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Nonlinear Buckling Optimization of Composite Structures

Esben LindgaardErik Lund*
Department of Mechanical Engineering, Aalborg Universgntoppidanstraede 101, DK-9220 Aalborg East, Denmark

Abstract

The paper presents an approach to nonlinear buckling fitgde aptimization of laminated composite shell structurébe ap-
proach accounts for the geometrically nonlinear behawbtine structure by utilizing response analysis up untildhigcal point.
Sensitivity information is obtainedigciently by an estimated critical load factor at a precrit&tate. In the optimization formu-
lation, which is formulated as a mathematical programmiradpfem and solved using gradient-based techniques, a mohte
lowest buckling factors is included such that the risk of te@witching” during optimization is avoided. The presergptimiza-
tion formulation is compared to the traditional linear bliregg formulation and two numerical examples, including@&laminated
composite wind turbine main spar, clearly illustrate thiéafis of the traditional formulation and the advantage potential of the
presented approach.

Keywords: Composite laminate optimization, Buckling, Design sevisjtanalysis, Geometrically nonlinear, Composite
structures

1. Introduction an initial prebuckling point (linear buckling analysis)dathe
i _ _ buckling load is generally overestimated. In the case where
The use of fibre-reinforced polymers has gained an evergnjinear dfects cannot be ignored nonlinear path tracing anal-
increasing popularity due to their superior mechanicappre  ygis js necessary. For limit point instability, severahstard fi-
ties. Designing structures made out of composite mat&al 1 pite element procedures allow the nonlinear equilibriutth pa
resents a challenging task, since both thicknesses, nuafiber pe (raced until a point just before the limit point. The ttaial
plies in the laminate and their relative orientation mussbe  Newton like methods will probably fail in the vicinity of the
lected. The best use of the capabilities of the material céy 0 |imit point and the post-critical path cannot be traced. &lso-
be gained through a careful selection of the layup. This @rk phisticated techniques, as the arc-length methods stegtbyt
cuses on optimal design of laminated composite shell strast [3] and subsequently modified by [4] and [5] are among some

i.e. the optimal fiber orientations within the laminate whisa e techniques available today for path tracing analpsise
complicated problem. One of the most significant advances Oﬁost-buckling regime.

optimal design of laminate composites is the ability ofagilg

the material to meet particular structural requirementh Vit- tainable with linear buckling, can be obtained by perforgsn

tle wa;te c_>f material capability. Perfect tailoring of a meite geometrically nonlinear response analysis and approxithet
material yields only the dtiness and strength required in each buckling load by an eigenvalue analysis on the deformed con-

direction. A survey of optimal design of laminated platesl an figration. Various eigenvalue problems have been suggeste
shells canbe found in[1]. o _ for the stability analysis of nonlinear structures. [6] g
~ Stability is one of the most important objectiyesnstraints  ¢ormylated linear eigenvalue problems with informationae
in structural optimization and this also holds for many lami 544 step on the nonlinear prebuckling path. This formatais
nated composite structures, e.g. a wind turbine blade. Trauferred as the “one-point” approach, wherdfséiss informa-
ditionally in optimization, stability is regarded as th@ear o, is extrapolated until a singular tangentisiéss is obtained.
buckling load, but for structures exhibiting a nonlmeama_‘nse [8] formulated a linear eigenvalue problem utilizing tangia-
when loaded the traditional approach can lead to unrel@®e  ormation at two successive load steps on the nonlinear pre-
sign results, see e.g. [2]. In stability analysis the butkli p,ckiing path, and are referred as the “two-point” approach
load is often approximated by linearized eigenvalue am&s  optimization with stability constraints has been studied e
tensively in the past. [9] and [10] described an optimality ¢
O postprint version, final version available at terion method for determining the minimum weight design of
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structures with stability constraints while considerirepmet-  ing the Total Lagrangian formulation. The nonlinear patitir
ric nonlinearities were presented by [11] by using a retatio ing analysis is stopped when a limit point is encountered and
based on equal strain energy density in all members. the critical load is approximated at a precritical load shep
[12] presented design sensitivities of the buckling load fo cording to the “one-point” approach. Design sensitivitéthe
nonlinear structures by taking derivatives of discretimeatrix  critical load factor are obtained semi-analytically by theect
equations with respect to design variables. The method onlgifferentiation approach on the approximate eigenvalue prob-
works for limit points and the critical point needs to be pre-lem described by discretized finite element matrix equation
cisely determined for evaluation of sensitivities. [13¢pented A number of the lowest buckling load factors are considered
a variation of the formula that would not only work for limit in the optimization formulation in order to avoid problenes r
points but also for bifurcation points. lated to “mode switching” well-knowing that issues may be en
[14] presented a formulation of continuum design sensitiv-countered due to divergence of the displacement seniggvit
ity analysis of the critical load based on the “one-pointdan The proposed method is benchmarked against a formulation
“two-point” linearized eigenvalue problem. Their expiiess  based on linear buckling analysis on two engineering exaspl
would work at any prebuckling point on the nonlinear equilib of laminated composite structures. This will help clarihet
rium path. They noted that the design sensitivities did wotc  importance of the nonlinearity in structural design opgation
verge to those of the exact critical load when approximated i w.r.t. stability.
the near vicinity of the critical point due to divergence liret In this work only Continuous Fiber Angle Optimization
derivatives of the displacements. (CFAO) is considered thus fiber orientations in laminatetay
[15] approximated the exact design sensitivities derived b with preselected thickness and material are chosen asndesig
[12] by applying the concept from nonlinear stability arsgddy  variables in the laminate optimization.
either by “one-point” or “two-point” approach. It was noted The “traditional” linear formulation for buckling analysi
that the approximated design sensitivities convergedasetby  sensitivity analysis and optimization formulation is dugld in
[12] when the approximation point approaches the exadtalit Section 2 and 3. In Section 4 the proposed procedure regard-
point. [16] adopted the method by [15] and included imperfec ing nonlinear buckling analysis is stated. Derivationsedign
tions for avoidance of bifurcation points. sensitivities, using the direct fiérentiation approach, of the
Research on the subject of structural optimization of cagapo nonlinear buckling load are presented along with the nenlin
ite structures considering stability has been reported Bpym ear buckling optimization formulation in Section 5. Bothtime
investigators. The first work to appear concerned simple-comods are benchmarked upon engineering examples of laminated
posite laminated plates and circular cylindrical shellsevéh composite structures. In Section 6 a laminated composite U-
stability was determined by solution of bucklingfférential  profile is studied while a much more complicated structure of
equations, see [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Lates generic main spar of a wind turbine blade is studied in Sec-
buckling optimization of composite structures was congde tion 7. Conclusions are outlined in Section 8.
in a finite element framework where the buckling load was
dgter_mined by the solution to _thg linearized _discre_tized Mas  Linear Buckling Analysis of Laminated Composite Shell
trix eigenvalue problem at an initial prebuckling point. -Op Structures
timization of laminated composite plates has been studyed b
[27, 28, 29, 30, 31, 32], while others considered more cormple The finite element method is used for determining the linear
composite structures as curved shell panels and circularcy buckling load factor of the laminated composite structthias
drical shells, see [33, 34, 35, 36, 37, 38, 39, 40]. Howeverthe derivations are given in a finite element context.
applications of optimization methods to stability anadyand A laminated composite is typically composed of multiple
design of a general type of complex laminated compositd sheimaterials and multiple layers, and the shell structuresican
structures have been very limited. To the best knowledge ofieneral be curved or doubly-curved. The materials usedsn th
the authors only one paper reports on nonlinear gradieithas work are fiber reinforced polymers, e.g. Glass or CarbonrFibe
buckling optimization of composite laminated plates arellsh  Reinforced Polymers (GFREFRP), oriented at a given angle
namely the paper by [41], where limit load optimization i;ieo 6 for the k" layer or softer isotropic core material. All mate-
sidered. rials are assumed to behave linearly elastic and the stalctu
Another important topic in structural stability is the sjusf ~ behaviour of the laminate is described using an equivalant s
the influence of initial imperfections. Imperfections aevid-  gle layer theory where the layers are assumed to be perfectly
tions from the perfect structure, i.e. the analysis model,aan  bonded together such that displacements and strains will be
in general be geometrical, structural, material or loadtegl. ~ continuous across the thickness.
Despite initial imperfections may be important in terms foe t The solid shell elements used for all the examples in this pa-
stability load of a structure it is not considered in the prés per are derived using a continuum mechanics approach so the
paper. laminate is modelled with a geometric thickness in three di-
This paper presents an integrated and reliable method for donensions, see [42]. The element used is an eight node isopara
ing optimization of composite structures w.r.t. stability in-  metric element where shear locking and trapezoidal lociieg
cluding the nonlinear response by a path tracing analysig h avoided by using the concepts of assumed natural strainSYAN
by the arc-length method, in the optimization formulatia u for, respectively, out-of-plane shear interpolation, g3, and

2
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through-the-thickness interpolation, see [44]. Membrand 3. Design Sensitivity Analysis and Optimization of the Lin-
thickness locking is avoided by using the concepts of enddinc  ear Buckling Problem

assumed strains (EAS) for the interpolation of the membrane

and thickness strains, respectively, see [45, 44]. The BAS i  The objective of the work is, by use of gradient-based tech-
terpolation is used to enhance the compatible strain temisor  niques, to maximize the lowest buckling load factors, angth
an independent incompatible strain tensor, and the sobtl sh the buckling load factor sensitivities should be computed i
element used has seven internal degrees of freedom forghe rean dficient way. Only derivations upon structural finite ele-
resentation of the enhanced strains. This is the lowest Bumbment discretized simple eigenvalues are presented in tiis p
of internal degrees of freedom to introduce for the enhanceger. In case of non-unique eigenvalues, i.e. multiple eigen
strains if the element should pass the in-plane membrane anvlues, the sensitivity analysis is more complicated dutéo
out-of-plane bending patch tests, see [46] for detalils. non-diferentiability of the eigenvalues. In such situations the

The static equilibrium equation for the structure may be-wri sensitivity analysis described in [S0] may be used.

ten as
3.1. Design sensitivity analysis of simple eigenvalues

KoD = R 1) The eigenvalue problem considered in (2) is a generalized

eigenvalue problem of the form
HereD is the global displacement vectisy is the global initial _
stiffness matrix, an®& the global load vector. K¢j=4Mg¢;, j=12...3 3)

1B?§ed ;)n thetc:lsplac?ment field, obbtamed b¥ t(r;e srcl)lutlgn i% is assumed that the eigenvectors Breorthonormalized, i.e.
(1), the element layer stresses can be computed, whereby eM«p; — 1. This means thabjT (—=Ko) ¢ = 1. In order

. . X K2
stress sffening éer cts dug to mechanlca}l Ioadlng. can be eval to obtain the eigenvalue sensitivities, (2) istelientiated with
uated by computing the initial stressfBiess matrix<,.. By

) ) . respect to any design variab#,i = 1,..., 1, assuming thai;
assuming the structure to be perfect with no geometric imper. b y 9 ® 9 !

fections, stresses are proportional to the loads, i.esst#f- Is simple.

ness depends linearly on the load, displacements at the critd,lj dK o d(-K,) de;

cafbuckling configuration are small, and the load is indepen-g; (-Ko) ¢ = (a - jT)¢j+(KO -4 (-Ky)) da

dent of the displacements, the linear buckling problem @an b (4)

established as By premultiplying by¢JT, make use of thié1-orthonormality of
the eigenvectors, (2), and noting that the system matrices a

(Ko + A Kg)q),— =0, j=12....J (2)  symmetric, the following expression is obtained for theeeig

value sensitivity.

where the eigenvalues are ordered by magnitude, suchithat da; + (dKo dK .,

is the lowest eigenvalue, i.e. buckling load factor, gads the da ?; (E + ﬂja)% (5)

corresponding eigenvector i.e. buckling mode. In genéoal,
engineering shell structures, the eigenvalue problem)icda
be dificult to solve, due to th(=T size of the matrices |r_1volvedOf the design variables, i = 1,..., 1, the derivative of the el-
and large gaps between the distinct eigenvalues. fmient  onony initial stifness matrix and the derivative of the element
and robgst S‘?"%“O”S' (2) is solved by a ;ubspace met.r_]od Wittress stiness matrix have to be derived. These derivatives are
automatic shifting strategy, Gram-Schmidt orthogondiira determined semi-analytically at the element level by fidife

222 [tz%sub-problem is solved by the Jacobi iterations ndethoference approximations and assembled to global matrixaeri

In order to determine the linear buckling sensitivﬁg@' for any

tives.
Most often in engineering classical linear buckling anislys
is used as a generalized stability predictor for shell $tmes as dko ~ ko(ai + Aa) — ko(ai — Aa) (6)
described in [48]. For some cases, despite whether theatriti da 20a;
point is a bifurcation or limit point, the classical theoriglgls dKo Net dko .
a satisfactory prediction of the collapse load while it it da " Zuda T 1.1 (7)
cases gives results of little or no value. Despite that ibleef n=1

hand is unknown whether the classical theory gives satsfiac ko is the element nitial stiness matrixAa; is the design pertur-

predictions of the collapse load of a general shel| straciur bation, and\2® is the number of elements in the finite element
is often used. Since the structures analyzed with lineak-buc model assoc?ated to the design variadgle

ling analysis are perfect with no imperfections of any kiod t The stress dfiness matrix is an implicit function of the dis-

gether_ With.the assumptions in_vollved in the theory, the ipred placement field, i.eK , = K., (D(a), &), which must be consid-
tion will typically be an upper limit for the real collapsedd,

and the method is therefore in literature often stated as non dK, 0K, 0IK,dD

conservative in an engineering context, see e.g. [49]. da = 9a, + oD da (8)
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The displacement sensitiviti€s must be computed, which is 4. Nonlinear Buckling Analysis of Laminated Composite
done by direct dterentiation of the static equilibrium equation,  Shell Structures

see (1), w.r.t. adesign variakdg i = 1,...,1.
In order to perform structural stability optimization itésu-
dD dKo drR . cial to have a robust and precise objective function at i¢s di
o-—=—-—""-D+—, i=1...,I 9) L : ; X '
da da da; posal. Thus, it is desired to determine a more precise objec-
tive in terms of instability from which design sensitivisiéor
The displacement sensitivi@%2 can be evaluated by backsub- employment in design optimization can be derived. Stradtur
stitution of the factored global initial $fhess matrix in (9). The stability/buckling is now estimated in terms of geometrically
initial stiffness matrix has already been factored when solvingionlinear analyses and restricted to limit point inst&pilde-
the static problem in (1) and can here be reused, whereby onBpite that the presented formulas also works well for b#tion
the new terms on the right hand side of (9), called the pseudpoints. In addition, bifurcation instability are in manyses
load vector, need to be calculated. Note that the force vectdransformed into limit point instability with the introdtian
derivatives,g—g, are zero for design independent loads as in thef small disturbancgsnperfections to the system. The pro-
case for CFAO. The global initial sfess matrix derivativéke ~ Posed procedure for nonlinear buckling analysis, consider
were determined in (7). limit points, is sghematlgally shown in Fig. 1 and consists o
The stress sfiness sensitivityke is not evaluated by (8) since the steps stated in Algorithm 1.
it requires partial derivatives of the stresdfstess matrix with : _ i )
respect to displacemen%%', which is not trivial. Instead itis Algorithm 1 Pseudo code for the nonlinear buckling analysis

computed by central fierence approximations at the element 1: Geometrically nonlinear (GNL) analysis by arc-length

level for all elements for each design variabjei = 1,...,1. method
2: Monitor and detect limit point during GNL analysis
dks  Ke(ai + A&, D+ AD) — Kq(ai — Ag;, D — AD) (10) 3: Re-set all state variables to configuration at load step just
da 2Ag; before limit point
4. Perform eigenbuckling analysis on deformed configuration
The displacement increment is estimatedAd3 ~ g—gAai, at load step before limit point
where the displacement sensitivi@Q, is obtained by solving
(9).
Load history - nonlinear buckling analysis
. . 0.8 T T T }
3.2. The mathematical programming problem !
o XKoo
(U e e o B
The optimization problem is in essence a max-min problem ! ! boe
where the objective is to maximize the lowest buckling |ced 0.6 -~ Fomooed R REhO-REEEEET EEEEE .
tor. A direct formulation of the optimization problem carvei 3 3 o
problems related to tferentiability and fluctuations during the oS CTe HE—— 7
optimization process due to “mode switching” (crossingeeaig 2 L
. B 04— B
values). These problems are circumvented by the use of the = &
socalled bound formulation, see [51] and [52]. Sogl o O S i
. . 3 ® : o GNL analysis (Arc-length method)
Objective :  maxg 02f - PR H
a’ﬁ i K] 3 Detected limit point
0.1r--- —e e Chosen load step for buckling
SU bJeCt to: /1] > ﬂ, J = 1’ e, N/l e.° 3 analysis on deformed geometry
o ‘ , , :
(KO + /li KO’) ¢i =0 ° ° Lo;(c)l step nu&l?)er 20 ®

g<a<g Ii=1..1
- Figure 1: Detection of limit load in step 2.
wherea; denote the design variables in terms of fiber angles. The limit load in step 2 is simply defined by monitoring the
The boungB is introduced, both as a new artificial variable andload factor in the GNL analysis. When the load factor from
objective function. The previous nonfilirentiable objective two successive load steps decreases the previous conleaged
function, for the max-min problem, is, via the bound formula factor is defined as the limit load, see Fig. 1.
tion, transformed into a set &, constraints. Let us consider geometrically nonlinear behaviour of struc
The mathematical programming problem is solved by theures made of linear elastic materials. We adopt the Total La
Method of Moving Asymptotes (MMA) by [53]. The closed grangian approach, i.e. displacements refer to the imitiafig-
loop of analysis, design sensitivity analysis and optiigreis  uration, for the description of geometric nonlinearity. iore-
repeated until convergence in the design variables or th@il mental formulation is more suitable for nonlinear problemd
maximum number of allowable iterations has been reached. it is assumed that the equilibrium at load stefs known and

4
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it is desired at load step+ 1. Furthermore, it is assumed that
the current load is independent on deformation. The increme
tal equilibrium equation in the Total Lagrangian formutetiis
written as (see e.g. [6, 54])

Kr(D",y") 6D = R™ — F" (11)
where K1(D"y") = Ko+ K (D" y") + Ko(D",»") (12)
i.e. Ki=Ko+K!+Kj (13)

Here 6D is the incremental global displacement vectBP,
global internal force vector, arid™! global applied load vec-
tor. The global tangent $fhessK consists of the global ini-
tial stiffnessKy, the global stress ¢fhessK?, and the global
displacement dfinessK|'. The applied load vectdR" is con-
trolled by the stage control parameter (load faci@rccording
to an applied reference load veci®r

R"=y"R (14)

The incremental equilibrium equation (11) is solved by tiee a
length method after [5]. During the nonlinear path tracingla

ysis we can at some converged load step estimate an upcoming

critical point, i.e. bifurcation or limit point, by utilizig tangent
information. At a critical point the tangent operator isgitar

Kr(D% %) ;=0 (15)

where the superscrift denotes the critical point angj the
buckling mode. To avoid a direct singularity check of the-tan
gent stifness matrix, it is easier to utilize tangent information
at some converged load stepand extrapolate it to the criti-
cal point. The one-point approach only utilizes informatad
the current step and extrapolates by only one point. Thesstre
stiffness part of the tangentf$tiess at the critical point is ap-
proximated by extrapolating the nonlinear stres§ragss from
the current configuration as a linear function of the loaddiac
Y-

Kes(D%y%) ~» AKs(D",y") = K} (16)
It is assumed that the part of the tangenffiséiss consisting
of K{' andK, does not change with additional loading, which
holds if the additional displacements are small. The tahge
stiffness at the critical point is approximated as

K1(D% %) ~ Ko+ K + K" (17)

5. Design Sensitivity Analysis and Optimization of the Non-
linear Buckling Problem

To accomplish gradient-based optimization of the nonlinea
buckling load factors, the nonlinear buckling load factens-
tivities must be derived. Only simple eigenvalues of coveer
tive load systems are considered.

5.1. Design sensitivity analysis of simple eigenvalues

The eigenvalue problem in (18) is a generalized eigenvalue
problem of the form shown in (3) where it is assumed that the
eigenvectors ar®-orthonormalized, i.e.fl)jT M¢; = 1. This
means thap; (-K7})¢; = 1. By direct diferentiation, with re-
spect to any design variabla,i = 1,...,1, pre-multiplication
of ¢7, making use of (18) and thkl-orthonormality of the
eigenvectors, noting that the system matrices are symunetri
and assuming that; is simple we obtain the eigenvalue sensi-
tivities as

)¢i

In order to determine the eigenvalue sensiti\%g/ for any of
the design variables;, i = 1,...,1, the derivatives of the el-
ement initial stifness matrix, element displacementtsgss
matrix, and the element stressfi$tess matrix have to be de-
rived, respectively. These derivatives are determinedi-sem
analytically at the element level by finiteftirence approxima-
tions and assembled to global matrix derivatives. The eltme
initial stiffness matrix derivative is determined as in (6) and (7).
Both the stress dfhess matrix and the displacementisiss
matrix are implicit functions of the displacements, i€}
Ks(D"(@),a) andK}' = K (D"(a), @), which must be consid-
ered. In order to evaluate design sensitivities%ngf and %
semi-analytically by finite dference approximations on the el-
ement level, see (10), the displacement sensitivities rbest
computed. At the converged load stepwe can write the equi-
librium equation as

0y _ e (dKo

dK}
da '\ da

da

dk?

(20)

n

Q"(D"(a).,a) = F"-R" =0 (21)

whereQ"(D"(a), a) is the socalled residual or force unbalance.

and by inserting into (15) we obtain a generalized eigerevalu Taking the total derivative of this equilibrium equatiorthwie-

problem

(Ko+KP) i = -4 K5 ¢ (18)

where the eigenvalues are assumed ordered by magnitude such

thatA; is the lowest eigenvalue a@d the corresponding eigen-
vector. The solution to (18) yields the estimate for theiaalt
load factor at load stepas

Yi= 47" (19)

If A3 < 1 the first critical point has been passed and in contrar)(N
A1 > 1 the critical point is upcoming. The one-point procedure,

works well for both bifurcation and limit points. The closer
the current load step gets to the critical point, the better t
approximation becomes, and it converges to the exact riesult
the limit of the critical load.

spect to any of the design variablgsi = 1,..., 1, we obtain
dQ"  9Q" oQ"dD"
= = O 22
da 0g; " gpn da (22)
aQ"  JF"  OR"
where 3D" — 30" D" (23)
Q" IF"  IR"
d =— - 24
an 0ap Oy Oy (24)

e note that (23) reduces to the tangerfirstiss matrix. Since
it was assumed that the current load is independent on daform

tion, & = 0, we obtain

JF"

opn

n
T

(25)
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By inserting the tangent $fhess and (24) into (22), we obtain

the displacement sensitivitié}% as
ndD" _9R" GF"
Tda  da 9y

(26)

For design independent loads, the te##n = 0.

Thus, all terms have been derived for the evaluation of the

eigenvalue sensitivities in (20) and the estimate for thaine
ear buckling load factor sensitivity at load stefs

C
i _dy

- 27
da ~da’ (27)

5.2. The mathematical programming problem

The optimization problem of maximizing the lowest of the
nonlinear buckling load factorgy, is as for the linear case for-
mulated using a bound formulation, see [51], as

Objective :  maxp
apg
Subject to : y‘j’ =B, j=1...,N;

(Ko + KD + 2;KD)¢; =0

Again, the mathematical programming problem is solved us-

ing the Method of Moving Asymptotes by [53]. By utilizing
the procedure described in Section 4, the estimation pomt f
the nonlinear buckling analysis and design sensitivityl\sis

(A
(Courtesy of Fiberline Compositeg%)

Figure 2: Examples of laminated composite profiles manufadt by pultru-
sion process by the company Fiberline Composités. A

7b—‘
R

Geometry:
L=236

t =0.05

b =2025
h =6.05

t

is updated at each optimization iteration, whereby a goed ap

proximation of the nonlinear buckling load and sensitaéstare
obtained since the estimation point always is in the neighbo
hood of the real buckling load. As for the linear case, the@tb
loop of analysis, design sensitivity analysis, and optatian is
repeated until convergence in the design variables or tiril
maximum number of allowable iterations is reached.

6. Numerical Example: Laminated Composite U-Profile

In order to illustrate the importance and the potential ef th
nonlinear buckling formulation, described in Section 4 &nd
and the pitfalls of the traditional linear buckling formtita,

see Section 2 and 3, a laminated composite U-profile is con-
sidered. The laminated composite U-profile is an example of a

real structural engineering element, e.g. the combéogrline

Composites /& produces such structural elements by a process

called pultrusion, see Fig. 2.

Geometry, loading, and boundary conditions are identizal t

Figure 3: Geometry, loads, boundary conditions, and el¢m@ordinate sys-
tems for numerical model of the U-profile.

mesh size has been determined through mesh convergence stud
ies and found dficient for predicting the buckling mode and
buckling load. For details about the mesh convergence study
see [55]. The laminate layup consists of 4 uni-directional E
glasgepoxy fiber layers each of equal thickness, see properties
of the processed material in Table 1.

Table 1: Processed material properties for U-profile.

E-glasgepoxy
Ex 30.6 GPa Ey 8.7 GPa
E, 8.7GPa vy 0.29
Vxz 0.3 Yz 0.3
Gxy 3.24GPa Gy 3.24 GPa
Gy, 29GPa p 1686 kgm®

a model analyzed by [45]. The U-profile is clamped at one The fiber orientation is related to the element coordinase sy
end and point loaded in an upper corner node at the other efdm, (e, Ye, Z), in €ach finite element. The fiber orientation is

with a forceR = 25CkN. A total of 432 equivalent single layer

measured counterclockwise from thexis in thexy-plane of

solid shell finite elements and 962 nodes are used in the nikhe element coordinate system. The element coordinatersyst
merical model. This model thus has 2808 compatible degredsr the finite elements, in respectively the web and each 8ang
of freedom and 3024 incompatible degrees of freedom. Thiss depicted in Fig. 3. The fiber orientation at each layer & th

6
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web and each flange is considered constant and the layer stack x 10° Load - Displacement curve for U-Profile
ing is done from inside out. Three layup definitions are define 2,005 %L~ —————-
for the U-profile and will be the starting points for the lamia
optimization, see Table 2.

,,,,,,, % LinBuck - Initial Design
0. GNL - Initial Design

l 65 I T o N I I
I —°\ I I
Table 2: Layup definitions for the U-profile, which are thertitey point for b . ! | ‘
the laminate optimization. Each layer in the laminate laylias a thickness of = e | *000800000000 0000 b 000000 °‘°‘°k°ﬁ‘\
12.5mm ~ Lo | | |
Layup1 T o I M
Top Flange £90° ,-45° ,0° ,45°) — e | | |
Web (0,45 ,90° ,135) o | | |
Bottom Flange  £45° ,0°,45° ,90°) S | | |
Layup 2 . | | |
Top Flange (45,0°,-45 ,-90°) 2o | | |
Web (135 ,90° ,45° ,0°) P 1 | |
Bottom Flange (990,45 ,0° ,-45°) 00223 1 > 3
Layup 3 Displacement - w
Top Flange 0,45 ,-90° ,-45°) ) ) . ) .
Web (90 ,135 ,0° ,45°) Figure 4: Linear buckling load and load displacement curemfgeometrically
Bottom Flange  (45,90° , —45° ,0°) nonlinear analysis of U-profile with layup 1.

The representation of the lamina layers for the U-profile is
not entirely realistic since the layers preferably showdd:bn-
tinuous across the top flange, web, and bottom flange for marR?
ufacturing purposes. Alternatively, a continuous lamiaygelr
could be added as the outermost outer layers and act as a
binder between the fierent sections. This issue is not fur-
ther addressed since the purpose of the numerical example is
to demonstrate the fierent methodologies and not design of a 5
structure ready for manufacturing.

6.1. Structural behaviour of U-profile

Initial analysis is carried out on the U-profile before ad-
vanced optlmlzqt|on is proceeded 'n order to _determ_me th%igure 5: $'linear buckling mode shape and displacement fieldfint load
structural behaviour. Only layup 1 in Table 2 is consideredsteps during the geometrically nonlinear analysis. No the displacement
Instability is predicted with linear buckling analysis agdo-  fields correspond to the marked load steps on the load déesplaat curve in

metrically nonlinear path tracing analysis, respectiveBon- ~ F9- 4

sidering geometrically nonlinear analysis as the “exanttic-

tion, the buckling load predicted by linear buckling anéyis The linear buckling optimization histories are shown in.Fag
overestimated by 27%, see Fig. 4. for the three starting points and are named LinBuckOpt. Lin-

The geometrically nonlinear analysis predicts buckling du BuckOptl and LinBuckOpt2 converge to the same buckling
to a limit point instability where the structure buckles et load while the LinBuckOpt3 converges to a slightly loweelan
top flange near the fixed support, see Fig. 5. In contraryatine buckling load.
buckling analysis predicts bifurcation buckling due tolapse The optimum fiber angle results from optimization run Lin-
in the web section at the free end. Not only does linear buckBuckOpt2 is schematically illustrated in Fig. 7. The fiber an
ling overestimate the buckling load, it also fails to preédite  gles in the flanges are mainly oriented in the length of the U-

buckling shape at the critical point. profile whereas the fiber angles for the web are oriented in the
transverse direction in order to suppress the lowest lineek-
6.2. Linear buckling optimization ling mode. Similar fiber angle results in the web are obtained

The laminated composite U-profile is optimized with respectn LinBuckOpt1 and LinBuckOpt3.
to linear buckling. The fiber angles in the laminate layup-defi In order to validate the results from the linear bucklingi-opt
nition, see Table 2, are chosen as design variables givioiga t mization and to check thefect on the “real” critical load, ge-
of 12 design variables. Since fiber angle optimization iseiss ometrically nonlinear analyses are carried out for the feta
ated with a non-convex design space with many local minimaglesigns obtained at every®f@eration during the linear buck-
three diferent layupsstarting points in the design space haveling optimization process. The critical load detected &sth
been selected for the optimization, see Table 2. designs are plotted in Fig. 6. As expected the linear bugklin
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10° Optimization history for U-Profile
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Optimization iteration number

Figure 6: Optimization histories for linear buckling optzation (LinBuck-
Opt), and detected GNL limit point from re-runned analysesBuckOpt -
GNL Limit Point).
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Figure 7: Fiber angle results in all four layers of the U-geofrom the linear
buckling optimization run LinBuckOpt2.

analysis overestimates the critical load which also wasotesi

in the initial analysis in Section 6.1. But important to roetis
that no correlation can be observed between the tendenbg of t
linear buckling load and the real critical load during thei-op
mization. Despite high improvement in the linear buckliogd
during the optimization only minor gain is achieved in thalre
critical load. The linear buckling optimization fails to prove
the critical load and only the overestimate by linear buakli
analysis is maximized.

6.3. Nonlinear buckling optimization

Applying the nonlinear optimization formulation, des&ib

geometrically nonlinear analysis in the nonlinear buakkpti-
mization procedure, and can therefore be considered asdhe r
critical load.

The nonlinear buckling optimizations, GNLBuckOptl and
GNLBuckOpt2, attain almost the same buckling load at the fi-
nal designs. GNLBuckOpt3 gets to a better design with a liighe
buckling load which demonstrates the risk of ending up in-a lo
cal minima when using continuous fiber angles as design vari-
ables.

< 10° Optimization history for U-Profile

4
3.5
3F
Z
<25
=
g
=2 2 +
2 :
i‘ 15”77;‘5 77777 o LinBuckOpt1 I
o } « LinBuckOpt2
5 I = LinBuckOpt3
b — N +¢-LinBuckOpt1 - GNL Limit Point |
! ~v LinBuckOpt2 - GNL Limit Point
| -+ LinBuckOpt3 - GNL Limit Point
0.5F----1----1 - GNLBuckOpt1 H
! > GNLBuckOpt2
| GNLBuckOpt3
0 L ! ; ;i

20 40 60 80 100 120 140
Optimization iteration number

Figure 8: Optimization histories for nonlinear bucklingtiopzation (GNL-
BuckOpt), linear buckling optimization (LinBuckOpt), addtected GNL limit
points from re-runned analyses (LinBuckOpt - GNL Limit Pin

The linear buckling optimization did only yield a limited
improvement with respect to the buckling resistance, wirere
the nonlinear buckling optimal designs have a consideriaile
provement in the buckling resistance.

in Section 4 and Section 5, the nonlinear buckling load of theigure 9: Fiber angle results in all four layers of the U-deofiom the nonlin-

composite U-profile is optimized. The same parametrizatio
and starting points as in the linear buckling optimizatioSec-
tion 6.2 are used. The nonlinear buckling optimizationdxist

ear buckling optimization run GNLBuckOpt3.

n

The optimal fiber orientation for GNLBuckOpt3 is schemat-
ically shown in Fig. 9. Recall that the U-profile buckles near

ries are plotted in Fig. 8 and named GNLBuckOpt. Note thathe fixed end in the top flange. At all layers in the top flange

the buckling load plotted is the detected limit point durthg

the fibers are transversely oriented and closely orientedrtds
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45°/-45° in order to give resistance against the local bucklingdisregarded the nonlinear buckling formulation can stlap-
mode development. The orientation of the fibers is a tr&deo plied by either introducing imperfections into the struetin
between global bending finess, local suppression of the buck- order to convert the bifurcation point into a limit point, by

ling mode in the top flange, flange width, and a varying momenstopping the GNL analysis prior reaching the first bifurcati
along the length and width of the top flange which results inpoint. In the latter, the nonlinear buckling analysis andADS
large shear near the clamped support. This pinpoints tleat thhas to be performed at the deformed configuration near the firs
use of rational design methods is very beneficial for desfgn obifurcation point.

such complicated structures with highly nonlinear behawio
At the web and the bottom flange the fibers are in most lay- . S . .
ers oriented in the longitudinal dgirection for maximum ghbb 77, Numerical Example: Generic Wind Turbine Main Spar

bending stifness. In order to demonstrate the proposed approach on a more

complex structure a generic model of a main spar of a wind
6.4. Comparison turbine blade is studied. The main spar is one of the main

In order to investigate the poor performance of the lineat2"Y!Ng components in some designs of wind turbine blades

buckling optimized structures w.r.t. the real critical doasee as illustrated in Fig. 11. These designs of wind turbine ééad

Fig. 8, the linear and nonlinear buckling mode shapes are con%:)aISICaIIy consist of two structural components, the maar sp

pared to the post-buckling deformation field from a geornetri and the aerodynamic shell. The main spar is the main carrying

. S . ; structural component for flapwise bending loads whereas the
cally nonlinear analysis in Fig. 10. The linear buckling lana ) . . )
aerodynamic shell carries most of the edgewise bendingload

Leading edge

Assembly \
Pressure N\ Trailing edge
side shell
Edgewise
C Main spar bending Flapwise
bending

Figure 10: Comparison of buckling mode shapes and displectfield. A: £ Suction side shell
linear buckling mode shape. B%'Inonlinear buckling mode shape. C: Post-

buckling displacement field from geometrically nonlineaalgsis. Figure 11: The two main structural components in a typicaldrurbine blade

ysis predicts instability in the free end of the web while the9€sign [56]
U-profile as observed through geometrically nonlinearysisl In this study the main spar is subjected to the most critical
looses its sftness due to buckling in the top flange near thestatic load case, which is the flapwise bending load thaesris
fixed support. The nonlinear buckling analysis performed atvhen the turbine has been brought to a standstill due to the
the deformed configuration near the instability point ceggu  high wind and the blade is hit by the 50 year extreme wind.
this behaviour. The buckling mode shape is very important inVith such extreme bending loads the main spar will typically
the calculation of accurate design sensitivities sinceftears  collapse due to local buckling on the compressive side of the
directly in the equations, see (5) and (20). Furthermore, thblade. Accordingto [57], the ultimate strength of a windine
matrices involved in the buckling problem for both analysisl  in flapwise bending is characterized by a sequence of failure
design sensitivity analysis are more accurate at the update  events where the first is delamination triggered by locakbuc
figuration and the nonlinear buckling optimization forntida  ling and subsequently compressive fibre failure in the maam.s
proves to be reliable in buckling problems involving largs-d For the design study of the generic main spar only 14 meter
placements and near limit points. of a 25 meter blade is modelled, see Fig. 12. The finite element
The linear buckling formulation should be used with cau-model consists of 1856 equivalent single layer solid sheiliefi
tion and not as a general tool to design buckling resistantst elements and 3776 nodes. This model thus has 11136 com-
tures. As depicted in Fig. 8, the real buckling load from the |  patible degrees of freedom and 12992 incompatible degrfees o
ear buckling optimization runs does not increase monotsliyou freedom. This mesh size has through mesh convergence stud-
in the first 40 optimization iterations despite the optiniiza  ies been found dficient for analyzing buckling. The resulting
algorithm applied is gradient-based. This indicates a lafck flapwise bending load dR = 164.7kN is distributed as a sur-
connection between the linear buckling load and the redt-buc face load in the tip section (not follower force). The tip thec
ling load. Linear buckling optimization may therefore ims® is used for load introduction and the generic main spar model
cases not improve the buckling load and maybe even reduds clamped at the root section. The initial laminate layughef
it. Despite misleading high improvement in the linear burekl  generic main spar is shown in Fig. 13 and the processed mate-
load during optimization the real buckling load may remain u rial properties are stated in Table 3.
changed which for engineering design purposes can be fiatal.  The root section is a $fi monolithic laminate layup with
case of bifurcation buckling where nonlinedfeets cannot be orientations -1¢10°/10°/-10° and the webs which mainly are

9



Postprint version, final version available at httfuki.org10.1016j.cma.2010.02.005

E. LINDGAARD ET AL.

Surface
load

Root section

20.86

Mid section

\ Tip section
0.02
—+0.225|

Figure 12: Definition of the generic wind turbine main spatimgeometric
measures in [m]. It is a generic model without twist of thersprad with a total
length of 14 meter. The root section has a length of 3 metetlanchid section
which is the design area in the laminate optimization hasgtkeof 9 meter. A
linear interpolation between the three cross sections sl®wsed while the tip
section, which is used for load introduction, has a constesgs section. All
elements have their element coordinate systemyg, zo), located such that the
Xe-axis is pointing in the longitudinal direction of the maipes and thez.-axis
is pointing outwards.

0.40

o1

002 0.07-

loaded in shear are made as a sandwich structure with a light

foam core material and unidirectional E-glegmoxy face sheets
oriented 45/-45°. The flanges mainly consist of° (packs,
which involve many 0 layers stacked together for maximum
bending stifness and some 4545° layers for local buckling
resistance.

Flange Layup Web Layup

70 70
60 60 ‘
E5(-10,10], B [-10,10],
50 45 50 El45
E -4 T
E s ° Ex B4
@ Elopack ¢ O
8
£ A B45 H foam
2 £ 80 Bl-45
£ H4s £
20 EJ0 pack 20 45
El-45
10 =45 10
0 0

012345678 91011121314
Length [m]

012345678 91011121314
Length [m]

Figure 13: Initial layup definitions for respectively, flagyand webs in the
generic main spar model. The layer stacking is done frond@seilt, i.e. the
inner surface of the main spar is at zero thickness.

For real applications the transition between the root Iayugqgure 14: Top:

Table 3: Processed material properties for the generic spn

Material property  E-glagspoxy Foam
(UD) Rohacell (PMI)
Ex 398 GPa 150 MPa
Ey 6.98 GPa -
E; 6.98 GPa -
Vxy 0.298 0298
Vyz 0.3 -
Vxz 0.298 -
Gyy 2.6 GPa -
Gyz 2.6 GPa -
Gy, 2.59 GPa -
o 1900 kgm? 110 kgm?

nonlinear analysis are utilized to predict the collapsello&
the structure. The GNL analysis predicts collapse at a Idad o
107.2kN in terms of a limit point while linear buckling analysis
predicts collapse at a load of L3&N. Considering the predic-
tion from GNL analysis as the correct prediction linear Hingk
analysis overestimates the collapse load by2b Both anal-
yses predict collapse due to local buckling on the compressi
side of the main spar, see Fig. 14.

Surface
load

Surface
load

GNL post-buckling deformation shape

buckling mode shape from linear buckling analysis at a

and the mid section layup, see Fig. 13, will preferable b@jnear buckling load factor of; = 0.8177. Bottom: Post-buckled deformation

smooth and not abrupt in order to obtain a smootfir&ss
transition and thereby lower the interlamindiieets which may
lead to delamination and eventually failure of the bladelyOn
buckling is considered in this study and the transition ditin-
fluence the buckling performance and characteristics vidyere
the presented layup is consideredisient in the design study.

7.1. Preliminary analysis of generic main spar

Structural analysis is performed before optimization is-pr
ceeded in order to characterize the structural behaviotheof
main spatr.

shape from GNL analysis. Critical load factor at the limitmicfrom GNL
analysis igy® = 0.6510.

Both analyses with respect to the collapse characteritic o
the main spar are in good agreement, i.e. the location of the
local buckling is similar, despite theftiirence in the prediction
of the collapse load.

7.2. CFAO of generic main spar
Continuous fiber angle optimization of the generic main spar
model is considered where the objective is to maximize the co

Both linear buckling analysis and geometricalljlapse load. Only the biax fiber layers, i.e. the’ 4md -45
10
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layers, are chosen as design variables since these layers &rom an engineering viewpoint is reasonable. The fiber angle
included in the layup of the main spar for improved bucklingresults from the nonlinear buckling optimization is depéttn
resistance. The°Qpack layers are excluded in the design opti-Fig. 16. The fiber angle results from the nonlinear buckling
mization whereby the bending tiess is unfiected by the de- optimization are depicted in Fig. 16. The fiber angles in the
sign changes and a compliance constraint is unnecessdgy. Orarea of instability are changed from being485° to be more
the mid section biax layers for both flanges and webs are cortransversely oriented and closely to°30 order to suppress the
sidered in the optimization. Patches, covering largersaocfa local buckling mode and thereby raise the collapse loady Onl
the structure, are introduced. Within a patch containingt@t a few biax layers are selected as design layers and the fixed
finite elements only one fiber angle design variable contha@s fiber layers are oriented in the length direction. This caat
orientation of the given fiber layer in the finite element §étis ~ parametrization, together with the smaffextive width com-
is a valid approach for practical design problems sinceJamipared to the length of the spar, explains the orientatiormef t
nates are typically made using fiber mats covering largexrsare design layers in the area of instability. Despite many pdieh
In the mid section, 1 patch per meter is utilized for both fleég visions in the parametrization of the problem the fiber angle
and webs giving a total of 180 fiber angle design variables.  results are quite continuous across patches which makes-man
Linear buckling optimization and nonlinear buckling opti- facturing easier.
mization are performed and the optimization histories ate ¢~ Within the optimization of the generic main spar the number
lected in Fig. 15. The optimization problems of the genericof arc-length steps in the vicinity of the limit point has bee
main spar have been solved on a hybrid Linux cluster “Fyrkatincreased for a better resolution and thereby better limittp
at Aalborg, Denmark. The programming code which is writ-detection and easier convergence. This is accomplisheleby t
ten in Fortran 95 has been implemented in parallel such thantroduction of a re-initialization feature of the arc-tggh solver
element routines have been parallelized through the use @uch that the arc-length step is reduced when the load fector
OpenMP directives, factorization of the global system,gigl  larger than 90% of the detected limit load from the previous
(11), are done in parallel through the Pardiso solver intivel |  optimization iteration. Some small fluctuations are prégen
Math Kernel Library (MKL), and a Message Passing Interfacethe nonlinear buckling optimization history in Fig. 15 whiis
(MPI) has been incorporated for doing the design sensitivit due to the nonlinearity and non-convexity of the optimiaati
analysis in parallel. problem. These fluctuations may be avoided by reducing the
maximum move limit though increasing the risk of convergenc

10° Optimization history for generic main spar to a local m?nima-_ _ _

‘ ‘ ‘ ‘ ‘ Many optimization iterations are needed for convergerez, s
—————— Fig. 15. A convergence criteria based on the relative chafige
the objective would have resulted in only 2@10 optimization
,,,,,, iterations, but for completeness a very strict convergenite-

X

1.4f - T [ e P

1-3”””\ ””” [ T :””’T ””” :
% ria based on the relative design change has been applied.
I B e e St — S— e Despite the linear buckling mode shape and the GNL post-
e /"il | | | | | | buckling displacement field are quite similar, see Fig. b4, t
N F 1 linear buckling optimization formulation yields very poge-
= 11,?‘ ””” A A sults. The is due to the nonlinearity of the problem whereby
M ! ! ! ! ! ! ! the design sensitivities for the linear formulation becesrire
L Fooos ~TinBuckOpt ‘ : accurate since the stresdfstess is not linear together with the
! ! “o“éilr\}légilzggtg GNL Limit Point missing contribution from the displacementistess. The lin-
0.9 1 1 = L ear formulation is unreliable despite it in the analysistkedo
20 é)%timif;’ﬁon ﬁgratiolr?%umég? 140 160 predict the mode of instability and the collapse load within

margin of 256% which makes it dangerous for engineering de-

Figure 15: Optimization histories for nonlinear bucklingtimization (GNL-  Sign purposes. Especially in cases where only linear bugkli
BuckOpt), linear buckling optimization (LinBuckOpt), adétected GNL limit  analysis is performed and not even the final result is verified
points from re-runned analyses (LinBuckOpt - GNL Limit Piof the generic by GNL analysis, the danger of the linear buckling formuati
main spar. is substantial since the linear buckling optimization shomis-

The optimization history of the linear buckling load shows leading high improvement of the collapse load while the real
considerable improvement while the improvement in the reatollapse load almost remains unchanged.
collapse load in terms of the GNL limit point is limited. The
collapse load of the linear buckling optimized design isyonl 8. Conclusion
2.8% larger than the collapse load of the initial design. This
behaviour was also observed for the U-profile example in Sec- Buckling behaviour of arbitrary composite structures can r
tion 6. The nonlinear buckling optimization successfulty-i  liably be improved by the proposed optimization method. The
proves the collapse load of the generic main spar b%3 method includes accurate nonlinear path tracing analysis a
which in this context is a large improvement considering thathe buckling load is estimated at a precritical point on tee d
only a few biax layers are changed and that the initial layugformed configuration whereby a more precise estimate is ob-

11
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Figure 16: Fiber angle results from nonlinear buckling mation for half of the generic main spar. Numbering theetestacking from inside out, design layer 1

contains the first layer for respectively flanges and welisateachosen as design variables.

tained than that obtainable by classical linear bucklinglan buckling load.

ysis. General sensitivity formulas for the nonlinear buul
load, described by discretized finite element matrix equati

The method has been applied successfully in the buckling
optimization of two composite structures using fiber angle
parametrization. The examples demonstrated the impaiainc
the nonlinear buckling formulation and that applicatiorttod
classical linear buckling formulation may not improve thig-c

have been derived and the design sensitivities are appaben

, thus no exact and troublesomerdete

nation of the critical point is necessary.

at the precritical point

ical load during the optimization process and as a conseguen

lead to unreliable design results. Linear buckling analysi
often used to predict instability and to optimize structuier

The currentapproach is at present limited to a limit poipety
of instability. It is possible to expand the method to inaui-

furcation type of instability by modifying the limit pointedec-

maximum buckling performance without considering nonlin-

tion in the optimization procedure to a critical point deitea
that includes both limit points and bifurcation points. Dgr

geometrically nonlinear analysis, eigenbuckling analgsiuld

ear dfects or type of instability. Precautions should be taken
before applying the classical linear formulation, espicia

be preformed at some load steps in order to estimate an upases with nonlinear prebuckling path and in cases witht limi

coming critical point,

point instability. In such cases the nonlinear bucklingriar
lation proves to yield much better results and especiallgnwh

and thereby determine the preaultis-

timation point for design and design sensitivity analydithe

12
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the approximation point is close to the critical point. Dwyi [16]
the benchmarks of the nonlinear formulation good convergen
properties was observed and no problems related to diveegen
of the displacement derivatives could be traced since ttie es
mation point for design sensitivities is located at a pteai
state.

Imperfection sensitivity is not considered in the paper but[19]
may prove to be important in order to obtain practical esti-
mates of the buckling load. As long as buckling load is used20]
as the objective function, the authors do not expect ffeetof
imperfection sensitivity to change the optimum designsisTh 51
statement is currently being investigated by the authonsth®
other hand, if buckling requirements are considered indine f
of constraints a detailed analysis of imperfection serisitor [22]
the use of “engineering” knock-down factors should be used. |3

Using the developed approach structures can reliably be op-
timized with respect to a general type stability, i.e. eithie [24]
furcation or limit point stability, and especially in casgbere
geometrically nonlinearféects cannot be ignored. This allows

(17]

(18]

the material utilization of buckling critical laminatedsttures  [25]

to be pushed to the limit in arffecient way yet allowing lighter

and stronger structures. [26]
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