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Jingmu Chen4, Xiaoliang Tan4 and Yue Zhao4*

1Department of Oncology, Central People’s Hospital of Zhanjiang, Zhanjiang, China, 2Department of
Radiology, The First School of Clinical Medicine, Shenzhen Maternity & Child Healthcare Hospital,
Southern Medical University, Shenzhen, China, 3Imaging Department of Zhaoqing Medical College,
Zhaoqing, China, 4Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
Objectives: This study aimed to evaluate the effectiveness of radiomics analysis

with R2* maps in predicting early recurrence (ER) in single hepatocellular

carcinoma (HCC) following partial hepatectomy.

Methods: We conducted a retrospective analysis involving 202 patients with

surgically confirmed single HCC having undergone preoperative magnetic

resonance imaging between 2018 and 2021 at two different institutions. 126

patients from Institution 1 were assigned to the training set, and 76 patients from

Institution 2 were assigned to the validation set. A least absolute shrinkage and

selection operator (LASSO) regularization was conducted to operate a logistic

regression, then features were identified to construct a radiomic score (Rad-

score). Uni- and multi-variable tests were used to assess the correlations of

clinicopathological features and Rad-score with ER. We then established a

combined model encompassing the optimal Rad-score and clinical-

pathological risk factors. Additionally, we formulated and validated a predictive

nomogram for predicting ER in HCC. The nomogram’s discrimination,

calibration, and clinical utility were thoroughly evaluated.

Results: Multivariable logistic regression revealed the Rad-score, microvascular

invasion (MVI), and a fetoprotein (AFP) level > 400 ng/mL as significant

independent predictors of ER in HCC. We constructed a nomogram based on

these significant factors. The areas under the receiver operator characteristic

curve of the nomogram and precision-recall curve were 0.901 and 0.753,

respectively, with an F1 score of 0.831 in the training set. These values in the

validation set were 0.827, 0.659, and 0.808.

Conclusion: The nomogram that integrates the radiomic score, MVI, and AFP

demonstrates high predictive efficacy for estimating the risk of ER in HCC. It

facilitates personalized risk classification and therapeutic decision-making for

HCC patients.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) stands as the third leading

cause of cancer-associated mortality globally (1). Partial

hepatectomy with curative intent represents a pivotal strategy for

early-stage HCC patients (2). Despite this, as many as 70% of HCC

patients undergoing this therapy suffer recurrence within five years

(1, 3). The timing of recurrence emerges as an independent survival

factor, with early recurrence (ER) within two years correlating to

lower overall survival (4). For these reasons, a risk stratification

method to guide subsequent monitoring and treatment

becomes imperative.

Previous studies (5–7) have identified several pathological

factors, including microvascular invasion (MVI), vascular tumor

thrombus, and histological grading, for HCC stratification.

However, obtaining these pathological characterist ics

preoperatively through biopsy may not be possible in routine

medical procedures due to potential bleeding risks. Furthermore,

biopsy offers only a partial representation of HCC tissues, failing to

capture the heterogenous characteristics of the entire mass. In

contrast, imaging research may provide valuable insights into

predicting postoperative ER in various malignancies. Magnetic

resonance imaging (MRI), known for superior soft-tissue contrast

and radiation-free imaging as an alternative to computed

tomography (CT), has emerged as a non-invasive tool for

detecting and characterizing HCC. MRI potentially provides

biomarkers for predicting therapeutic responses and outcomes (8,

9). Certain traditional image features (e.g., non-smooth tumor

margin, macrovascular vascular invasion, and peritumor

hypointensity at the hepatobiliary phase [HBP]) are related to

HCC outcomes (10–12). Despite the potential efficacy of these

features, they remain limited and subjective (13, 14), presenting a

challenge in terms of accurate prediction of ER.

The iterative decomposition of water and fat using echo

asymmetry and least squares estimation (IDEAL IQ) creates an

R2* map, which can quantify iron and reflect changes in oxygen

content in local tissues (15). While the R2* map derived from

IDEAL IQ has been utilized to assess iron content relevant to

certain liver diseases, such as iron overload and fibrosis (16), its

application to determine ER in HCC after hepatectomy is yet

unexplored. Given that malignant HCC elevates blood metabolite

levels due to increased oxygen consumption from active tumor cell

proliferation, we hypothesized that elevated R2* values could serve

as a predictive factor for ER in HCC.

Radiomics, an emerging field, involves the extraction of high-

dimensional, mineable, quantitative features from medical imaging

breaking through the limitations of visual assessment. In HCC,

radiomic models have shown potential applications in predicting

histology, treatment response, recurrence, and survival. In the

present study, we aimed to develop a radiomics model based on a

preoperative R2* map to predict ER in HCC patients after

hepatectomy. Additionally, we sought to create and test a combined

nomogram for ER prediction, integrating the radiomic score derived

from the optimal performing model with clinicopathologic-radiologic

variables. This approach is designed to stratify HCC patients, thereby

improving the outcomes of personalized treatment.
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2 Materials and methods

2.1 Population and follow-up approaches

This study received approval from the institutional ethics review

board. The need for informed consent was waived due to the

retrospective nature of the investigation. Data were gathered from

patients at Institution 1 and Institution 2 spanning 2018 to 2021.

Figure 1 shows the flowchart of this study’s design. The inclusion

criteria included individuals 1) with pathologically confirmed single

HCCs, 2) aged ≥ 18 years, 3) having undergone enhanced MRI no

more than two weeks prior to surgery, and 4) possessing complete

clinicopathologic data. Exclusion criteria encompassed those

1) opting for alternative therapies like radiofrequency ablation or

transcatheter arterial chemoembolization (TACE) rather than

resection surgery, 2) presenting with satellite nodules or more than

one tumor, 3) exhibiting extrahepatic spreading or macrovascular

invasion, 4) having inadequate image quality for interpretation, and

5) lacking follow-up within two years post-hepatectomy. The training

set for modeling to predict ER in HCC comprised 126 patients from

Institution 1, while the validation set included 76 HCC patients from

Institution 2.

Regular monitoring for recurrence in all HCC patients involved

contrast CT or MRI each three months for two years post-resection,

with a follow-up deadline set at June 2023. Recurrence criteria were

defined as the emergence of extrahepatic metastasis or new

intrahepatic lesions. These criteria included new intrahepatic

lesions displaying typical HCC imaging features, confirmed by

tumor staining during postoperative TACE, or histopathology, as

well as extrahepatic metastasis verified through typical imaging

features or histopathological assays.
2.2 Clinical and pathological data

Clinical data were collected including age, sex, hepatitis B viral

infection status, and various laboratory indices, such as a-
fetoprotein (AFP), alanine aminotransferase, aspartate

aminotransferase, glutamyl transpeptidase, serum creatinine,

alkaline phosphatase, total and direct bilirubin, prothrombin

time, albumin, platelet-to-lymphocyte ratio (PLR), and

neutrophils-to-lymphocyte ratio (NLR).

Two pathologists, each possessing over eight years of HCC

pathology-related experience, independently examined all sample

slices without access to the clinical data. In cases of disagreement,

we consulted a third senior pathologist (with 20 years of

experience) to provide resolution. MVI was defined as the

presence of tumor cell clusters inside a vascular space of the

peripherical hepatic tissue lined by endothelium, visible only

under microscopic examination (17). The histological division

was determined using the Edmondson and Steiner (E-S) grade. In

instances where multiple tumor grades coexisted, the highest

grade was utilized for diagnosis. E-S grades 1 and 2 imply high

differentiation, while grade 3 and grade 4 denote low

differentiation. The Ki-67 labeling index (LI) was assessed by
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computing the proportion of Ki-67-positive cells. Positive Ki-67

was identified if the nuclei were stained brownish yellow. Low and

high Ki-67 LI were classified by immunoreactive cells with ≤10%

and > 10% immune reactivity, respectively (18).
2.3 MRI protocol

A uniformMRI scanner and scanning protocol were applied for

all patients across both institutions. The MRI procedures were

conducted using a 3.0 T system (Discovery 750w, GE Healthcare).

Standard liver protocols included axial breath-hold IDEAL IQ,

axial T2-weighted fast spin-echo sequence, and axial breath-hold

T1-weighted three-dimension fat-suppressed spoiled gradient-echo

sequence with liver acquisition and volume acceleration. Following

this, Gd-diethylenetriamine pentaacetic acid (Gd-DTPA, Bayer

Schering Pharma, Germany) contrast agent was administered via

the cubital vein at 1.0 ml/s and 0.025 mmol/kg. Subsequently, the

T1-weighted three-dimension fat-suppressed spoiled gradient-echo

sequence was repeated. The dynamic contrast-enhanced scanning

process included arterial phase (AP, 20-45 s), portal vein phase

(PVP, 50-75 s), and delayed phase (DP, 90 s) images. Table 1

displays detailed parameters for each sequence.
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2.4 Radiomics analysis

All images were imported to ITK-SNAP (3.4.0 version, http://

www.itksnap.org/) for segmentation. A pair of radiologists, both with

seven years of abdominal diagnosis experience, performed the

segmentation blindly to clinicopathologic data and follow-up

information. Each manually delineated the region of interest (ROI)

layer-by-layer, ensuring the accuracy of segmentation on R2* maps

by carefully referencing enhanced MRI images for determination of

the ROI edge. Subsequently, the software automatically generated the

three-dimensional ROI of the entire lesion (Figure 2).

All segmented data were then transferred to A.K. (Artificial

Intelligence Kit 3.0.1. A, GE Healthcare). Radiomic features were

extracted using Pyradiomics, an open-source Python package. Inter-

radiologist agreement was assessed by intra-class correlation (ICC).

Only the features with ICC > 0.75 were included in the candidate

feature set. This set ultimately comprised a total of 91 texture features

(ICC = 0.787-0.931), including 1) 16 first-order features; 2) 24 gray-

level co-occurrence matrix (GLCM) features; 3) 14 gray-level

dependence matrix (GLDM) features; 4) 16 gray-level size zone

matrix (GLSZM) features; 5) 16 gray-level run length matrix

(GLRLM) features; and 6) five neighboring gray-tone difference

matrix (NGTDM) features.
FIGURE 1

Study flowchart.
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The training set was subjected to feature selection and

modeling, followed by verification on the validation set. The

extracted radiomic features were optimized via general correlation

analysis, univariable analysis, and least absolute shrinkage selection

operator (LASSO) regression. A logistic regression (LR) classifier

was employed for machine learning to build a predictive model,

forming a linear weighted amalgamation of the optimal features and

their coefficients. This combination was utilized to calculate the

radiomics score (Rad-score). The model performance was estimated

using five-fold cross-validation. In each cross-validation iteration,

the optimal features were evaluated by the feature selection and

then transferred to the LR classifier and modeled. To determine the

predictive error and confidence interval for training and validation

sets, we operated the model via 1000-iteration bootstrap analysis for
Frontiers in Oncology 04
both. We randomly chose a subset of 75% of cases for each

repetition from one of the sets.
2.5 Statistical analysis

Continuous data were recorded as mean and standard deviation

or as median with interquartile values, while categorical data were

expressed as numbers and proportions. Data-distribution normality

was calculated with a Shapiro-Wilk test. Group comparisons

involved a Student’s t-test and Mann-Whitney U-test for

normally and non-normally distributed continuous data,

respectively. Binary categorical data were evaluated with chi-

square tests.

We generated receiver operating characteristic (ROC) curves

to test the model’s classification performance for both sets of data.

Model performance metrics, including accuracy, sensitivity,

specificity, negative predictive value (NPV), positive predictive

value (PPV), and the area under the curve (AUC) were

determined. Model fit was examined using calibration curves

and a Hosmer-Lemeshow (H-L) test. The clinical benefit of the

model was evaluated according to clinical decision and impact

curves. All data analysis was performed in R software (R Studio

3.4.4, https://www.r-project.org), with P < 0.05 denoting

statistical significance.
3 Results

3.1 Clinicopathological features of the
training and validation sets

We considered 202 patients, including 126 from institution I

(41 ER patients, 85 non-ER patients) and 76 from Institution 2

(23 ER patients and 53 non-ER patients). Their baseline clinical and

pathological information are displayed in Table 2. In the training set,

inter-group AFP, NLR, PLR, MVI, E-S grade, and Ki67 LI significantly

differed (all P < 0.05). However, the distribution of clinicopathological

data was similar between the two groups (all P > 0.05).
FIGURE 2

Tumor segmentation. A mass located in the hepatic segment VI with hyperintense in the R2* maps (A). The tumor was segmented on R2* maps and
the corresponding volume-rendering image (B).
TABLE 1 MR imaging sequence parameters.

Parameters Axial breath-
hold iterative
decomposition
of water and fat
with echo
asymmetry and
least squares
estimation
(IDEAL IQ)

Axial breath-
hold T1-
weighted
three-dimen-
sion fat sup-
pressed
spoiled gradi-
ent-echo
sequence with
liver acquisi-
tion and
volume
acceleration

Axial T2-
weighted
fast
spin-
echo

Contrast
enhanced
T1-
weighted
imaging

Echo
time (ms)

1.0 1.5 72.5 1.45

Repetition
time (ms)

6.5 4.0 4255 3.27

Field of
view (mm2)

400×400 380×380 360×360 380×380

Bandwidth
(Hz)

1322 762 320 762

Section
thickness
(mm)

5 5 5 5

Flip
angle
(degree)

3 12 120 10
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3.2 Feature selection and rad-score

Following univariable and correlation analysis in the training

set, 24 of the candidate features were retained. Subsequent LASSO

regression and cross-validation further narrowed down the

features to six, including two first-order features (maximum,

median), one GLRLM feature (run entropy [RE]), one GLDM

feature (dependence variance [DV]), and two GLSZM features:
Frontiers in Oncology 05
gray-level variance (GLV) and gray-level non-uniformity

(GLN) (Table 3).

The six optimal texture features were compared to find that the

ER group feature values had higher values than the non-ER group

across both training and test sets (Table 3). The linear combination

of the weighted coefficients for six features formed the following

Rad-score equation: Rad-score = -0.38 + 1.02 median - 1.45

maximum + 0.86 RE + 1.15 DV - 0.45 GLN + 1.56 GLV.
TABLE 2 Baseline clinical and pathological characteristics of the training and validation sets.

Characteristics

Training set (n = 126)
Validation set

(n = 76)
pInterTotal (n = 126) ER (n = 41) Non-ER

(n = 85)
pIntra

Age (years) 63 (52 ~ 68) 65 (54 ~ 72) 59 (51 ~ 67) 0.258 52 (43 ~ 65) 0.286

Sex (male) 115 (91.3) 38 (92.7) 77 (90.6) 0.696 65 (85.5) 0.632

HBsAg 0.309 0.176

Negative 25 (19.8) 6 (14.6) 19 (22.4) 14 (18.4)

Positive 101 (80.2) 35 (85.4) 66 (77.6) 62 (81.6)

ALT (U/L) 37.00 (22.00 ~ 65.25) 40.00 (27.00 ~ 69.00) 34.00 (20.00 ~ 56.50) 0.143 31.50 (20.60 ~ 54.50) 0.653

AST (U/L) 41.00 (26.00 ~ 49.00) 42.00 (30.00 ~ 54.50) 37.00 (23.50 ~ 58.50) 0.174 41.50 (23.00 ~ 54.75) 0.836

GGT (U/L) 67.00 (42.00 ~ 139.75) 81.00 (42.00 ~ 147.00) 63.00 (42.50 ~ 129.00) 0.438 55.50 (36.75 ~ 126.75) 0.653

ALP (U/L) 83.00 (68.75 ~ 104.25) 86.00 (71.50 ~ 116.00) 80.00 (65.00 ~ 99.50) 0.449 88.50 (69.00 ~ 108.75) 0.557

ALB (g/L) 40.50 (36.78 ~ 43.00) 41.00 (36.65 ~ 43.15) 40.00 (36.95 ~ 42.90) 0.603 39.50 (36.70 ~ 42.70) 0.162

TBIL (µmol/L) 14.87 (11.39 ~ 18.55) 14.99 (12.12 ~ 19.59) 14.80 (10.95 ~ 17.75) 0.246 14.50 (10.60 ~ 18.78) 0.667

DBIL (µmol/L) 4.94 (2.90 ~ 7.18) 4.62 (3.03 ~ 5.94) 5.36 (2.88 ~ 7.63) 0.606 3.45 (2.40 ~ 5.28) 0.167

SCr (U/L) 74.50 (66.93 ~ 86.85) 73.20 (63.00 ~ 82.15) 76.00 (67.00 ~ 87.50) 0.126 74.50 (66.28 ~ 88.30) 0.648

PT (s) 11.90 (11.37 ~ 12.53) 12.90 (11.50 ~ 12.60) 11.90 (11.20 ~ 12.45) 0.323 11.75 (10.40 ~ 14.58) 0.456

NLR 1.98 (1.51 ~ 3.02) 2.44 (1.60 ~ 3.79) 1.88 (1.48 ~ 2.62) 0.007* 2.03 (1.55 ~ 3.62) 0.543

PLR 107.91 (70.45 ~ 149.20) 117.14 (75.35 ~ 184.00) 102.56 (65.23 ~ 141.29) 0.035* 106.87 (76.30 ~ 156.82) 0.875

AFP (ng/mL) <0.001* 0.653

≤400 89 (70.6) 21 (51.2) 68 (80.0) 56 (73.7)

>400 37 (29.4) 20 (48.8) 17 (20.0) 20 (26.3)

Microvascular invasion <0.001* 0.464

Absent 81 (64.3) 16 (39.0) 65 (76.5) 45 (59.2)

Present 45 (35.7) 25 (61.0) 20 (23.5) 31 (40.8)

Edmondson-Steiner grade 0.004 0.338

I-II 75 (59.5) 17 (41.5) 58 (68.2) 40 (52.6)

III-IV 51 (40.5) 24 (58.5) 27 (31.8) 36 (47.4)

Ki-67 labeling index 0.013* 0.326

≤10% 47 (37.3) 9 (22.0) 38 (44.7) 28 (36.8)

>10% 79 (62.7) 32 (78.0) 47 (55.3) 48 (63.2)
f

Continuous variables are presented as median (inter-quartile range, IQR). The categorical variables are presented as numbers (percentages). Using univariable association analyses, PIntra is the
result of univariate analyses between ER and no ER groups, while PIntra represents whether a significant difference exists between the training and validation datasets.
HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; ALP, alkaline phosphatase; ALB, albumin; TBIL, total
bilirubin; DBIL, direct bilirubin; SCr, serum creatinine; PT, prothrombin time; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; AFP, alpha-fetoprotein. *P<0.05.
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3.3 Performance of prediction models

Multivariable analysis revealed independent significant indices

for ER in HCC as serum AFP level > 400 ng/mL (OR [95% CI] =
Frontiers in Oncology 06
5.721 [1.585 - 20.649], P = 0.008), MVI (4.854 [1.404 - 16.782],

P = 0.013) and Rad-score (3.352 [2.008 - 5.597], P < 0.001)

(Table 4). The H-L test yielded a significance level of 0.392,

indicating the model’s acceptable goodness-of-fit.

A nomogram (Figure 3) for forecasting ER inHCCwas constructed

based on AFP and Rad-score values, exhibiting an AUC of 0.901 (95%

CI: 0.826-0.947). The corresponding sensitivity, accuracy, specificity,

NPV, and PPV were 90.2%, 88.1%, 87.1%, 90.8%, and 77.1%,

respectively. Precision-recall analysis demonstrated an AUC of 0.753

and an F1 score of 0.831. For the external validation dataset, these

indices were 0.827 (0.701-0.924), 86.4%, 88.2%, 88.9%, 76.0%, 94.1%,

0.808, and 0.659, respectively. ROC and precision-recall curves of the

nomogram for the training and validation sets are illustrated in Figure 4.

The decision curves (Figure 5) revealed that the model had

significant clinical benefits for predicting ER in HCC. Calibration

curves (Figure 6) exhibited consistent predicted and observed

likelihood of ER for the training set (P = 0.265) and validation set

(P = 0.569).
4 Discussion

Current guidelines suggest surgical hepatectomy as the primary

treatment for HCC patients, particularly those with solitary HCC.

Despite this, the high postoperative recurrence rate remains a

challenge, and the absence of a reliable prediction tool is problematic

(1, 2). In this study, we retrospectively examined R2* maps from 126

single HCC patients, verified by postoperative pathology, utilizing

texture analysis to derive six optimal texture features and compute

Rad-scores. Subsequently, we established and evaluated a nomogram

based on Rad-scores, MVI, and serum AFP levels to predict the ER of

HCC patients. The results indicate that the proposed model holds

potential for assisting HCC patients with individualized risk

classification and guiding therapeutic decision-making.
TABLE 3 Comparison of feature values between ER group and non-ER group in training set and validation set.

Feature

Training set Validation set

ER group
(n = 41)

Non-ER group
(n = 85)

P
ER group
(n = 23)

Non-ER group
(n = 53)

P

First order

Maximum 60.00 (65.40, 71.60) 52.00 (48.70, 66.00) <0.001 58.00 (62.31, 68.45) 53.25 (44.34, 67.54) <0.001

Median 46.45 ± 12.74 34.48 ± 11.20 <0.001 43.32 ± 10.64 32.45 ± 11.43 <0.001

GLDM

DV 34.12 ± 10.67 23.65 ± 10.85 <0.001 36.56 ± 8.70 18.26 ± 9.45 <0.001

GLRLM

RE 3.28 ± 0.36 2.75 ± 0.34 <0.001 3.45 ± 0.54 2.78 ± 0.43

GLSZM

GLN 78.50 (43.60, 145.47) 28.12 (11.76, 43.88) <0.001 82.59 (63.76, 150.54) 34.54 (8.17, 25.47) <0.001

GLV 0.96 (0.89, 1.15) 0.86 (0.41, 1.10) 0.004 1.15 ± 0.62 0.82 ± 0.42 0.028
The Mann-Whitney U test was applied in the analysis of maximum, GLN, and GLV comparison, the independent sample t test was applied in the rest of the comparisons. Data of median, DV,
and RE are means ± standard deviations, the rest of data are described as medians (quartiles).
ER, ER; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; DV, dependence variance; RE, run entropy; GLN, gray-level non-
uniformity; GLV, gray-level variance.
TABLE 4 Univariable and multivariable logistic regression of clinical and
texture features for ER in HCC.

Characteristics

Univariable Multivariable

OR
(95% CI)

P
value

OR
(95%
CI)

P
value

AFP > 400 ng/mL
8.317
(3.576

~ 19.343)
<0.001

5.721
(1.585

~ 20.649)
0.008

NLR
1.738
(1.197
~ 2.523)

0.004

PLR
1.005
(1.000
~ 1.010)

0.040

Rad-score
6.777
(2.309

~ 19.891)
<0.001

3.352
(2.008
~ 5.597)

<0.001

MVI
12.727
(5.238

~ 30.925)
<0.001

4.854
(1.404

~ 16.782)
0.013

Edmondson-
Steiner grade

3.033
(1.403
~ 6.557)

0.005

Ki-67 labeling index
2.875
(1.224
~ 6.754)

0.015
OR, odds ratio; CI, confident interval; AFP, alpha-fetoprotein; NLR, neutrophil to lymphocyte
ratio; PLR, platelet to lymphocyte ratio; MVI, microvascular invasion.
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Traditional quantitative parameters involve manually drawing

ROIs, introducing subjective factors. Variability in ROI drawing

positions and selecting a single slice or several slices can impact the

results and cause the heterogeneity of the entire tumor to be neglected

(19, 20). Utilizing radiomics analysis to outline the entire tumor and

obtain radiomic parameters offers amore objective and comprehensive

reflection of the tumor’s heterogeneity. First-order features can reveal

histogram characteristics across all voxels, while GLCM features reflect

gray-level distribution characteristics and the positional distribution

between pixels with similar gray levels. GLSZM, GLDM, and GLRLM
Frontiers in Oncology 07
features quantify the regions of continuous pixel values, grayscale

dependency, and the distribution of pixel values, respectively.

Moreover, the NGTDM feature quantifies the difference between a

given grayscale value and the average grayscale value within an

adjacent distance (19, 21). In this study, six optimal texture features

were determined to describe tumor uniformity, including DV

(GLDM), RE (GLRLM), GLN, and GLV (GLSZM). We hypothesize

that this may be attributed to actively proliferating HCC cells prone to

ER and increased abnormal neovascularization in the tumor. This

disorganized neovascularization, often associated with ruptured duct
FIGURE 3

The nomogram was developed based on radiomics score, MVI, and serum AFP level.
A B

C D

FIGURE 4

Receiver operating characteristic (ROC) curve (A) and precision-recall (PR) curve (B) for the prediction model in the training set; ROC curve (C) and
PR curve (D) in the validation set.
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walls, heightened susceptibility to hemorrhage and necrosis, and

pronounced tumor anisotropy, may contribute to greater

heterogeneity in signal intensity within the tumor (22). The

maximum and median intensity values, as measured on the R2*
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maps, differed between the two groups evaluated in this study.

Specifically, the ER group displayed higher signal intensity. HCCs

prone to ER exhibit higher malignancy andmore active proliferation of

tumor cells; the tumor consumes increased levels of oxygen, resulting

in elevated levels of paramagnetic substances like blood metabolites

(e.g., ferritin and deoxyhemoglobin). Consequently, the R2* values

increase (23). The Rad-score computed in this study comprises specific

categories, including two histogram-based features (maximum and

median), one GLDM feature (DV), one GLRLM feature (RE), and two

GLDM features (GLN and GLV). This Rad-score accurately and

comprehensively reflects tumor biology and heterogeneity by

reflecting the layout of pixel intensity within the image, as well as

the spatial association between nearby localized pixels.

The prognostic significance of radiomic features from MRI has

been explored in cases of various malignancies, including HCC, breast

cancer, nasopharyngeal carcinoma, and pancreatic cancer (24–26).

However, associating a single radiomic feature with complex tumor

bioprocesses remains challenging. Consequently, multifactor panels

are commonly constructed to estimate the outcomes of malignancies

in the radiomic setting. For instance, Zhang et al. (10) developed a

radiomics model combining T1WI, T2WI, and gadoxetic acid-

enhanced sequences (AP, PVP, and HBP) for ER prediction in

HCC patients, with the training set AUC of 0.754 and the internal

validation set AUC of 0.728. Similarly, Zhao et al. (27) validated

radiomics models with different sequence combinations to predict ER,

with the best model (in-phase T1WI, out-phase T1WI, T2WI, AP, VP,

and DP) attaining AUCs 0.831 and 0.771 in the training and

validation sets, respectively. Although promising, these radiomics

models do not include comparisons with functional MRI sequences.

Importantly, some studies suggest that quantitative parameters of

functional MRI, such as the average apparent kurtosis coefficient of

DKI and the actual diffusion coefficient of IVIM, can effectively predict

ER in HCC (28–30). The R2* map, a functional MRI, is widely utilized

in the diagnosis and differential diagnosis of neurological diseases (31).

The R2* map is currently applicable for assessing abdominal tumors,

including the diagnosis of prostate cancer (32), differential diagnosis of

ovarian tumors (15), and identification of the etiology of ovarian cysts

(33). The R2* map has also been used to evaluate liver fibrosis (34) and

to identify benign and malignant liver tumors (23). By reflecting the

oxygen content of local tissue, the R2* map non-invasively indicates

the tissue oxygenation levels; an increase in R2* value indicates a

decrease in local tissue oxygenation capacity (35). In the present study,

we established and verified for the first time an R2* map radiomics

method for individualized predicting of ER in HCC patients after

hepatectomy. The R2* map provides tumor heterogeneity information

based on blood oxygen levels and does not require contrast injection,

making it a genuinely non-invasive test.

Furthermore, the results of this study indicate that serum AFP

level, and MVI can independently predict ER. Elevated AFP, a

crucial HCC tumor marker, correlates with ER and is positively

associated with low differentiation, MVI, and tumor recurrence in

HCC patients (36, 37). We found that NLR and PLR are associated

with ER in HCC, suggesting a potential connection between

changes in these inflammatory markers and proinflammatory

mediators influencing oncogenic effects, thereby accelerating

proliferation and invasion of tumor cells (38). Despite well-
A

B

FIGURE 5

Decision curve analysis of the prediction model in the training (A)
and validation (B) sets.
A

B

FIGURE 6

Calibration curves of the nomogram in the training set (A) and
validation set (B).
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established epidemiological evidence linking inflammation to

cancer risk (37, 38), the underlying mechanisms remain unclear.

This study reaffirmed a robust association between MVI and ER, as

observed in previous studies (39–41), affirming the aggressive

nature of HCC and its adverse impact on survival outcomes.

This study was not without limitations. The retrospective design,

focusing only on solitary HCCs, may have introduced selection bias

restricting the generalizability of the proposed model to multiple

tumors. Future research should explore the link between radiomic

features and ER in a broader range of tumors. Additionally, the small

sample size may have compromised the model’s robustness,

necessitating further optimization through large-scale, multi-center

studies. The time- and labor-intensive nature of three-dimensional

ROI segmentation calls for more convenient tools for automatic

segmentation, which would enhance the application of radiomics in

regular radiology practice. Lastly, while nomograms are widely used

for summarizing prediction models, they represent only static models,

require user-dependent decisions, and lack reporting standards. Web

applications offer a dynamic and instantly deployable prediction tool,

mitigating several of these limitations inherent to nomograms.
5 Conclusions

We constructed and validated a nomogram incorporating Rad-

score, MVI, and serum AFP level indicators to accurately predict the

ER of a singular HCC. This nomogram is demonstrated as a precise

and easy to interpret tool in clinical practice, offering valuable

assistance in risk stratification. Following further validation, it has

the potential to guide individualized monitoring and to inform

therapeutic decision-making among both clinicians and patients.
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