Effect of the axial scraping velocity on enhanced heat exchangers

D. Crespí-Llorens^a, P. Martínez^b, P. Vicente^b, A. Viedma^a

 ^aDep. Ing. Térmica y de Fluidos. Universidad Politécnica de Cartagena. Dr. Fleming, s/n (30202). Cartagena (Spain). damian.crespi@upct.es
 ^bDep. Ing. Mecánica y Energía. Universidad Miguel Hernández. Av. Universidad, s/n (03202). Elche (Spain)

Abstract

The flow pattern within an enhanced tubular heat exchanger equipped with a reciprocating scraping device is experimentally analysed. The insert device, specially designed to avoid fouling and to enhance heat transfer, has also been used to produce ice slurry. It consists of several circular perforated scraping discs mounted on a coaxial shaft. The whole is moved alternatively along the axial direction by a hydraulic cylinder.

The phase-averaged velocity fields of the turbulent flow have been obtained with PIV technique for both scraping semi-cycles. Special attention has been paid to the effect of the non-dimensional scraping velocity and the Reynolds number in the flow field. CFD simulations provide support for the identification of the flow patterns and the parameter assessment extension.

The results show how the scraping parameters affect the turbulence level produced in the flow and therefore the desired heat transfer enhancement.

Keywords: heat transfer enhancement, visualization study, turbulence level, numerical simulation, insert device

¹ Nomenclature

2	D	inner diameter of the acrylic pipe ,	[m]
3	d	diameter of the insert device shaft ,	[m]
4	D_h	hydraulic diameter $D_h = D - d = 0.028$,	[m]
5	k	turbulent kinetic energy ,	$\left[\mathrm{m}^2/\mathrm{s}^2\right]$
6 7	L	longitudinal position referenced to the centre of the scrap positive downstream of it ,	ber, being [mm]
8	N	number of pair of images in an experiment	
9	n	number of pixels in the distance D_h in an image	
10	Q	flow rate,	$[m^3/s]$
11	R	relation between distances in a PIV image, $R = 6928.6$,	[pix/m]
12	r	radial position,	[m]
13	s	standard deviation function	
14	Т	temperature,	$[^{o}C]$
15	v	fluid velocity,	[m/s]
16	v_b	bulk velocity ,	[m/s]
17	V	mean velocity component ,	[m/s]
18	v'	turbulent component of velocity ,	[m/s]

19

 \tilde{v}

random error component of velocity ,

20 Dimensionless numbers

- 21 β blockage parameter, $\beta = 1 v_s/v_b$
- 22 k^* non dimensional turbulent kinetic energy, $k^* = k/v_b^2$)
- 23 r^* non dimensional radial position, $r^* = 2r/(D-d)$
- 24 Re Reynolds number, $Re = \rho v_b D_h / \mu$
- 25 v^* non-dimensional velocity, $v^* = v/v_b$.

26 Greek Symbols

27	Δt	time elapsed between two consecutive images ,	[s]	
28	Δx	average displacement of the tracing particles contained in	ı an Inter-	
29		rogation Area between the two images of a pair ,	[pix]	
30	μ	dynamic viscosity of the fluid ,	[Pa·s]	
31	$\mu_{e\!f\!f}$	effective viscosity ,	[Pa·s]	
32	ρ	density of the fluid ,	$[kg/m^3]$	
33	ε	dissipation rate of turbulent kinetic energy ,	$\left[\mathrm{m}^2/\mathrm{s}^3 ight]$	
34	Subscripts			

- $_{35}$ co, ct co-current and counter-current directions
- 36 *max* maximum value

37 *min* minimum value

38 *s* scraper

 $_{39}$ y axial direction.

40 1. Introduction

Insert devices have been deeply investigated (Webb, 2005) in order to improve their efficiency: heat transfer vs. pressure drop. Heat transfer enhancement techniques can be classified into *active* and *passive*. The *passive* ones, like inserted wire coils or mechanically deformed pipes, have been studied for the last 30 years and have become commercial solutions. Webb deduced from his work that *active* techniques can produce very high increases in heat transfer, especially in laminar flow.

The fouling problem of heat exchangers has a significant impact on chemical, petrochemical and food industries. Preventing fouling on heat exchanging devices is essential to avoid heat transfer inefficiencies, corrosion due to deposits formation and pressure loss, which affects the devices' performance (Bergles, 2002).

⁵³ Mechanically assisted heat exchangers, where a heat transfer surface is ⁵⁴ periodically scraped by a moving element, might be used to increase heat ⁵⁵ transfer and avoid fouling. Equipment with rotating scraping blades is found ⁵⁶ in commercial practice: these devices prevent fouling and promote mixing ⁵⁷ and heat transfer. Many investigations have focused on these anti-fouling de-⁵⁸ vices, studying flow pattern characteristics (Wang et al., 1999), their thermo-⁵⁹ hydraulic performance (De Goede and De Jong, 1993) or scraping efficiency 60 (Sun et al., 2004).

A particular case of fouling problem is the generation of ice slurry in heat 61 exchangers with moving scraping devices. By cooling the outer surface of 62 the exchanger, ice crystals are generated in its inner surface, and the moving 63 device scraps the surface periodically to detach the ice from it. The presence 64 of an additive in the aqueous solution reduces the freezing temperature, in 65 order to control the proportion of ice in the solution. Ice slurries are safe, 66 environment friendly and efficient heat transporters with a capacity of up to 67 150 kJ/kg. Bellas and Tassou (2005) collected their possible applications. 68 Kauffeld et al. (2005) compared diverse ice slurry production techniques. 69 Several researchers have studied the pressure drop and heat transfer charac-70 teristics of ice slurry flowing through compact plate heat exchangers (Bellas 71 et al., 2002; Stamatiou et al., 2005; Norgaard et al., 2005) as well as through 72 pipe heat exchangers (Bedecarrats et al., 2003; Lee and Lee, 2005; Lee and 73 Sharma, 2006; Illán and Viedma, 2009b,a). 74

This work presents a visualization study carried-out on a heat exchanger prototype with a dynamic inserted device. The flow pattern is obtained by employing the Particle Image Velocimetry (PIV) technique and the results are shown and then compared with the flow pattern numerically obtained through a commercial CFD code. The numerical simulation will serve to find the turbulence model that best fits the experimental solution and helps to explain that particular flow pattern.

The active insert device, specially designed to enhance heat transfer and to avoid fouling, can also be used for ice slurry generation. It consists of several discs with six circumferentially distributed holes on them, which are mounted on a 18 mm diameter coaxial shaft with a pitch of 5D (Fig. 1). The
whole is moved alternatively along the axial direction by a hydraulic cylinder.
The effects of the Reynolds number and the scraping velocity in the flow will
be investigated. Furthermore, the increase of the turbulence level of the flow
will be analysed and related to the potential heat transfer increase.

[Figure 1 about here.]

91 2. Experimental Setup

92

90

[Figure 2 about here.]

The facility depicted in Fig. 2 was built in order to study the flow pattern induced by a device inserted in the exchanger tube. The main section consists of a 74 mm diameter acrylic tube installed between two reservoir tanks that stabilize the flow.

The test section is located within a distance of 15 diameters from the 97 tube inlet in order to ensure fully developed flow conditions. To improve the 98 optical access in this section, a flat-sided acrylic box has been placed. Water 99 is the test fluid chosen for the experiments and is also used to fill the acrylic 100 box. The fluid is pumped through the conducts by a gear pump, regulated by 101 a frequency converter which allows the control of its bulk velocity, measured 102 by an electromagnetic flowmeter. The pump is composed of small gear teeth 103 and in the experiments has always worked at frequencies over 25 Hz to ensure 104 a stable flow. In order to control the fluid temperature, there is an electric 105 heater in the upper reservoir tank. With the rest of the variables fixed, these 106 two parameters determine the Reynolds number. By using water as test 107

fluid at temperatures from 25°C to 55°C and flow rates of 100 to 1500 l/h, a Reynolds number range between 400 and 6200 can be obtained.

[Figure 3 about here.]

110

Particle Image Velocimetry is a broadly used technique which allows us 111 to measure velocity patterns in a flow (Raffel et al., 2000). To that end, 112 the flow is seeded with particles with nearly the same density of the test 113 fluid, in this case 50 microns diameter polyamide particles have been chosen 114 $(1.016 \ kq/l)$. As shown in Fig. 3(a), a laser illuminates flat slices of the 115 flow which contain the axis of the pipe (longitudinal section). The camera is 116 situated in orthogonal position in relation to that plane, so that it can have a 117 front view of it. Taking two consecutive images of the particles and knowing 118 the time gap between them, the 2-dimensional velocity field can be obtained. 119 The 1 mm thick plane laser light is pulsed at 100-600 Hz in order to ob-120 tain multiple pairs of images. Its wavelength is 808 nm. The 1280×1024 pix² 121 CMOS camera, together with a 16X optical zoom lens, provides images with 122 a resolution of 0.14 mm/pix. The camera is controlled by a computer and the 123 camera provides the synchronizing signal to the laser pulse. In the dynamic 124 experiments, the pictures are taken in pairs, triggered by the movement of 125 the scraping device. For each experiment, between 500 and 1000 pairs of 126 images have been processed using the software VidPIV. Cross Correlation 127 (C.C.) and Adaptive Cross Correlation (A.C.C.) algorithms have been used 128 to process the acquired pictures. They have been applied to every pair of im-129 ages consecutively (Scarano and Reithmuller, 2000), starting with the C.C. 130 with an interrogation area of 32×32 pix² and an overlap of 50%, followed 131

by the A.C.C. algorithm with the same window size and finally repeating the last algorithm with a smaller window size $(16 \times 16 \text{ pix}^2)$. Between the application of each algorithm and in the post-processing, a global velocity filter and an interpolation have been applied, the first one being in charge of eliminating outliers, vectors which are non-consistent with the rest in the field. Finally, results are obtained as an average of the individual results for each pair of images.

The laser light is 1 mm wide and 100 mm high. The PIV technique can 139 only give good results in a region 80 mm high where the illumination quality 140 is optimal. Velocity results are processed in three regions as shown in Fig. 1: 141 Region A, upstream of the scraper, Region B, immediately downstream of the 142 scraper and Region C after Region B, being an overlap of 20 mm between 143 regions B and C. The position of each region is referenced to the scraper 144 position as shown in Fig. 1. 500 pairs of images have been taken in the 145 experiments in region A and 1000 pairs in the experiments in regions B and 146 С. 147

All the experiments have been repeated at least 3 times to ensure high quality of the final results, which showed high repeatability once the experimental method was properly adjusted.

In dynamic experiments, the insert device has an alternative movement with constant and practically equal velocities in each direction ($|v_{s,co}-v_{s,ct}| < 2\%$), with an amplitude of 200 mm (2.7*D*). The shaft is moved by the hydraulic system depicted in Fig. 2. There is a distortion in the movement when changing direction, which does not affect significantly the average velocity of each cycle, being both velocities almost identical but with different $_{157}$ sign (see Fig. 3):

$$v_{s,co} = -v_{s,ct} \tag{1}$$

The velocity of the scraper has been measured off-line by an image tracking system, and on-line by two timers (one for each direction).

The two directions of the movement of the insert device will be called, from now on, co-current and counter-current, which relates them to the direction of the flow. The high speed camera is configured to take pairs of pictures in co-current or counter-current direction of the scraper.

The system is triggered by an optical sensor as described in Fig. 3(b). The 164 optical sensor is placed in the lower end of the insert device, so that its output 165 signal will change its TTL state from 0 V to 5 V when the insert device shaft 166 is detected and will change back when it goes away. The sensor signal can also 167 be configured with the opposite behaviour. By means of a timer, the signal 168 can be delayed so that the camera shot is triggered exactly when regions A, 169 B or C of the scraper are in position for the image acquisition and the scraper 170 moves in the right direction. When the camera receives the shooting signal, 171 it will take two consecutive images, upload them to the computer and wait 172 until the next shooting signal. This procedure will be repeated 500 times 173 for region A or 1000 times for regions B and C, which can be configured in 174 the commercial software provided by the camera manufacturer. The images 175 of the three regions are taken so that the scraper always appears in them, 176 acting as reference point. 177

178 2.1. Accuracy of the experimental data

When obtaining the velocity field out of a pair of images, the velocity at any position is calculated by the PIV algorithm as follows:

$$v_i = \frac{\Delta x_i}{R\Delta t} \tag{2}$$

$$R = n/D_h \tag{3}$$

The uncertainty associated to the instant velocity can be obtained from Eq. 4 and Eq. 5, where $\partial(\Delta t)$ has been neglected due to the high timing precision of the camera:

$$\partial(R) = \left[\left(\frac{1}{D_h} \partial(n)\right)^2 + \left(\frac{n}{D_h^2} \partial(D_h)\right)^2 \right]^{1/2}$$
(4)

$$\partial(v_i) = \left[\left(\frac{1}{\Delta tR} \partial(\Delta x)\right)^2 + \left(\frac{\Delta x}{\Delta tR^2} \partial(R)\right)^2 \right]^{1/2}$$
(5)

¹⁸⁴ When the same physical parameter is measured several times and the ¹⁸⁵ result averaged out, the corresponding uncertainty is given by Eq. 6.

$$s(V) = \sqrt{\frac{s^2(v_i)}{N}} \tag{6}$$

If the number of samples is high enough, this uncertainty in the meanestimation is reduced significantly.

The scale factor uncertainty is obtained from Eq. 4, being $\partial(R)/R =$ 0.0155. According to Scarano and Reithmuller (2000), if there is no velocity gradient the PIV algorithm estimates the particle displacement with a precision of $\partial(\Delta x) = 0.005$ pix. However, if there is a velocity gradient, an additional error appears, whose maximum value is given by the maximum velocity difference in an interrogation area (16 pix). The latter error has been calculated for the resulting velocity fields of the experiments, its maximum value being $\partial'(v_i)/v_b = 0.3$, which corresponds to the area with highest velocity gradient of the experiment number 6 (see Table 1). This error is much bigger than the others and consequently, the uncertainty associated to a single measurement is $\partial(v_i)/v_b \approx \partial'(v_i)/v_b = 0.3$.

For the experiments, between 500 and 1000 pair of images have been used. The PIV algorithm is applied to each pair and the results averaged out. Then, the random error is reduced significantly and can be quantified by the standard deviation of the non-dimensional average velocity (Eq. 6). In the experiments this value is always under $s(V^*) < 0.01$.

204 2.2. Turbulence contribution to the measured velocity fluctuations

In the case of a turbulent flow the velocity field is not always the same and it is affected by the turbulent fluctuation. Each measured value of the velocity, can be seen as the addition of three components: the mean velocity, the turbulent fluctuation and a random error due to the measuring process.

$$v_i = V_i + v'_i + \tilde{v}_i \tag{7}$$

Considering an isotropic fluid at small scales, the three components of the velocity will have the same variance and thus $s(v') = s(v'_y)$.

$$s^{2}(v_{i}') = s^{2}(v_{i}) - s^{2}(\tilde{v}_{i})$$
(8)

211

The value of $s^2(\tilde{v})$ is given by fluctuating errors in the measurements. In

this case, the error of the PIV algorithm is due to the velocity gradients,
which have been quantified for the whole velocity field. The non-dimensional
turbulent kinetic energy of some of the experiments has been obtained from
Eq. 8 and Eq. 9.

$$k = \frac{3}{2}s^{2}(v')$$
 (9)

216 3. Numerical simulation method

The reciprocating movement of the scrapers creates a remarkable mixing effect between the core region and the flow near the walls resulting in a complex turbulent flow as seen in the PIV technique images. To assist in identifying the underlying flow patterns, a numerical simulation has been conducted for each one of the different experiments, for the static and dynamic conditions of the scraper and under the same conditions of flow rate, Reynolds number, scraping direction and velocity.

To reduce the computation effort, all of the simulations are carried out with a reduced computation domain restricted to the section of the heat exchanger prototype between two consecutive scrapers. Due to the rotational symmetry of the scraper, finally only one-sixth of this domain is taken into account. A periodical boundary is adopted at the inlet and outlet sections in which the fluid parameters are coupled and the side sections of the domain are set as a symmetry condition.

The geometric model accurately reproduces the scraper shape and its rounded edges. A structured mesh is adopted and hexahedral cells are generated for almost the whole computation domain. Local cell refinement is carefully conducted near the walls for the consideration of the proper y+ values and to ensure the accuracy of the numerical results in the regions where
high velocity gradient is expected.

The numerical simulation of the pipe flow with inserted devices is performed by using the commercial CFD software package Fluent v6.3. A steady incompressible turbulent flow model and double-precision solver are used. The conservation equations of continuity and momentum in the Cartesian coordinate system are presented in the tensor form as follows:

$$\frac{\partial u_j}{\partial x_j} = 0 \tag{10}$$

$$\frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \frac{\partial}{\partial x_j} \left(-\rho \overline{u'_i u'_j} \right)$$
(11)

Although different turbulence models are tested, the RNG (renormalization group method) k- ε turbulence model with enhanced wall treatment is finally adopted for turbulent quantities (Fluent, 2006). This model includes the effect of swirl on turbulence so better accuracy and reliability are expected compared to standard k- ε model for swirling flows. The turbulence kinetic energy k and its rate of dissipation ε are obtained from the following transport equations:

$$\frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left(\alpha_k \mu_{eff} \frac{\partial k}{\partial x_j} \right) + G_k - \rho \varepsilon$$
(12)

$$\frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left(\alpha_{\varepsilon} \mu_{eff} \frac{\partial \varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} G_k - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k} - R_{\varepsilon}$$
(13)

where G_k represents the generation of turbulence kinetic energy due to mean velocity gradients, α_k and α_{ε} are the inverse effective Prandtl numbers for k and ε , μ_{eff} is the effective viscosity and R_{ε} is an additional term that improves the accuracy for rapidly strained flows.

In the case of dynamic condition of the scraper and in order to transform the unsteady problem of fluid motion relative to the stationary frame (acrylic tube) into steady with respect to the moving frame (inserted devices with constant translational speed), a moving reference frame (MRF) formulation is adopted in the numerical model, as outlined by Solano et al. (2010) who investigated a similar reciprocating scraped surface heat exchanger.

For the spatial discretization all the variables are treated with the sec-259 ond order upwind scheme, except the pressure, which uses a standard scheme. 260 The pressure-based solver is set for the numerical computations and the SIM-261 PLE algorithm is used for the pressure-velocity coupling. Near-wall regions 262 are modelled with an enhanced wall treatment. The convergence criteria are 263 less than 1e-7 for the velocity, k and ε . The numerical model was validated 264 through some simple simulations of the heat exchanger prototype without in-265 serted devices under the same turbulent flow regime and Reynolds number. 266 Grid independence of the results is checked by varying the number of grid 267 cells, as proposed by Freitas (2002), and taking into account the compromise 268 of computational time and accuracy. 269

270 4. Results

289

292

271 4.1. Average flow description in static conditions

The flow pattern has been analysed in static conditions, where the scraper device does not move. The transition from laminar to turbulent regime in this kind of devices under static conditions occurs at $Re \approx 200$ as has been proved by Solano et al. (2010). Experiments have been carried out at different Reynolds numbers, ranging from 1300 to 4100, which ensures a fully turbulent flow. To achieve this, the temperature has been kept constant at 45°C while varying the flow rate from 400 l/h to 1300 l/h.

Under these conditions, three groups of images have been taken, each one composed of 500 to 1000 pairs of images. The first group is made up of pictures of the flow just before the scraper and the other two are located in consecutive positions after it (Fig. 1).

The 2-dimensional images represent a plane of the flow. As this type of flow only has two different symmetry planes, experiments have been carried out on both of them, which are in radial direction. As shown in Fig. 1, the first plane (H) is located crossing each hole of the scraper through its diameter and the second one (J) is situated in the middle of the gap between two consecutive holes.

[Video 1 about here]

²⁹⁰ [TEXT FOR ELECTRONIC VERSION ONLY] The behaviour of the fluid ²⁹¹ in Region B of both symmetry planes (H and J) is presented in Video 1.

[Figure 4 about here.]

Figure 4 shows the measured velocity fields in both symmetry planes: centre hole (H) and between holes (J). Fig 4(a) shows that the flow pattern is similar to a jet flow. The *jet* produces high velocities downstream of the holes and flow recirculation in the near wall region and in the region between the holes (plane J).

The insert devices produce 6 round jets of 16 mm diameter each. The jets induce a reverse flow of 4-5 jet diameters long (64 - 80 mm). Figures 4 and 5 show the evolution of the flow profiles at different axial locations, from 51 mm upstream of the device to 120 mm downstream of the device.

A non-dimensional velocity in axial direction can be defined in terms of the average velocity of the flow:

$$v_y^* = \frac{v_y}{v_b} \tag{14}$$

Then, it can be observed that its maximum value decreases downstream of the scraper (Fig. 5(a)). At the device exit (L = 20 mm) the velocity profile has a pronounced *jet* shape $(v_{y,max}^* = 4.3)$. At a position L = 52 mmdownstream of the device, the maximum non-dimensional flow velocity is around 3.5 and the velocities in the region close to the shaft are higher. Further downstream the effect of the jet is about to disappear $v_{y,max}^*(L =$ 115 mm) = 2.

In the region between holes, a big recirculation is produced by the effect of the jet flow. At about 70 mm downstream of the device, the jet has expanded to the region between holes (plane J) and the flow becomes axisymmetric,

304

having higher velocities next to the shaft. From this point on, the turbulence
induces an homogeneous velocity profile. In the near wall region downstream
of the scraper the average velocity is, in general, very low in comparison to
the bulk velocity, which can produce an undesired accumulation of fouling.
Anyway, in practical applications the insert device will be moved sporadically
in order to scrap the inner tube surface.

³²¹ Despite the variation of the Reynolds number in the experiments, results ³²² show no significant differences between experiments at Re = 1300, 2200, 4400.

In Fig. 6 the numerical results of non-dimensional velocity in axial di-324 rection, v_{y}^{*} , are compared with the experimental data in order to examine 325 the performance of the numerical model. The numerical simulations are con-326 ducted with several turbulence models, including standard k- ε model and 327 RNG $k - \varepsilon$ model, to show which turbulence model best represents the flow 328 field. As shown in Fig. 6(a) the standard $k - \varepsilon$ model underestimates the jet 329 flow scale so is no longer used in the remaining simulations. Comparative 330 studies with other RANS turbulent models show that the RNG k- ε model 331 is the one which best reproduces the overall flow field, therefore it has been 332 used in this investigation. Fig. 6(b) shows how the model accurately rep-333 resents the jet effect and how the predicted results differ slightly from the 334 measured velocities with a maximum deviation of 3%. 335

336 4.2. Average flow description in dynamic conditions

For the description of the flow in dynamic conditions, it will be useful to define the *blockage of the flow* β , a non-dimensional number defined in terms of the bulk velocity v_b and the velocity of the scraper v_s (Solano et al., 2010). The *blockage* parameter expresses whether the scraper, with its movement, is blocking or helping the fluid flow.

$$\beta = \frac{v_b - v_s}{v_b} = 1 - \frac{v_s}{v_b} \tag{15}$$

• If $v_s < v_b$ then $\beta > 0$ and the scraper is blocking the flow.

• If $v_s > v_b$ then $\beta < 0$ and the scraper is helping the fluid flow.

The bulk velocity always being a positive number $(v_b > 0)$, for a counterflow direction of the scraper movement $(v_s < 0)$ and for static conditions $(v_s = 0)$ the *blockage* will always be positive $(\beta > 0)$. However, when the scraper is moving in co-current direction of the flow $(v_s > 0)$, the *blockage* parameter can be positive (for $0 < v_s < v_b$), zero (for $v_s = v_b$) or negative (for $v_s > v_b$).

For this section, experiments have been carried out at five scraping velocities, in co-current and counter-flow directions corresponding to values of $\beta \in [-1,3]$ (see details in Table 1). The Reynolds number has been kept constant at Re = 1400.

³⁵⁵ [Video 2 about here]

³⁵⁶ [TEXT FOR ELECTRONIC VERSION ONLY] An example of the sig-³⁵⁷ nificant effect of the scraper on the flow pattern can be observed in Video 2.

[Figure 7 about here.]

[Figure 8 about here.]

Fig. 7 and Fig. 8 depict the non-dimensional velocity field v^* (Eq. 14) in both symmetry planes of the scraper for $Re_h = 1400$ and β ranging from -1 to 3. As can be observed, the velocity field depends strongly on the *blockage* phenomenon. As a consequence, the results of the experiments will be grouped according to their *blockage* parameter.

365 4.2.1. Positive blockage of the flow

In the experiments where the *blockage* is positive, the velocity pattern 366 is similar in shape to the one obtained in static conditions (Section 4.1). 367 On the one hand, upstream the scraping device, the velocity profile is equal 368 to the one developed in an annulus geometry, and it becomes influenced by 369 the presence of the scraper when coming closer to it. On the other hand, 370 downstream the device, the flow has a *jet* shape, with high positive velocities 371 in the inner region, close to the shaft. In the outer region and the region 372 between the holes, a reverse flow appears, induced by the high velocities in 373 374 the *jet*.

The effect of the scraper in the flow is very similar for all the experiments with $\beta > 0$, but the strength of that effect varies with the value of β . The greater the positive *blockage* parameter, the higher the influence of the scraper. On the contrary, the closer to zero the *blockage* parameter, the lower the influence. These effects can be seen in both symmetry planes, the effects being stronger in plane H which is located in the middle of the *jet*.

[Figure 9 about here.]

358

359

381

For instance, in Figure 9 it can be observed that upstream the scraper 382 (L = -10 mm) the influence of the scraper is hardly appreciable with $\beta =$ 383 0.5 where $v_{y,max}^* = 1.2$ or $\beta = 1$ where $v_{y,max}^* = 1.7$, while in a counter-384 current motion of the scraper with $\beta = 3$ the effect is significantly stronger 385 $v_{y,max}^* = 3.4$ and it can be observed further from the scraper (see Fig. 7). 386 Downstream of the scraper the strength of the *jet* increases with β , as it 387 can be appreciated in Fig. 9. At the device exit L = 18 mm, the maximum 388 non-dimensional velocity in the jet has a value of $v_{*u,max} = 2$ at $\beta = 0.5$, 389 $v*_{y,max} = 4.3$ at $\beta = 1$, $v*_{y,max} = 4.9$ at $\beta = 1.5$, $v*_{y,max} = 6.5$ at $\beta = 2$ and 390 $v_{*y,max} = 7.5$ at $\beta = 3$. Furthermore, the reverse flow is also higher at $\beta = 3$ 391 than at $\beta = 0.5$, where it can be hardly appreciated. At L = 18 mm the 392 maximum velocity in counter-current direction varies from $v_{*y,max} = -0.3$, 393 at $\beta = 0.5$, to $v_{*y,max} = -3.1$ at $\beta = 3$. Regarding the total length of the 394 *jet*, it can not be seen in all the experiments, but it can be safely concluded 395 that it increases with the positive *blockage*. 396

A secondary difference between experiments with positive *blockage*, is the 397 influence of the movement of the shaft on the velocity profile. This effect is 398 similar to the one which takes place in annulus with a moving shaft. Observ-399 ing Fig. 7 at positions where the influence of the scraper is low (upstream of 400 the scraper), it can be appreciated that the velocity of the fluid near the mov-401 ing shaft is influenced by its movement, being lower when the shaft moves in 402 counter-current direction and higher when it moves in co-current direction, 403 whereas the velocity near the pipe wall suffers the opposite effect. 404

405 4.2.2. Negative blockage of the flow

[Figure 10 about here.]

406

An experiment with negative *blockage* has been carried out in *co-current* 407 direction and $\beta = -1$. The results depicted in Figures 7 8, 10 and 9 show 408 a totally different behaviour from the positive *blockage* experiments. In this 409 case, upstream of the scraper high co-current velocities appear in the outer 410 region of the pipe, reaching a maximum non-dimensional velocity of $v_{y,max}^* =$ 411 3 at L = -31 mm (Fig. 10). Besides, in spite of the co-current movement of 412 the shaft, there is a counter-current flow in the inner region $(v_{y,min}^* = -1.3)$ 413 at L = -31 mm). Both effects can be appreciated in planes H and J. On the 414 other side of the scraper, downstream, the velocity profile around L = 10 mm415 in plan H shows higher velocities close to the wall and the shaft, while in 416 between the velocity is nearly perpendicular to the direction of the flow. From 417 L = 21 mm on, the profile becomes flatter, having higher velocities ($v_{y,max}^* =$ 418 2.2) close to the central moving shaft. Further downstream (L = 64 mm), 419 the velocities close to the moving shaft have become higher $(v_{y,max}^* = 3.3)$ 420 and some reverse flow appears close to the outer wall $(v_{y,min}^* = -0.2)$. The 421 effects in plane J downstream of the scraper are very alike, as can be seen in 422 Fig. 10(b). 423

424 4.3. Turbulent kinetic energy of the flow

425

[Figure 11 about here.]

The turbulent kinetic energy of some of the experiments is depicted in Fig. 11(b) and the corresponding PIV results in Fig. 11(a). The results show a dependence of the turbulent kinetic energy with the *blockage parameter*. In experiments with a big positive *blockage* parameter ($\beta = 3$), the maximum standard deviation of the measure is high, about $k_{max}^* = 35$. Its maximum value gets lower when the positive *blockage* parameter decreases, $k_{max}^* = 15$ for $\beta = 3$, $k_{max}^* = 14$ for $\beta = 1.5$ and $k_{max}^* = 2.2$ for $\beta = 0.5$. For the experiment with negative *blockage* ($\beta = -1$), $k_{max}^* = 4.3$. So it can be concluded that a bigger absolute value of β produces higher turbulence levels in the flow.

436 4.4. Numerical results

437

[Figure 12 about here.]

The numerical simulations of the heat exchanger prototype with dynamic 438 inserted devices show an intensive recirculation flow induced by the scrapers 439 that increases the velocity fluctuation in the flow field. The fluid velocity 440 increases downstream through the holes and a remarkable recirculation re-441 gion is formed behind the scrapers, which leads to considerable enhancement 442 of the mixing effect. Numerical results of non-dimensional velocity fields in 443 Fig. 12 show that the CFD simulation with the RNG k- ε model can be used 444 to accurately predict the flow pattern characteristics of the heat exchanger 445 prototype. The measured and predicted scales for the main recirculations are 446 found to be similar with different *blockage* parameters as shown in Fig. 12(a)447 for positive *blockage* and Fig. 12(b) for negative *blockage*, where a big recircu-448 lation region is formed downstream of the scraper and a weaker one emerges 440 upstream of the scraper due to the flow *blockage*. From these comparative 450 studies it can be found that the proposed numerical model can successfully 451 represent the flow performance in heat exchangers with dynamic inserted 452 devices. 453

454 5. Conclusions

1. By means of PIV and a computational model, the flow pattern in
the tubular enhanced heat exchanger has been obtained for different
Reynolds numbers and scraping parameters.

2. Computational and experimental results are in good agreement and the CFD simulation with the RNG k-ε model is of reasonable precision, so that it can be further used for the cases not supported by experiments.
3. In scraping conditions where the *blockage parameter* is positive, the device produces a *jet* flow which yields to high velocities and large vortex in the region between the holes and in the region close to the wall downstream of the scraper.

465
4. For a negative value of the *blockage parameter* upstream of the scraper
466
a core of high velocities and a reverse flow in the outer region are
467
468
468
468
469
469
469

5. High values of the *blockage parameter* yield a significant increase in the turbulence level of the flow, whereas values of β close to zero will cause lower turbulence levels. As a consequence, low values of the *blockage parameter* are to be avoided when selecting the scraping velocity (v_s) .

474 6. Acknowledgements

The first author thanks the Spanish Government, Ministry of Education for the FPU scholarship referenced as AP2007-03429 which covered the expenses of a 4-year research at *Universidad Politécnica de Cartagena*.

478 References

- Bedecarrats, J., Strub, F., Peuvrel, C., Dumas, J., 2003. Heat transfer and
 pressure drop of ice slurries in a heat exchanger, icr 0230, in: 21st IIR
 International Congress of Refrigeration, Washington.
- Bellas, I., Tassou, S.A., 2005. Present and future applications of ice slurries.
 International Journal of Refrigeration .
- Bellas, J., Chaer, I., Tassou, S., 2002. Heat transfer and pressure drop of
 ice slurries in plate heat exchangers. Applied Thermal Engineering 22,
 721–732.
- Bergles, A., 2002. Exhft for fourth generation heat transfer technology. Experimental Thermal and Fluid Science 26, 335–344.
- ⁴⁸⁹ De Goede, R., De Jong, E., 1993. Heat transfer properties of a scraped⁴⁹⁰ surface heat exchanger in the turbulent flow regime. Chemical Engineering
 ⁴⁹¹ Science 48, 1393–1404.
- ⁴⁹² Fluent, 2006. Fluent v6.3 User Guide. Fluent Corporation. Lebanon, New
 ⁴⁹³ Hampshire.
- Freitas, C., 2002. The issue of numerical uncertainty. Applied Mathematical
 Modelling 2, 237–248.
- Illán, F., Viedma, A., 2009a. Experimental study on pressure drop and heat
 transfer in pipelines for brine based ice slurry. International Journal of
 Refrigeration 32, 1015–1023, 1808–1814.

- Illán, F., Viedma, A., 2009b. Prediction of ice slurry performance in a corrugated tube heat exchanger. International Journal of Refrigeration 32, 1302–1309.
- Kauffeld, M., Kawaji, M., Egolg, P., 2005. Handbook on Ice Slurries. Fun damentals and Engineering. International Institute of Refrigeration.
- Lee, D.W., Lee, S.M., 2005. Pressure drop and heat transfer characteristics of ice slurry in a tube type heat exchanger, in: Proceedings of the 6th Workshop on Ice Slurries of the International Institute of Refrigeration, pp. 119–125.
- Lee, D.W., Sharma, A., 2006. Melting of ice slurry in a tube-in-tube heat exchanger. International Journal of Energy Research 30, 1013–1021.
- Norgaard, E., Sorensen, T., Hansen, T., Kauffeld, M., 2005. Performance
 of components of ice slurry systems: pumps, plate heat exchangers and
 fittings. International Journal of Refrigeration 28, 83–91.
- ⁵¹³ Raffel, M., Willer, C., Kompenhans, J., 2000. Particle Image Velocimetry:
 ⁵¹⁴ A practical guide. Springer.
- Scarano, F., Reithmuller, M., 2000. Advances in iterative multigrid piv image
 processing. Experiments in Fluids 29, 51–60.
- Solano, J., Garca, A., Vicente, P., Viedma, A., 2010. Flow pattern assessment
 in tubes of reciprocating scraped surface heat exchangers. International
 Journal of Thermal Sciences 50, 803–815.

- Stamatiou, E., Meewisse, J., Kawaji, M., 2005. Ice slurry generation involving
 moving parts. International Journal of Refrigeration .
- Sun, K., Pyle, D., Fitt, A., Please, C., Baines, M., Hall-Taylor, N., 2004.
 Numerical study of 2d heat transfer in a scraped surface heat exchanger.
 Computers and Fluids 33, 869–880.
- Wang, W., Walton, J., McCarthy, K., 1999. Flow profiles of power law fluids
 in scraped surface heat exchanger geometry using mri. Journal of Food
 Process Engineering 22, 11–27.
- ⁵²⁸ Webb, R.L., 2005. Principles of Enhanced Heat Transfer. Wiley Interscience,
- 529 The Pennsylvania State University, University Park, PA.

530 List of Figures

531	1	Sketch of the active insert device analysed	30
532	2	Sketch of the experimental facility	31
533	3	PIV system components	32
534	4	Assessment of mean flow structures in static conditions. $Re =$	
535		4100. Representation of non-dimensional velocity in axial di-	
536		rection, v_y^* . Represented length of the pipe: -40 mm < L <	
537		120 mm	33
538	5	Velocity profiles in static conditions of the scraper, measured	
539		at different axial positions: $L_1 = -51 \text{ mm}, L_2 = 20 \text{ mm},$	
540		$L_3 = 52 \text{ mm}, L_4 = 70 \text{ mm}, L_5 = 115 \text{ mm}.$	34
541	6	Comparison of mean flow structures obtained experimentally	
542		and numerically in static conditions at $Re = 4100$. Repre-	
543		sentation of non-dimensional velocity in axial direction, v_y^* .	
544		Represented length of the pipe: $-40~{\rm mm} < L < 120~{\rm mm}.$	35
545	7	PIV velocity field along the H symmetry plane at $Re = 1400$.	
546		Represented length of the pipe: $-50~{\rm mm} < L < 60~{\rm mm}.$	36
547	8	PIV velocity field along the J symmetry plane at $Re = 1400$.	
548		Represented length of the pipe: $-50~{\rm mm} < L < 60~{\rm mm}.$	37
549	9	PIV velocity profiles along the H symmetry plane at Re =	
550		1400 and $0.5 < \beta < 3.$	38
551	10	PIV velocity profiles at $Re = 1400$ and $\beta = -1$. $L_1 = 11$ mm,	
552		$L_2 = 21 \text{ mm}, L_3 = 64 \text{ mm}, L_4 = -52 \text{ mm}, L_5 = -31 \text{ mm},$	
553		$L_6 = -10 \text{ mm}, \dots \dots$	39

554	11	PIV details in region A along the H symmetry plane at $Re =$
555		1400 and four scraping velocities. Represented length of the
556		pipe: $-5 \text{ mm} < L < 60 \text{ mm}$
557	12	Comparison of non-dimensional velocity fields, $v_y^\ast,$ along the J
558		symmetry plane obtained experimentally and numerically in
559		dynamic conditions at $Re = 1400$ and two scraping velocities
560		($\beta = 3, 0.5$). Represented length of the pipe: $-45 \text{ mm} < L <$
561		65 mm

562 List of videos

- ⁵⁶³ 1. Fluid flow in static conditions of the scraper in both symmetry planes
- 564 (Region B, Re = 1300).
- ⁵⁶⁵ 2. Fluid flow in dynamic conditions of the scraper (plane H).

Figure 1: Sketch of the active insert device analysed.

Figure 2: Sketch of the experimental facility

(a) Photograph of the PIV facility.

(b) Optical sensor operation. From up to down: optical sensor arrangement, velocity of the scraper, sensor output signal (TTL) and camera shooting signal in the two operation modes (co-current and counter-current).

Figure 3: PIV system components.

(a) PlaneH

Figure 4: Assessment of mean flow structures in static conditions. Re = 4100. Representation of non-dimensional velocity in axial direction, v_y^* . Represented length of the pipe: -40 mm < L < 120 mm.

Figure 5: Velocity profiles in static conditions of the scraper, measured at different axial positions: $L_1 = -51$ mm, $L_2 = 20$ mm, $L_3 = 52$ mm, $L_4 = 70$ mm, $L_5 = 115$ mm.

(a) Experimental (top) and numerical (bottom) results using the standard k- ε model

(b) Experimental (top) and numerical (bottom) results using the RNG k- ε model

Figure 6: Comparison of mean flow structures obtained experimentally and numerically in static conditions at Re = 4100. Representation of non-dimensional velocity in axial direction, v_y^* . Represented length of the pipe: -40 mm < L < 120 mm.

Figure 7: PIV velocity field along the H symmetry plane at Re = 1400. Represented length of the pipe: -50 mm < L < 60 mm.

Figure 8: PIV velocity field along the J symmetry plane at Re = 1400. Represented length of the pipe: -50 mm < L < 60 mm.

Figure 9: PIV velocity profiles along the H symmetry plane at Re = 1400 and $0.5 < \beta < 3$.

Figure 10: PIV velocity profiles at Re = 1400 and $\beta = -1$. $L_1 = 11$ mm, $L_2 = 21$ mm, $L_3 = 64$ mm, $L_4 = -52$ mm, $L_5 = -31$ mm, $L_6 = -10$ mm,

(b) Turbulent kinetic energy of the flow, k^* .

Figure 11: PIV details in region A along the H symmetry plane at Re = 1400 and four scraping velocities. Represented length of the pipe: -5 mm < L < 60 mm.

Figure 12: Comparison of non-dimensional velocity fields, v_y^* , along the J symmetry plane obtained experimentally and numerically in dynamic conditions at $R_0 = 1400$ and two

obtained experimentally and numerically in dynamic conditions at Re = 1400 and two scraping velocities ($\beta = 3, 0.5$). Represented length of the pipe: -45 mm < L < 65 mm.

Ex.	$Q \left[l/h \right]$	$T \left[{^o \mathrm{C}} \right]$	$v_b \mathrm{[m/s]}$	Re	$v_s \mathrm{[m/s]}$	v_s/v_b	β
1	590	30	0.0405	1400	0.02025	0.5	0.5
2	590	30	0.0405	1400	-0.02025	-0.5	1.5
3	590	30	0.0405	1400	0.0405	1	0
4	590	30	0.0405	1400	-0.0405	-1	2
5	371	54	0.0255	1400	0.0510	2	-1
6	371	54	0.0255	1400	-0.0510	-2	3

Table 1: Experiments in dynamic conditions of the scraper.

Electronic Annex Click here to download Electronic Annex: Video1.mp4 Electronic Annex Click here to download Electronic Annex: Video2.mp4 Video Still Click here to download high resolution image

