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Computing effects for correspondence types

Hans Huttel*

Department of Computer Science
Aalborg University, Selma Lagerlofs Vej 300, 9220 Aalborg @), Denmark

Abstract. We show that type and effect inference is possible for a type and
effect system for authenticity using non-injective correspondences, opponent
types and a spi-calculus with symmetric encryption. We do this by a general
account of how effects can be computed given knowledge of how and where they
appear in type judgments.

1 Introduction

Authenticity properties of cryptographic protocols can be described using la-
belled correspondence assertions due to Woo and Lam [13]. A protocol P is safe
if in every run of P, whenever an end-assertion is encountered, a corresponding
begin-event must have occurred earlier.

A series of papers introduce type/effect systems [5, 6, 8] that are sound ap-
proximations of this notion of safety. In all of them, a protocol is described as a
process calculus term. If the entities in a protocol P can be assigned types that
make P well-typed, such that all free names have an opponent type, then P is
safe in the presence of any Dolev-Yao attacker. The methodology is based on
type checking; a central part of the approach is to provide the type information
that makes P safe. Several protocols have since been analyzed with the Cryptyc
type checker [2].

Recent work has considered type reconstruction in this setting. Gordon et
al. consider type and effect inference in a polarized 7m-calculus [7] but without
cryptography and, notably, without opponent types. Kikuchi and Kobayashi
show [9,10] that type inference is possible for injective correspondences, if ef-
fects are modelled as rational numbers and the constraints to be solved are
inequalities over the rationals. In [9] the authors describe a variation of a type
system of Gordon and Jeffrey that allows type inference in the presence of op-
ponent types. However, the type system of [9] is not equivalent to the original.
For instance, the subject reduction property does not hold.

In this paper we show that type inference is possible for non-injective corre-
spondences in the presence of opponent types and a spi-calculus with symmetric
encryption; no changes to the type system, which is a subsystem of that of [4],
are needed. Moreover, we fix a source of incompleteness found in [7]. We do this
by a general account of how effects can be computed given knowledge of how
they appear in type judgments. Our method populates all effects in such a way
that every end can be traced back to the inhabitants of some effect variable.

We then reduce constraint solving to the problem of finding a failure-free
minimal model for a formula in the ALFP fragment of first-order logic [11] intro-
duced by Nielson et al. in the setting of control flow analysis [11] . Constraints
in ALFP can then be checked using the Succinct Solver [12].

* e-mail: hans@cs.aau.dk



The rest of our paper is organized as follows. We introduce the spi-calculus
with symmetric encryption (Section 2) and a typesystem which is a subset of the
one introduced by Fournet et al. [4] (Section 3). We then show how to generate
a constraint 1) (Section 4), given a process P and a type environment E. In
order to be able to compute a type/effect assignment, we need to establish a
series of results on the origin of effects in type judgments (Section 5). Finally we
introduce ALFP (Section 7) and outline how to translate the constraint 1 into
ALFP. The translation into ALFP gives rise to a so-called failure-free model if
and only if P is well-typed under E (Section 8).

2 A spi-calculus with correspondence assertions

We consider a subset of the spi-calculus introduced in [4]with only simple
begin/end-correspondences.
The syntax of message terms M is given by the syntax

M :=a,b,m,n,...|x,y,z.. | ok | pair(M, M) | { M},

Here a,b, m,n, ... range over a countable set of names and z,v, z . . . range over
a countable set of variables. The term ok is a designated effect term; its only
purpose is to populate ok-types (see e.g. [6,4]), introduced in section 3. The set
of process terms is defined by

I
PQ,R:= process

in(M,z); P input

lin(M,z); P replicated input

out(M,N) output

new a:71; P restriction of name a within P
(P|Q) parallel composition

0 empty process

decrypt M as {y: T}n; P decryption of M with key N
match M as (N,y:T); P matching first pair component
split M as (x : T,y : T»); P pair splitting

begin ¢(M) begin event

end ¢(M) end event

Here T ranges over the set of types, defined in section 3, and ¢ ranges over a
countable set of labels. We let fn(M) and fv(M) denote the sets of free names
and variables for messages — and similarly for fn(P) and fv(P) for processes.
In the semantics, the definitions of structural congruence = and the reduc-
tion relation — follow those of [4]. We write P —-% Q if P —* Q or P = Q.
A process is safe wrt. its correspondence annotations if in every run, every
end-assertion encountered is preceded by a begin-assertion with the same label.

Definition 1 (Safety). A process P is safe if whenever P —*X new a; (end ¢(M) |
P’) we have that P' = begin {(M) | P" for some P".

A process is robustly safe if it is safe for every opponent, i.e. any spi calculus
process without correspondence assertions.



Definition 2 (Robust safety). A process P is safe if for every opponent O
we have that P | O is safe.

3 A type/effect system

Our type/effect system, a subset of that of [4], soundly approximates robust
safety.

3.1 Effects and types

An effect S represents knowledge of a collection of begin-events and is therefore
a set of labelled messages. In general, effects may contain effect variables R; the
syntax of the set of effects £ is thus

S::ZK(M)‘Q‘S&,SQ’R

Here ¢ belongs to a countable set of labels. We denote effect inclusion by 57 < Ss.
The set of types 7 is given by the syntax

Types and Type Variables
I

T:= Type
U type variable
Ch(T) channel type
Ok(S) ok-type
Pair(z : T1,T5) dependent pair type
Key(T) key type
Un opponent type

The types Un, Key(T) and Ch(T) are called generative, since only these can
appear in restrictions.

Ok-types were introduced in [8] to provide a clear separation between types
and effects; it is straightforward to encode effect type systems with latent effects
such as that of [10] using ok-types.

Dependent pair types are necessary in order to describe the type of pairs
whose second coordinate contains an effect that refers to the first coordinate.
For instance, the term pair(a,o0k) can be assigned type Pair(z : T, Ok({(z))).

3.2 Type/effect assignments

We assume that types are defined by a type/effect assignment, where T'Var and
EVar denote the sets of type/effect variables, respectively.

Definition 3. A type/effect assignment A is a finite function A : TVar U
EVar — T UE such that A(U) € T for U € TVar and A(R) € € for R € EVar.

We represent a type/effect assignment as a set of equations A = { U; = T; |
1<i<m}U{ R; =8;|1<j<n}; we assume that the equations are non-
recursive and that for any equation U = T, T has exactly one type constructor
occurrence. It is easy to see that any non-recursive type/effect assignment can
be rewritten in this way.



3.3 Assigning types to terms

Type judgments are relative to a type environment that contains type informa-
tion about the types of free names and variables on the form u : T and collects
effect assumptions S. The syntax of environments is

E:=g|Eu:T

where @ denotes the empty environment and u ranges over names and variables.
An environment is well-formed, written F F o, if it is a finite function, i.e. if
every name bound in E is assigned a type only once. We then write dom(FE)
for the domain of E.

We denote the set of effects found in an environment E by effects(E) and
define it by the clauses

effects(@) =
effects(E,u : Ok(S)) = effects(E), S

effects(E,u : T) = effects(F) otherwise
effects(E, S) = effects(E), S

%}

As seen from the above, the presence of terms of type Ok(S) allows us to
add knowledge of available begins to an environment.

The type rules for messages and processes are given in Tables 1 and 2.

The rule (Msg Ok) describes how Ok-types arise; an occurrence of the term
ok can get type Ok(S) for some set of labelled messages from environment FE.

The rules (Proc Decrypt), (Proc Split), (Proc Match) and (Proc In) may add
type bindings with non-opponent types to the environment and thereby account
for the effects of an Ok-type. For instance, in the rule (Proc Split) the type T5
may be Ok(S) for some S. When typing P in environment F,x : T1,y : Ts, the
available effect will then be that of E along with S. The effect of the environment
is used in the rule (Proc End), which is central to the type system — here, we
check if £(M) occurs among the labelled messages that form the effect of E.

The Un-rules describe opponent typability and directly capture how a Dolev-
Yao style attacker [3] can create new messages from old. For instance, the rule
(Msg Pair Un) states that if M and N have both been seen or created by the
opponent and thus have type Un, then pair(M, M') can also be seen or created
by the opponent.

In our typing rule for parallel composition we collect the effects that can
be used in each of the parallel components. Here, we must record the bound
names that may occur. So whenever a bound name appears in F, we must add
it as well. We define env(P)("), where n is a sequence of distinct names, by the
clauses

env(P | Q)™™) = env(P)™, env(Q)™ where {n,m} N fn(P|Q) =
env(new z : T; P)®™ = 2 : T, env(P)™ where {n} N fn(P) = @
env(begin £(M))? = ¢(M)
env(P)™ = & otherwise

We let env(P) stand for env(P)™ for some n where env(P)™ is well-defined.



Theorem 1. [}/ If EFA P and for all € dom(E), E A x : Un then P is
robustly safe.

Typed Message: E-aA M : T
I

(Msg Def) (Msg Encrypt) (Msg Ok)
EbaM:T AX)=T ErFaM:T EFaN:Key(T) EFo A(R) < effects(()E)
EFFaM:X Era{M}n:Un E kA ok : Ok(R)
(Msg Name) (Msg Pair)
Ero E=FE.,a:TE" EFaM:T E+aM :T (M)
Etaa:T E b4 pair(M, M') : Pair(z : T, T'(x))
(Msg Encrypt Un) (Msg Pair Un) (Msg Ok Un)
EFAM:Un EFAN:Un EFAM:Un EbRa M :Un Elo
EFa{M}n :Un E 4 pair(M,M’) : Un EFAo0k:Un

Table 1. Type rules for messages

4 Generating constraints

The goal of type inference is given FE and P to compute a type/effect declaration
A such that E Fa P, if one exists. From P and E we extract a constraint ¢
and then show how a failure-free solution to ¢ can be found iff P is well-typed
and how to use a failure-free solution to extract a type/effect declaration A.

4.1 A high-level constraint language

The constraint ¢ is built from simpler constraints that correspond to the side
conditions of the type rules and constraints that describe other, structural re-
quirements on types and effects. In these constraints we use a different notation
for type/effect variables to indicate that these variables are the unknowns of
our constraints; type variables are denoted by Ur and effect variables by Rg.

There are three kinds of atomic constraints. Type constraints ¢ describe
conditions on types, effect constraints ¢g describe constraints on effects and
environment constraints ¢ describe constraints on type environments.

Type constraints can be equations that equate a type variable and a compos-
ite type. Since there are two possible type rules for most syntactic constructs,
the type equations that we can extract can be either possible or necessary. Pos-
sible equations are denoted with é, necessary equalities by =. See Section 4.3
for further explanation.

We also introduce constraints that describe if a type is a type abstracted wrt.
a term M (written T = UM (z)) or is a type abstraction that has been applied
(written T' = U(M)). Finally, we introduce constraints describing conditions on
names and introduce a constraint Fail meant to indicate failure (see section 6).

The effect constraints describe that an atomic effect is found in the required
total effect of an environment (written ((M) < effects o (£)), that an effect



Good Process: Eta P

(Proc In) (p either ! or nothing) (Proc Out)
EFaM:Ch(T) E,2:TFaP  EFaM:Ch(T) EFaN:T

EFa pin(M,z); P EFAaout(M,N)
(Proc Par) (Proc Zero) (Proc Res)
E,env(P)Fa Pi E,env(P1)tFa P2 ElFo E,a:Thkta P T generative

Eba P | P EFAO EFanewa:T;P
(Proc Begin) (Proc End)
Eto fv(M)Cdom(E) Eto fv(M)Cdom(E) £(M) < effects(E)
E FA begin ¢(M) EFAaend (M)
(Proc Decrypt) (Proc Split)
EFAM:Un EtaN:Key(T) E,y:TFaP EbraM:Pair(z:Th,T2) E,z:Ti,y:Toka P
Et+Fadecrypt M as {y: T}n; P EtFasplit M as (z:Ti,y:T2); P
(Proc Match) (Proc In Un) (p either ! or nothing)
Eba M :Pair(z:T1,T2) EtaN:Tv E,y:To(N)FaP EFAM:Un E,a:UnkaP
E +a match M as (N,y: T2(N)); P E A pin(M,a); P

(Proc Decrypt Un) (Proc Split Un)
EFaAM:Un EFAN:Un FEy:UntaP EFAM:Un FE, x:Unyy:UnkaP

E A decrypt M as {y: Un}y; P EFasplit M as (z: Un,y: Un); P
(Proc Match Un) (Proc Out Un)
EFraM:Un EFAN:Un E,y:Untka P EFAM:Un EFAN:Un

E Fa match M as (N,y: Un); P EtFaout(M,N)

Table 2. Type rules for processes

variable is instantiated by an environment (E F R) or that an effect variable R
occurs in environment E as x : Ok(R) for some z (R € E).

The syntax of constraints is given by the formation rules

=01 ANpa| 1V | o1 = 2| Vo0
¢ =91 | 95| b

¢r = Urp, = Ch(Ug,) | Ur, = Pair(z : Up,,Ur,) | Ur = Un | Ur = Key(Ur,)
| Up, = Up,M(2) | Up, = U, (M) || Ur = Key(Ur,) | Ur = Ch(Ug,) | Up = Un
| Ur = Pair(z : Up,, Up,) | Uy, = Up,™ (2) | Up, = Ug, (M)
| T generative | n ¢ n(P) | Fail | M : Ur

¢s = L(M) < effects,o(E) | EF R| S € E

op == wi(FE) | n(M) C dom(F)



4.2 Generating constraints

We describe constraint generation as a big-step semantics. For messages, tran-
sitions are on the form F + M ~» Up; 1, where Uy is a fresh type variable and
11 is the constraint associated with M. For processes, transitions are on the
form E A P ~» 1)1, where 17 is the constraint associated with P.

We present a selection of the rules in Tables 3 and 4. We assume that a type
environment F is given by the syntax

E:=@|FEu:Ur|E,u:Un

Thus, names are either assigned to type variables or to Un, while both effect
variables and actual effects may appear in F.

Horn Clause Constraints from Messages: F + M ~ T
I 1

(Msg Name) (Msg Name Un)
E=F, ,z:Ur, E" E=FE,z:UnE"
Etz~ Ur;jz:Upr AwE(E) EbFx~ Up;z:Up AUp = Un A wi(E)
(Msg Ok)
ok :Ur A
B - ok~ U Ur =Un = wf(E) A

(Ur = Ok(R) A
Ur #Un= (E+ R) A wi(E))

(Msg Encrypt)
EFM’\”UTl;wl EFN’\»UTQ;?#Z

. _ Ur, = Key(Ur, )A
EF{M}n~ Ury;Up, = Un A ((UT2 — Un= Uz, = Un) A A

Table 3. Selection of rules for generating constraints from messages

4.3 Dealing with opponent types

Many of the syntactic constructs have more than one type rule. This requires
us to build constraints that can be used to determine when a type must be an
opponent type and when it must be a non-opponent type.

Firstly, a type T can be a necessary opponent type if some name of type T’
was declared to have type Un in the type environment. This is described by the
rule (Msg Name Un). If the type of x is not known when types are generated,
the rule (Msg Name) must be used. If the type of x is known to be Un, we add
the constraint that the type of x is Un.

Secondly, a type T can be a necessary opponent type if this will resolve
conflicting possible type equalities. Suppose for instance that T = Key(T})
and T = Ch(T3). Then T has to Un for the constraints to be satisfiable.

Moreover, since there are two type rules for most syntactic constructs, the
constraints must describe the possible choices. For instance, consider the rules



Horn Clause Constraints from Processes: £+ P~ ¢
I 1

(Proc In) (where u is either ! or nothing)
Er-M~Ur;yn E,xz:Up, b P~ Urp, fresh

. Ur, = Ch(Ur,) A
Bt pin(M, z); P~ 11 A2 <(UT;1 - UI(l iQ%]B = Un))

(Proc Res)
E,z:Urk P~»11 Ur fresh

E + new z; P ~ Vz(z & n(P) A Ur generative = 1)1)

(Proc Begin) (Proc End)

E I begin (M) ~ wi(E) Afn(M) C dom(E) EF end £(M) ~ £(M) < effects, . (E) A wi(E)

(Proc Decrypt)
E-M~Ur; ;¢ EFN~Upnste E,y:Up B P~ 13 Ur fresh
P1 /\;L/JQ A s A UT1 =UnA
E + decrypt M as {y}n; P~ | Ur, = Key(Ury) A
(Ur, = Un = Up, = Un)

Table 4. Selected rules for generating constraints from processes

(Msg Encrypt) and (Msg Encrypt Un) for typing an encryption {M }y. Here
the type of M depends on the type of the key N. It is always possible that
M has type Key(Ur) and N has type T. If we know that N necessarily has
type Un, then M must also have type Un. This is captured in the constraint
generation rule (Msg Encrypt).

5 Computing effects

We now describe how the inhabitants of effect variables can be found.

5.1 Actual vs. required effects

The constraints of Tables 3 and 4 do not suffice. Consider the simple process
end ¢(M), where M is arbitrary and a type environment E = x : Ok(S). Then
the constraints generated thus far will allow for a solution where ¢(M) occurs
in effects,q(F) but not in S, since the solution may set S to &; none of the
constraints presented so far relate S to effects,,(F). However, S should contain
£(M). Therefore the constraint (M) < effects,.,(E) is not sufficient; we must
compare the required effects of E to the actual effects found in FE.

5.2 How and where do actual effects arise?

Actual inhabitants of effects are determined from the type rules (Msg Ok) and
(Proc End). We first consider the demands laid upon us by (Msg Ok), since
this rule provides an upper bound on the contents of S where we know that
E ok : Ok(S) for some E.

For any type environment E, the set inits(E) is the set of immediately
available effects, i.e. the ones not supplied by some Ok-type.



Definition 4.

inits() = &
inits(z : T, E) = inits(F)
inits(((M), E) = £(M), inits(E)

The set others(E) contains the effect in E' that is only available in effect variables
within ok-types.

Definition 5.

others(@) =
others(x : Ok(S ),E): , others(E)
others(x : T, E) = hers( )
others({(M), E) = others(E)

Definition 6. Let E be a type environment.

— FE is simple if others(E) = &
— E is semisimple if others(E) # @ and inits(E) # &
— FE is nonsimple if others(E) # @ and inits(E) = &

A type environment F is thus simple if its effects can be directly determined
from its immediate effects — so no additional effects are hidden in ok-types found
in . Note that if F only contains generative types, then F is simple.

In what follows we write £ -4 J to denote that we are dealing with an
arbitrary type judgement J which can be either E-ao M : T or E A P.

Definition 7. Let E be a type environment. and assume that E A J. We say
that an effect variable R is initial in the derivation of E - J if there exists
an instance of (Msg Ok) E' -, ok : Ok(R) where E' is simple. Otherwise we
say that R is noninitial.

We call any E' b a: ok : Ok(S) where R is initial an initial instance of R.

5.3 Admissible names in effects

We need to ensure that literals in an effect only use names that are mentioned
in the associated type environment. For an effect variable R occuring in the
derivation of E' F J we say that R originates in F, written EOR, if £ + ok :
Ok(R). Any R can originate in at most one E, since our strategy for generating
constraints introduces a fresh effect variable for each occurrence of an ok.

We must ensure that equivalent effect variables can only make use of the
same names. Let us write R; ~ R; if A(R;) = A(R;).

The names that can appear in terms found in an effect variable R are
then those that are known by every type environment containing a binding
x : Ok(R') prior to this occurrence of R/, where R’ is an effect variable equiva-
lent to R.



Definition 8. Assume that we have a derivation D for a judgment E - J.
The set of admissible names Q(R) is

OR)= ()  dom(ER)N N dom(E!)
R'~R,EROR/ El2;:Ok(R'),E/FT€D, R'~R
If fn(¢(M)) C Q(R), we write {(M)QR. Every ¢(M) that inhabits A(R) must
satisfy this condition.

5.4 Default effects

Three kinds of effects can safely be added to any effect assignment; these default
effects are effects inherited via applications of (Msg Ok) and (Proc End).

In what follows we always assume that we have a type derivation for the
judgments that we consider; this derivation tree will determine the exact de-
pendencies between effects. For the purposes of type inference we of course do
not have access to a type derivation tree yet but due to the structure of the
rules, a type derivation tree will be isomorphic to the constraint derivation tree.

Initial effect variables Initial instances impose conditions on the possible in-
habitants of ok-types via (Msg Ok).

The central observation is that if F; - ok : Ok(R) is a initial instance of
R and E; simple, and there exists an effect £(M) such that ¢(M) € inits(E;)
for every R; where R; ~ R;, then we can safely assume that ¢(M) appears in
R and all effects that are equivalent to or inherit from R, if M only contains
admissible names.

Next, we define a relation that describes when an effect can depend on
another. In the following definitions we assume that £ -4 J was concluded by
some derivation D.

Definition 9 (Depends upon). Let E' = M : Ok(R) be an application of

(Msg Ok) found in D and let others(E) = Ry,...,Ry. We then write R T¢ S;

for 1 <i <k. Now let C be the transitive closure of &g. We then define
dep(R) = { R; | R C R;, R; initial}

Definition 10. Let A be a type/effect assignment and ¥(R) a Boolean-valued
condition on elements of dom(A). The updated assignment A" = A[Ry — V | ]
18 defined by

A(Ry) = A(Ry)  if not ¥(Ry)
Vv if Y(R)

The following important proposition is a simple consequence of the properties
of set inclusion; C* denotes the closure of C up to ~.

Proposition 1. Suppose E Ao J and that R is an initial effect with initial
instance E; = ok : Ok(R). Let {(M) € inits(E;) for every R; ~ R; with E;QOR;.
Then the type/effect assignment

A= ARy — A(R)ULM) | Ry TF R U(M)D(Ry)
satisfies E A J .

10



Noninitial effect variables Noninitial effect variables impose conditions on the
inhabitants of effects through the (Proc End) rule. The following propositions
are immediate consequences of the inclusion property for entailment.

Proposition 2. If there exists a noninitial effect R where { R1 | R C R} = &,
then R can only occur in a type environment of some judgment.

Proposition 3. If there exists a noninitial effect R where { Ry | Ri C R} # &
and dep(R) = &, then there exists a noninitial effect Ry where Ry T Rs.

First we consider effect variables R where { R1 | RC R1} = @. An R where
this is the case can only appear in type environments. If R appears in E where
E =FE',z: Ok(R), E” then by well-formedness we must have fn(R) C dom(E’).

If R appears in E where E 4 end ¢(M) and ¢(M) ¢ inits(E), then we can
add ¢(M) to R and to any other noninitial effect variable Ry where R; C R if
¢(M) is admissible in these. The resulting new effect assignment will still make
the process under consideration well-typed.

Alternatively, an effect variable R can depend on other effect variables, so
{R1|RER1}7£@.

There are now two subcases. First, note that if R is noninitial and we have
dep(R) # @, then there is some initial R; such that R T R;. But then we
use Proposition 1 to populate R and thereby we also populate R. So in the
following we assume that dep(R) = @.

Let ¢(M) be a labelled term and E a type environment where R € others(E)
and an instance of (Proc End) requires that ¢(M) € effects(E). For any R’
where R’ C R’ (and these exist by Proposition 3) we can add ¢(M) if this is
admissible. We will still have a A’ that satisfies our constraints.

Proposition 4. Suppose E Fao P and that R is a moninitial effect where
dep(R) = @ or { Ri | RE R} = &. Let E' b end ¢(M) be an applica-
tion of (Proc End) in the derivation tree for E Fa P where (M) & inits(E").
Suppose for all Ry where R C”* Ry or Ry ~ R we have {(M)V(R1). Then the
type/effect assignment A" = ARy — A(R1)UL(M) | RC* Ry, in(M) C O(Ry)]
also satisfies E Far P

Semiinitial effect variables Some noninitial variables may contain initial effects,
and in this case we may be able to add additional effects. Let us say that a
noninitial effect variable R is semiinitial if for some E - ok : Ok(R) we have
that E is semisimple. Any E F ok : Ok(R) where E is semisimple is then called
a semisimple instance of R.

Proposition 5. Suppose E -o J and R is a semiinitial effect with semiini-
tial instance E; - ok : Ok(R). Let (M) € inits(E;) for every R; ~ R; with
E;QR;. Then the type/effect assignment A" = A[Ry — A(Ry)UL(M) | Ry C*
R, fn(M)Q(Ry)] satisfies Bt TJ.

11



5.5 Saturated effect assignments

In the above propositions, if A’ # A we write A — A’ and say that A’ extends
A. An effect ¢(M) that can be added by an application of the propositions of
the previous sections is called a default effect.

The significance of the propositions is that we can add all default effects to
the type/effect assignment and obtain a new satisfying assignment.

Definition 11. A A such that A / is saturated.
The following theorem follows from the propositions that we now have:

Theorem 2. E Fa J iff there exists a saturated Ay such that E -, J.

5.6 Minimal solutions

It will be particularly convenient if we can show that it is enough to find a
solution that only contains default effects.

Definition 12. Let A; and Ay be type/effect assignments. We say that Ay <
Ay if dom(A;) = dom(Ag) and for every type variable T we have A(T) =
Ay(T), and for every effect variable S we have A1(S) C Ay(S).

From now on we only consider type/effect assignments with the same domain.

Definition 13. A is minimal wrt. E+ J if E A J but there does not exist
a A" such that A" < A and E 5 J.

Any minimal type/effect assignment will only contain default effects.

Theorem 3. Let E+a J . If A is minimal wrt. E & J, then whenever £(M) €
A(R), (M) is a default effect.

6 General constraints

Some constraints do not arise directly from the description of a process but
capture general properties of the type system. These general constraints include
a description of the default effects (cf. the previous section) and unification
conditions. An example of a unification constraint is

VT1VTQCh(T1) = Ch(TQ) =T =T

Another special class of general constraints is comprised of the failure con-
straints that apply. For effects, the constraints will cause failure if an effect
term ¢(M) is required to be in the required effect effects,.(E) for some E but
is not found among the actual effects in E, effects(E):

req

(M) 3E.(L(M) € effects,oq(E) N(M) & effects(E)) = Fail

We denote the conjunction of all general constraints by 1¥ax.
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7 Encoding constraints in ALFP

We encode our high-level constraints of the previous section in the ALFP frag-
ment of first-order logic, introduced by Nielson et al. in [12].

7.1 The ALFP logic

In the syntax of ALFP, we let R range over R, the set of relation symbols, let
x range over a countable set of variables X and let ¢ range over a finite set of
constants. Formulae are either preconditions (¢) or clauses ().

tu=clax
¢ = R(z1,... 2p) | "R(a1,...25) [ g1 Ada | 41V @2 | 2.6 | Vg
V= R(x1,...,zk) | true | Y1 Ay | ¢ = ¢ | Voap

Note that existential quantification and disjunction are only allowed in precon-
ditions.

A relation symbol which occurs in a precondition is called a query. A negated
relations symbol is called a negated query. Finally, any other occurrence of a
relation symbol is called an assertion.

In the interpretation of ALFP we assume given a first-order structure.

Definition 14. A first-order structure is a triple M = (U, p,0) where U is a
finite universe of values and p and o are interpretations of variables: 0 : X — U
and relation symboles p : R — Uk>077(1/lk). We often omit mention of the
universe and write a first-order structure as a pair (p, o).

Let A, ={ p| (p,o) E¢}. Then we can find the least solution of a con-
junctive Horn clause in time exponential in the maximal quantifier depth, as
told by the following theorem from [11]:

Theorem 4. Given a o, the least solution of ¥ = 11 A ... Y%y can be found in
time O3, niN") where n; is the size of ; and r; is the mazimal depth of
quantifiers in ;.

7.2 Encoding constraints

We can define an encoding of atomic constraints in our high-level constraint
language into ALFP. To define this encoding we also need to

— encode message terms and substitution on terms

— encode types and effects and operations on types and effects. This includes
an ALFP representation of dependent types

— represent inhabitants of types and effects as members of relations Type and
Effect

— represent failure by a relation Fail

13



In our encoding of the constraints in ALFP we often need to quantify over and
compare such entities. A convenient approach is to introduce proper names, so
quantification over e.g. types translates to first-order quantification over these.

To illustrate our approach, here is a part of the encoding that encodes mes-
sage terms. Every term M is enoded as (n,v), where m is a corresponding
proper name and 1 is a consistency condition; the term constructors are repre-
sented by relations Name, TermPair, OkTerm, and Enc.

[(My, Ms)] = (n,n € TermPair(my, ma) A 11 A1)2)
where [Mi] = (m1, 1), [Ma] = (ma,2),
[{Mi}ar,] = (n,n € Enc(ma, ma) A1 A o)
where [M1] = (m1,¢1), [M2] = (m2,12),
[n] = (n,n € Name)
[ok] = (n,n € OkTerm)

8 Correctness properties

The constraints generated are the correct ones. A process P is well-typed under
E and A iff we there is a failure-free model of the generated constraints. A
model is failure-free if the Fail relation is empty.

Definition 15 (Agrees with). Assume E + o and let M = (o, p) be a first-
order structure. We say that M < E if dom(c) = dom(E) and we have M |=
(x,t) € Typeiff E(x) =T. If also for a given A we have M |= (£, m, s) € Effect
iff E(x) : Ok(S) and ¢(M) € A(S), we write M < (E, A).

Theorem 5 (Soundness). If E -5 P ~ ¢ and E F5 P where dom(A) =
Var(vy), then there exists a failure-free model M where M < (E, A) and M =

[[?P A waﬂ .

Definition 16. Let A be a type/effect assignment and M be a first-order struc-
ture. We write M |= A if for every X =T € A we have that M = [X =T].

Theorem 6 (Completeness). Suppose E - P ~» 1. Whenever a first-order
structure M satisfies that M < E and is a failure-free model of [¢ ANpax], there
exists a type/effect-assignment A such that E+-a P, M < (E,A) and M = A.

As an immediate consequence of our results, we can implement a type inference
algorithm that proceeds as follows, given process P and environment E':

Use the constraint generation rules to find ¥p, where £ Fa P~ ¢p.
Construct the general constraints 1ax

Give [1p A 1ax] as input to the Succinct Solver.

If the Succinct Solver produces a model that is not failure-free, then P cannot
be typed under FE.

5. Otherwise, if a failure-free model M is returned, then use the construction
of the proof of Theorem 6 to build a type/effect assignment A.

- =
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9 Conclusion

We have described a strategy for type reconstruction in a type and effect system
for robust safety in a spi calculus with opponent types and non-injective corre-
spondences. The strategy consists in generating a constraint ¢ from process P
and type environment E such that it translates to formula in the ALFP logic
that has a failsafe model if and only if £ P. A central part of the construc-
tion of v is a characterization of how effects arise in a well-typed process.

A decision procedure that constructs a typing if and only if one exists can
be built around a solver for ALFP such as the Succinct Solver [12]. From the
constraint rule (Proc Res) we see that every level of restriction introduces a level
of quantification, and by Theorem 4 we see that our type inference algorithm
is exponential in the maximal restriction depth of P.

The example of Section 5.1 shows that effect constraints need not have a
unique solution. Consider P = new a : T1;new b : Ty; in(a, z); in(b, y); end ¢(M),
where M is arbitrary; P can be typed with any of the following type/effect as-
signments, where Ag is saturated and A; and As are incomparable:

A= {Tl = Ch(Sl),Tg = Ch(SQ), S1=@,5 = f(M)}
Ay = {T1 = Ch(S)),To = Ch(Sy), S1 = £(M), S5 — @}
Az ={T1 = Ch($51),T> = Ch(53), S1 = {(M), S2 = (M)}

A topic of future work is to apply the inference strategy to the full type system
of [4]. Here, effects are sets of Datalog facts, so populating an effect S amounts
to adding facts to Datalog clauses to deduce all in any expectation expect C.
This is the problem of abduction, studied by Becker and Nanz in [1]. Since
abduction may produce an infinite set of valid abduction candidates, it cannot
be internalized in ALFP and a strategy for solving constraints must therefore
step outside the Succinct Solver.
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