved in redox signaling via regulating
ROS generation and GSH levels (Gomez et al., 2011). For this
reason, we analyzed the correlation between Hcy levels and

TABLE 4 Effects of OCM-related SNPs on Hcy, Folate and Vitamin B12 levels
in patients with epilepsy.

Items Homocysteine Folate Vitamin B12

MTHFR A1298C

AA (n = 91) 7.25 ± 1.70 19.17 ± 2.89 419.89 ± 162.69

AC (n = 57) 8.16 ± 1.93 17.92 ± 3.70 436.38 ± 173.66

CC (n = 9) 9.63 ± 3.81 17.97 ± 3.56 426.85 ± 197.04

p-value 0.001 0.001 0.848

MTHFR C677T

CC (n = 63) 7.48 ± 1.81 19.08 ± 3.02 413.78 ± 163.00

CT (n = 80) 7.87 ± 2.30 18.10 ± 3.60 426.89 ± 164.64

TT (n = 14) 7.99 ± 1.75 7.25 ± 1.70 478.34 ± 208.33

p-value 0.474 0.196 0.431

The bolded data indicated p < 0.05.

Statistical significance was determined by ANOVA.
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oxidative stress. As shown in Figures 4C,D, we found that Hcy
concentration exhibited highly correlated with GSH and TBARS
concentrations (r = −0.6065, P < 0.0001; r = 0.6564, P < 0.0001,
respectively). Based on these findings, Hcy-related oxidative stress
might be involved in the pathogenesis of VPA-induced liver
dysfunction.

Analysis of risk factors for VPA-induced liver
dysfunction

To further clarify the associations of OCM-related nutrients and
genetic factors with VPA-induced liver dysfunction, logistic regression
analysis was performed. As shown in Table 6, the MTHFR A1298C
polymorphism (r = 1.646, p = 0.001), MTHFR C677T polymorphism
(r = 1.162, p = 0.007) and Hcy level (r = 1.334, p = 0.030) exhibited a
significant positive correlation with VPA-associated liver dysfunction.
Moreover, there were significant negative correlations between FA,
GSH concentrations and VPA-induced liver dysfunction (r = −0.602,

p = 0.025; r = −1.258, p = 0.006, respectively). Interestingly, although
TBARS concentrations displayed only a marginally significant
association with VPA-caused liver dysfunction (p = 0.067), there
was a 2.6-fold (95% CI: 0.693–6.436) increased risk for liver
dysfunction progression. These results indicated that MTHFR
A1298C/C677T polymorphisms and GSH/Hcy/FA concentrations
may be risk factors for VPA-induced liver dysfunction.

Discussion

Accumulating evidence indicate that dysregulation of OCM is
associated with NAFLD, but rarely reported in VPA-induced
liver disease (de Carvalho et al., 2013; Fernández-Ramos et al.,
2022). In this study, patients with long-term VPA treatment
exhibited dysmetabolism of OCM, leading to alternations in
OCM-associated nutrients and increased risk of liver
dysfunction. Moreover, we demonstrated that MTHFR
A1298C and MTHFR C677T polymorphisms contributed to

FIGURE 3
Effect of genetic polymorphisms on OCM-related nutrition levels. (A)MTHFR A1298C variant and serum Hcy levels. (B)MTHFR A1298C variant and
serum FA levels. (C) MTHFR A1298C variant and serum Vitamin B12 levels. (D) MTHFR C677T variant and serum Hcy levels. (E) MTHFR C677T variant and
serum FA levels. (F) MTHFR C677T variant and serum Vitamin B12 levels. *p < 0.05, **p < 0.01.

TABLE 5 Concentrations of OCM-related oxidative stress parameters in ABLF and NLF groups.

Oxidative stress parameters ABLF NLF p-value

SOD (U/mL) 3.64 ± 2.15 3.09 ± 1.19 0.115

GSH (μmol/L) 33.90 ± 4.32 47.99 ± 4.33 <0.001

TBARS (nmol/mL) 2.40 ± 0.48 1.97 ± 0.24 0.001

Data are presented as Mean ± S.D., The bolded data indicated p < 0.05.

Statistical significance was determined by Student’s t-test for independent samples.
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VPA-induced liver dysfunction in patients with epilepsy. To the
best of our knowledge, this study first revealed the association
between OCM and VPA-induced liver dysfunction.

Patients with long-term VPA treatment are prone to OCM
dysmetabolism, leading to hyperhomocysteinemia and DNA
hypomethylation (Sener et al., 2006; Vurucu et al., 2008; Ni et al.,

FIGURE 4
Association among plasma VPA concentration, serumHcy levels and oxidative stress parameters of all subjects (ABLF andNLF groups). Relationships
between (A) plasma VPA concentrations and GSH levels. (B) plasma VPA concentrations and TBARS levels. (C) serum Hcy concentration and GSH levels.
(D) serum Hcy concentration and TBARS levels.

TABLE 6 Logistic regression analysis of risk factors for VPA-induced liver dysfunction.

Variables Regression coefficient p-value Exp (B) 95% Confident interval

Age 0.019 0.595 1.019 0.951–1.091

BMI 0.002 0.933 1.002 0.966–1.038

VPA doses 0.011 0.138 1.011 0.966–1.038

VPA concentrations 1.219 0.059 1.519 0.780–2.040

Adjusted VPA concentrations −0.139 0.251 0.871 0.687–1.103

Homocysteine 1.334 0.030 3.802 1.135–12.658

Folate −0.602 0.025 0.548 0.324–0.927

Vitamin B12 0.001 0.894 1.001 0.993–1.008

SOD 0.946 0.242 1.575 0.529–2.540

GSH −1.258 0.006 0.284 0.116–0.695

TBARS 2.519 0.067 5.627 0.693–46.436

MTHFR A1298C 1.646 0.001 5.188 2.324–11.581

MTHFR C677T 1.162 0.007 3.196 1.375–7.431

MTR A2756G 0.135 0.738 1.144 0.519–2.525

MTRR A66G −0.111 0.778 0.895 0.414–1.934

The bolded data indicated p < 0.05.
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2018b). OCM is well known to be associated with chronic liver disease,
but rarely reported in acute liver disease, and no report in VPA-induced
liver disease (Woo et al., 2006; Tsuchiya et al., 2012; Pogribny et al.,
2013). The relationship between OCM and VPA-induced liver
dysfunction is unclear. In this study, ABLF patients showed lower
levels of FA when compared to NLF patients (p = 0.001). Similarly,
previous studies demonstrated that VPA treatment lowered FA levels
by blocking the reuptake of folic acid, leading to a 25%–35% decrease in
FA levels (Rubinchik-Stern et al., 2018; Reynolds and Green, 2020).
Moreover, we also demonstrated that the levels of VB12 were also
decreased in ABLF patients thanNLF patients (p = 0.022). Interestingly,
the concentration of VB12 level has a poor correlation with VPA
concentration. In fact, not only VB12, but also VB6 was also
confirmed to be involved in methionine cycle (Franco et al., 2022).
Importantly, previous study reported that VB6 were positively
associated with hepatic steatosis, as well as correlated with
triglycerides, glucose, ALT and BMI (Ferro et al., 2017). For this
reason, we hypothesize that VB6 may play as the major co-factor in
OCM cycle (in patients with long-term VPA treatment). Further study
and clinical validation are required to explore the implications of VPA
treatment on OCM-related nutrients.

Hcy, an intermediate product of the methionine cycle in OCM,
is an essential amino acid derived from dietary proteins (Kaplan
et al., 2020). Previous study indicated that Hcy concentration was
associated with the progression of liver disease (Chien et al., 2016).
In this study, ABLF patients showed a higher level of Hcy than that
in NLF patients. Meanwhile, Hcy level exhibited a significant
positive correlation (r = 1.334, p = 0.030) with VPA-associated
liver dysfunction. However, the underlying mechanism for increased
Hcy concentration remain elusive. In fact, clinical trials confirmed
that low levels of FA and VB12 may lead to elevated levels of Hcy
(Apeland et al., 2002; Sener et al., 2006). Moreover, serum Hcy
concentration is not only mediated by nutrient levels in OCM, but
also regulated by OCM-related genetic polymorphisms. Specifically,
the MTHFR C677T variant contributed to increased serum Hcy
levels in VPA-treated patients (Vurucu et al., 2008). Meanwhile,
numerous studies have indicated that the MTHFR A1298C and
MTRRA66G variants are related to Hcy concentrations (Zidan et al.,
2013; Li et al., 2020). In this study, we found that MTHFR A1298C
(AC, OR: 1.342, 95% CI: 1.070–1.684; CC, OR: 3.709, 95% CI:
1.088–12.637) and MTHFR C677T (TT, OR: 1.587, 95% CI:
0.926–2.720) variants were linked to increased Hcy levels and
contributed to the development of VPA-induced liver dysfunction.

Oxidative stress is a critical pathophysiological inducer of VPA-
induced liver diseases (Ma et al., 2019; Ma et al., 2020). Hcy was
reported to modulate oxidative stress via regulating the levels of
GSH (Perna and De Santo, 2003). In this study, we found that the
VPA concentration was significantly correlated with Hcy (r =
0.4387, p = 0.0001) concentration. Moreover, Hcy levels exhibited
a strong correlation with GSH (r = −0.6065, P < 0.0001) and TBARS
(r = 0.6564, P < 0.0001) levels in patients receiving VPA-based
therapy, which is consistent with previous study (Chien et al., 2016).
Based on these findings, we hypothesize that 1C dysmetabolism and
increased Hcy levels may be involved in the progression of VPA-
induced liver dysfunction via the oxidative stress pathway.

Finally, the limitations of this study should also be discussed.
First, due to the low occurrence of liver toxicity during VPA therapy
(1/600-1/800 in pediatric patients, 1/20,000 in the general

population) (Perucca, 2002). The sample size in this study is not
adequate (45 patients in ABLF group, 112 patients in NLF group).
Second, other factors (such as environmental conditions, daily living
habits and diet) that may also contribute to VPA-induced liver
dysfunction, which were not excluded from this cross-
sectional study.

In conclusion, this study demonstrated that the MTHFR
A1298C and MTHFR C677T polymorphisms as well as
increased serum Hcy levels contributed to the progression of
VPA-induced liver dysfunction in epileptic patients via oxidative
stress pathway.
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