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Abstract: This manuscript presents electromagnetic bandgap (EBG) structures in microstrip 

technology based on one-dimensional (1-D) Koch fractal patterns (KFEBG). This fractal 

geometry allows to adjust the radius r and distance a between patterns so that a low-pass filter 

response is obtained when the ratio r/a is higher than 0.5. However, in such case undesired 

strong ripples appear in the low bandpass region. We demonstrate that the performance in the 

passband of this filter can be improved by applying a tapering function to the Koch fractal 

dimensions and to the width of the microstrip line, while simultaneously chirping 

(modulating) the Koch fractal periodic pattern distance (a) so as to maintain a constant r/a 

ratio. Several tapering functions scaled by a factor K are presented, and the results of their 

application to the KFEBG microstrip structure are compared by means of relevant 

characteristic parameters. Optimal performance has been obtained for the Kaiser and Cauchy 

distributions applied to the Koch fractal pattern, combined with a rectangular and Cauchy 

distribution applied to the microstrip width, respectively. 
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1 INTRODUCTION 

Electromagnetic band gap structures (EBG) in microstrip technology were first proposed at 

the end of the past century [1-2]. An EBG structure consists on a periodic structure that 

exhibits a band of frequencies in which the electromagnetic propagation is not allowed. 

Therefore EBG structures can be used as Bragg reflectors. In microstrip technology, 

structures with a periodic pattern etched in the ground plane have been proposed as the most 

simple and effective Bragg reflectors [2-4]. Circular [2-3], sinusoidal and triangular [4] 

shapes are typically etched as periodic patterns. 

In fractal EBG devices, fractal shapes are etched as periodic patterns in the ground 

plane [5-8]. When the fractal pattern is based on the Koch curve, the EBG structure is named 

Koch fractal electromagnetic band gap (KFEBG). KFEBGs have the remarkable advantage 

that they allow the realization of structures with r/a (radii/period) ratios higher than 0.5. This 

has the important consequence that Bragg reflectors become low-pass filters [7-8]. However, 

their behavior in the passband is not optimal, because they present a significant amount of 

ripple. Tapering techniques can be employed to improve performance in the low-passband, so 

that the filter characteristics in this frequency range can be comparable to Bragg reflectors 

with r/a lower than 0.5 [9-10]. We have explained the design of KFEBG filters in a previous 

paper [7]. 

The aim of this manuscript is to apply tapering techniques to the radii of periodic 

fractals etched in the ground plane of KFEBG structures according to several mathematical 

distributions, together with a corresponding chirping of the period a of the structure in order 

to maintain a constant r/a ratio. Similar tapering functions will be applied to the microstrip 

line width scaled by a factor K. The influence of this K factor in the optimization of the results 

is presented in this paper. By combining the application of different tapering distributions to 

the sizes of the fractals in the ground plane with various distribution functions to the 



 3

microstrip width, we obtain an optimal response in the low pass region evaluated according to 

the following parameters: size reduction, ripple level, return loss, medium value of S11 in the 

passband, and band width of the bandpass filter. 

As a conclusion of this work we will show simulated and measured performance of 

optimal structures with r/a ratio equal to 0.5. This value has been demonstrated to be the limit 

between low pass filter and Bragg reflector behavior in EBG structures [7], and represents a 

compromise between performance in the bandpass (ripple reduction) and high frequency 

rejection. 

 

2 TAPERING FUNCTION  

Tapering functions have been widely used to improve the performance of conventional EBG 

[9-11] and non-conventional EBG structures [8], as well as other devices such as free electron 

maser Bragg resonators composed of periodic cylindrically symmetric corrugations [12] and 

optical fiber Bragg gratings [13]. Originally, tapering functions were employed in digital 

filters as sampling windows [14]. 

 In our application, the tapering function on the ground plane modifies the periodic 

fractal pattern shown in Fig. 1a, so that the fractal radius distribution is given by the equation: 

( ) , , iLzTrr ii 10   / max =⋅=       (1) 

where  and are the  i-th and maximum Koch fractal hexagonal cell radii, respectively, 

 is the normalized longitudinal position in the circuit (z

ir  maxr

( Lzi / )

)

0=0 corresponds to the central 

point), and  is the tapering distribution. In a previous work [8] we have already 

shown the effects of applying a tapering window to the fractal pattern etched in the KFEBG 

ground plane, which takes the form shown in Fig. 1b. 

( LzT i /

 When the tapering distribution is applied to conventional EBG and KFEBG structures, 

the frequency response is improved as a consequence of the progressive matching that the 
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tapering function produces between the characteristic impedance of the Bloch wave and the 

input and output characteristic impedance of the waveguide, [8], [10],[15-17]. 

 Four distribution functions have been studied for this work, as shown in Fig. 2: 

Cauchy [14], Kaiser [8-10], Gauss [9-10], and rectangular or uniform function [14], in order 

from sharpest to less pronounced shape. 

 The Cauchy distribution is given by the following equation: 
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On the other hand, the Kaiser distribution is given in terms of Bessel functions according to 

the following equation: 
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where I0 is the first-class modified Bessel function. Finally, the Gauss distribution function is: 
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and the uniform or rectangular function is given by: 
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 The tapering of the radii of the Koch fractals according to the previous distributions 

has as a consequence a decrease of the ratio r/a as we move from the center to the edges of 

the structure. Since the low pass behavior of the filter is an effect of the r/a ratio being above 

the 0.5 upper limit of conventional non-fractal EBG structures that behave as Bragg 

reflectors, the decrease of this ratio below such limit degrades the rejection of high 

frequencies. In order to compensate this effect, and at the same time to obtain a more compact 
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size of the device, we have taking the following approach [8]. Instead of using a fixed period 

a, we modify it in proportion to the radii of the Koch fractal cells so that the distance ai 

between the centers of adjacent Koch fractal hexagonal cells follows a linear proportion: 

,...2,11 == − iCra ii       (6) 

where r0 corresponds to rmax, ri-1 is the radii of the Koch fractal tapered cells, and C is a 

constant equal to the initial r/a ratio value of the non-tapered KFEBG microstrip structure as 

shown in Fig. 1a. This progressive compacting of the structure from the center to the edges is 

called chirping and it is shown in Fig. 3a. 

 The decreasing size of fractals towards the edge of the structure improves the 

matching of the Bloch wave inside the structure with respect to the input and output 

impedances, and in this way attenuates or eliminates unwanted oscillations of the 

transmission coefficient in the bandpass region. This effect is even more pronounced if a 

similar tapering function is applied to the microstrip width [8] as shown in Fig. 3b. In such 

case, the width of the microstrip line is given by the equation: 

( )  1, ,0   / max == iLzTWW ii ,     (7) 

where Wmax = 2 mm. In order to obtain an optimal performance of the frequency response we 

have introduced a factor K that modulates the tapering of the microstrip width according to 

the following equation: 

( ) 25.25.0 1, ,0   / max ≤≤=⋅= KiLzTWKW ii     (8) 

In Fig. 4 we show some examples of the influence of K in KFEBG structures with a Kaiser 

tapering distribution in the fractal pattern of the ground plane and a Kaiser tapering 

distribution of the microstrip width. 
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3 ANALYSIS AND OPTIMIZATION OF CHIRPED AND TAPERED 

MICROSTRIP KOCH FRACTAL ELECTROMAGNETIC BAND GAP (KFEBG) 

STRUCTURES 

Electromagnetic (EM) simulations and measurements have been carried out in order to 

compare the performance of the different tapered 1-D KFEBG microstrip structures modified 

by the proposed K factor. After a thorough investigation of the influence of the K factor, 

fabrication and testing of the optimal structures was undertaken and the results of the 

measurements will be presented and compared with the EM simulations. In all simulations 

and measurements the initial C=  factor has been chosen as 0.5. Material with a dielectric 

constant 

ar /

2.10=rε  (tgδ = 0), substrate thickness h = 0.635 mm, and copper thickness t = 0 μm 

has been employed in the simulations as an idealization of the RO3010 material 

(manufactured by Rogers) that we have used in the experimental measurements 

( 0023.0tg =δ  at 10 GHz and copper thickness t = 17.5 μm). The different structures have 

been designed with the purpose to have an operation frequency of 4.2 GHz, so the periodicity 

of the pattern was chosen as  mm (λ1.14=a g=2a, where λg is the guided wavelength in the 

unperturbed microstrip line) [2-4]. The total number of etched cells (Koch fractal elements) 

has been set to N = 9, as in references [3], [7-10]. At the top plane, the width of the conductor 

line was  mm at the ports, which corresponds to a 50 Ω conventional microstrip 

line, but the microstrip width changes according to the different tapering distributions 

modified by the proposed K factor. The prototypes have been fabricated by means of a 

numerical milling machine. EM simulations have been carried out by a commercial finite 

element simulator (HFSS), while measurements were done with a vector network analyzer 

(R&S ZVA67). 

594.0=W

In order to establish a criterion for the comparison of the large amount of simulations 

that we have performed, we have selected four parameters to be extracted from the 
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simulations: ripple (Ri), return loss (RL), medium value of S11 in the passband (MVPB), and 

band width (BBw) of the passband of the low pass filter. A fifth comparative parameter is 

obtained from the reduction of size (RS) of every structure that we have simulated. In the 

following we define these parameters and present the corresponding results. 

The ripple Ri (dB) is defined as the difference between the maximum and minimum 

value of the transmission coefficient |S21| in the band pass region. A comparison of values of 

this parameter for each simulated 1-D KFEBG structure versus the K factor is presented in 

Fig. 5. The lower the value of Ri the better is the performance of the filter. Therefore, a 

detailed examination of Fig. 5 allows to extract the conclusion that the sharpest tapered 

distributions in ground plane (Cauchy and Kaiser, Figs. 5a and 5b, respectively) combined 

with flat tapered distributions (Gauss or rectangular) in microstrip width modified with K <1 

are generally the best options for the optimization of this parameter. However, the Cauchy 

tapering on both sides with factor K > 1 (Fig. 5a) is also an interesting option because of the 

decreasing tendency of the ripple with increasing K factor. We will refer to this structure as 

the Cauchy double side tapered structure. 

The return loss RL (dB) is the maximum value of the reflection coefficient |S11| in the 

bandpass region. In the same way as with the previous parameter, the lower the value of the 

return loss the better is the performance of the filter. Fig. 6 shows the evolution of this 

parameter as a function of the K factor for each 1-D KFEBG structure. The first conclusion 

that can be drawn after a detailed examination of Fig. 6 is that the return loss reaches 

significantly lower values for the Cauchy and Kaiser ground plane distributions compared to 

the less pronounced Gauss and rectangular distributions. Therefore, if we concentrate our 

attention in the first two cases (Figs. 6a and 6b), we see that the most interesting features are 

the minima of the return loss as a function of K. In the case of the Kaiser ground plane 

distribution (Fig. 6b), the minima are achieved for the rectangular and Gauss microstrip line 
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modulations. In the case of the Cauchy ground plane distribution (Fig. 6a) there are also 

interesting minima for these two microstrip line modulations, although shifted to lower K 

values. However, in this case the most interesting feature is the minimum for the Cauchy 

double side tapered structure (Cauchy modulation both in the ground plane and in the 

microstrip line), which appears for a K value of 1.25. As we will see later, this will be one of 

the structures that we have chosen as optimal. 

The next parameter that we have analyzed is the medium value of |S11| in the passband: 

MVPB (dB). As with the previous two parameters, the lower the value of MVPB the better the 

performance of the filter is. In Fig. 7 we show the tendency of MVPB as a function of the 

microstrip line modulation factor K for the four possible types of ground plane fractal 

distributions that we have studied. If we compare Fig. 7 with Fig. 6, we realize that the values 

of the MVPB are again significantly lower for the Cauchy and Kaiser ground plane 

distributions (Figs. 7a and 7b), so we will concentrate our attention in these two cases. The 

tendencies as a function of the parameter K present minima for each type of microstrip line 

modulation. As it happened with the return loss in Fig. 6b, the Kaiser ground plane structure 

seems to work better in combination with the rectangular and Gauss microstrip lines. On the 

other hand, the structure with the Cauchy ground plane fractal distribution (Fig. 7a) presents 

interesting minima for both the Kaiser and Cauchy microstrip lines, being the best 

combination a double side tapered Kaiser (upper plane) – Cauchy (ground plane) structure 

with K=1.25. Something similar happened for the return loss in Fig. 6a, although in that case 

the best combination was a Cauchy double side tapered structure. 

Finally, the last parameter that we have analysed is the bandwidth of the passband of 

the filter: BWPB (GHz). This parameter is measured for the reflection coefficient S11 at 3 dB 

in the bandpass edge, and it is shown in Fig. 8 as a function of K for all the structures 
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analysed in this work. All structures show a decreasing tendency of BWPB with increasing K, 

so in principle lower K values are better for the low-pass performance of the filter. 

In order to evaluate the compactness of the filters we define the parameter RC (%) as 

the ratio between the sizes of each proposed structure and the largest structure (the one with 

rectangular tapering). Table 1 shows the values of RC for the four possible ground plane 

distributions. RC depends on the ratio r/a, which is the same for all the structures of our study 

(and equal to the limiting value of a conventional non-fractal structure: C=r/a=0.5). It also 

depends on the ground plane distribution that determines the distance between fractal cells. 

The sharpest tapering distribution function provides the most compact structure, which in our 

case is the Cauchy distribution, as can be seen on Table 1. 

As a consequence of the study of the previous parameters, we have selected two 

structures with double side tapering as the most optimal ones and we have fabricated and 

tested them. Fig. 9 shows photographs of the upper and lower planes of these structures. The 

first one (structure 1) has a Kaiser tapered fractal distribution in the ground plane combined 

with a rectangular tapered distribution in the microstrip line modified with K= 0.9. This 

structure is the optimum one for the parameters associated with the values of the reflection 

coefficient (S11) in the passband: return loss (RL) and medium value in the passband (MVPB), 

because it produces the minimum values of these parameters, and also results in very good 

values for the ripple of S21 (Ri). The second structure (structure 2) that we have chosen is a 

double side tapered Cauchy distribution with K = 1.25. This structure is a compromise 

between the different parameters. It produces the minimum value of return loss in the 

passband and it is close to the minimum of MVPB, although for this later parameter the Kaiser 

modulation in the microstrip line combined with Cauchy distribution in the ground plane 

produces a smaller minimum. The reason why we have preferred the Cauchy double side 

tapered structure is because the values of ripple and bandwidth are slightly better in this case. 
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The simulated and measured results for the two chosen structures are shown in Fig. 10. 

A good agreement between simulation and experimental measurements is achieved. These 

results demonstrate good low pass behaviour with small ripple of S21 and low values of S11 in 

the passband. Additionally, these two structures provide the higher degree of compactness 

compared to the non-tapered fractal ground plane, as can be seen in Table 1 and in the 

photographs of Fig. 9. In this figure it can be clearly seen that the structure with the Cauchy 

ground plane fractal distribution provides the higher degree of compactness. Such 

compactness, together with the low values of ripple, return loss, and MVBP make the double 

side tapered Cauchy structure the option of choice for the best compromise of performance 

and size reduction. 

We have compared the characteristic parameters of both devices with other results of 

comparable structures that can be found in the recently published literature [3-4], [7-9], [18-

19], and also for a classical (non-EBG) low pass filter [20]. Such results are shown in Table 2 

for easy comparison. In this table λ0 is the free-space wavelength at the operation frequency 

(f0) of the stopband, and it is used to give the normalized 3-D size of the devices. In the case 

of the structures of [18], [19] and [20] the sizes given in the table have been calculated for 9 

cells. None of the sizes include the microstrip feeding. The parameter 20dB RBW is the 20 dB 

rejection bandwidth for S21, while SRL is the maximum stopband rejection level. For each 

reference, we mention the corresponding figure from where we have obtained the results 

presented in Table 2. In the case of [8], the results correspond to the solid line of figure 3 in 

such reference, while for [9] the results correspond to the thick solid line of figure 8 in this 

later reference. The operational frequency of the stopband f0 in [18] is determined from the 

extreme attenuation pole frequencies: GHz 2.5GHz 9GHz 30 ≅×=f , while in [20] f0 

corresponds to the maximum SRL. 
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From the analysis of Table 2 we can conclude that the structures optimized in this 

paper present simultaneously very low values of ripple in the passband, high values of return 

loss (RL) of S11 in the passband, wide stopband with high rejection level, and a small size. If 

we consider all of these parameters together, we can observe that our structures present the 

best compromise between size and performance. 

Due to the application of the tapering functions, the condition r/a≥0.5 necessary to 

achieve the low pass filtering behaviour of our structures (instead of the Bragg reflector 

behaviour of conventional EBG structures) can also be achieved with circular shapes. 

However, in such case the performance of the filters is not as optimal as with the fractal 

shapes that we have analysed in this paper. In order to compare conventional circular EBG 

structures with our Koch Fractal EBG devices we have performed simulations of circular 

structures equivalent to the optimized KFEBG analysed in this paper (devices of Figs. 9a and 

9b). The results of this comparison are presented in Table 3 and Table 4. From these tables we 

can conclude that the fractal devices show better performance than the circular structures for 

all parameters, although we observe a slight reduction of the bandwith of the passband in the 

fractal devices. 

If we concentrate on the ripple parameter, whose optimization was the main goal of 

this study, we can conclude that our structures show a very significant improvement with 

respect to most conventional EBG structures published in the literature (Table 2) and also 

with respect to tapered structures with circular patterns (Tables 3 and 4). 

 

4 CONCLUSION 

A periodic pattern based on Koch fractals has been applied to 1-D electromagnetic bandgap 

(EBG) microstrip structures with r/a = 0.5, demonstrating a good low pass filter behavior. In 

order to optimize ripple, return loss, and reduce size, 16 possible combinations of double side 
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tapered distributions (tapered in ground plane and microstrip width) have been analyzed, and 

for each of these combinations we have introduced a microstrip width modulation K factor to 

obtain the best optimal performance in the frequency response. The best structures are the 

Kaiser tapered distribution in ground plane combined with the rectangular tapered distribution 

in microstrip width modified with K = 0.9, and the double side tapered Cauchy distribution 

with K = 1.25. Simulation results have been successfully corroborated by measurements of 

the optimal structures. 
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Figure captions: 

 

Fig. 1 1-D KFEBG microstrip structure with nine Koch fractal periodic patterns etched in the 

ground plane 

a Uniform distribution without tapering 

b Kaiser tapering distribution 

 

Fig. 2 Representation of tapering distributions  versus normalized longitudinal 

position  

( LzT / )

( )Lz /

 

Fig. 3 Kaiser-tapered 1-D KFEBG microstrip structure with chirping and modulated 

microstrip width 

a Ground plane 

b Top plane 

 

Fig. 4 Kaiser-tapered 1-D KFEBG microstrip structure with varying period and different 

values of factor K modifying the microstrip line width 

 

Fig. 5 Comparison of Ri (dB) for each 1-D KFEBG structure versus K factor 

a Cauchy tapering distribution in ground plane 

b Kaiser tapering distribution in ground plane 

c Gauss tapering distribution in ground plane 

d Rectangular or uniform tapering distribution in ground plane 

 

Fig. 6 RL (dB) compared for each 1-D KFEBG structure versus K factor 
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a Cauchy tapering distribution in ground plane 

b Kaiser tapering distribution in ground plane 

c Gauss tapering distribution in ground plane 

d Rectangular or uniform tapering distribution in ground plane 

 

Fig. 7 MVPB (dB) compared for each 1-D KFEBG structure versus K factor 

a Cauchy tapering distribution in ground plane 

b Kaiser tapering distribution in ground plane 

c Gauss tapering distribution in ground plane 

d Rectangular or uniform tapering distribution in ground plane 

 

Fig. 8 BBw (GHz) compared for each 1-D KFEBG structure versus K factor 

a Cauchy tapering distribution in ground plane 

b Kaiser tapering distribution in ground plane 

c Gauss tapering distribution in ground plane 

d Rectangular or uniform tapering distribution in ground plane 

 

Fig. 9 Photographs for the most optimal KFEBG structures: Kaiser tapered distribution in 

ground plane combined with rectangular tapered distribution in microstrip width scaled by K 

= 0.9 (first structure in both photographs), and double side tapered Cauchy distribution with K 

= 1.25 (second structure in both photographs) 

a Upper plane (microstrip line) 

b Ground plane 
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Fig. 10 Simulated and measured results for the most optimal KFEBG structures 

a Kaiser tapered distribution in ground plane combined with rectangular tapered distribution 

in microstrip width scaled by K = 0.9 

b Cauchy tapered distribution in ground plane combined with Cauchy tapered distribution in 

microstrip width scaled by K = 1.25 
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Table captions: 

 

Table 1 Factor of compactness RC (%) for each 1-D KFEBG structure tapered on both 

sides 

Table 2 Comparison between the proposed filters and recently published references 

Table 3 Comparison of relevant parameters between the Kaiser/rectangular (K=0.9) 

fractal EBG structure and the equivalent EBG circular structure 

Table 4 Comparison of relevant parameters between the Cauchy/Cauchy (K=1.25) 

fractal device and the equivalent EBG circular structure 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

     

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-14

-12

-10

-8

-6

-4

-2

0

 Kaiser microstrip line
 Cauchy microstrip lineR

et
ur

n 
lo

ss
 in

 p
as

sb
an

d 
R

L (d
B)

Microstrip width modulation factor: K

a Ground plane: Cauchy tapered and chirped KFEBG in all cases
 Rectangular microstrip line
 Gauss microstrip line

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-14

-12

-10

-8

-6

-4

-2

0

 Rectangular microstrip line
 Gauss microstrip line
 Kaiser microstrip line
 Cauchy microstrip line

R
et

ur
n 

lo
ss

 in
 p

as
sb

an
d 

R
L (d

B)

Microstrip width modulation factor: K

b Ground plane: Kaiser tapered and chirped KFEBG in all cases

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-6

-5

-4

-3

-2

-1

c Ground plane: Gauss tapered and chirped KFEBG in all cases
 Rectangular microstrip line
 Gauss microstrip line
 Kaiser microstrip line
 Cauchy microstrip lineR

et
ur

n 
lo

ss
 in

 p
as

sb
an

d 
R

L (d
B)

Microstrip width modulation factor: K
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-6

-5

-4

-3

-2

-1

d Ground plane: Rectangular tapered and chirped KFEBG in all cases
 Rectangular microstrip line
 Gauss microstrip line
 Kaiser microstrip line
 Cauchy microstrip line

R
et

ur
n 

lo
ss

 in
 p

as
sb

an
d 

R
L (d

B)

Microstrip width modulation factor: K
 

 



 27

 
Figure 7 
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Figure 8 
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Figure 10 
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Table 1 

 Rectangular Gauss Kaiser Cauchy 

RC 100 % 91 % 73.5 % 63.5 % 

 

 



 32

Table 2 

Ref. 3-D size f0 (GHz) r/a Ri (dB) RL (dB) 20dB RBW (GHz) SRL 

Fig. 10a 0.19λ0×0.008λ0×1.31λ0 4.2 0.5 2.2 10.1 > 7.7 80dB@5.2GHz 

Fig. 10b 0.19λ0×0.008λ0×1.07λ0 4.2 0.5 1.6 10.6 > 7.8 60.9db@4.9GH
z 

Fig. 3a [3] 0.09λ0×0.012λ0×1.60λ0 3 0.25 - 2 - - 

Fig. 3b [3] 0.17λ0×0.012λ0×1.68λ0 3 0.45 - 1 - - 

Fig. 7 [4] 0.1λ0×0.01λ0×1.79λ0 2.5 0.25 8 1.4 1.5 60dB@3.2GHz 

Fig. 8 [4] 0.1λ0×0.01λ0×1.79λ0 2.5 0.25 8 1.4 1.3 49dB@3.2GHz 

Fig. 6 [7] 0.21λ0×0.008λ0×1.79λ0 4.2 0.55 3.4 - > 5.4 52dB@4.2GHz 

Fig. 6 [8] 0.21λ0×0.008λ0×1.33λ0 4.2 0.55 3 4 > 4.7 60db@4.3GHz 

Fig. 8 [9] 0.11λ0×0.016λ0×1.24λ0 4 0.3 1.3 15.5 0.9 25dB@4.6GHz 

Fig. 6 [18] 0.22λ0×0.026λ0×2.23λ0 5.2 - 2.3 5 > 7.2 40dB@5.5GHz 

Fig. 10 [19] 0.32λ0×0.018λ0×3.54λ0 7 0.24 0.8 13 6.5 37.5@8GHz 

Fig. 10 [20] 0.22λ0×0.021λ0×1.28λ0 4.1 - 1 8 > 2.2 GHz 35@4.1GHz 
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Table 3 

 

 
Ripple Ri(dB) for 
S21 in passband 

Bandwidth of pass-
band BWPB (GHz) 

Medium value of S11 in 
passband MVPB (dB) 

Return loss RL for S11 in 
passband (dB) 

Structure 1 Fractal 0.68 2.21 -22.68 -14.59 
Structure 1 Circular 0.79 2.53 -20.33 -13.22 
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Table 4 

 

 
Ripple Ri (dB) for 

S21 in passband 
Bandwidth of passband 

BWPB (GHz) 
Medium value of S11 in 
passband MVPB (dB) 

Return loss RL for S11 in 
passband (dB) 

Structure 2 Fractal 0.72 2.08 -20.62 -12.21 
Structure 2 Circular 1.52 2.17 -17.13 -6.56 

 
 


