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Abstract

This work presents and experimental study of the generalization method

of the Reynolds number and the viscosity of pseudoplastic fluid flow in ducts

of non-uniform cross-section. This method will permit to reduce 1 degree of

freedom of hydrodynamical and thermal problems in those ducts. A review

of the state of the art has been undertaken and the generalization equation

proposed for ducts of uniform cross section has been used as a starting point.

The results obtained with this equation have not been found satisfactory and

a new one has been proposed.

Specifically, the procedure has been developed for two models of scraped

surface heat exchanger with reciprocating scrapers. For both models, the

scraper consists of a concentric rod inserted in each tube of the heat ex-

changer, mounting an array of plugs that fit the inner tube wall. The two

models studied differ in the design of the plug.

The procedure to perform the generalization method out of experimental

data is accurately detailed in the present document.
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Nomenclature1

m flow consistency index (rheological property), [Pa.sn]2

D inner diameter of the heat exchanger pipe, [m]3

Dv inner diameter of the viscometer pipe, [m]4

d diameter of the insert device shaft, [m]5

Dh hydraulic diameter Dh = D − d, [m]6

Lp pipe length between pressure ports of test section, [m]7

Lv viscometer pipe length between pressure ports, [m]8

N number of measures for each experiment9

P pitch of the insert devices, [m]10

p pressure, [Pa]11

pL pressure drop by length unit, [Pa/m]12

Q flow rate, [m3/s]13

S main cross-section, [m2]14

ub bulk velocity, [m/s]15

Dimensionless numbers16

n flow behaviour index (rheological property)17

Re Reynolds number, Re = ρubDh/µ18

3
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f Fanning friction factor, f = ∆pDh/2Lρu
2
b19

ξ pressure drop constant dependent on the duct geometry20

a to e correlation constants21

Greek Symbols22

α exponent of Reb in experimental correlations, [s−1]23

γ shear rate, [s−1]24

µ fluid viscosity (exact definition indicated by the subindex), [Pa.s]25

φ function of n26

Ψ unknown function, [kg/m3]27

ρ fluid density, [kg/m3]28

τ shear stress, [Pa]29

Subscripts30

b Reynolds number or viscosity defined by Eq. 231

g Reynolds number or viscosity defined by Eqs. 18 and 1932

MR defined by Metzner and Reed (1955) (Eqs. 4and 5)33

DL defined using the equation from Delplace and Leuliet (1995) (Eqs.34

6 and 7)35

ξ = an generalization based on pressure drop in annulus, where ξ is ob-36

tained from Kozicki et al. (1966))37
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ξ = exp ξ in Eqs. 6 and 7 is obtained by experimental correlation38

v belonging to the viscometer39

w at the inside pipe wall40

1. Introduction41

Many fluids in the food and chemical or petrochemical industries are42

non-Newtonian. In such applications the determination of parameters such43

as the friction factor and the Nusselt number is necessary for the calculation44

of pressure losses and heat transfer rates or temperature distributions in heat45

exchangers. This can be achieved experimentally or theoretically by solving46

the appropriate transport equations for typical common geometries (circular47

ducts, flat ducts, etc.). An important characteristic of these fluids is that48

they have large apparent viscosities; therefore, laminar flow conditions occur49

more often than with Newtonian fluids.50

Pseudoplastic fluids are the most common non-Newtonian fluids in the51

process industry Chhabra and Richardson (2008); Cancela et al. (2005). For52

this fluids, in a certain range of shear stress, the viscosity decreases as shear53

stress increases. To describe this behaviour, various mathematical models54

can be used. Among them, the Power Law model is widely used because of55

its simplicity. The model can be used to explain the viscosity of a specific56

fluid in a limited range of shear rates. The Power Law model (Eq. 1) has two57

parameters: the flow behaviour index n and the flow consistency index m.58

Thus, the hydrodynamic and thermal problems have one additional degree59

5
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of freedom, which increases their complexity.60

τ = mγn (1)

For example, let us consider the study of pressure drop in fully developed61

flow in pipes for forced convection. The list of significant variables can be62

pL = Ψ(D, ub, ρ,m, n). Through the Pi Theorem the problem simplifies to63

three non-dimensional numbers f = Ψ(Re, n). Consequently, the relation64

between Re and the friction factor will be different for fluids with different65

n. With the previous list of variables, the Reynolds number for power law66

fluids would be,67

Reb =
ρu2−n

b Dn

m
=

ρubD

µb

(2)

, where viscosity would be defined by µb = m(ub/D)n−1. Other viscosity68

definitions, with the same dimensional equations, are possible and will be69

more useful for the study of pressure drop in heat exchangers.70

Metzner and Reed (1955) where the first to use the so called generalization71

method. They analytically obtained the relation between the friction factor72

f and the Reynolds number Reb for the fully developed laminar flow in a73

pipe. Then, they defined a new Reynolds number ReMR, being the one74

which multiplied by the friction factor gave the same result that the one75

given by a Newtonian fluid.76

f ×ReMR = 16 (3)
77

ReMR =
ρu2−n

b Dn

m 8n−1 ((3n+ 1)/(4n))n
=

ρubD

µMR

(4)

, being the generalized viscosity for the flow in pipes78

µMR = m

(

ub

Dh

)n−1

8n−1

(

3n+ 1

4n

)n

(5)
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Kozicki et al. (1966) obtained a relation between friction factor and Reynolds79

number for various simple geometries (circular pipes, parallel plates, concen-80

tric annuli and rectangular, isosceles triangular and elliptical ducts) as a81

function of two parameters. Afterwards, Delplace and Leuliet (1995) re-82

duced those parameters to one. Therefore, the definition of Metzner and83

Reed (1955) can be applied to geometries with uniform cross-section as a84

function of a single geometric constant.85

ReDL =
ρu2−n

b Dn
h

m× ξn−1
(

24n+ξ

(24+ξ)n

)n (6)

86

µDL = m

(

ub

Dh

)n−1

ξn−1

(

24n+ ξ

(24 + ξ)n

)n

(7)
87

f × ReDL = 2ξ (8)

For duct geometries of uniform cross-section different from the ones stud-88

ied by Kozicki et al. (1966), similar relations can be obtained either exper-89

imentally or numerically. This simplification leads to significant reduction90

in the study cases of a particular problem. This has been called a general-91

ization method because it allows to express the pressure drop behaviour of92

Newtonian and non-Newtonian fluids with a single curve. Consequently, the93

Reynolds number and viscosity defined by this method are known as the gen-94

eralized Reynolds number and the generalized viscosity (Kakaç et al., 1987;95

Chhabra and Richardson, 2008). Besides, the generalized viscosity can be96

used to generalize other dimensionless numbers such as the Prandtl number97

in non isothermal flows (Hartnett and Kostic, 1985; Delplace and Leuliet,98

1995).99

The described method has been used by many authors until recent days100

(Gratao et al., 2006, 2007; Giri and Majumder, 2014). But, as mentioned101
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before, it can only be applied to ducts with uniform cross-section, where the102

shear-stress at the wall is uniform along the duct.103

Enhanced heat exchangers EHE (Hong and Bergles, 1976; Marner and104

Bergles, 1985) are widely used in the process industry in order to enhance105

heat transfer and they work often with non-Newtonian fluids. Webb (2005)106

classified enhancement techniques into active, if they require external power,107

and passive, if they do not. Active techniques as scraped surface heat ex-108

changers SSHE are specially designed to avoid fouling and enhance heat109

transfer. This last kind of enhanced heat exchanger is specially useful for the110

work with non-Newtonian fluids because of their high viscosity (Nazmeev,111

1979). In most EHE designs, specially in SSHE, the cross-section varies along112

their length or else the cross-section is uniform but complex and has not pre-113

viously been studied. Therefore, the generalization method must be based114

on experimental or numerical results and it is not straightforward.115

To overcome this inconvenience, most authors have considered their geom-116

etry to be very similar to one of the simple uniform cross-section geometries117

studied by Kozicki et al. (1966) or Metzner and Reed (1955). This is the case118

of corrugated pipes or pipes with wire coil or twisted tape inserts. Manglik119

et al. (1988); Oliver and Shoji (1992); Patil (2000); Mart́ınez et al. (2014)120

took this option for their studies of passive EHE performance with non-121

Newtonian fluids and Igumentsev and Nazmeev (1978) did so for his study122

of SSHE. However, there are complex geometries where this assumption is123

not valid at all. For those cases, Delplace and Leuliet (1995) proposed the124

use of experimental methods to obtain the value of ξ. Based on the previous125

research of Rene et al. (1991), they proposed to use ξ = 56.6 for a plate heat126

8
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exchanger type. Afterwards some other researchers have broaden Rene et al.127

(1991) and Delplace and Leuliet (1995) studies with numerical simulations in128

the same plate heat exchangers model (Fernandes et al., 2007, 2008) varying129

some design parameters.130

Our extensive literature search has not yielded further researches about131

the generalization method of viscosity in complex geometries with non-uniform132

cross section. In view of this situation the present study was undertaken.133

The present paper presents a simplified generalization method for the134

Reynolds number and fluid viscosity, based on the studies of Metzner and135

Reed (1955) and Delplace and Leuliet (1995), which can be applied to ducts136

of non-uniform cross-section. In order to prove its validity, pressure drop137

has been measured experimentally in two different pipe axial reciprocating138

scraped surface heat exchangers AR-SSHE. These geometries are shown in139

Fig. 1.140

2. Experimental Set-up141

The experimental setup shown in Fig. 2 has been used to measure pressure142

drop for different flow regimes in axial reciprocating scraped surface heat143

exchangers (Fig. 1(a) and Fig. 1(b)). The experimental facility consists of144

two independent circuits. The primary circuit, which contains the test fluid,145

is divided in two sub-loops. The test section is placed in the main one,146

including a gear pump (2) driven by a frequency controller (3). The test147

fluid in the supply tank (1) is continuously cooled in the second sub-loop148

through a plate heat exchanger (13) with a coolant flow rate settled by a149

three-way valve (15). The coolant liquid of the secondary circuit is stored in150

9
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(a) EG1 geometry of an scraped surface heat exchanger.

(b) EG2 geometry of an scraped surface heat exchanger.

Figure 1: Analysed geometries.
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Figure 2: Experimental set-up. (1) Test fluid tank, (2, 12) gear pumps, (3) frequency

converter, (4) immersion resistance, (5) Coriolis flowmeter, (6) RTD temperature sensor,

(7) pressure transmitter, (8) stainless steel tube with an insert scraper and with inlet

and outlet immersion RTDs, (9) pressure ports, (10) smooth stainless steel pipe used as

viscometer, (11) hydraulic piston (14, 17) centrifugal pumps, (15) three-way valve with a

PID controller, (16) coolant liquid tank, (18) cooling machine.

11
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a 1000 l tank (16) from where it flows to a cooling machine. The thermal151

inertia of this tank, with a capacity of 1000 l, together with the operation of152

the PID-controlled three way valve provides stability to the temperature of153

the test fluid in the supply tank, which can be accurately fixed to a desired154

value. The test section was placed in the main circuit and consisted of a155

thin-walled, 4 m long, 316L stainless steel tube with an insert scraper. The156

inner and outer diameters of the tube were 18 mm and 20 mm, respectively.157

Two oversize, low-velocity gear pumps (one on each circuit) were used for158

circulating the working fluid, in order to minimize fluid degradation during159

the tests. Mass flow rate and fluid density was measured by a Coriolis flow160

meter, which performs properly when working with non-Newtonian fluids161

(Fyrippi et al., 2004). Four pressure taps separated by 90◦ were coupled to162

each end of the pressure test section of 1.85 m length. A long test section has163

been used to improve measurement precision. Pressure drop ∆pE1 and ∆pE2164

was measured by means of two highly accurate pressure transmitters LD-301165

configured for different ranges. Pressure measurement ports were separated a166

distance Lp = 20×P , and consisted of four pressure holes peripherally spaced167

by 90◦. Test section was preceded by a development region of Le = 6 × P168

length, in order to establish periodic flow conditions.169

The rheological properties of the non-Newtonian test fluid n and m is170

measured by an in-line viscometer, parallel to the testing tube. In that way,171

measurements of the rheological properties could be done at the beginning172

and at the end of each set of experiments, minimizing the thixotropy effect.173

Further details are given in next section.174

Further details of the working apparatus and the calibration procedure175

12
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are given in Solano et al. (2011) and Garćıa et al. (2005).176

2.1. Test fluid characteristics177

The test fluid was 1% wt aqueous solutions of carboxymethyl cellulose178

(CMC), supplied by SigmaAldrich Co. CMC with different chain length179

have been used: medium viscosity (ref. C4888, 250 kDa), high viscosity (ref.180

C5013, 700 kDa) and ultra high viscosity (ref. 21904). The solutions were181

prepared by dissolving the polymer powder in distilled water and then raising182

the pH values of the solution to increase viscosity. This fluid shows a non-183

Newtonian pseudoplastic behaviour well described by the Power Law model184

of Eq. 1 for a big range of shear rates (Abdelrahim and Ramaswamy, 1995;185

Ghannam and Esmail, 1996; Abu-Jdayil, 2003; Yang and Zhu, 2007), al-186

though it presents a Newtonian plateau for shear rates under 0.1 s−1 (Bench-187

abane and Bekkour, 2008).188

All CMC thermophysical properties but the rheological parameters and189

fluid density were assumed to be the same as pure water (Chhabra and190

Richardson, 2008; Cancela et al., 2005).191

Rheological fluid properties are strongly influenced by the type of CMC192

powder employed, the preparation method and fluid degradation due to shear193

stress and thermal treatment. The combination of those factors allows to194

obtain fluids with different pseudoplastic behaviour, ranging from n = 0.45195

to n = 1.196

The values of n and m for the test fluid were obtained by using the in-line197

smooth pipe as a viscometer. In the smooth pipe, flow rate Q and pressure198

drop ∆p are measured 20 times for four different flow rates. Bulk velocity199

ub and shear stress at the wall τw are obtained out of flow rate and pressure200

13
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Figure 3: Rheological properties measurement during one of the test.

drop respectively201

τw =
∆pDv

4L
(9)

, as the velocity profile of the fully developed isothermal flow of power law202

fluids in pipes is well known, τw can also be derived from the constitutive203

Eq. 1,204

τw = m

[

8ub

Dv

(

3n+ 1

4n

)]n

(10)

, whose logarithm yields205

ln(τw) = n× ln(ub) + ln(m) + n× ln

[

8ub

Dv

(

3n+ 1

4n

)]

(11)

, out of which the rheological properties m and n can be obtained by ad-206

justing the experimental data with a least squared method. An example of207

a rheological measurement result is shown in Fig. 3.208

14
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Because of fluid degradation, rheological properties must be obtained fre-209

quently. Experiments are planned in sets of 15 to 25 and rheological proper-210

ties are obtained before and after each set. A maximum of 3% deviation be-211

tween rheological properties measurements has been obtained. Degradation212

between measurements has been supposed to be linear with experimenting213

time, so that m and n can be obtained for each experiment.214

2.2. Accuracy of the experimental data215

The experimental uncertainty was calculated by following the ”Guide to216

the expression of uncertainty in measurement”, published by the ISO (1995).217

On one hand, the Coriolis flowmeter has a repeatability of 0.025 % of the218

flow rate measure, while its precision when measuring density is 0.2 kg/m3.219

On the other hand, pressure sensor has a repeatability of 0.075 of its range.220

Uncertainties of the heat exchanger and viscometer dimensions have been as-221

signed according to the measuring tool employed. The uncertainty associated222

to rheological properties are obtained out of the least squares adjustment.223

The maximum uncertainty of n and m are 0.01% and 0.4% respectively.224

A summary of the uncertainties of dimensions and sensor measurements225

is shown in Table 1. The resulting error for Reb and f are of 1.2% and 2%226

respectively.227

3. Results228

Friction factor measurements in EG1 and EG2 geometries are plotted in229

Fig 4 versus Reb defined by Eq. 2. As it can be appreciated the friction factor230

f is a function of Reb and the flow behaviour index n.231

15
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(a) Dimensions.

Variable Value Uncertainty Units Uncert. (%)

D 18 0.05/
√
3 mm 0.2

d 5 0.05/
√
3 mm 0.6

Dh 13 0.04 mm 0.3

S 234.8 0.7 mm2 0.4

Dv 16 0.05/
√
3 mm 0.2

Sv 201.1 0.8 mm2 0.4

Lv 1885 0.5/
√
3 mm 0.02

Lp 1850 0.5/
√
3 mm 0.02

(b) Sensors measurements. N is the number of measurements.

Variable Value N Uncertainty Units Max. Uncert. (%)

∆pE1 10− 405 20− 10 0.07− 0.09 mbar 0.7

∆pE2 400− 2500 10 0.6 mbar 0.1

Q 30− 2000 10− 20 - kg/h 7.9× 10−3

ρ 1000 1 0.1 kg/m3 0.01

Table 1: Uncertainties in dimensions and sensor measurements.
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Figure 4: Reb versus Fanning friction factor for the geometries under study. Only most

representative results are shown.
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3.1. Generalization based on annulus geometry232

Geometries of EG1 and EG2 scraped surface heat exchangers are similar233

to an annular passage. Therefore, a generalization method based on the234

annulus geometry may be a good approach for these cases. For this value of235

the radius ratio (d/D = 5/18), the value of ξ = 11.69 can be obtained from236

Kozicki et al. (1966).237

In Fig. 5, f ×Reb versus n has been plotted for the experiments and for238

the solution in annulus given by Eq. 6 with ξ = 11.69. As it can be observed,239

annulus results underpredict experimental ones in 34% on average for EG1240

and in 27% on average for EG2. Pressure drop results are shown in Fig. 6241

and Fig. 7, where the generalized Reynolds number has been defined for242

the mentioned value of ξ. As it can be observed, the results show different243

curves for each fluid with different value of n and measurements do differ244

from the theoretical solution in annulus. Therefore it can be concluded that245

the generalization method is not valid in these cases.246

However, some useful information can be obtained from Figures 6 and247

7. For ReDL,ξ=an < 100 the flow is laminar and above this range the tran-248

sitional flow starts. Besides, it can be observed that the distance between249

experimental results and the line representing the annulus solution varies250

with ReDL,ξ=an, meaning that f 6∝ Re−1
b .251

3.2. Experimental value of ξ252

In this subsection, the solution suggested by Delplace and Leuliet (1995)253

has been used for the generalization method. They proposed to use Eq. 8,254

what has been modified to include an exponent for the Reynolds number, α,255
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Figure 5: Comparison of f ×Reb between experimental results and theoretical results for

annulus.
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Figure 6: EG1. ReDL,ξ=an versus Fanning friction factor.
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Figure 7: EG2. ReDL,ξ=an versus Fanning friction factor.
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as it has been explained in previous section,256

f × Reαb = 2ξn
(

24n+ ξ

(24 + ξ)n

)n

(12)

The experimental data has been correlated to obtain the value of ξ in257

Eq. 12. For this, only experiments with Reynolds numbers under 40 (highly258

laminar region) have been considered. The reason for doing this is that,259

although laminar region ends at Reynolds number about 100, the exponent260

of the Reynolds number in Eq. 12 decreases with the Reynolds number along261

the laminar region, what becomes significant for Reynolds numbers above262

40. The goal is not to obtain an experimental correlation for the data in the263

laminar region but to obtain a proper definition of the generalized Reynolds264

number, valid for the whole laminar region.265

The experimental values of ξ for EG1 and EG2, and the corresponding266

uncertainties for a confidence level of 95 % are shown in Table 21. The exper-267

imental data and Eq. 12 with the calculated values of ξ for both geometries268

are plotted in Fig. 8. Besides, friction factor versus the generalized Reynolds269

number (with this ξ) is plotted in Fig. 9.270

Table 2: Experimental correlation for ξ in Eq. 12 (Delplace and Leuliet, 1995).

α ξ Error

EG1 0.974 19.38 17.0%

EG2 0.951 16.67 13.3%

1The procedure to obtain α is explained in section 3.4.
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Figure 8: Comparison between experimental results and Eq. 12 with the experimental

values of ξ (see Table 2)
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Figure 9: Generalized Reynolds number with Eq. 12 and the experimental values of ξ (see

Table 2).
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Results in Fig. 8 show an under prediction of the product f × Reαb for271

n ≈ 0.45 and n ≈ 1 for both geometries. Furthermore, it can be observed in272

Fig. 9 that the experimental results for different n do not collapse to the same273

curve. This effect is higher in EG1 geometry, where the flow is significantly274

different from the annulus geometry. Results of this generalization method275

are still not satisfactory.276

3.3. Proposed experimental correlations277

At this point, an experimental correlation for f × Reαb must be obtained278

in order to apply the generalization method properly. With this objective,279

different expressions will be tested:280

1. Expression with two parameters,281

f × Reαb = a cn−1 (13)

2. Expression with three parameters,282

f ×Reαb = a cn−1 nd (14)

3. Expression with four parameters,283

f × Reαb = a

(

c n2 + d n+ e

(c+ d+ e)n2

)n

(15)

, where a, c, d and e are correlation constants (the letter b has been omitted284

to avoid confusion). As in previous section, the exponent of the Reynolds285

number α has been included due to the peculiar nature of the AR-SSHE,286

where the flow does not exactly behave as in a uniform cross section geometry.287
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Table 3: Correlation results.

(a) EG1.

Ec. 13 Ec. 14 Ec. 15

α 0.974 0.974 0.974

a 39.742 41.403 41.729

c 15.536 262.27 212.8

d -2.1177 -319.16

e 158.93

Error (%) 15.9 11.4 9.6

(b) EG2.

Ec. 13 Ec. 14 Ec. 15

α 0.951 0.951 0.951

a 33.786 34.070 34.078

c 12.574 80.555 75.852

d -1.4419 -95.224

e 50.102

Error (%) 12.7 9.0 9.0
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The results of the different approaches can be seen in Table 31. The three288

correlations proposed perform better than the one proposed by Delplace and289

Leuliet (1995). The lower error corresponds to Eq. 15 followed by Eq. 14,290

both presenting good agreement with experimental data. Both correlations291

are plotted in Fig. 10 versus experimental results.292

To our understanding, Eq. 14 offers a good approach to experimental293

results with just three parameters, two of which will appear in the generalized294

viscosity definition.295

In order to define a generalized Reynolds number and viscosity, according296

to Delplace and Leuliet (1995) φ(1) = 1 in Eq. 16, so297

Reg =
Reb
φ(n)

(16)

, consequently298

φ(n) = cn−1 nd (17)
299

Reg =
ρu2−n

b Dn

mcn−1 nd
(18)

300

µg = mcn−1 nd

(

ub

Dh

)n−1

(19)

Pressure drop results are shown in Fig. 11 and Fig. 12 with the generalized301

Reynolds number defined by Eq. 18. The figure shows as the experimental302

data for fluids with different pseudoplastic behaviour (different n) can be rep-303

resented with a single curve in the laminar flow region, while some differences304

arise in transition flow region.305

The proposed generalization method has more parameters than the equa-306

tion from Delplace and Leuliet (1995), but correlates better with the ex-307

1The procedure to obtain α is explained in section 3.4.
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Figure 10: Comparison between experimental results and experimental correlations.
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Figure 11: EG1. Generalized Reynolds number Reg (Eq. 18) versus Fanning friction

factor.
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Figure 12: EG2. Generalized Reynolds number Reg (Eq. 18) versus Fanning friction

factor.
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perimental data, being still very simple (see Table 2 and Table 3). This308

generalization method allows to reduce complexity in hydrodynamical prob-309

lems, where the dependence of n is included in the viscosity definition. The310

method can be followed in similar heat exchangers devices in order to obtain311

a valid expression for the generalized viscosity and the generalized Reynolds312

number.313

The expression obtained for the generalized Reynolds number and vis-314

cosity (Eq. 18 and Eq. 19) will be valid for this design of heat exchanger,315

working with any non Newtonian fluid whose behaviour can be modelled316

with the Power Law model. Obviously, care must be taken that the values317

of m and n, obtained for the working fluid, are valid in the working range of318

shear stress.319

3.4. Additional comments on the experiments and the correlations obtained320

A total of 161 experiments for the EG1 geometry and 101 for EG2 have321

been carried out. Those experiments belong to laminar, transition and tur-322

bulent regions. For all the correlations in this work, only experiments under323

Reg < 40 have been used to ensure they belong to the laminar region. All324

the experiments with Reg < 40 are represented in Figures 5, 8 and 10. As,325

at first, the definition of Reg is unknown, the first selection has been done by326

using ReDL,ξ=an < 40 and corrected with Reg at the end if necessary. The327

number of experiments which satisfy the previous condition are 61 and 47328

for EG1 and EG2 geometries respectively. In spite of the restriction imposed329

(Reg < 40), in Figures 11 and 12 it can be appreciated that the behaviour330

of the different fluids in the AR-SSHE is represented by a single curve in the331

whole laminar region (Reg < 100). This means that the generalized Reynolds332
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number and viscosity definitions are valid in that range.333

In order to perform correlations of equations 12, 13, 14 and 15, the expo-334

nent of the Reynolds number α has been obtained first. For that, a correlation335

for the friction factor has been obtained in f = Ψ(Reb, n) as indicated by336

each equation. Afterwards, that value of the exponent α has been used to337

correlate f ×Reαb as a function of n according to each equation. This proce-338

dure allows to minimize the correlating error due to high scaling differences339

in the Fanning friction factor.340

4. Conclusions341

In this work, a generalization method in ducts of non uniform cross-342

section has been presented and experimentally evaluated in two commercial343

scraped surface heat exchangers.344

• Pressure drop of a pseudoplastic non-Newtonian fluid has been ex-345

perimentally determined in two scraped surface heat exchangers (EG1346

and EG2) in static conditions. Experiments have been carried out in347

a wide range of Reynolds numbers Reg = [0.3, 600] and with Newto-348

nian and non-Newtonian fluids with different degree of pseudoplasticity349

n = [0.45, 1].350

• The performance of a generalization method based on the annulus ge-351

ometry has been tested and found inadequate. Theoretical results for352

f×Reαb in annulus underestimates the experimental data on average in353

34% and in 27% in geometries EG1 and EG2 respectively (in laminar354

region Reg < 40). Furthermore, the representation of the friction factor355
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versus the generalized Reynolds number based on the annulus geome-356

try is still dependent on the flow behaviour index f = Ψ(n,ReDL,ξ=an)357

in the laminar region. Therefore, this generalization is invalid.358

• As suggested by Delplace and Leuliet (1995), an experimental value of359

ξ in Eq. 8 has been obtained using the experimental data in laminar360

region (ReDL,an < 40). This equation correlates with an error of 17%361

and 13% in geometries EG1 and EG2 respectively. Furthermore, rep-362

resentations of f versus ReDL,ξ=exp still shows some dependence on n.363

This solution is very simple, as it only depends on 1 parameter, but364

the results can be improved.365

• Amore precise and still simple correlation for the generalization method366

has been proposed. The proposed correlation estimates f × Reαb with367

an error of 11% and 9% in geometries EG1 and EG2 respectively and368

the representation of f versus the generalized Reynolds number with369

this method Reg shows no appreciable dependence on n.370

• The generalized expressions of the Reynolds number and the viscos-371

ity obtained in this work are valid for their use in this specific heat372

exchanger working with any non Newtonian Power Law fluid.373

• The generalized method proposed can be applied to similar heat ex-374

changer designs with complex non-uniform cross sections.375
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