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Abstract 

Background

The key challenge in drug discovery is to discover novel compounds 
with desirable properties. Among the properties, binding affinity to a 
target is one of the prerequisites and usually evaluated by molecular 
docking or quantitative structure activity relationship (QSAR) models.

Methods

In this study, we developed SGPT-RL, which uses a generative pre-
trained transformer (GPT) as the policy network of the reinforcement 
learning (RL) agent to optimize the binding affinity to a target. SGPT-
RL was evaluated on the Moses distribution learning benchmark and 
two goal-directed generation tasks, with Dopamine Receptor D2 
(DRD2) and Angiotensin-Converting Enzyme 2 (ACE2) as the targets. 
Both QSAR model and molecular docking were implemented as the 
optimization goals in the tasks. The popular Reinvent method was 
used as the baseline for comparison.
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Results

The results on the Moses benchmark showed that SGPT-RL learned 
good property distributions and generated molecules with high 
validity and novelty. On the two goal-directed generation tasks, both 
SGPT-RL and Reinvent were able to generate valid molecules with 
improved target scores. The SGPT-RL method achieved better results 
than Reinvent on the ACE2 task, where molecular docking was used as 
the optimization goal. Further analysis shows that SGPT-RL learned 
conserved scaffold patterns during exploration.

Conclusions

The superior performance of SGPT-RL in the ACE2 task indicates that it 
can be applied to the virtual screening process where molecular 
docking is widely used as the criteria. Besides, the scaffold patterns 
learned by SGPT-RL during the exploration process can assist chemists 
to better design and discover novel lead candidates.
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Introduction
The key challenge in drug discovery is to discover newmolecules with desirable properties.1 In traditional drug discovery
campaigns, high-throughput virtual screening, biochemical assays, physicochemical assays, and in vitro profiling of
absorption, distribution, metabolism, and excretion (ADME) properties of chemicals are usually conducted.2 However,
the chemical space of possible molecules is enormous, with 1023 to 1060 potential drug-like molecules and the number of
synthesized molecules in the order of 108.3 It is infeasible to screen all the molecules to select the desirable ones. Many
machine learning tools to predict molecular properties, including binding affinity, drug-likeness, synthetic accessibility,
and ADME properties have been integrated into the screening pipelines as key components,4 as they are much faster than
traditional computational methods and yield rapid and accurate property predictions.3,5 Employing these tools has
improved the efficiency to virtually screen the chemical libraries, which are generated from available chemical
reagents.6,7 However, the search is still limited to molecules in the chemical libraries.

In recent years, de novo molecular design, especially deep generative models, has witnessed a rapid progress, which can
efficiently explore the chemical space and optimize the molecular generation towards desired properties.3,8–10 A pioneer
work was published in 2018, which employed variational autoencoder (VAE) to learn a continuous representation of the
chemical space and used gradient-based optimization to search for functionalmolecules.11After that, manymethodswere
developed and the most representative classes include recurrent neural networks, autoencoders, generative adversarial
networks, and reinforcement learning (RL).3,4 Among them, RL methods were shown to be able to optimize the
generation of molecules towards desirable properties, including target activity, drug-likeness, molecular weight,
synthetic accessibility (SA), and similarity to given molecules.4,6,12,13

Transformer14 is a prominent deep learning method that was first proposed for natural language translation and has made
tremendous impact in many fields, such as language modeling, speech processing, and computer vision.15 A decoder-
only variant of the transformer, Generative Pretrained Transformer (GPT), stands out among the many transformer
variants. It was trained on a large corpus of unlabeled text and able to generate news articles difficult for human evaluators
to differentiate from human-written ones.16,17 Besides, a GPT model fine-tuned with reinforcement learning showed
better generative results, with reduced toxic outputs and better truthfulness.18

Several transformer-based methods have been proposed for molecular generation tasks.4,19–21 A study formulated the
protein-specific molecular generation as a machine translation problem and used amino acid sequences as inputs and
simplified molecular input line entry system (SMILES) representation of molecules as outputs.19 The model was
pretrained on amino acid sequences of targets and the corresponding SMILES of the binding molecules, and able to
generate valid molecules with structural novelty and plausible drug-likeness. Another work also formulated molecular
generation as a translation problem, but their goal is to optimize the generation of molecules towards desirable
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properties.21 They added a desirable property together with the startingmolecules as the input and themodifiedmolecules
fulfilling the desirable property as the output to train their model. Their results showed that transformers can generate
molecules with desirable properties through modifications that are intuitive to chemists. A decoder-only transformer
model, MolGPT, was also proposed for molecular generation.20 It was trained onmolecules with property conditions and
able to generate novel molecules fulfilling the corresponding properties. Another work also used a decoder-only
transformer model but targeting multiple properties.4 After pretraining a transformer model, a gated recurrent unit
(GRU) model was used to distill it and initiate an RL agent. This agent was then trained to optimize multiple properties
through the Reinvent approach.13 The agent can generate novel molecules satisfying multiple property constraints. In
summary, these studies showed the advantages of transformers on molecular generation, especially for constrained
generation tasks.4,12

Activity of a compound is the primary consideration for drug discovery, which is induced by binding affinity of a
compound to a target. Three approaches are used to estimate binding affinity, including bioassays, quantitative structure
activity relationship (QSAR)models andmolecular docking.22 In vitro bioassays are reliable but often scarce, and QSAR
models and molecular docking are usually used for in silico screening process.22 Because transformers are so good at
sequence generation andRL has an advantage on optimization tasks, an intuitive idea is to combine transformer andRL to
optimize the binding affinity. However, as far aswe know, no such studies have been conducted. Twomain obstaclesmay
stop researchers from conducting such studies. First, high-end GPUs with large memories are required to conduct such
studies. During the RL process, a transformer decoder has to be used to generate a batch of molecules, however, such
generation is very memory expensive. Besides, conducting such studies requires interdisciplinary knowledge, including
computational chemistry and machine learning expertise. For example, molecular docking is usually used for virtual
screening, but is not easy formachine learning experts to perform and interpret; while transformer andRL arewidely used
in deep learning society, but are hard for computational chemists to grasp and implement.

In this study, we proposed the first method that combines GPT and RL for molecular generation. We developed a tool
named SGPT-RL, which uses a transformer decoder as the policy network of RL agents. The workflow is shown in
Figure 1. First, GPT was trained on lead-like molecules to obtain a prior model that learns the chemical space. This prior
model was used to initiate the agent, which shared the same decoder model as the policy network. Then, the agent was
trained in an RL fashion to optimize the generation of molecules towards desirable properties, as shown in Figure 1c. The
agent was used to generate a batch of molecules; the molecules were scored by scoring functions to obtain the target
scores; the scores were combined with the prior likelihoods to calculate the losses; the losses that contain both the target
score and prior likelihood information were used to serve as the feedback to the agent. During training, the likelihood of
the agent to generate molecules with good target scores is increased and those with poor scores decreased. We evaluated
SGPT-RL on the Moses distribution learning benchmark and two goal-directed generation tasks. Results on the Moses

Figure 1. The workflow of SGPT-RL. a) The main workflow. Simplified molecular input line entry system (SMILES)
from the Moses benchmark was used to train a prior model. An agent model was then initiated from the prior
and trained in a reinforcement learning (RL) fashion to generate molecules with desirable properties. b) The
architecture of the prior model. The agent shares the same architecture. c) The pipeline of the RL approach. The
priormodelwasused to initiate the agentmodel. DuringeachRL step, the agentmodelwasused to generate abatch
of SMILES sequences. The generated sequences were evaluated by the prior model and a scoring function to
calculate augmented likelihoods, which serve as the feedback to update the agent. In the Dopamine Receptor D2
(DRD2) task, a quantitative structure activity relationship (QSAR) model was used as the scoring function; in the
Angiotensin-Converting Enzyme 2 (ACE2) task, ACE2 docking score was used as the scoring function.
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benchmark showed that the SGPT-RL prior model was able to learn good property distributions and generate molecules
with high novelty. The two goal-directed generation tasks are a Dopamine Receptor D2 (DRD2) task, with QSARmodel-
based activity as the scoring function, and an Angiotensin-Converting Enzyme 2 (ACE2) task, with molecular docking
affinity as the target score. In both tasks, the SGPT-RL agents were able to generate valid molecules with high target
activities. In theDRD2 task, the SGPT-RL agent was able to exploremore scaffolds than the popular Reinvent method; in
the ACE2 task, the SGPT-RL agent generated molecules with significantly better docking scores than Reinvent. Besides,
we found that the Reinvent agents could not learn effectively after around 100 steps, while the SGPT-RL agents were
continuous learning and generating molecules with more ring structures. In addition, we found that the SGPT-RL agents
were able to learn some generative patterns, while the Reinvent agents were exploring with strong randomness and no
clear patterns could be observed.

Methods
Datasets
The dataset to train the prior models was obtained from theMoses benchmark.23,42 This dataset contains 1.9million lead-
like molecules from the Zinc database.24 The train and test dataset in the Moses benchmark were used for training and
testing, which contain 1,584,664 and 176,075 molecules respectively.

Known active molecules that bind with DRD2 or ACE2 were obtained from ExCAPE-DB.25,42 The 8,036 unique
molecules that are known to be active against DRD2were obtained and 56 uniquemolecules that are active against ACE2
were retrieved. For these two sets of known active molecules, none of them were found in the Moses training dataset.

Model architecture
Abrief overview of the framework is illustrated in Figure 1a. A transformer decoder prior model was trained on theMoses
dataset. This pretrained prior model was used to initiate the agent. During the RL process, the agent model was used to
generate molecules, which were scored by the prior network and a scoring function to provide feedback to update the
agent. The agent model trained after the final step was used to generate molecules for property distribution analysis.

The prior network

In SGPT-RL, a generative pre-trained transformer (GPT)26 was used as the prior model to learn the chemical space.
Tokenized SMILES sequences were used to train the model on a next token prediction task.

The GPT model we used is a simplified version of GPT-2, with only �6M parameters. The architecture of the model
is illustrated in Figure 1b. The model is composed of eight decoder blocks, input and positional embedding before
the blocks, a linear layer after the blocks, and a softmax layer before output. Each of the blocks contains a masked
multi-head self-attention layer and a fully connected feedforward layer, with residual connections in each of the
layers. Layer normalization is conducted in the two layers to normalize the inputs. An embedding size of 256 was used
in all layers.

The core of the GPT model is the masked multi-head self-attention layer. In this layer, eight scaled dot-product attention
functions facilitate the model to capture key information in a sequence. In the attention function, a query vectorQ is used
to calculate a dot product with the key vectorK and then divided by the key vector length dk . The resulting product value
is passed into a softmax function to get the attention weights, which is dot-producted with a value vector V to get the final
attention. The formula is shown in Equation 1.14

Attention Q,K,Vð Þ¼ softmax
QKT

ffiffiffiffiffi
dk

p
� �

V (1)

The prior model was trained for ten epochs on the training dataset and evaluated on the testing dataset after each epoch.
Cross-entropy loss was used with the AdamWoptimizer27 to update the model, with a learning rate of 0.001. A batch size
of 1,024 was used to train the model. To generate the SMILES string of a molecule, a start token was fed to the model to
predict the next. The generated token was concatenated with previous tokens to predict the next, until an end token was
predicted or a maximum sequence length of 140 was reached.

Training the agent

The process to generate molecules with desirable properties was framed as a RL problem, and the Reinvent approach was
utilized, with the process described below.12 In the RL formulation, the state is the current sequence generated, the action
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is the next token to add, and the reward is a augmented likelihood calculated from prior likelihood and property scores.
The GPT model described in the previous Subsection was used for the prior and the agent, and customized scoring
functions for the target properties were used in each of the two tasks.

The loss function to update the agentmodel is defined as in Equations 2–3. First, a SMILES sequenceAwas sampled from
the agent model with its log-likelihood logp Að Þagent . Then the SMILES sequence was passed to the prior model to
calculate a prior log-likelihood logp Að Þprior , and evaluated with scoring functions of desirable properties to get a score
S Að Þ. The score was added to the prior log-likelihood with a coefficient σ to get an augmented log-likelihood logp Að Þaug,
as shown in Equation 2. The idea behind this equation is that the prior log-likelihood is added to preserve the rules learnt
from SMILES sequences of molecules, and the score of desirable properties was used to bias the model to generate
SMILES of desirable properties.

logp Að Þaug ¼ logp Að ÞpriorþσS Að Þ (2)

Finally, the squared error between the augmented log-likelihood and agent log-likelihood was used as the loss to update
the agent model, as shown in Equation 3.

Loss¼ logp Að Þaug� logp Að Þagent
h i2

(3)

Evaluation metrics
Five metrics from the Moses benchmark were used to evaluate the models, including validity, uniqueness, novelty,
similarity to a nearest neighbor (SNN) and internal diversity (intDiv). The definitions of the metrics are described below.
The generated SMILES sequences to be evaluated are denoted byG, the training dataset is denoted by T, and n is the total
number of the generated sequences.

• Validity: the fraction of the valid sequences among 10,000 generated sequences.

• Uniqueness: the fraction of the unique sequences among 10,000 valid generated sequences.

• Novelty: the fraction of the unique sequences in G, but not in T.

• Similarity to a nearest neighbor (SNN): evaluates the similarity of the generated molecules to the training
molecules. It is the Tanimoto similarity T mG,mTð Þ between fingerprints of amoleculemG from the generated set
G and its nearest neighbor molecule mT in the training dataset.

SNN G,Tð Þ¼ 1
n

X
mG∈G

max
mT∈T

T mG,mTð Þ (4)

• Internal diversity (intDiv): assesses the diversity within G. It is defined as one minus the averaged Tanimoto
similarity of any pair of molecules m1, m2 in the generated sequences G.

IntDiv Gð Þ¼ 1� 1
n2

X
m1,m2∈G

T m1,m2ð Þ (5)

Evaluated molecular properties
In our experiments, seven molecular properties were calculated to evaluate the property distributions and used as the
optimization goals. All these properties were used to compare the property distributions of molecules. DRD2 activity and
ACE2 docking score were used as the scoring functions of the DRD2 and ACE2 tasks, respectively.

DRD2 activity was evaluated with a QSAR model.12 This model is a support vector machine (SVM) classifier with a
Gaussian kernel trained on active and inactive molecules. In the modeling, a SMILES is converted into molecules to
obtain the Morgan fingerprints using RDKit 2017.09.1.28 The fingerprints were used as the features to build the SVM
classifier. It predicts a probability score range from zero to one, with the closer to one the higher DRD2 activity.

ACE2 affinity was calculated using molecular docking as described in Subsection “Task 2: structure-based generation
with ACE2 as the target”.
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The quantitative estimate of drug-likeness (QED) quantifies the drug-likeness of amolecule usingmolecular properties as
inputs.29 It was calculated by RDKit (2017.09.1)30 and ranges from zero to one, with the closer to one themore favorable.

Synthesize accessibility score (SAscore) measures the difficulty of synthesizing a molecule.28 A predictive model built
by Blaschke et al.13 was used, where molecular weight was combined with raw score,28 which ranges from one to 10,
as features to predict the probability of synthetic accessibility. Themodel gives a probability score range from zero to one,
with the closer to one the better.

Molecular weight and the log of partition coefficient (LogP)were calculated usingRDKit.30 Length of the SMILES string
was also calculated for the molecules.

Evaluation settings
The SGPT-RLmodel was evaluated on a distribution learning benchmark and two tasks for goal-directed generation. The
Moses Benchmark was used for distribution evaluation. DRD2 activity and ACE2 affinity were used as the scoring
functions in the two goal-directed generations tasks, respectively.

Benchmarking on distribution learning

To evaluate on the Moses distribution learning benchmark, the SGPT-RL prior model was trained on Moses training
dataset. The model after the final epoch was used to generate 10,000 molecules to evaluate on this benchmark. Five
metrics were used for comparison, including validity, uniqueness, novelty, SNN and intDiv. The baseline models from
theMoses benchmarkwere runwith default parameters for comparison.MCMG (multi-constraints molecular generation)
and MolGPT were also run with default parameters to generate 10,000 molecules for comparison.

Task 1: goal-directed generation with DRD2 as the target

In theDRD2 task, we aimed to generatemolecules that are active against DRD2. TheDRD2 activity predicted by aQSAR
model12 was used as the target. The prior model trained from theMoses dataset was used to initiate the agent on this task.
The agent was trained for 2,000 steps and the model after the final step was used to sample 10,000molecules for property
distribution analysis.

The Reinvent model12 was used as the baseline in comparison. In this agent, a three-layer GRU was used as the policy
model. The default hyper-parameters of Reinvent were used. The prior model was trained for five epochswith a batch size
of 128. Adam optimizer was used with a learning rate of 0.001. To train this agent, the same scoring function of the
SGPT-RL agent was used for a fair comparison. The Reinvent agent was trained with a batch size of 64, a learning rate of
0.0005, a sigma of 60, and 3,000 steps.

Task 2: structure-based generation with ACE2 as the target

In the ACE2 task, we trained the SGPT-RL agent with ACE2 affinity as the desirable property. ACE2 affinity was
evaluated by ligand-receptor docking experiments. The 3D structure of the human ACE2 receptor (PDB ID 1R4L) was
downloaded from the Protein Data Bank. It was processed with PyMol (2.5.4)31 to remove water molecules and original
ligands. An open source of PyMol is available here. The structure was also processed with MGLTools (1.5.7)32 to add
polar hydrogen and obtain the docking grid. The pocket whereXX5 is locatedwas used to dockwith generatedmolecules.
The SMILES strings of generated molecules were used to generate 3D structures of ligands using RDKit (2017.09.1).30

The generated 3D ligand structures were processed with OpenBabel (3.0.0)33 to assign Gasteiger partial charges and
convert to pdbqt format. The final docking was performed using AutoDock Vina (1.1.2)34 with eight poses for each
ligand. The smallest docking score of the eight poses was used as the docking score of a ligand.

To train the agent, the affinity score was expected to be in a range of zero to one to calculate the augmented log-
likelihoods. So the docking score was transformed into a range of zero to one using the reverse sigmoid function as shown
in Equation 6, where l, h, and k were constants and set to be -12, -8 and 0.25, respectively.

Rsigmoid xð Þ¼ 1

1þ10k∗
x�hþl

2
h�l

(6)
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TheMoses pretrained priormodel was also used to initiate the agent on this task. The agent was trained for 1,000 steps and
64 molecules were sampled and scored during each step. 10,000 molecules were sampled from the agent model after the
final step for property distribution analysis.

The Reinvent model12 was also used as the baseline on this task. The default hyper-parameters of Reinvent were used and
the same scoring function of the SGPT-RL agent was used for comparison. This model was trained for 1,000 steps with
64 molecules generated during each step.

Scaffold analysis
To analyze the scaffold overlaps of the prior models, we clustered the scaffolds of generated molecules and training
reference using Butina method in RDKit.30,35 The molecules from different sources were merged, with invalid and
duplicatedmolecules removed.Murcko Scaffolds were obtained using RDKit and clustered usingMorgan fingerprints as
inputs. A minimum distance of 0.2 was used during clustering. Venn diagram was used to visualize the number of
overlapping clusters and unique clusters. Examples of molecules were visualized using ChemDraw 20.1.36 Some open
source alternatives to ChemDraw are available here.

To analyze the average number of rings and the number of explored scaffolds in Figures 3 and 4, RDKit30 was used to
obtain theMurcko Scaffold and calculate the number of rings for each generatedmolecule. The duplicated scaffolds were
removed before counting the scaffolds.

Results
Learning the chemical space with a GPT prior model
The first step of our workflow is to train a prior model to learn the chemical space. To do that, the dataset from the Moses
benchmark23 was used to train the prior model. We usedMoses dataset because the molecules in this dataset are lead-like
molecules and have good chemical properties. A �6M GPT model was used as the prior model, details of which are
described in Subsection “The prior network”. The Reinvent prior model12 (GRU) was trained on the same dataset for
comparison. 10,000 molecules were randomly sampled from the training dataset to be used as the training reference.

A comparison of different models on theMoses distribution learning benchmark23 is shown in Supplementary Table 1 in
Extended data.42 Five Moses metrics, including validity, uniqueness, similarity to the nearest neighbor (SNN), internal
diversity (IntDiv), and novelty, were selected for comparison. From the table, we found that the SGPT-RL prior model
achieved a relatively good validity (0.936), uniqueness (0.997), and novelty (0.946). Though the Reinvent prior model
achieved a better validity (0.986) and uniqueness (1.000), it obtained a poor novelty (0.783). The other two transformer-
based methods, MCMG and MolGPT, also achieved a good novelty (0.983 and 0.931 respectively).

The property distributions of the training reference andmolecules sampled from the SGPT-RL andReinvent prior models
were visualized as shown in Supplementary Figure 1 in Extended data.42 Six selected properties, including DRD2
activity, ACE2 docking score, QED, synthesize accessibility score (SAscore), length of SMILES strings, and molecular
weight were used for comparison. Details on the calculation of these properties are described in Subsection “Evaluated
molecular properties”. From this figure, we can see that both prior models learned similar property distributions to the
training reference. For molecular weight, the distribution curve of SGPT-RL prior is closer to the training reference than
that of the Reinvent prior.

To compare the generative preferences of the SGPT-RL and the Reinvent prior models, we analyzed the scaffolds of the
generated molecules. The overlapping scaffolds and unique scaffolds from each source were visualized using a Venn
diagram as shown in Figure 2a. From this diagram, we found that both the SGPT-RL and the Reinvent prior models were
able to recall scaffolds from the training reference and generate many molecules with novel scaffolds. Several examples
of the generated molecules and training samples are shown in Figure 2b.

Optimizing the scores of a QSAR model through RL
In our experiments, we evaluated SGPT-RL for goal-directed generation with two tasks, a DRD2 task, which used a
quantitative structure-activity relationship (QSAR) model12 as the scoring function, and an ACE2 task, which used a
docking score calculated from AutoDock Vina34 as the scoring function.

DRD2 is one of the most well-studied drug targets, with many chemicals active against it being reported.25,37 A QSAR
model was proposed for DRD2 activity prediction.12 In this task, the SGPT-RL prior model pretrained on the Moses
dataset was used to initiate the agent, and the agent was trained via RL to optimize the generation of molecules towards
good DRD2 activities. The Reinvent model was trained with default hyper-parameters for comparison.12 Details on the
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training of the agents are shown in Subsection “Training the agent”. The hyper-parameter of SGPT-RLwas fine-tuned as
shown in Supplementary Results in Extended data.42 A sigma value of 60 was chosen for this agent.

The learning curves of the agent models on the DRD2 task are shown in Figure 3. From Figures 3a-b, we see that both
agents could learn a good validity and DRD2 activity after 200 steps. The Reinvent agent took fewer steps to obtain good
DRD2 activity than the SGPT-RL agent. Figures 3c-d show that the SGPT-RL agent gradually increased the number of

Figure 2. Scaffold overlaps of the prior models. a) The scaffold overlaps between the training reference and
molecules generated by the SGPT-RL and Reinvent prior models. Both SGPT-RL and Reinvent were able to generate
moleculeswithnovel scaffolds that didnot appear in the training reference. b) Representativemoleculeswithunique
scaffolds from the three sources. The three rows correspond to training reference only (TR), SGPT-RL prior only (SP),
and Reinvent prior only (RP) molecules, respectively.

Figure 3. Comparison of SGPT-RL and Reinvent on the DRD2 task. a-b) Improvements of validity and DRD2
activity during the RL process. SGPT-RL was relatively slower in generating molecules with good validity and DRD2
activity than Reinvent. c) Average number of rings in the generated molecules in the RL steps. SGPT-RL gradually
increased the number of rings in the generatedmolecules during the RL process. It generatedmolecules with fewer
rings than Reinvent in the beginning, but withmore rings in the end. d) Accumulated number of unique scaffolds in
the generatedmolecules during the RL process. SGPT-RL exploredmore scaffolds than Reinvent. e) The distribution
of predicted DRD2 activities. Both SGPT-RL and Reinvent agents were able to generate molecules with high DRD2
activities. f) The distribution of synthesize accessibility scores (SAscore). 10,000molecules are sampled from training
dataset to be used as the reference (Training ref.).
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rings during generation and exploredmore scaffoldswithin the first 200 steps. Themain difference in scaffold exploration
between the two agents is in 100-200 steps. The Reinvent agent was not drastically improving the goal after around
100 steps, while the SGPT-RL agent was continuously learning and improving after that.

The agent models trained after the final step were also evaluated on the Moses benchmark, as shown in Table 1. The
Moses metrics of MCMGwas also obtained from the original paper for comparison.4 We found that the SGPT-RL agent
achieved better validity and novelty, while the Reinvent model obtained a better internal diversity.

The property distributions of the training reference and molecules sampled from the final SGPT-RL and Reinvent agents
were also compared in this task, as shown in Figure 3e.42 The properties analyzed include DRD2 activity, QED, SAscore,
LogP, length of SMILES strings, and molecular weight. We found that both SGPT-RL and Reinvent could generate
molecules with good DRD2 activities after the final steps, whereas the molecules in training reference have poor DRD2
activities. The property distributions of the molecules generated by the SGPT-RL and Reinvent agents are similar.
Figure 3f shows that both agents shifted the SAscore distributions to the left, which means generating molecules that are
relatively harder to synthesize than the molecules in the training reference.

Generating molecules to optimize docking scores
In this task, we aimed to generate novel molecules targeting ACE2, a receptor protein which SARS-CoV and SARS-
CoV-2 bind to enter a cell.38,39 Only 56 uniquemolecules were reported to be active against ACE2 in ExCAPE-DB.25 For
such targets where few known active molecules are available, it is not possible to build a reliable QSARmodel to predict
activity. To find binding molecules against targets like ACE2, structure-based docking methods are widely used to
evaluate the affinities. In this study, the ACE2 affinity of a molecule was evaluated as the minimum binding free energy
calculated by AutoDock Vina.34 Details on the calculation of ACE2 affinity can be found in Subsection “Evaluated
molecular properties”. The pocket, where XX5 is located, in the 3D structure of the human ACE2 receptor (PDB ID
1R4L40) was used to dock with a ligand. The prior model trained on Moses dataset23 was also used to initiate this agent,
and the agent was trained for 1,000 steps. The Reinvent model was also trained on this task for a fair comparison.

The learning curves of the agent models are shown in Figure 4. The SGPT-RL agent was able to generate valid molecules
with good ACE2 docking scores after 200 steps. Like the DRD2 task, in the ACE2 task the Reinvent model was not
efficiently learning after around 100 steps. The docking scores of the generated molecules were not clearly improving
after that. Besides, we also observed that SGPT-RL gradually increased the number of rings in the exploration process, as
shown in Figure 4c. Examples of molecules generated by SGPT-RL during the initial exploration steps are shown in
Figure 5. The SGPT-RL agent generated molecules with few rings in the first step, and gradually increased the number of
rings. The Reinvent agent was randomly exploring the molecules, and no clear patterns can be observed, as shown in
Supplementary Figure 7 in Extended data.42

The final agents were evaluated on the Moses metrics, as shown in Table 2. The SGPT-RL agent achieved good validity
(0.990) and novelty (1.000), while Reinvent was better on SNN and internal diversity. The property distributions were
plotted for the two agents. Six selected properties, including ACE2 docking score, QED, SAscore, LogP, length of
SMILES string, and molecular weight, were analyzed, as shown in Supplementary Figure 8 in Extended data.42

Calculations of these properties are described in Subsection “Evaluated molecular properties”. From Figure 4e,42 we
see that the SGPT-RL agent was able to generate molecules with good docking scores and clearly shifted the distribution
curves to the left. The ACE2 docking scores of SGPT-RL generated molecules were better than the training reference or
the Reinvent generated molecules. Supplementary Figure 9 in Extended data42 shows some examples of molecules
generated by the agents in the last step. SGPT-RL generated molecules are more similar to each other in comparison with
Reinvent generated molecules. From these molecules, we can see that SGPT-RL tends to generate with certain
preferences, such as a naphthalene structure in one end in this task.

Table 1. Moses metrics of the agent models on the DRD2 task. SGPT-RL generated molecules with good validity
and novelty. SNN, similarity to a nearest neighbor; IntDiv, internal diversity; MCMG, multi-constraints molecular
generation.

Model Validity Uniqueness SNN IntDiv Novelty

Reinvent 0.997 0.880 0.508 0.709 0.992

MCMG - 0.972 0.541 0.709 0.992

SGPT-RL 0.998 0.933 0.515 0.683 0.995
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The top sixmolecules with the highest docking scores generated by the agents are shown in Figure 6. The SGPT-RL agent
was able to generate more molecules with high docking affinities than the Reinvent agent. Besides, five out of the top six
molecules generated by SGPT-RL contain a naphthalene structure in one end. Considering the same pattern in the

Figure 4. Comparison of SGPT-RL andReinvent on theACE2 task. a-b) Improvements of validity and ACE2 docking
scores during the RL process. SGPT-RL generated molecules with better validity and ACE2 docking scores than
Reinvent after 200 steps. c) Averaged number of rings in the generatedmolecules in the RL steps. SGPT-RL gradually
increased the number of chemical rings of themolecules. The curve difference in c is highly correlatedwith the curve
difference in b (Pearson’s r = 0.87). d) Accumulated number of unique scaffolds in the generated molecules during
the RL process. Both SGPT-RL and Reinvent generated new scaffolds with increasing steps. e) The distribution of
ACE2 docking scores. SGPT-RL shifted the distribution towards better docking scores. f) The distribution of SAscore.

Figure 5. Examples of scaffolds explored by SGPT-RL in the initial steps of the ACE2 task. The SGPT-RL agent
generated molecules with few rings in the beginning, and gradually increased the number of rings. DS, docking
score.
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molecules generated by SGPT-RL in the last step, we would guess that the agent had learned such a pattern during the
exploration process. However, the top scoringmolecules generated by theReinvent agent have strong randomness and no
clear scaffold patterns can be observed.

Discussion
In this study, we developed a tool named SGPT-RL for de novo molecular generation, which uses a transformer decoder
as the policy network of the reinforcement learning (RL) agent. A workstation with two A100 GPUs was used for our
experiments. The docking score was used as a scoring function in addition to a QSAR-based scoring function. This
enabled us to explore not only a target with many known active molecules but also a new target with few known actives.

We evaluated SGPT-RL on two goal-directed generation tasks, a DRD2 task and an ACE2 task. As many known DRD2
actives are available, it is possible to build a reliable QSAR model to be used as the scoring function in the DRD2 task.
However, few known actives were reported for ACE2, so Vina docking scores had to be used as the optimization goal in
the ACE2 task. Our experiments showed that both SGPT-RL (which uses GPT as the policy network) and Reinvent
(which uses GRU as the policy network) were able to propose molecules with improved scores on the two tasks.
However, the SGPT-RL generated molecules showed significantly better scores on the ACE2 task compared to the
Reinvent generated ones (p-value: 0.0). As the molecular docking was widely used for the virtual screening process, we

Figure 6. Top scoringmolecules generated in the ACE2 task. The SGPT-RL generated molecules aremore similar
to each other in comparison with the Reinvent generated molecules. DS, docking score.

Table 2. Moses metrics of the agents on the ACE2 task. SNN, similarity to a nearest neighbor; IntDiv, internal
diversity.

Model Validity Uniqueness SNN IntDiv Novelty

Reinvent 0.875 0.987 0.560 0.816 0.976

SGPT-RL 0.990 0.986 0.466 0.797 1.000
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believe that the superior performance of SGPT-RL in the ACE2 task would indicate its wide applicability in the practical
molecular design procedure.

Besides, we found three generative differences between the SGPT-RL and Reinvent agents during the exploration steps.
First, in the experiments, we found that Reinvent was exploring with strong randomness in the two tasks in general,
however, SGPT-RL gradually explored the scaffolds during the generation processes. In the initial steps, SGPT-RL
generated molecules with few rings and gradually increased the number of rings during exploration; in the late steps, it
generated molecules with some conserved scaffold patterns, such as double ring structures in the ACE2 task. Second, we
found that Reinvent was not clearly improving the goal after around 100 steps, while SGPT-RL was continuously
optimizing the scores even after 400 steps. We believe that this difference is mainly caused by the difference in policy
networks: it is not easy for GRU to learn ring patterns, which are represented as distant numbers in SMILES; however,
GPTwas able to learn long-range dependencies to remember the ring patterns that had improved scores in previous steps.
Thirdly, the SGPT-RL agent could generate molecules with more rings than the Reinvent agent in the ACE2 task (shown
in Figure 4c). A diverse number of rings indicates a variety of scaffold structures. Considering the importance of
appropriate scaffolds in lead identification,41 we believe that including GPT as the policy network in RL agents might be
useful to discover lead candidates of novel scaffolds.

While the results of our work are noteworthy, there are two limitations to consider. First, the dataset to train the prior
models would be a limit to the generative results. All the prior models were pretrained on the Moses dataset.23 As the
Moses dataset was collected from the Zinc database,24 whichmainly consists of lead-likemolecules, the prior distribution
could not represent the entire chemical space. The prior models were used to guide the agents in the two optimization
tasks, and the bias in the prior models might contribute to the bias in the agent models. Such bias might be contributive,
because it would help to generate molecules with lead-like properties, such as good synthetic accessibility and drug-
likeness; however, it might also be undesirable, as it limits the chemical space the agents explored. In tasks which aim to
explore out of the space of lead-like molecules, other training data should be utilized to train the prior models. Second, the
settings of the docking experiments would also be a limit. We analyzed ACE2 for docking, but docking experiments of
additional targets would further confirm the observations in our study.

As molecular docking was widely used for virtual screening, generative models combined with molecular docking
provides another solution for the virtual screening process. The superior performance of SGPT-RL on the ACE2 task
indicates that it can be applied to this practical molecular design process and propose novel molecules with good target-
binding capabilities. Besides, SGPT-RL explored the chemical space with certain scaffold patterns. The patterns learned
by SGPT-RL can provide intuitions for chemists to explore, thus aid the molecular design.

Data availability
Underlying data
Protein Data Bank: 3D structure of the human ACE2 receptor. Accession number 1R4L; https://www.rcsb.org/struc-
ture/1R4L.

The dataset to train the prior models was obtained from the Moses benchmark.23 This dataset contains 1.9 million lead-
likemolecules from the Zinc database, and is available to readers here: https://github.com/molecularsets/moses. The train
and test dataset in the Moses benchmark, used here for training and testing, contains 1,584,664 and 176,075 molecules
respectively. Moses is licensed under MIT license (redistribution permitted).

The 8,036 unique molecules that are known to be active against DRD2 and 56 unique molecules that are active against
ACE2 were downloaded from ExCAPE-DB,25 and which are licensed under Creative Commons Attribution 4.0
International License (redistribution permitted).

The specific underlying data used in this study been uploaded by the authors to Zenodo (see below).

Zenodo: Optimization of binding affinities in chemical space with transformer and deep reinforcement learning -- source
data. https://doi.org/10.5281/zenodo.10654313.42

This project contains the following underlying data:

- Data.zip (the Moses dataset, the DRD2 and ACE2 active molecules, the pretrained models, and the source data
underlying Figures 3–4).
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Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Extended data
Zenodo: Optimization of binding affinities in chemical space with transformer and deep reinforcement learning -- source
data https://doi.org/10.5281/zenodo.10654313.42

This project contains the following extended data:

- SGPT_SI.pdf (supplementary results, tables, and figures).

- Sgpt-rl.png (the workflow of SGPT-RL).

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Software availability
Source code available from: https://github.com/charlesxu90/sgpt

Archived source code at time of publication: https://doi.org/10.5281/zenodo.7612354.43

License: MIT

References

1. Nicolaou CA, Brown N: Multi-objective optimization
methods in drug design. Drug Discov. Today Technol. 2013;
10(3): e427–e435.
Publisher Full Text

2. Hughes JP, Stephen Rees S, Kalindjian B, et al. : Principles
of early drug discovery. Br. J. Pharmacol. 2011; 162(6):
1239–1249.
PubMed Abstract|Publisher Full Text|Free Full Text

3. Elton DC, Boukouvalas Z, Fuge MD, et al. : Deep learning for
molecular design—a review of the state of the art. Molecular
Systems Design & Engineering. 2019; 4(4): 828–849.
Publisher Full Text

4. Wang J, Hsieh C-Y, Wang M, et al. : Multi-constraint molecular
generation based on conditional transformer, knowledge
distillation and reinforcement learning. Nat. Mach. Intell. 2021;
3(10): 914–922.
Publisher Full Text

5. Butler KT, Davies DW, Cartwright H, et al. : Machine learning for
molecular and materials science. Nature. 2018; 559(7715):
547–555.
Publisher Full Text

6. Ståhl N, Falkman G, Karlsson A, et al. : Deep reinforcement
learning for multiparameter optimization in de novo
drug design. J. Chem. Inf. Model. 2019; 59(7):
3166–3176.
Publisher Full Text

7. Hoffmann T, Gastreich M: The next level in chemical space
navigation: going far beyond enumerable compound libraries.
Drug Discov. Today. 2019; 24(5): 1148–1156.
PubMed Abstract|Publisher Full Text

8. Xia X, Jianxing H, Wang Y, et al. : Graph-based generative models
for de novo drug design. Drug Discov. Today Technol. 2019; 32:
45–53.

9. Vanhaelen Q, Lin Y-C, Zhavoronkov A: The advent of generative
chemistry. ACS Med. Chem. Lett. 2020; 11(8): 1496–1505.
PubMed Abstract|Publisher Full Text|Free Full Text

10. Bai Q, Liu S, Tian Y, et al. : Application advances of deep learning
methods for de novo drug design and molecular dynamics
simulation. Wiley Interdisciplinary Reviews. Wiley Interdiscip. Rev.

Comput. Mol. Sci. 2022; 12(3): e1581.
Publisher Full Text

11. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. : Automatic
chemical design using a data-driven continuous representation
of molecules. ACS central science. 2018; 4(2): 268–276.
PubMed Abstract|Publisher Full Text|Free Full Text

12. Olivecrona M, Blaschke T, Engkvist O, et al. : Molecular de-novo
design through deep reinforcement learning. J. Chem. 2017; 9(1):
1–14.
Publisher Full Text

13. Blaschke T, Aru´s-Pous J, Chen H, et al.: Reinvent 2.0: an ai tool for
de novo drug design. J. Chem. Inf. Model. 2020; 60(12): 5918–5922.
Publisher Full Text

14. Vaswani A, Shazeer N, Parmar N, et al. : Attention is all you need.
Adv. Neural Inf. Proces. Syst. 2017; 30.

15. Lin T, Wang Y, Liu X, et al. : A survey of transformers. arXiv preprint
arXiv:2106.04554. 2021.

16. Radford A, Narasimhan K, Salimans T, et al. : Improving language
understanding by generative pre-training. arXiv preprint. 2018.

17. Brown T, Mann B, Ryder N, et al. : Language models are few-shot
learners. Adv. Neural Inf. Proces. Syst. 2020; 33: 1877–1901.

18. Ouyang L, Wu J, Jiang X, et al.: Training languagemodels to follow
instructions with human feedback. arXiv preprint arXiv:
2203.02155. 2022.

19. Grechishnikova D: Transformer neural network for protein-
specific de novo drug generation as a machine translation
problem. Sci. Rep. 2021; 11(1): 1–13.
Publisher Full Text

20. Bagal V, Aggarwal R, VinodPK, et al.:Molgpt:Molecular generation
using a transformer-decoder model. J. Chem. Inf. Model. 2021;
62(9): 2064–2076.
PubMed Abstract|Publisher Full Text

21. He J, You H, Sandstro¨m E, et al. : Molecular optimization by
capturing chemist’s intuition using deep neural networks.
J. Chem. 2021; 13(1): 1–17.
Publisher Full Text

22. Boitreaud J, Mallet V, Oliver C, et al. : Optimol: optimization of
binding affinities in chemical space for drug discovery. J. Chem.

Page 15 of 30

F1000Research 2024, 12:757 Last updated: 07 MAY 2024

https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.5281/zenodo.10654313
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/charlesxu90/sgpt
https://doi.org/10.5281/zenodo.7612354
https://opensource.org/license/mit/
https://doi.org/10.1016/j.ddtec.2013.02.001
http://www.ncbi.nlm.nih.gov/pubmed/21091654
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058157
https://doi.org/10.1039/C9ME00039A
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1021/acs.jcim.9b00325
http://www.ncbi.nlm.nih.gov/pubmed/30851414
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1016/j.drudis.2019.02.013
http://www.ncbi.nlm.nih.gov/pubmed/32832015
https://doi.org/10.1021/acsmedchemlett.0c00088
https://doi.org/10.1021/acsmedchemlett.0c00088
https://doi.org/10.1021/acsmedchemlett.0c00088
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429972
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429972
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429972
https://doi.org/10.1002/wcms.1581
http://www.ncbi.nlm.nih.gov/pubmed/29532027
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833007
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1038/s41598-020-79682-4
http://www.ncbi.nlm.nih.gov/pubmed/34694798
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1186/s13321-021-00497-0


Inf. Model. 2020; 60(12): 5658–5666.
PubMed Abstract|Publisher Full Text

23. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. : Molecular
sets (moses): a benchmarking platform for molecular
generation models. Front. Pharmacol. 2020; 11: 1931.

24. Irwin JJ, Shoichet BK: Zinc- a free database of commercially
available compounds for virtual screening. J. Chem. Inf. Model.
2005; 45(1): 177–182.
PubMed Abstract|Publisher Full Text|Free Full Text

25. Sun J, Jeliazkova N, Chupakhin V, et al. : Excape-db: an integrated
large scale dataset facilitating big data analysis in
chemogenomics. J. Chem. 2017; 9(1): 1–9.

26. Radford A, Jeffrey W, Child R, et al. : Language models are
unsupervised multitask learners. OpenAI blog. 2019; 1(8): 9.

27. Loshchilov I, Hutter F: Decoupled Weight Decay Regularization.
International Conference on Learning Representations. 2019.

28. Ertl P, Schuffenhauer A: Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity
and fragment contributions. J. Chem. 2009; 1(1): 1–11.
Publisher Full Text

29. Richard Bickerton G, Paolini GV, Besnard J, et al. : Quantifying the
chemical beauty of drugs. Nat. Chem. 2012; 4(2): 90–98.
PubMed Abstract|Publisher Full Text|Free Full Text

30. Landrum G, et al. : Rdkit: A software suite for cheminformatics,
computational chemistry, and predictive modeling. 2013.

31. DeLano WL, et al. : Pymol: An open-source molecular graphics
tool. CCP4 Newsl. Protein Crystallogr. 2002; 40(1): 82–92.

32. Morris GM, Huey R, Lindstrom W, et al. : Autodock4 and
autodocktools4: Automated docking with selective receptor
flexibility. J. Comput. Chem. 2009; 30(16): 2785–2791.
PubMed Abstract|Publisher Full Text|Free Full Text

33. O’Boyle NM, Banck M, James CA, et al. : Open babel: An open
chemical toolbox. J. Chem. 2011; 3(1): 1–14.

34. Trott O, Olson AJ: Autodock vina: improving the speed and
accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010; 31(2):
455–461.

35. Butina D:Unsupervised data base clustering based on daylight’s
fingerprint and tanimoto similarity: A fast and automated way
to cluster small and large data sets. J. Chem. Inf. Comput. Sci. 1999;
39(4): 747–750.
Publisher Full Text

36. Mills N:Chemdrawultra 10.0 cambridgesoft, 100 cambridgepark
drive, cambridge, ma 02140. 2006. commercial price:
1910fordownload, 2150 for cd-rom; academic price:
710fordownload, 800 for cd-rom.
Reference Source

37. GeneCards: DRD2 Gene - Dopamine Receptor D2. 2022.

38. Zhou P, Yang X-L, Wang X-G, et al. : A pneumonia outbreak
associated with a new coronavirus of probable bat origin.
Nature. 2020; 579(7798): 270–273.
PubMed Abstract|Publisher Full Text|Free Full Text

39. Napolitano F, Xiaopeng X, Gao X: Impact of computational
approaches in the fight against covid-19: an ai guided review of
17 000 studies. Brief. Bioinform. 2022; 23(1): bbab456.
PubMed Abstract|Publisher Full Text|Free Full Text

40. Towler P, Staker B, Prasad SG, et al.:Ace2 x-ray structures reveal a
large hinge-bending motion important for inhibitor binding
and catalysis. J. Biol. Chem. 2004; 279(17): 17996–18007.
PubMed Abstract|Publisher Full Text|Free Full Text

41. Zhao H: Scaffold selection and scaffold hopping in lead
generation: a medicinal chemistry perspective. Drug Discov.
Today. 2007; 12(3-4): 149–155.
PubMed Abstract|Publisher Full Text

42. Xu X, Zhou J, Zhu C, et al. : Optimization of binding affinities in
chemical space with generative pre-trained transformer and
deep reinforcement learning -- source data (v1.2.4). Zenodo.
2023.
Publisher Full Text

43. Xu X, Zhou J, Zhu C, et al. : Optimization of binding affinities in
chemical space with generative pre-trained transformer and
deep reinforcement learning -- source code (v1.2.0). Zenodo.
2023.
Publisher Full Text

Page 16 of 30

F1000Research 2024, 12:757 Last updated: 07 MAY 2024

http://www.ncbi.nlm.nih.gov/pubmed/32986426
https://doi.org/10.1021/acs.jcim.0c00833
https://doi.org/10.1021/acs.jcim.0c00833
https://doi.org/10.1021/acs.jcim.0c00833
http://www.ncbi.nlm.nih.gov/pubmed/15667143
https://doi.org/10.1021/ci049714+
https://doi.org/10.1021/ci049714+
https://doi.org/10.1021/ci049714+
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360656
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360656
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360656
https://doi.org/10.1186/1758-2946-1-8
http://www.ncbi.nlm.nih.gov/pubmed/22270643
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573
http://www.ncbi.nlm.nih.gov/pubmed/19399780
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760638
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760638
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760638
https://doi.org/10.1021/ci9803381
http://www.cambridgesoft.com
http://www.ncbi.nlm.nih.gov/pubmed/32015507
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41586-020-2012-7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095418
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095418
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095418
http://www.ncbi.nlm.nih.gov/pubmed/34788381
https://doi.org/10.1093/bib/bbab456
https://doi.org/10.1093/bib/bbab456
https://doi.org/10.1093/bib/bbab456
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689952
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689952
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689952
http://www.ncbi.nlm.nih.gov/pubmed/14754895
https://doi.org/10.1074/jbc.M311191200
https://doi.org/10.1074/jbc.M311191200
https://doi.org/10.1074/jbc.M311191200
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980034
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980034
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980034
http://www.ncbi.nlm.nih.gov/pubmed/17275735
https://doi.org/10.1016/j.drudis.2006.12.003
https://doi.org/10.1016/j.drudis.2006.12.003
https://doi.org/10.1016/j.drudis.2006.12.003
https://doi.org/10.5281/zenodo.10654313
https://doi.org/10.5281/zenodo.7612354


Open Peer Review
Current Peer Review Status:      

Version 2

Reviewer Report 29 February 2024

https://doi.org/10.5256/f1000research.162639.r248667

© 2024 Wang J. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Jianmin Wang   
Yonsei University, Seodaemun-gu, Seoul, South Korea 

No further comment. Thank you for your kind responses.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: drug design, deep learning

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 23 February 2024

https://doi.org/10.5256/f1000research.162639.r248666

© 2024 Bai Q. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Qifeng Bai   
Lanzhou University, Lanzhou, Gansu, China 

Good work. Please accept it.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: deep learning, binding affinity and drug design,

I confirm that I have read this submission and believe that I have an appropriate level of 

 
Page 17 of 30

F1000Research 2024, 12:757 Last updated: 07 MAY 2024

https://doi.org/10.5256/f1000research.162639.r248667
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8910-0929
https://doi.org/10.5256/f1000research.162639.r248666
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7296-6187


expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 23 February 2024

https://doi.org/10.5256/f1000research.162639.r248664

© 2024 Wong K. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Ka-Chun Wong   
Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong 
Kong 

The authors have responded.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 12 December 2023

https://doi.org/10.5256/f1000research.143734.r188009

© 2023 Tanrıverdi A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Aslıhan Aycan Tanrıverdi   
1 Kafkas University, Kars Merkez, Turkey 
2 Kafkas University, Kars Merkez, Turkey 

The authors published the paper entitled "Optimization of binding affinities in chemical space with 
generative pre-trained transformer and deep reinforcement learning [version 1; peer review: 1 
approved with reservations]." The work is very comprehensive. An innovative article worth 
publishing. I want to congratulate the authors. There's just one point where I'm stuck. 
 
***QSAR processing methodology should be given step by step in the methods section.
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: - Polymer Synthesis and Characterization- Monomer Synthesis and Ch.- 
Quantum Chemistry- Molecular Modelling- Molecular Dynamic- Drug Design- Density Functional 
Theory- Atom in Molecules Analysis- Film Formation- Gel Formation

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Feb 2024
Xiaopeng Xu 

We thank the Reviewer for sharing our aims and appreciating our efforts. The issue 
pointed out is responded as below. 
 
***QSAR processing methodology should be given step by step in the methods section. 
We thank the Reviewer for pointing out this issue. We added descriptions to explain 
the QSAR processing part, as presented below.  
"In the modeling, a SMILES is converted into molecules to obtain the Morgan 
fingerprints using RDKit. The fingerprints were used as the features to build the SVM 
classifier. It predicts a probability score range from zero to one, with the closer to one 
the higher DRD2 activity. A molecule that cannot obtain valid fingerprints was 
assigned with a score of zero."  

Competing Interests: The authors declare no conflicts of interest.
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Qifeng Bai   
1 Lanzhou University, Lanzhou, Gansu, China 
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In this study, authors use generative pre-trained transformer and deep reinforcement learning to 
optimize the binding affinities in chemical space. I have some comments as follows: 
 
1. I have checked the source codes https://github.com/charlesxu90/sgpt. The authors give a nice 
description for their models. I have an install question. Why do authors repeat to install 
“openbabel” by command: “sudo apt-get install -y openbabel” even though Conda can install 
openbabel? 
 
2. Please check equation 1. There are some kinds of attention formulas. Do authors describe the 
correct attention formulas for their used pre-trained models? 
 
3. To make the affinity introduction richer, authors can add more references about binding 
affinities with deep learning methods such as “Bai, Q, Liu, S, Tian, Y, Xu, T, Banegas-Luna, AJ, Pérez-
Sánchez, H, et al. Application advances of deep learning methods for de novo drug design and 
molecular dynamics simulation. WIREs Comput Mol Sci. 2022; 12:e1581. 
https://doi.org/10.1002/wcms.1581 “
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 
Page 20 of 30

F1000Research 2024, 12:757 Last updated: 07 MAY 2024

https://doi.org/10.5256/f1000research.143734.r214522
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7296-6187
https://github.com/charlesxu90/sgpt
https://doi.org/10.1002/wcms.1581


Competing Interests: No competing interests were disclosed.

Reviewer Expertise: deep learning, binding affinity and drug design,

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Feb 2024
Xiaopeng Xu 

We thank the Reviewer for the summary and the helpful comments. Point by point 
responses to the issues are as follows. 
 
1. I have checked the source codes https://github.com/charlesxu90/sgpt. The authors give a 
nice description for their models. I have an install question. Why do authors repeat to install 
“openbabel” by command: “sudo apt-get install -y openbabel” even though Conda can install 
openbabel? 
We thank the Reviewer for looking into the code and pointing out this issue. We also 
want to use openbabel in Conda, however, in our experiments, we found that the 
default openbabel in Conda is not providing the functionality required. The default 
openbabel installed in our system works well. We believe this is an issue due to the 
distributed version of openbabel in Conda at the time of our experiments. 
 
2. Please check equation 1. There are some kinds of attention formulas. Do authors describe 
the correct attention formulas for their used pre-trained models? 
We thank the Reviewer for pointing out this issue. We trained a generative pre-trained 
transformer (GPT) from scratch to learn the prior knowledge of molecular 
distributions. A GPT-2 model with the multi-head self-attention mechanism was used 
in our model. Equation 1 describes the attention mechanism, which is the core 
element of it. 
 
3. To make the affinity introduction richer, authors can add more references about binding 
affinities with deep learning methods such as “Bai, Q, Liu, S, Tian, Y, Xu, T, Banegas-Luna, AJ, 
Pérez-Sánchez, H, et al. Application advances of deep learning methods for de novo drug 
design and molecular dynamics simulation. WIREs Comput Mol Sci. 2022; 12:e1581. 
https://doi.org/10.1002/wcms.1581 “ 
We added this citation as suggested by the Reviewer.  

Competing Interests: The authors declare no conflicts of interest.
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© 2023 Wang J. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Jianmin Wang   
1 Yonsei University, Seodaemun-gu, Seoul, South Korea 
2 Yonsei University, Seodaemun-gu, Seoul, South Korea 

This paper introduces a method called SGPT-RL, which utilizes GPT as the policy network in the 
Reinvent approach to improve the optimization of binding affinities, such as DRD2 QSAR score and 
ACE2 docking score. The findings of the study indicate that GPT effectively learns about the 
chemical space and generates compounds that are both novel and valid, which is consistent with 
previous research. Furthermore, GPT proves to be proficient in learning ring patterns and 
successfully explores various scaffolds during the exploration process in both optimization tasks. 
Particularly in the ACE2 task, SGPT-RL outperforms by achieving superior docking scores and 
identifying specific patterns, like the presence of double-ring structures. 
 
The study shows promise overall, with GPT being a robust generative model and drug design 
being an important area of application for generative AI. The manuscript is well composed, but 
certain improvements are necessary to address a few issues. 
 
Major issues:

In this study, the authors compared MCMG in the DRD2 task but chose not to include it in 
the ACE2 task. It seems more logical to compare MCMG in both tasks. However, what might 
be the rationale behind excluding it from the ACE2 task comparison? 
 

1. 

The clarity of the presented results is insufficient. In my opinion, Supplementary Figure 8 
effectively demonstrates the distributions and should be included in the main content for 
clear comprehension. Figure 5, on the other hand, would be more suitable to be relocated 
to the supplementary material.

2. 

Minor issues:
The manuscript is burdened with too many explanations for common abbreviations, making 
it a tedious read. For example, the abbreviation "SGPT-RL" is explained repeatedly in each 
figure, and abbreviations like "RL," "DRD2," and "ACE2" are needlessly reiterated in the 
captions. It would be more efficient to provide explanations for these abbreviations only 
when they first appear in the captions, thus avoiding unnecessary repetition. 
 

1. 

The authors should carefully review the paper to avoid any typos and grammatical errors. 
Specifically, 'the' should be included before 'Moses benchmark'; 'Similarity to the nearest 
neighbor (SNN)' in the Subsection 'Evaluation metrics', need to be in lower case; “range in1, 
10” should be “range in [1, 10]”. 
 

2. 

Several spots are not fluent to read. For example, the first sentence in the “Model 
architecture” Subsection does not fit with the context and should be tuned. “see also 
Underlying data” doesn’t fit with the context as well.

3. 

 
Is the work clearly and accurately presented and does it cite the current literature?
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Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: drug design, deep learning

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Feb 2024
Xiaopeng Xu 

We thank the Reviewer for sharing our aims and appreciating our efforts. Point by 
point responses to the issues are as follows. 
 
Major issues: 
1. In this study, the authors compared MCMG in the DRD2 task but chose not to include it in 
the ACE2 task. It seems more logical to compare MCMG in both tasks. However, what might 
be the rationale behind excluding it from the ACE2 task comparison? 
We thank the Reviewer for pointing out this issue. Initially, we also want to compare 
MCMG in both tasks. However, after a careful investigation, we found it not doable. 
MCMG relies on a Transformer decoder, which is trained on known binding molecules, 
to distill the knowledge to GRU. However, in the ACE2 task, we tackled the task where 
no sufficient binding molecules exist. MCMG was not designed for such tasks and 
cannot be applied to tackle this problem. 
  
2. The clarity of the presented results is insufficient. In my opinion, Supplementary Figure 8 
effectively demonstrates the distributions and should be included in the main content for 
clear comprehension. Figure 5, on the other hand, would be more suitable to be relocated 
to the supplementary material. 
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We thank the Reviewer for the kind advice. We included the main subfigures from 
Supplementary Figure 8 into our main context to showcase the improvement of 
properties in the optimization process. Figure 5 illustrates the increasing number of 
rings in the molecules generated in the first several steps. We think it is one of the 
most important discoveries in the results, so we would like to keep it in the main 
context. 
 
Minor issues: 
1. The manuscript is burdened with too many explanations for common abbreviations, 
making it a tedious read. For example, the abbreviation "SGPT-RL" is explained repeatedly in 
each figure, and abbreviations like "RL," "DRD2," and "ACE2" are needlessly reiterated in the 
captions. It would be more efficient to provide explanations for these abbreviations only 
when they first appear in the captions, thus avoiding unnecessary repetition. 
We thank the Reviewer for pointing out this issue. We updated the paragraphs and 
captions and removed the repeated explanations to make the sentences more fluent 
to read. 
 
2. The authors should carefully review the paper to avoid any typos and grammatical errors. 
Specifically, 'the' should be included before 'Moses benchmark'; 'Similarity to the nearest 
neighbor (SNN)' in the Subsection 'Evaluation metrics', need to be in lower case; “range in1, 
10” should be “range in [1, 10]”. 
We thank the Reviewer for pointing out these typos and errors. We meticulously 
reviewed this article again, and fixed the errors and typos pointed out. 
 
3. Several spots are not fluent to read. For example, the first sentence in the “Model 
architecture” Subsection does not fit with the context and should be tuned. “see also 
Underlying data” doesn’t fit with the context as well. 
We thank the Reviewer for pointing out these spots. We updated the sentences to 
make them more fluent to read.  Specifically, we removed the sentence “Please note 
that all code associated with this article is available in the Software availability 
section” and “see also Underlying data” within the paragraphs.  

Competing Interests: The authors declare no conflicts of interest

Reviewer Report 01 November 2023

https://doi.org/10.5256/f1000research.143734.r188001

© 2023 Wang G. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Guohua Wang  
1 Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 
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Heilongjiang, China 
2 Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 
Heilongjiang, China 

In this paper, the authors proposed SGPT-RL, a method that utilizes GPT as the policy network 
within the Reinvent approach to enhance the optimization of binding affinities, including DRD2 
QSAR score and ACE2 docking score. The results of their study demonstrate that GPT effectively 
learns the chemical space, generating compounds with high novelty and validity, consistent with 
previous research. Notably, in both optimization tasks, GPT exhibits proficiency in learning ring 
patterns and successfully explores a wide range of scaffolds during the exploration process. 
Importantly, SGPT-RL outperforms in the ACE2 task by obtaining superior docking scores and 
identifying specific patterns, such as the presence of double ring structures. 
 
Overall, this study is interesting, as GPT is the current hotspot in AI research and de novo drug 
design is one of the most successful cases in AI for science. The manuscript is also well written and 
easy to understand. But there are several issues which should be improved. 
 
Firstly, there are an excessive number of explanations for common abbreviations in this 
manuscript, which makes it tedious to read. For instance, the abbreviation "SGPT-RL" is repeatedly 
explained in each of the figures. Similarly, abbreviations like "RL," "DRD2," and "ACE2" are 
unnecessarily reiterated many times in the captions. I believe it would be more effective to provide 
explanations for these abbreviations only during their initial occurrence in the captions, thereby 
avoiding repetitive explanations. 
 
Secondly, in this study, the authors compared MCMG in the DRD2 task, but not in the ACE2 task. 
Wouldn't it be more natural to compare it in both tasks? What is the reason for excluding it from 
the comparison in the ACE2 task? 
 
Thirdly, while going through the supplementary information, I came across Supplementary Figure 
8, which serves as a clear illustration. I believe the author should incorporate it into the main 
content as it provides a clear explanation of the resulting distributions. Figure 5 should be 
relocated to the supplementary material instead. 
 
Furthermore, the author should thoroughly proofread the paper for any typos and formatting 
errors. For instance, 'the' should be added before 'Moses benchmark'. In the first paragraph of 
Subsection 'Evaluation metrics', 'Similarity to a nearest neighbor (SNN)' should be corrected to 
'similarity to a nearest neighbor (SNN)'.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
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Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Artificial intelligence in bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Feb 2024
Xiaopeng Xu 

We thank the Reviewer for the summary, the acknowledgement of our novelty, and 
for the helpful comments. Point by point responses to the issues are as follows. 
 
Firstly, there are an excessive number of explanations for common abbreviations in this 
manuscript, which makes it tedious to read. For instance, the abbreviation "SGPT-RL" is 
repeatedly explained in each of the figures. Similarly, abbreviations like "RL," "DRD2," and 
"ACE2" are unnecessarily reiterated many times in the captions. I believe it would be more 
effective to provide explanations for these abbreviations only during their initial occurrence 
in the captions, thereby avoiding repetitive explanations. 
We thank the Reviewer for pointing out this issue. We updated the paragraphs and 
captions and removed the duplicated explanations to make the sentences more fluent 
to read. 
 
Secondly, in this study, the authors compared MCMG in the DRD2 task, but not in the ACE2 
task. Wouldn't it be more natural to compare it in both tasks? What is the reason for 
excluding it from the comparison in the ACE2 task? 
We thank the Reviewer for pointing out this issue. Initially, we also want to compare 
MCMG in both tasks. However, after a careful investigation, we found it not doable. 
MCMG relies on a Transformer decoder, which is trained on known binding molecules, 
to distill the knowledge to GRU. However, in the ACE2 task, we tackled the task where 
no sufficient binding molecules exist. MCMG was not designed for such tasks and 
cannot be applied to tackle this problem. 
 
Thirdly, while going through the supplementary information, I came across Supplementary 
Figure 8, which serves as a clear illustration. I believe the author should incorporate it into 
the main content as it provides a clear explanation of the resulting distributions. Figure 5 
should be relocated to the supplementary material instead. 
We thank the Reviewer for the kind advice. We included the main subfigures from 
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Supplementary Figure 8 into our main context to showcase the improvement of 
properties in the optimization process.  Figure 5 illustrates the increasing number of 
rings in the molecules generated in the first several steps. We think it is one of the 
most important discoveries in the results, so we would like to keep it in the main 
context. 
 
Furthermore, the author should thoroughly proofread the paper for any typos and 
formatting errors. For instance, 'the' should be added before 'Moses benchmark'. In the first 
paragraph of Subsection 'Evaluation metrics', 'Similarity to a nearest neighbor (SNN)' should 
be corrected to 'similarity to a nearest neighbor (SNN)'. 
We thank the Reviewer for pointing out these typos and errors. We meticulously 
reviewed this article again, and fixed the errors and typos pointed out.  

Competing Interests: The authors declare no conflicts of interest

Reviewer Report 20 July 2023

https://doi.org/10.5256/f1000research.143734.r188006

© 2023 Wong K. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Ka-Chun Wong   
1 Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong 
Kong 
2 Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong 
Kong 

The authors proposed a method, SGPT-RL, to optimize the SMILES sequences to improve binding 
affinities through incorporating GPT into a reinforcement learning (RL) framework. The authors 
trained a GPT model as a prior model to learn the chemical space by pretraining on Moses SMILES, 
and then trained two RL models, one for DRD2 QSAR scores and the other for ACE2 docking 
scores, to generate SMILES with good binding affinities. The results show that the GPT prior model 
learned a good distribution of the chemical space. The RL models were able to generate SMILES 
sequences with binding affinities. In addition, SGPT-RL generated sequences with better docking 
scores than Reinvent and able to learn certain patterns during the RL process. There are a few 
considerations that could be addressed: 
 
Major issues: 
 
1. The manuscript includes repetitive explanations of abbreviations, such as SGPT-RL, DRD2, ACE2, 
and SMILES, throughout the passages and captions. This not only hinders the flow of reading but 
also makes it tedious to navigate through. To enhance readability, I suggest minimizing the 
frequency of explanations and providing them only when necessary, particularly upon their initial 
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mention. 
 
2. GPT is mainly learning distributions, and RL is introducing inductive biases to steer the 
distributions towards desirable properties. Therefore, I think it is crucial to include a figure that 
demonstrates how the distribution of these properties evolves. Supplementary Figure 8 addresses 
this aspect effectively, and I recommend incorporating it into the main context to provide a clear 
illustration. 
 
3. The supplementary information should have the same name as the main article, i.e. 
‘transformer’ should be ‘generative pre-trained transformer’. 
 
Minor issues: 
 
1. In Subsection that explains ”SAscore”, the sentence “which ranges in1, 10” should be “which 
ranges in [1, 10]”.   
 
2. The authors stated that SGPT-RL outperformed Reinvent on the ACE2 task with a significant p-
value. However, the p-value is reported as 0.0, which appears as a numerical zero. To accurately 
represent this score, it would be preferable to present it in 2-digit scientific notation. 
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes
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Reviewer Expertise: Bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Feb 2024
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Xiaopeng Xu 

We thank the Reviewer for sharing our aims and appreciating our efforts. Point by 
point responses to the issues are as follows. 
 
Major issues: 
1. The manuscript includes repetitive explanations of abbreviations, such as SGPT-RL, DRD2, 
ACE2, and SMILES, throughout the passages and captions. This not only hinders the flow of 
reading but also makes it tedious to navigate through. To enhance readability, I suggest 
minimizing the frequency of explanations and providing them only when necessary, 
particularly upon their initial mention. 
We thank the Reviewer for pointing out this issue. We updated the paragraphs and 
captions and removed the duplicated explanations to make the sentences more fluent 
to read. 
 
2. GPT is mainly learning distributions, and RL is introducing inductive biases to steer the 
distributions towards desirable properties. Therefore, I think it is crucial to include a figure 
that demonstrates how the distribution of these properties evolves. Supplementary Figure 8 
addresses this aspect effectively, and I recommend incorporating it into the main context to 
provide a clear illustration. 
We thank the Reviewer for the kind advice. We included the main results from 
Supplementary Figure 8 into our main context to showcase the improvement of the 
core properties during the optimization process. 
 
3. The supplementary information should have the same name as the main article, i.e. 
‘transformer’ should be ‘generative pre-trained transformer’. 
We thank the Reviewer for pointing out this issue. We updated the title of the 
supplementary information to fix this issue. 
 
Minor issues: 
1. In the Subsection that explains ”SAscore”, the sentence “which ranges in1, 10” should be 
“which ranges in [1, 10]”.   
We thank the Reviewer for pointing out this typeset issue. The sentence is updated to 
fix this issue as shown below. 
"A predictive model built by Blaschke et al. was used, where molecular weight was 
combined with raw score, which ranges in from one to 10, as features to predict the 
probability of synthetic accessibility." 
 
2. The authors stated that SGPT-RL outperformed Reinvent on the ACE2 task with a 
significant p-value. However, the p-value is reported as 0.0, which appears as a numerical 
zero. To accurately represent this score, it would be preferable to present it in 2-digit 
scientific notation. 
We thank the Reviewer for pointing out this issue. Ideally, we also want to have a p-
value in 2-digit scientific notation, however, the result from computation is zero with 
no 2-digits calculated. We think this is due to the nature of distinct distribution. We 
use “(p-value <0.01)” as a replacement.  
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