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A Robust and Computationally Efficient
Subspace-based Fundamental Frequency

Estimator

Johan Xi ZhangStudent Member, IEEBVIads Graesbgll Christenseember, IEEE,
Sgren Holdt JensenSenior Member, IEEEand Marc MoonenFellow, IEEE

Abstract

In this paper, we present a method for high resolution furetdal frequency £,) estimation based
on subspaces decomposed from a frequency-selective datal,nedfectively splitting the signal into
a number of subbands. The resulting estimator is termedudrery-selective harmonic MUSIC (F-
HMUSIC). Computational savings and robustness are expedte to the subband based approach.
Additionally, a method for automatic subband signal attivietection is proposed which is based
on information theoretic criterion where no subjectivegatent is needed. The F-HMUSIC algorithm
exhibits good statistical performance when evaluated wjtithetic signals for both white and colored
noise, while evaluations on real-life audio signal showes dlgorithm to be competitive compared with
other estimators. Finally, F-HMUSIC is concluded to be mommnputationally efficient and robust
than other subspace baséq estimators while also showing robustness against recodad¢a with

inharmonicities.
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A Robust and Computationally Efficient
Subspace-based Fundamental Frequency

Estimator

Index Terms

fundamental frequency estimation, pitch estimation, smbprocessing, subspace methods.

. INTRODUCTION

The problem of estimating the fundamental frequengy) (or pitch in a recorded signal has been of
interest to the signal processing community for many yelstany sophisticated algorithms have been
proposed where the motivation for the intensive researdfiestimators is found in the wide usability,
both inside and outside the field of engineering. The non-ideatacteristics of recorded data make the
estimators especially challenging to design. For moreildethout Fy properties of musical instruments
we refer to, [1], [2]. In signal processing, thg estimator is often a key component in speech and audio
applications, such as linear prediction based speech godualing of speech and audio using a harmonic
sinusoidal model, and musical information retrieval. Everthie field of linguistics,Fy estimators can
be applied when the analysis of tones (pitch) is an imponpant of understanding and classifying the
language, such as for tonal languages [3], [4].

Most existing methods suffer from a degraded performanae tdunon-ideal characteristics of the
recorded data such as low signal to noise ratio (SNR), migsangals, inharmonicity, signal transients
and reverberations. Estimators are often time-domain tqukes based on the auto-correlation function,
cross-correlation function, averaged magnitude diffeegunction, or average squared difference function.
Other methods are mainly based on spectral extraction o$pleetrogram. These methods are typically
biased and primarily designed to solve the problem encoedhten speech and audio applications. In
most of the cases only a “rough” estimate/f can be obtained. For a historical reviewgf estimation
methods, we refer to [5]-[8].

The harmonic structure of speech and audio signals can beledods follows: considering a set of
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harmonic signals with frequencies for [ =, ..., L in noise:

L
y(t) = Bt vet),  Bi=ae”, 1)
=1

wheret = 0,..., N — 1 is the time index,L is the model orderg; is the real-valued amplitude a@fth
complex exponentiald; is its phase, and(t) is complex symmetric white Gaussian noise. For perfect
harmonic signals, the frequencies of the harmonics are exager multiples ofvy. This perfect harmonic
model is not always valid. Depending on the instrumentgedét parametric models of the inharmonicity
of the harmonics can be derived from physical models [1], 2Z2Eommon model used for stiff-stringed
instruments isv; = wolv/1 + BI2 for B < 1 whereB is normally referred to as the stiffness parameter,
which is dependent on physical parameters of the string. Tolelgm considered here is the estimation
of wg with or without estimation of the model orddr in a time frame of N measured samples. The
estimation problem associated with real valued signalsheanast as (1) by the use of analytic signals,
which is valid when there is little or no spectral content mferest near 0 and. In order to simplify
our sinusoidal model as well as the algorithm, we only carsmbmplex valued signals.

Recently,Fy estimation algorithms based on subspace techniques hawa gfood estimation perfor-
mance with a high accuracy in low SNR conditions, also praxjdiexibility for robust estimation on
inharmonic signals [9]-[12], and to multi-pitch signals foown orders in [10] and for unknown orders
in [12]. The main disadvantages of subspace bdggedstimators are the high computational complexity
of the subspace decomposition process, and the sensitivitplored noise of the estimation of signal
and noise subspaces.

In this paper we present an algorithm for high resolutiordamental frequency estimation based on
subspaces decomposed from a frequency-selective (FS) data madel using inputs from a discrete
Fourier transform (DFT). The resulting algorithm is termed kty-selective Harmonic MUSIC and
represents a frequency domain extension of HMUSIC [9], [BHMUSIC adopts a subband based
approach where the signal spectrum is divided into Q equgced subbands and where in each band
an individual estimation problem is considered. This apgihdaads to a computationally more efficient
algorithm compared to HMUSIC where the subspace decomposiiapplied directly on the fullband
covariance matrix, and furthermore the averaging of eséthA, from the different subbands is expected
to lead to more robustness to colored noise. Moreover, treabmodel order detection used in HMUSIC
is limited to model orderd. > 1, and therefore automatic signal presence detection inasudsbis not
possible [14]-[16]. Here, a new method for automatic sigraivity detection in subbands is proposed,

which is based on information theoretic criterion [17]. Thaimadvantage of this subband detection
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method is that no subjective judgment is required in the gi@ci process. Based on this knowledge
of the subband activity, additional computational savilmgs be achieved, e.g. by simplifications on
the order estimation stage, and by estimating the noisepagbsonly in active subbands. For a more
complete discussion on order detection, we refer the redgt7]-[21]; for an overview of subspace

based techniques, we refer to [22]-[25].

The performance of the automatic detection method is ewsduasing Monte Carlo simulations
where different parameters are examined. Furthermore, F-8i@LUsing this automatic detection in
the subbands is evaluated on recorded musical signals [#6]ta performance is compared with the
performance of HMUSIC and YIN [7], [9]. Parameter selecti@mal encountered problems during the
evaluations are discussed. Additionally, the statisticaperties of F-HMUSIC are evaluated using Monte
Carlo simulations for synthetic signals with constant arayIBigh distributed amplitudes in both white
and colored noise, where the Rayleigh distribution is oftesed to model audio and speech signal
amplitudes.

The remaining part of the paper is organized as follows. IniSedlL, the development of F-HMUSIC
is introduced where the frequency-selective data matrixiehds reviewed, and an automatic subband
detection method is proposed. The evaluation results froth becorded and synthetic signals are

presented in Section Il before the conclusions are drawn atiGelV.

Il. PROPOSEDMETHODS
A. Frequency-Selective Data Matrix Model

The given signal sequence (1) is first Fourier transformedguam/N point DFT. Let us then assume
that the components of interest lie in a prespecified subbancbinposed of the following Fourier

frequencies:
{Zer 2y . Zwp b 2)
wherem denotes the subband index f = N/M equally divided subbands, andi"...k};} are M

given consecutive integers. The number of componéntslying in the m-th subband specified by (2)

is assumed to bé,, < L.
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In the derivation of the frequency-selective model thediwihg definitions are used:

2 = Nk k=0,1,..., N—1 (3)
r T

u. = _Zk ZZ] 4)
r T

Vi = 1z ... z,ivfl} (5)
r T

v o= v oy -1) | ©®

Yi = vy, k=0,1,...,N—1 (7
r T

e = | e0) ... e(N—l)} (8)

B, = vie k=0,1,...,N—1, 9)

whereuy, is the so-called phase shift vector andis the Fourier vector foe, y is the signal vectore
is the noise vector is the complex conjugatd, is the vector transpose, ards a user parameter. The
choice ofs will be discussed later.

Let {w" 1L=m1 denote the components of interest lying in theth subband. The key equation of the
FS data matrix model involving the DFT sequenigeis proved in [25], [27], and given as:

Prvib(wr®)
upYs = [a(wl") ... a(w} )] : +Tu, + U, By, (10)
Br, Vib(w]' )

vectorsa(w;") andb(w;™) is specified as:
. m . 2 T
awr) = [eaww 6asw;"] (11)
b(w™) = [1 et eﬂN—l)wf”] : (12)

which express the harmonic components of the signal. Mdtrix C**¢ is a known matrix which was
defined in [25], [27].
To separate the terms corresponding to these in-band cantwowof interest from the out-of-band

components in (10), we use the notation

Am = |awp) ... awp) (13)
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for the in-band components, and similay, and;, for the components that represent leakage signals

in the subband. A compact matrix form of (10) for all DFT freques in them-th subband is given as:
Y =ApXm +TUp, + Ay Xy, + En, (15)

where matrices in (15) are defined as:

Y = :ukinYk;n ukﬁYkﬁ} (16)
En = | By .. uigEig | (17)
Un = |ug o g | (18)
Xm =[x o x| (19)

with Y,, € C**™_ The third and fourth terms in (15) are, respectively, theaftltand components and

the noise term. Ternt'U,,, in (15) is eliminated by postmultiplying (15) with a projemt matrix,
I, = | = U5 (UnUp) " Ui, (20)

which is the orthogonal projection matrix onto the null spa¢U,,, which is as x M matrix, wheres is
chosen such that/ > s. The out-of-band componet,, is assumed to be zero which is asymptotically

the case. The resulting expression is written as:
Yo ILE = ALX I0E + E,, I1E (21)

The matrix Y,,,IT- obtained form-th subband can be decomposed using either a singular value

decomposition (SVD) or an eigen value decomposition (EV®), [0], [27]:
Y o ILE = Hp A Vo (22)
The matrixH,,, in (22) is written as
Hn=1|h hy ... hy|, (23)

where the columns ofl,,, contain the singular vectors defining the signal and noisspade, and\,,
is a diagonal matrix containing the corresponding singudues. Furthermore, 168, and G,,, be the

orthonormal subspaces denoted as follows:

Sw = [h hy .ohp | (24)

Gn = |:hLm+1 hp,i2 ... hs}’ (25)
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with S,, connected to the signal subspace associated withLtheprincipal singular values, an@,,
connected to the orthonormal noise subspace associated wif.,,, singular values. The noise subspace

spanned byG,,, is then orthogonal to the Vandermonde mathiy, defined in (13), i.e.,
AlG,, =o. (26)

for frequenciesy;” wherel =1, ..., Ly,.

B. F-HMUSIC

In this part, F-HMUSIC is formulated with a subband based aggndor jointly estimating bothfy
and the model ordef. for harmonics with frequencies; = wolv/1 + Bi2, | = 1,..., L. The spectrum
from 0 to 7 is divided into@ equally spaced subbands where the number of active subbantsning
harmonics have inde®’. For simplicity,Q’ is assumed to be known. In the next subsection, the proposed
subband activity detection method will be described.

The harmonic model ordel of (1) is given as:

Q
L= Z Lo, (27)
m=1

with L,,, denoting the number of harmonics in subband The number of harmonics in each subband

is further derived from the laws of inharmonicity written: as

m—1
Ly = {L;n -3 [L;JJ : (28)

where,
9\ 1/2
1 1\ [ %k
I = |- — N M 2
m QB+ (23) +< wo ( 9)
is derived from%kﬁ > woLm+/1+ BL2,. Note, expression in (29) is valid fa8 > 0. WhenB = 0,

27 .m
kN

the number of harmonics i/, = L o J In this paperB is assumed to be known. IR, estimations

on recorded piano notes averagBdmeasured from various pianos can often be used, as an example
in [28] good estimation results have been shown using agenagasured3 in estimations on recorded
piano notes. IfB is unknown, it can be estimated as a parameter of interegite iaxtended cost function
[11].

The Vandermonde matri&,,, in (13) has been derived without consideration of the haimsimucture

of the signal. If the harmonic structure is taken accourdnth,,, can be written as:
Am = alw) ... a(wzlm) . (30)
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The two dimensional cost function for the joint order and famental frequency estimation is given

as: o .
1 A G
Jwo. L) = & > ”

where the denominator is a scaling factor that makes theerfosr of the cost function invariant to

2
.
31
A= smin(Ly, s — L)’ (31)
the changing matrix dimensions #5,, andG,,, based on the angle between subspaces [14], [15]. More
specifically the measure is the average over cosine to all dnetnivial angles between the subspaces
spanned by the column &,, andG,,. The estimates for the orddr and the fundamental frequency

wo are obtained by minimizing (31),

Wy = arg c‘r)lolérglz min J(wo, L), (32)

where(2 is the searching space for the fundamental frequency,[aigdthe search space for the order
estimation.

The performance of the proposed method depends on a numiaengtars such as the data length
the number of subban@, and the user parameter In general, the resolution is mainly dependent on
parameters, N and(. Increasing/V leads to a resolution improvement, while increasihgeduces the
resolution. Previous experience with similar approachesvdimat user parameter may be selected as
large as possible to increase the number of linearly indégranvectors in the noise subspace, but still
less than)/ in order to achieve a correct estimate of the FS data matrixem@8], [27], [29].

The cost function in (31) can be computed using either an FFTdbassthod or a gradient based
method. Both methods are described in [2]. A coarser estinsahchieved when the efficient FFT based
method is used. However, for applications that require @teuestimates for a given model order, a
gradient search algorithm with minor modifications compat@dhe method described in [2] can be

used.

C. Subband detection

The proposed subband activity detection method is formdlatgng the information theoretic cri-
terion for model selections described in [17].It is knowworir [30] that for a given Toeplitz matrix
R, an asymptotically equivalent circulad x M matrix C can be constructed, under the condition of
limps o0 ﬁ |C — Rl = 0, where]|-|| . is the Forbenius norm and the limit is taken over the dimerssio
of C andR. Circulant matrixC can then be written a€ = QI'QY whereQ is the Fourier matrix.

Therefore, the absolute square magnitude of DFT elementssgmepéotically equal to the eigenvalues
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of R. The DFT elements can be written & = |I|2e/“**, where|l,|? is the squared magnitudes and
eI“Xx is the phase.

DFT elements in a subband are sorted by descending magnituileshe new sorted index denoted
ask’. The sorting operation used here is similar to the sortinggutare applied on eigenvalues in EVD.
The sorted magnitudes of DFT is then inserted into the costifumclerived in [17], given as:

Hi\f:kurl |ln’2/(M—k’) ) (M—k')N

M
Mik’ En:k’—i—l |ln|2

1
+ K@M —K)log N, (33)

MDL(K) = —log<

The first term in (33) is in fact the log-likelihood of the maximuikelihood estimator of the model
parameters and the second term is a penalty term [17], [29]-n the proposed method only the activity
of the band is of interest therefore when the minimum of (33) i> 0 the subband is decided as active.
Algorithm outline:
1) Extract the Fourier transformed segment of the specifiedaubm on Y;, with index defined in
2
2) Sort|Yy| in a descending order with the biggest magnitude first. The meted index is denoted
ask'.
3) Insert sorted magnitudes into (33). Find the argument liviges minimum value of (33).
4) Detect subband activities using the following rules:
k' > 0, subband is active.
k' = 0, subband is not active.
In this paper, when subband signal detection method is ukedctive subband is assumed to have full
model orderL. The search range fof is bounded by (28). Therefore the simplified cost function will
be denoted as:

wo = arg min J(wyp), (34)
wWoEN

where L is fixed and founded using (27).

[1l. EXPERIMENTAL RESULTS
A. Statistical Evaluation of subband detection algorithm

Before evaluating F-HMUSIC on real recorded signals the ppegasubband signal detection method
is evaluated with Monte Carlo simulations where errors aeasared as correctness in detection. The

test signal is generated according to (1) where the sigrgriectly harmonid3 = 0 with corresponding
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Fig. 1. Percentages of correctly estimated subband activity onptioposed method evaluated on: a)

different SNR under the white noise conditions b) a varyiagé lengthV with fixed SNR25dB.

model number set td = LJLOJ . Two types of signal amplitudes are evaluated one with esristimplitudes
and second type is random amplitudes generated accordiRgyteigh distribution. The active subband
detection errors are measured on subband with band index1 where three different scenarios will
be evaluated.

First, we start with an experiment of detection performaneeswys signal-to-noise ratio (SNR) where
the sample length is fixed & = 512. For each SNR500 Monte Carlo simulations are evaluated. The

signals have the frequencyy = 0.23 and the performance is shown in Fig. 1a. From the simulatidns, i
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Fig. 2: Percentages of correctly estimated subband activity orptbposed method evaluated on varying

Iy with fixed SNR30dB and N = 1024

3
Time [s]

Fig. 3: Top) Spectrogram of the clarinet signal. Bottom) Fundamefregjuencies estimated using F-

HMUSIC and YIN.

can be seen that almost0% accuracy can be achieved when the SNR is al3®aB. Next, the same
signal setup is used with SNR fixed a0dB and applied on different sample lengths evaluated from
N =256 to N = 1024. The results are shown in Fig. 1b, and the detection algoritambe seen to be
very accurate for sample length abaVe= 512. With an increased sample length, a better approximation
of DFT magnitudes to the eigenvalues is achieved. Last test évdluate the performance whép is
varying from0.01 to 0.5 with frame length fixed afV = 1024 and SNR aB0dB. The simulation results

are shown in Fig. 2. The difficulty in this test is mainly on the &w{ where the harmonics are more
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closely spaced than at high&p. This will be clarified later on.

From the simulation results, we can clearly confirm that theopsed subband detection method can
sufficiently detect subband activity under different ciratamces. In all cases, the performances with
random generated signal amplitudes are better than caratgplitudes which can be explained by the
limited sample length where DFT magnitudes are far away frouakty to the asymptotically equal
eigenvalues. In the case of asymptotically equality bebtweaurier power magnitudes and eigenvalues,
every harmonic should only have one element representatidhe Fourier spectrum. This is usually
never the case when sample length is limited, and frequameasng of the harmonics in the frequency
domain will be obtained. The smearing effect is not cruciawdrite noise because perfect white noise
has a flat spectrum distribution. Therefore, the proposed adstperforms better on random generated
amplitudes since interfering elements might be treatedoéserelements when the amplitudes power is

close to the noise variance.

B. Signal Examples

We start this subsection by demonstrating the proposedadeath a recorded sequence of clarinet
playing an up going arpeggio. The clarinet signals are asgumée perfectly harmonic witl3 = 0.
Spectrogram of the signal is shown in Fig. 3 top panel whilemess of Fy using F-HMUSIC and
YIN are shown in the bottom panel. According to Fig. 3, our alfpon can successfully estimate the
fundamental frequency except on some boarder region whersignal is not well defined due to non-
ideal circumstances such as reverberation in the room ntlagtcause a multi-pitch scenario where our
model in (1) is invalid. The setup used in F-HMUSIC in this exagnplas on a signal with sampling
frequencyfs = 11025Hz processed with a frame length 8f = 512, and50% overlaps. The model order
of F-HMUSIC is s = [0.9M |. The method is generally sensitive to the choicesoFor short frames,
large number ofs is preferred. Two subbands are selected where the actilmasdb are automatically
detected using the proposed detection algorithm. The costiéin was evaluated frof00Hz to 1000Hz.

In this part, we evaluated F-HMUSIC on recordings from a dagal@onsisting of transcribed notes
played by pianos [26]. The database is recorded under diffesverberation environment, with three
loudness levels (piano, mezzo-forte and forte). For eatd, mee selected a test set consisting of recordings
played with six different pianos. In averagg)00 frames of data is processed for each note. The onset
and offset time of the note is provided by the database, whicides a challenging test data where
both metallic thumps of hammers against strings, and cotigtdegradation of SNR during the release

of the note are involved. One example of a note spectrogratesindata att66Hz is shown in Fig. 4,
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which clearly shows the non-ideal signal conditions duinget and release of the note. This forces us to
estimate under different circumstances with a general fixedmeter setup during the entire evaluation.
Furthermore, the subband signal detection performanceverfipis more sensitive for frames with low
SNR, with the statistical performance for lofy being shown in Fig. 2. The main intention of this
evaluation is to evaluate the robustness of subspace basias on real-recorded data. Our proposed
methods will be compared with both HMUSI@nd YIN?. Previous studies of YIN have often referred
it as a very robust single pitch estimator while HMUSIC hasmgariily shown good performance on
synthetic signals and on small set of recorded signals.

During the evaluations, each estimatég is quantized to the nearest note in the musical scale with
A4 tuned to440 Hz. Errors are then measured as incorrect MIDI note estimates evaluated signals
are analyzed with a window length df = 1024 and sliding forward in time witt60% overlap. For
computational simplicities, signal is downsampledrfto= 11025Hz. Parameters used in F-HMUSIC and
HMUSIC are selected as follow§: € [103.83,4310] Hz, Q = 2, ands = |0.85M |, s' = [0.60N | where
s’ is the user parameter for HMUSIC. Piano notes will be evaluated/IDI notes45 to 108. In this
evaluation, the lowest possiblg) is selected to be a bit higher than the lowest note that candskiped
by a piano. This is because at loky, closely space sinusoids will give a rank deficient Vandeminon
matrix (30) which gives inaccurate estimations and costtion evaluated on rank deficient region will
degrade the overall performance Bf [29]. Therefore it is important to sele€t which does not include
rank deficient points in order to stabilize the overall perfance. Note that F-HMUSIC use less data
samples which make it more sensitive to rank deficiency proltlean HMUSIC. Due to the limited data
length inserted into the FS data modelneeds to be selected close A6 in order to reduce the noise
influence of the data. The stiffness parametBrfor different F}, is averaged from the results presented
in [2, page 365]. The estimation errors evaluated on MIDI s@tee reported in Fig. 5, it shows clearly
that both subspace based methods suffer from degradatiestimation robustness on recorded signals.
This can be explained by model mismatches where subspace basstimators do not make additional
adaptation to the model changes. Model mismatch situatiwasmost probably to be observed during
onset and release of the notes.

The significantly reduced performance on higher MIDI notes lvarexplained with that model order

L is decreasing for increaselh. This reduce the estimation performance according to thenpsic

1The HMUSIC used in evaluation on recorded data is based on fixed wiuzne the ordei, = {lJ

wo

2parameters used in YIN is the standard parameter found on authopageb
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Fig. 4: Spectrogram example of one note on MIDI n@tewith fundamental frequency66.2Hz.

TABLE I: Summarized errors of MIDI notgd5, 95]

MIDI Notes 45-95|| F-HMUSIC | HMUSIC | YIN |

% Mean Errors 6.4% 7.4% 6.2%
1/2 Octave Errors 6.3% 18.7% 9.83%
2 Octave Errors 17.6% 45.6% 27.2%

CRLB described in [9]. Regarding temporal aspects of thedigstal, the reduced detection performance
is related with physical properties of the piano sound wharlitudes of harmonics decayapidly
for frequency above800Hz [2, page 384] which has the effect to significantly incretieenumber of
frames with low SNR.

Too make the comparison fair between involved methodsremall be discussed for MIDI notes
[45,95] which in our point of view is the operating region for the ifwed algorithms. The errors
are summarized in Table | where it shows that the performaricgubspace basefly estimators are
comparable with YIN. It also shows that HMUSIC is more sewmsitio octave errors than F-HMUSIC
but no significant differences between the performance haem lobserved. Even thought F-HMUSIC
make less 2-octave and 1/2-octave errors, those errorsamceth avoid. Nevertheless, our proposed
estimator does not significantly improve the robustnesByaéstimations but high resolution of estimates

can be obtained, something that is not possible using YINimilar time-domain methods. Another

3The speed for amplitude decreases is often referred as decay tipage,384]
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Fig. 5: Percentage errors of the quantized MIDI notes evaluatethfid5, 108].
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Fig. 6: Frequency domain representation of one realization on @enonic signal embedded in colored

noise. The SNR is dtldB with the constant amplitudeg = 1Vi.

advantage of F-HMUSIC is the computational complexity istieddy low compared with other subspace
basedF; estimators. As an example, in HMUSIC the computational cexipyl using EVD on fullband
covariance matrix is of orded ((N)3), and by splitting up the estimation problem into subproldehe

computational load will be reduced b(gé—)S when frequency samples from regiorto = are used.

C. Statistical Evaluation of F-HMUSIC

Next, the statistical properties of the proposed methodaduated using the Monte Carlo simulations

under both white and colored noise conditions. In this parthe evaluation only statistical properties
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Fig. 7: a) The RMSE with a varying SNR in the case of constant amplitecid®dded in white noise.
b) Corresponding model order estimation errors

of the algorithm is of interest and errors generated due ¢oatitomatic subband signal detection are
not preferred therefore the subband containing the signaksumed to be known. The signal is perfect
harmonic withB = 0.

In each trial, a signal segment is generated according tontbdel in (1), with the noise being

randomized. The estimators are evaluated in terms of themean square error (RMSE) defined as:

D

1 A
RMSE = | & (;(wo —wp)2, (35)
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Fig. 8: a) The RMSE with a varying SNR in the case of random distributedlitudes embedded in

white noise. b) Corresponding model order estimation exror

with wy and @y being the true fundamental frequency and the estimateectgply, and withD being
the number of Monte Carlo simulations. In this pager= 200. This is done for various SNR defined
as:

2

L
SNR =10log;y » (36)
=1

Y
— (wr)’
where the functions(w;) is the power spectrum of the noise at frequengy= wyl. In the case of white
noise, power spectrum is equal to the variance of noise, anbliored noise the power spectrum is

white noise filtered with a AR process. The SNR is calculated \{88) where the functiorb(w;) is
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Fig. 9: The RMSE performance with a varying frame lengtrwhere amplitudes is constant distributed

and SNR fixed a25dB

power spectrum at frequency;. Furthermore, model order errors on the harmonic signalgfisied as
the difference between the estimated order subtracted eottridle order. The results are compared with
the exact CRLB for both white and colored noise cases usingteEms stated in [31], [32].

In the experiments to follow, we use the following signal aradse setup. The signal will consist of
L = 13 complex exponentials embedded in noise with a fundamergguéncy otvy = 0.15. Both white
and colored noise are evaluated. Two cases of amplitudesocarsddered one with constant amplitudes
of oy = 1 V [ and the other with a randomized amplitude generated fromydeiga probability density
function. The Rayleigh distribution provides a good model émnplitudes from speech and musical
instruments. For both F-HMUSIC and HMUSIC the parameters aremssommon where the searching
candidates ofuy is set to©2 € [0.06,0.4], the model order considered wefec [5, |7/wy| — 1]. Note
that the interval forwg includes bot2wy and %wo which is normally referred as octave errors. The user
parameter for F-HMUSIC is selected to be= |0.5M |, and for HMUSIC [0.5N |.

In the first example, F-HMUSIC is evaluated in white noise sdenahere the amplitudes of harmonics
are constant. The corresponding results are shown in Fig. éaewh estimated RMSE versus a varying
SNR is shown and in Fig.7b the associated model order estimaitiors is plotted. The performance curve

of F-HMUSIC is closely following CRLB for region above the bredkwrf region of the algorithm.

4The algorithm performance break down problem is a common probléowaBNR region which is also referred as subspace

swapping problem where the high noise level cause part of the sighsbace erroneously determined as signal subspace.
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Fig. 10: a) The RMSE with a varying SNR in the case of constant amplitedésedded in colored

noise. b) Corresponding model order estimation error

With the consideration of computational savings the pemforice of F-HMUSIC is still comparable
with HMUSIC as shown in Fig. 7a where both algorithms providsneate close to CRLB. Next, the
performance is measured on a set of harmonic signals whgsel eimplitudes are generated according
to a Rayleigh distribution. The performance curve of RMSE wi#ttying SNR is shown in Fig. 8a,
the subspace methods are suffering some performance dtéigradshere the breakdown point has been
raised compared to constant amplitude case. Overall, F-HI@W&k shown good statistical performance

for harmonic signals embedded in white noise. In the opamategion above the breakdown point the
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Fig. 11: a) The RMSE with a varying SNR in the case of random amplitudbsded in colored noise.

b) Corresponding model order estimation error.

order estimates have also shown good accuracies, and #isoishe case in the remaining experiments.
From Fig. 7b and 8b shows that the estimated.a$ close to true value when estimate &f is closing
to CRLB.

In the next example, the RMSE performance is evaluated ony@ngawindow length with SNR fixed
at25dB and amplitudes kept fixed at = 1, VI. For various frame length the user parameters are selected
to be |0.85M | and |0.85N |, respectively for F-HMUSIC and HMUSIC. The performance is régabin
Fig. 9 where it shows that both algorithms can be operatingmnflame length between 256 to 1024
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with wisely selected user parameters.
A final example will demonstrate F-HMUSIC performance evaldatecolored noise scenario. Signal
setup is the same as previous examples except that, henmbigelded noise is filtered with a second order

AR process( , where the main power of the noise is mainly concentrated ulrand

TrosTros)
m = 2, and one realization of the signal embedded in colored risisown in Fig. 6. To enhance the
performance of both methods a slightly different setup hmen used for both F-HMUSIC and HMUSIC
where the searching space fay is 2 € [0.1,0.8]. Remaining parameters are same as in earlier examples.
In the colored noise case the evaluation results for thetaonslistributed amplitudes is shown in Fig.
10 where the algorithm breakdown region for F-HMUSIC is lowsart HMUSIC. Rayleigh distributed
amplitudes are also evaluated with Monte Carlo Simulati@gnificantly better performances of F-
HMUSIC has been shown in Fig. 11. Due to the noise propertidshasud with indexn = 1 contains
white noise characteristic which provides good estimatiéls rduced subspace swapping properties than
estimates in subbana = 2. By averaging the estimates from both subbands a more relstistation is
then achieved. From simulations shown in Fig 11, it can be lgis@en that F-HMUSIC is more robust

against the colored noise than HMUSIC both in fixed and Rayldigtributed amplitudes.

IV. CONCLUSION

In this paper, a high resolution fundamental frequencynestor termed F-HMUSIC with automatic
subband signal detection has been proposed. This algoritlanfrequency domain based estimator using
subspaces decomposed from FS data matrix model to efficiestiimate the fundamental frequency,
where a subband based approach is adopted to reduce thevagrisi the colored noise and increase
the computational efficiency. Additionally, an automatibkand signal detection method has been pro-
posed which is based on information theoretic criterion mwheo subjective judgment is needed. The
performance of F-HMUSIC has been evaluated on both syntheticecorded signals. From simulations
on synthetic data shows that F-HMUSIC is more robust againstexnoise than HMUSIC. Furthermore,
robustness of the method has been demonstrated by evaluatioecorded signals where F-HMUSIC
has shown performance close to YIN for MIDI notes betwéEn95], and for MIDI note above 95 our
algorithm performs better than YIN. Overall the performané F-HMUSIC is considered as accurate and
robust for the operating region. In the operation regiongtiee we paid for computational complexity

and robustness to colored noise is with estimation accuracy
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