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Abstract. We measured πΣ invariant mass spectra below and above the K̄N
mass threshold in the K−d → NπΣ reaction in order to study the K̄N interaction
and the Λ(1405) resonance. This reaction can be described by the two-step
process: (i) K−N1 → K̄N followed by (ii) K̄N2 → πΣ, where N1 and N2 are
nucleons bound in the deuteron. We deduced the S -wave scattering amplitude
of K̄N → K̄N as well as K̄N → πΣ in I = 0 in the framework of the K̄N-
πΣ coupled channel so as to reproduce the observed πΣ spectra in the I = 0
channel. We found a resonance pole at 1417.7+6.0

−7.4(fitting error)+1.1
−1.0(systematic

error)−i[26.9+6.0
−7.9(fitting error)+1.7

−2.0(systematic error)] MeV/c2.

1 Introduction

Λ(1405) is a well-established hyperon resonance with the spin/parity of 1/2−. However, inter-
nal structure of Λ(1405) is still unclear. In the constituent quark model, Λ(1405) is regarded
as the first excited state of orbital motion among u, d, and s quarks. On the other hand,
there is a long-standing argument if it is a bound state of an anti-kaon (K̄) and a nucleon (N)
since its mass is located just below the sum of K̄ and N masses. Recently, a broad peak is
observed at ∼100 MeV below the K̄NN mass threshold in the Λp invariant mass spectrum
measured in the K−3He→ nΛp reaction [1, 2]. A plausible interpretation of the peak is a
K̄NN bound state. The properties of Λ(1405) with respect to the K̄N interaction provide fun-
damental information to understand kaonic nuclear systems and a possible kaon condensate
in ultra-dense nuclear matter, such as neutron star cores.

There exist many experimental and theoretical efforts to investigate the properties of
Λ(1405). For reference, see recent reviews [3, 4]. Based on the unitarized chiral pertur-
bation theory in meson-baryon scattering, there are two resonance poles of Λ hyperons with
the spin/parity of 1/2− below the K̄N mass threshold, which are referred as Λ(1380) and
Λ(1405) in the latest PDG review [5]. There seems to be a consensus on double pole struc-
ture of Λ(1405) through intensive discussions over the last two decades. These arguments
suggest that Λ(1405) is a dynamically generated state of K̄N. Since the Λ(1405) resonance is
located below the K̄N mass threshold, it has been measured in the πΣ invariant mass spectra.
Interpretation of line shapes of πΣ invariant mass spectra at the Λ(1405) mass region may
not be straightforward in the case that the reaction mechanism to induce the πΣ final state is
unclear. Therefore, experimental data to extract the K̄N scattering amplitude at the Λ(1405)
mass region are of vital importance. This article reports our recent experimental result that the
K̄N scattering amplitude and a resonance pole in the isospin I = 0 channel are successfully
deduced below the K̄N mass threshold, based on reference [6].
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Figure 1. Reaction diagram of two-step process in the K−d → NπΣ reaction. This process is dominant
in the case that an energetic nucleon is knocked out at a very forward angle by the incident K−.

2 Experiment

We measured πΣ invariant mass spectra below and above the K̄N mass threshold in the
K−d → NπΣ reactions in order to study the K̄N interaction and the Λ(1405) resonance.
For this purpose, a negatively-charged kaon (K−) beam of 1 GeV/c was irradiated on a deu-
terium target at the K1.8BR beam line in the J-PARC Hadron Experimental Facility. In the
experiment, a nucleon knocked out from a deuteron (d) by an incident K− was detected at a
very forward angle, and four different final states of π+Σ−, π−Σ+, π0Σ0, and π−Σ0 were iden-
tified by measuring charged particles emitted around the target. The experimental setup is
described in reference [6].

This reaction can be described by the two-step process; (i) K−N1 → K̄N takes place
followed by (ii) K̄N2 → πΣ, as illustrated in figure 1. Here, N1 and N2 denote nucleons
bound in the deuteron. Since the nucleon emitted at the forward angle carries away most of
the collision energy in (i), the recoil K̄ slows down. The center-of-mass energy in (ii) can be
lower, even below the K̄N mass threshold because both of the K̄ and N2 are off-mass shell
particles. Around the K̄N mass region, the recoil momentum of K̄ is typically as low as ∼250
MeV/c. Thus, one expects that the S -wave K̄N2 → πΣ scattering is dominant.

The πΣ production cross sections can be described with T I
1 and T I′

2 , the scattering ampli-
tude of the first-step and second-step two-body K−N1 → K̄N and K̄N2 → πΣ reactions with
isospin I and I′, respectively, as follows;

dσ
dΩ

(π±Σ∓) ∝
∣∣∣∣∣∣
3T I=0

1 − T I=1
1

4
√

3
T I′=0

2 ∓
T I=0

1 + T I=1
1

4
√

2
T I′=1

2

∣∣∣∣∣∣
2

, (1)

dσ
dΩ

(π−Σ0) ∝
∣∣∣∣∣∣−

T I=0
1 + T I=1

1

4
T I′=1

2

∣∣∣∣∣∣
2

, (2)

dσ
dΩ

(π0Σ0) ∝
∣∣∣∣∣∣−

3T I=0
1 − T I=1

1

4
√

3
T I′=0

2

∣∣∣∣∣∣
2

. (3)

From these equations, one finds that an isospin relation of the cross sections among the four
πΣ final states is satisfied as

dσ
dΩ

(π0Σ0) =
1
2

[
dσ
dΩ

(π+Σ−) +
dσ
dΩ

(π−Σ+) − dσ
dΩ

(π−Σ0)
]
. (4)

3 Measured spectra and deduced K̄N scattering amplitude

Measured spectra are shown in figure 2. The statistical errors and total ones (including sys-
tematic errors) are shown separately as inner and outer bars in figure 2(a) and (b), while only
the total errors are shown in figure 2(c). We observed different line shapes in the π±Σ∓ final
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Figure 2. Measured spectra in the (a) π−Σ+ and π+Σ−, (b) π0Σ0 and π−Σ0 final states as a function of the
πΣ invariant mass. (c) The isospin relation in equation (4) is demonstrated.

states [figure 2(a)]. The difference is due to interference between the I = 0 and 1 amplitudes.
In the π0Σ0 and π−Σ0 final states [figure 2(b)], only the I = 0 and 1 amplitudes contribute
to the spectra, respectively. The strength of the π−Σ0 spectrum is smaller than that of the
π0Σ0 spectrum. We find that the I = 0 amplitude is dominant, particularly below the K̄N
mass threshold. We find no structure at around 1385 MeV/c2 in the π−Σ0 spectrum, where
we might expect a structure of the Σ∗(1385) resonance. This fact supports dominance of S -
wave πΣ production in the present reactions since a P-wave contribution is required to excite
Σ∗(1385). The isospin relation as shown in equation (4) is demonstrated in figure 2(c).

We describe the πΣ production cross section in the case of process (3) as

d2σ

dMπΣdΩn
≈
∣∣∣T I′

2 (K̄N2, πΣ)
∣∣∣2 Fres(MπΣ), (5)

Fres(MπΣ) = pcm
π p2

n/|(EK− + md)βn − pK− cos θn|
∫

dΩcm
π EπEΣ × (6)

∣∣∣∣∣
∫

qN2 T I
1(pK− , qN1 , pn, qK̄ , cos θnK̄)G0(qN2 , qK̄)Φd(qN2 )d3qN2

∣∣∣∣∣
2

, (7)

where the πΣ spectrum can be decomposed into T I′
2 (K̄N2, πΣ) and the response function Fres.

Giving the scattering amplitude T I
1(pK− , qN1 , pn, qK̄ , cos θnK̄) [8] and the deuteron wave func-

tion Φd [9], Fres can be calculated. Here, G0 is the Green’s function which describes the in-
termediate K̄ propagation between the two vertices. A prescription to evaluate the integration
of eqation (7) is described in reference [7]. For S -wave T I′

2 , we consider the K̄N-πΣ coupled
channel T matrix. The diagonal and off-diagonal matrix elements can be parametrized as

T I′
2 (K̄N, K̄N) =

AI′

1 − iAI′k2 +
1
2 AI′RI′k2

2

, (8)

T I′
2 (K̄N, πΣ) =

eiδI′

√
k1

√
ImAI′ − 1

2 |AI′ |2ImRI′k2
2

1 − iAI′k2 +
1
2 AI′RI′k2

2

, (9)

where AI′ , RI′ , and δI′ are the complex scattering length, complex effective range, and real
phase, respectively. k1 and k2 are respectively the momenta of π and K̄ in the center of mass
frame. The parametrization in equation (8) is the so-called effective range expansion of the
K̄N → K̄N scattering amplitude, where the cotangent of the phase shift is expanded to O(k2

2).
Then, T I′

2 (K̄N, πΣ) is deduced from the relation of the 2× 2 T -matrix, |T11|2 + |T12|2 = ImT11,
that is obtained from the unitarity relationship of the S -matrix (S = I + 2iT ). Here, T11 =

k1T I′
2 (K̄N, K̄N) and T12 =

√
k1
√

k2T I′
2 (K̄N, πΣ).
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Figure 2. Measured spectra in the (a) π−Σ+ and π+Σ−, (b) π0Σ0 and π−Σ0 final states as a function of the
πΣ invariant mass. (c) The isospin relation in equation (4) is demonstrated.
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π0Σ0 spectrum. We find that the I = 0 amplitude is dominant, particularly below the K̄N
mass threshold. We find no structure at around 1385 MeV/c2 in the π−Σ0 spectrum, where
we might expect a structure of the Σ∗(1385) resonance. This fact supports dominance of S -
wave πΣ production in the present reactions since a P-wave contribution is required to excite
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Figure 3. (a) Calculated πΣ spectrum to fit the measured spectrum in the I = 0 channel. The solid
thick and thin lines are the spectrum with and without the resolution function convoluted, respec-
tively. The response function Fres is shown as a dashed line in arbitrary units. (b) Deduced scat-
tering amplitude of K̄N → K̄N in the I = 0 channel. The real and imaginary parts are shown as
solid and dashed lines, respectively. The vertical thin lines show the K−p and K0n mass thresh-
olds. (c) The pole position deduced in the present experiment (labelled as E31) is plotted in the
complex energy plane, together with the theoretical calculations and the so-called PDG value of
Λ(1405). In the legend, IHW:[10], TW1/TW1(NLO30):[11], MM#2/#4:[12], GO fit-II:[13], V(E-
dep):[14], LGDM(NNLO):[15], LQCD:[16], SMD:[17], Shevchenko:[18], HKMT:[19], KNLS:[20],
PDG2022:[5], E31:[6].

The values A0 and R0 were determined so as to reproduce the measured π0Σ0 and
(π+Σ− + π−Σ+ − π−Σ0)/2 spectra, simultaneously, as shown in figure 3(a). We took the K̄N
mass threshold at the average of K−p and K0n. However, we took into account the differ-
ences from the fitting results for the cases of the K−p and K0n mass thresholds as systematic
errors. In the fitting, the experimental resolution function was convoluted with the calcu-
lated spectrum and the vertical scale is arbitrarily adjusted. The line shapes of the πΣ mass
spectra above the K̄N mass threshold are characterized by Fres, the distribution of which
reflects the Fermi motion of a nucleon in the deuteron, as shown by the dashed line in fig-
ure. 3(a). We obtained A0 = [−1.12 ± 0.11(fit)+0.10

−0.07(syst.)] + [0.84 ± 0.12(fit)+0.08
−0.07(syst.)]i fm,

R0 = [−0.18 ± 0.31(fit)+0.08
−0.06(syst.)] + [−0.40 ± 0.13(fit) ± 0.09(syst.)]i fm, where the fitting

errors are indicated as “(fit)”. As mentioned above, the differences of the different K̄N mass
threshold were taken into account as systematic errors indicated as “(syst.)”. The reduced
chi-square was 1.76 with 24 degrees of freedom. Figure 3(b) plots the deduced real and
imaginary part of T 0

2 (K̄N, K̄N) separately as a function of the πΣ mass, from which we find
a resonance pole at 1417.7+6.0

−7.4(fit)+1.1
−1.0(syst.) + [−26.1+6.0

−7.9(fit)+1.7
−2.0(syst.)]i MeV/c2. The errors

are estimated by fluctuations of the pole position due to the errors for the best fit values of A0

and R0. The pole position deduced in the present experiment (labelled as E31) is plotted in
the complex energy plane, together with the theoretical calculations [10–20] and the so-called
PDG value of Λ(1405) [5], as shown in figure 3. The theoretical analyses figure out so-called
double pole structure indicated as Pole 1 and 2. The present result is located in the Pole 1
region, which is coupled to the K̄N channel. The real part of the deduced pole is closer to
the K−p mass threshold than the so-called PDG value of 1405.1 MeV/c2. The deduced pole
is consistent with that reported in reference [21], in which one single pole of Λ(1405) is de-
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duced by fitting the data of γ and K− induced reactions on proton and the kaonic hydrogen
atom.

4 Concluding remarks

• We measured the πΣ mass spectra in the K−d → NπΣ reactions, measuring a knocked-out
N at ∼0 degree.

- The reactions are well described with the two-step reaction process: K−N1 → NK̄ fol-
lowed by K̄N2 → πΣ.

- The S-wave K̄N2 → πΣ scattering is dominant as no Σ∗(1385) is observed in the π−Σ0

spectrum, suggesting that P-wave contribution is negligible.
- The measured spectra safisfy the isospin relation of equation (4).

• The S -wave K̄N scattering amplitude (I=0) in the framework of K̄N-πΣ coupled channel
was obtained so as to reproduce the measured πΣ spectra below and above the K̄N mass
threshold.

• We found a resonance pole at 1417.7 − 26.1i [MeV], which seems consistent to that of the
so-called higher pole of Λ(1405) suggested by the unitarized chiral perturbation theory.
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