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I SUMMARY 

1. Introduction 

 The wine industry has a high value throughout the world; it is of 

economic, cultural and historical importance in each productive area. 

Currently, the competition in the wine markets makes it necessary to seek and 

provide alternatives. On the one hand, climatic changes cause problems, so 

that varieties well adapted to the new conditions are required. On the other 

hand, the high market competitiveness drives the development of new 

varieties with high berry quality, for transforming into innovative and 

balanced wines. Vine breeders are working to provide new options for 

growers to adapt to these new scenarios.  

In wine grapes there are some traits that are important for viticulture 

and the winery, such as phenological period, productivity, and the quality of 

the berries. Most of these traits are controlled by a large number of genes of 

minor effect, together with influences of the environment. Early identification 

of individuals carrying the desired allele combinations allows breeders to grow 

larger effective populations, which results in decreased maintenance and 

evaluation costs. The identification of genes and molecular markers 

underlying quality traits will help accelerate the breeding process, creating new 

opportunities for crop improvement.  

One approach to the improvement of conventional breeding is the 

identification of chromosomal regions or QTL (Quantitative Trait Loci) 

involved in the genetic control of quality traits, based on genetic maps and 

phenotypic evaluation of a segregating progeny. The purpose of QTL 

mapping is to identify the number and location of the genetic determinants 

responsible for the variation of the quantitative traits under study and their 

stability among different years. The linkage of markers with heritable traits is 

used to associate the genotype of an individual with the expressed phenotype, 

and would make marker-assisted selection (MAS) very efficient. 
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2. Objectives 

 The aim of the IMIDA’s wine grape breeding program is to obtain new 

varieties well adapted to Murcia’s climate conditions and with better genetic 

composition. The goal of this work is the identification of the major genetic 

determinants for a given phenotypic trait in genetic maps and their co-

localization with the position of candidate gene sequences related to the 

relevant phenotype. For this purpose, three specific objectives were 

considered: 

 1. The phenotypic evaluation of a progeny derived from a controlled 

cross between the wine grape cultivars Monastrell and Syrah. 

2. The construction of grapevine genetic maps, using this progeny and 

molecular markers.  

3. The use of these maps and the phenotypic data of the progeny for 

QTL analyses, in order to develop helpful markers for breeding programs. 

 

3. Material and Methods 

Plant Material 

 This study is based on an F1 progeny of 229 hybrids obtained from 

controlled crosses between the wine grape varieties Monastrell (female 

progenitor) and Syrah (male progenitor). Monastrell is a thick-skinned black 

grape, high in tannins and late maturing. It is a variety of great hardiness and 

high resistance to drought and it needs a good deal of insolation. It is very 

well adapted to the dry conditions of the Mediterranean climate, and is spread 

across the whole Mediterranean basin. Monastrell is the most planted wine 

variety in Murcia (Spain), and is the predominant variety included in the 

Denominations of Origin (DOs) of Jumilla, Yecla and Bullas, Alicante and 

Almansa, being grown in the Spanish regions of Murcia, Castilla-La Mancha 

and Comunidad Valenciana. Syrah is a dark-skinned grape, high in flavors and 

soft tannins and early maturing. Wines made from Syrah are often powerfully 
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flavored and full-bodied. In Murcia, Syrah is also used for blending with 

Monastrell due to the acidity, color, and tannin levels of Syrah that provide a 

favorable ageing potential.  

This progeny segregates for some of the most important traits in wine 

grapes, like fertility, ripening time, bunch compactness, berry size, color, and 

acidity. The vines of this population were grown on their own roots under 

standard conditions of irrigation, fertilization, and pest and disease control, in 

an experimental field of the IMIDA in Murcia (South-east Spain).  

 

Marker analysis 

 Total DNA extraction from young leaves was performed using the 

commercial kit “DNeasy Plant Mini Kit” (Qiagen, IZASA, Spain), following 

the manufacturer’s protocol. The parent and mapping populations were 

genotyped using microsatellites (SSR, Simple Sequence Repeat), SNPs (Single 

Nucleotide Polymorphism) and CAPS (Cleaved Amplified Polymorphic 

Sequence) markers. Three hundred and thirty-five SNP markers (Lijavetzky et 

al. 2007; Cabezas et al. 2011) were analysed in the Spanish National 

Genotyping Centre (CeGen) with the SNPlex technology, 138 of them 

resulting informative for linkage mapping. In addition, eight new SNP-based 

markers were mapped, after their identification and development by applying 

the candidate genes (CG) approach (Pflieger et al. 2001) at the Fondazione 

Edmund Mach (San Michele all’Adige, Italy), in collaboration with the 

research team of Dr. Stella Grando. These candidate genes were selected 

based on different QTLs intervals. For suitable polymorphisms primers a 

mini-sequencing protocol was applied, employing the SNaPshot Multiplex Kit 

protocol. For SSR, 177 were first analyzed with the genitors and six progeny 

individuals (NCBI UniSTS GeneBank database) to select the most 

informative ones. Of these, 104 were selected for linkage mapping according 

to their segregation type. The SSR markers were analyzed by PCR, and the 
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products were separated by capillary electrophoresis using an ABI Prism 3730 

Genetic Analyzer sequencer; the fragments were sized using GeneMapper 

software (Applied Biosystems). Finally, the mapping population was also 

genotyped with the CAPS marker 20D18CB9, linked to berry color (Walker et 

al. 2007). 

 

Linkage maps 

 Genetic maps were developed with JoinMap 3.0 software (Van Ooijen 

and Voorrips 2001), applying the Kosambi function for the estimation of map 

distances (Kosambi 1944). Linkage groups (LGs) and marker order were 

determined using threshold values of 4.0 for LOD (logarithm of odds) and 0.4 

for recombination rate. The LGs were numbered from LG1 to LG19 

according to the international agreement achieved within the IGGP 

(International Grape Genome Program; www.vitaceae.org). Most markers 

showing distorted segregation were originally included in the map calculation 

unless they significantly affected the order of neighbouring markers. The 

markers order obtained was kept in round 2, but in some cases the markers 

order was fixed according to the position of the markers in the database of the 

grape genome sequences (www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/). 

Female, male and consensus genetic maps were aligned using MapChart v2.2 

software (Voorrips 2002).  

 

Phenotypic evaluation 

 Twenty-two segregating agronomic traits were evaluated for each 

genotype in three or six seasons (2008-2013). All statistical analyses were 

performed using SPSS 18.0 for Windows. Differences between years for each 

trait were analysed by the Kruskal-Wallis test, and the correlation between 

traits was calculated by the Spearman test.  
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Phenology-related traits 

 Budbreak was measured as the date when 50% of the buds were in 

Baggiolini stage C (Baggiolini 1952), and flowering as the date when 50% of 

the flowers were opened and the anthers were visible. Veraison was 

considered as the date when 50% of the berries were coloring and/or 

softening. Ripening time was considered when colored grapes reached 13.5 

ºBaumé and white ones reached 12.5 ºBaumé. 

 

Productive and morphological traits 

 Productive and morphological traits were evaluated at harvest (ripeness) 

in the laboratory, except the fertility index - which was scored before 

flowering as the number of inflorescences per young shoot. The average 

cluster weight was calculated using all the clusters per genotype, and the 

average berry weight was calculated using 300 berries taken randomly per 

genotype. For berry shape and the number of seeds per berry, 30 berries taken 

randomly were sampled per genotype. Berry skin color was determined 

visually as uncolored or colored. Cluster density, cluster shape, and berry 

shape were classified following the OIV codes.  

 

Enology-related traits 

 These analyses of each sample were performed in triplicate; each one 

with approximately 100 g of berries taken randomly. Total soluble solids were 

determined as ºBaumé, using an Atago RX-5000 digital refractometer. The 

juice pH and titratable acidity were determined by titration with 0.1 N NaOH, 

using a Metrohm 686 automatic titrator. The titratable acidity was expressed 

as g/L tartaric acid equivalent. Tartaric and malic acids were measured using 

enzymatic kits. Potassium content was determined by atomic absorption 

spectrometry, using a Unicam 969 spectrophotometer, and expressed as g/L. 

The phenolic potential of the grapes was determined based on the method 
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described by Saint-Cricq et al. (1998). Total and extractable anthocyanins 

contents were assayed by measuring the absorbance at 520 nm at pH 1.0 and 

pH 3.6, respectively, and were expressed as mg/L. The extractability index 

was calculated as described by Romero-Cascales et al. (2005). 

 

QTL analysis 

 The QTL analysis was done using MapQTL® 4.0 software (Van Ooijen 

et al. 2002). It was based on three different methods: the Kruskal-Wallis non-

parametric test (KW; Lehmann 1975), simple interval mapping (SIM; Lander 

and Botstein 1989) and multiple QTL mapping (MQM; Jansen and Stam 

1994). Initially, possible QTLs were identified by the KW and SIM methods. 

Both genome-wide and linkage-group-wide LOD thresholds corresponding to 

a significance level of α=0.05 were established from 1,000 permutations 

(Churchill and Doerge 1994). The significant and/or suggestive QTLs 

detected with SIM were considered. Then, scored markers in those regions 

were used as cofactors in MQM analysis. The QTL position was estimated 

from the location of the maximum LOD value with a 1-LOD support 

interval. The additive effect and percentage of phenotypic variance explained 

by each QTL were estimated from the MQM model.  

The normality of each trait distribution was evaluated by the Kolmogorov–

Smirnov test.  

 

4. Results and Discussion 

Phenotypic evaluation 

 Continuous variation and transgressive segregation were observed for 

most of the evaluated characters. The phenotypic data distributions were very 

similar in the different years analyzed.  
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Phenological traits 

The mean values of sprouting, flowering, and ripening (days since 1st 

January) and the mean length of the veraison-ripening interval showed 

significant differences among the years of the study. Syrah was the earlier 

parent for all the phenology-related traits. Most of the hybrids were later than 

Monastrell for flowering and veraison, and most of them showed sprouting 

and ripening times between those of the two progenitors.  

 

Productive and morphological traits 

The mean fertility index (0.6) of the progeny was lower than the values 

of both progenitors. Over 74% of the hybrids showed lower fertility than 

both progenitors. The mean cluster weight (84 g) of the progeny was lower 

than that of both progenitors, and 86% of the hybrids were distributed in the 

low-cluster-weight range (below 161 g). For cluster compactness, 5% of the 

hybrids showed loose clusters and 29% medium clusters. The berries of 

Monastrell and Syrah are colored and, in agreement with the expected 

Mendelian segregation for a monogenic, dominant trait (3:1), 74% and 26% of 

the progeny showed colored and uncolored berries, respectively. 

 

Enological traits 

The total acidity ranged between 2.6 and 10.6 g/L, the average value of 

the progeny being higher than the values of both progenitors. However, the 

mean tartaric acid content of the progeny was lower than that of both 

progenitors. The malic acid content in the progeny ranged between 0.8 and 

6.5 g/L and was less than that of tartaric acid. The total anthocyanins ranged 

between 235 and 2969 mg/L and only 17% of the hybrids had values higher 

than that of Syrah. 
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Correlation between traits 

Several associations between traits were revealed within each year, with 

Spearman coefficients higher than 0.5. Many of them were significant in all 

years analyzed and concerned the component variables of the same character: 

a positive, high correlation between veraison-ripening interval and ripening 

date; a positive, high correlation between visual color, total anthocyanins, 

extractable anthocyanins, and extractability index; a negative, moderate 

correlation between total acidity and pH. Cluster weight correlated positively 

with berry weight, fertility index, and cluster shape, but negatively with tartaric 

acid. Total acidity correlated negatively with ripening, veraison-ripening 

interval, and visual color. 

 

Linkage maps  

The total number of molecular markers useful for linkage analysis in 

the MnxSy mapping progeny was 251 (104 SSRs, 146 SNPs, and 1 CAPS), of 

which 84% allowed discrimination between maternal and paternal inherited 

alleles. The complete linkage map of Monastrell consisted of 160 molecular 

markers distributed in 19 linkage groups (LGs) covering 1035 cM, with an 

observed coverage of 61% and an average distance between loci of 7.02 cM. 

The complete linkage map of Syrah consisted of 186 molecular markers 

distributed in 19 LGs covering 1038 cM, with an observed coverage of 60% 

and an average distance between loci of 6.22 cM. The integrated map covered 

1174 cM with 238 markers, with an average distance between loci of 5.23 cM 

and an observed coverage of 76%. 

 

QTLs detection 

Phenotypic data and the three maps developed (Monastrell, Syrah, and 

integrated) were used to perform QTL analysis. These analyses were carried 

out using a multiple QTL model (MQM) based on QTLs detected previously 
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via interval mapping (SIM). The QTL analysis was made separately at the 

genome-wide-level (GW) and linkage-group-level (LGW), at 95% significance.  

Five significant QTLs were detected for sprouting at the GW level - on LGs 

1, 7, 8, 13, and 14 - but only the QTL on LG 7 was stable over the years 

studied (consistent). They explained between 6% and 12% of total variance. 

The QTLs on LGs 7 and 14 were previously reported by other authors. For 

flowering time, three QTLs were found - on LGs 5, 7, and 14 - but only the 

QTL on LG 7 was consistent, explaining up to 19% of total phenotypic 

variance. The VvFT (Flowering locus T) gene was found within the confidence 

interval of the QTL detected on LG 7. Four significant QTLs were detected 

for veraison, but only the QTL on LG 2 was consistent, explaining up to 22% 

of total phenotypic variance. The QTLs on LGs 5, 8, and 11 were detected 

only in one year (2008), but were reported by other authors (except the QTL 

on LG 5). Ripening date and the veraison-ripening period were found to be 

under the control of two genomic regions (LGs 2 and 17), explaining between 

7% and 18% of total phenotypic variance. VvMybA, a transcription factor that 

control the presence or absence of color in grapes, was found within the 

confidence interval of the QTL detected on LG 2. 

Two significant QTLs for fertility were detected on LGs 3 and 5, 

explaining between 6% and 26% of total variance. Although the region on LG 

3 was detected only in one year, it was reported previously by other authors. 

The QTL on LG 5 was consistent and also was reported by other authors. 

Berry weight was under the control of six genomic regions (LGs 1, 5, 7, 14, 

17, and 19), which explained between 6% and 12% of total variance. The 

QTLs located on LGs 5, 14, and 17 were consistent. A cytochrome P450 

78A-like protein linked with tomato weight was found within the confidence 

interval of the QTL detected on LG 17. For cluster compactness, two QTLs, 

localized on LGs 2 and 5 explained up to 28% of phenotypic variance.  
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Total acidity was shown to be under the control of two genomic 

regions (LGs 1 and 2), which explained between 7% and 18% of total 

phenotypic variance. For the ratio of total soluble solids to total acidity, three 

QTLs were found - on LGs 1, 2, and 4 - but only the QTL on LG 2 was 

consistent, explaining up to 19% of total phenotypic variance. The CBL01 

(Calcineurin B-like protein 01) gene was found within the confidence interval of 

the QTL detected on LG 2. This protein acts as a complex, together with a 

CBL-interacting protein kinase (CIPK), in the activation of a K+ channel of 

the Shaker family VvK1.2. Although for tartaric acid only one consistent QTL 

was found, on LG 16 at the LGW level (suggestive), an important gene was 

located within this region. L-idonate dehydrogenase is the key enzyme 

involved in the conversion of L-idonate to 5-keto D-gluconic acid, that 

produces oxalic acid, which is the only pathway known in the synthesis of 

tartaric acid in grapes. Malic acid was under the control of seven genomic 

regions (LG 4, 5, 8, 9, 15, 17, and 18), which explained between 11% and 29% 

of total phenotypic variance. For the ratio of tartaric acid to malic acid, three 

QTLs were found, on LGs 5, 8, and 11; these explained between 11% and 

21% of variance. The PDC1 (Pyruvate Decarboxylase 1) gene was found within 

the confidence interval of the QTL detected on LG 8. The increase in ethanol 

is linked with pyruvate production, derived from malic decarboxylation. PDC 

is the key enzyme in the fermentative metabolism and in the production of 

ethanol. One significant and consistent QTL was detected for total 

anthocyanin, on LG 2, and explained up to 80% of total phenotypic variance. 

The transcription factors involved in anthocyanin synthesis, VvMybA1, 

VvMybA2, and VvMybA3, were located within this region.  
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5. Conclusions 

The study of this progeny during several seasons revealed that crossing 

Monastrell and Syrah can generate a large phenotypic variability that may be 

useful in the development of new cultivars with improved attributes. The joint 

analysis of these phenotypic data and of genetic variations at SSR and SNP 

loci allowed us to identify several QTLs for phenological stages, productivity, 

and morphological and enological traits in wine grapes. These results open 

new perspectives for future studies on the genetic determinism of quality traits 

in grapevine.   
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II. GENERAL INTRODUCTION 

 The grapevine is one of the oldest crops in the world and still one of 

the most important in economic terms. Originating in Asia, it is grown 

throughout the temperate regions. In addition to making wine and other 

alcoholic beverages, the berries are consumed fresh (table grapes) or after 

drying and are used to obtain juice.  

        Figure 1. Botanic draw of Vitis vinifera. Font: www.lavid.eu 

                  

 The grapevine is a perennial, climbing plant having a twisted trunk with 

very long and flexible stems with jointed nodes. It attaches itself to natural 

supports using specialized organs called tendrils borne opposite the leaves. 

The leaves are alternate, petiolate, large, and consist of five pointed lobes. Its 
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flowers are greenish, small, and regular; the stamens occur opposite the petals 

and the pistil has two carpels (Mullins et al. 1992; Hidalgo 2002). The fused 

petals, called calyptra or cap, remain connected at the apex, while splitting 

along the base from the receptacle. The sepals degenerate early in flower 

development. Cultivated varieties generally have hermaphrodite flowers, while 

the wild forms are dioecious, with plants having only female (containing a 

functional pistil and either producing recurved stamens and sterile pollen or 

lacking anthers) or only male flowers (possessing erect functional anthers and 

lacking a fully developed pistil) (Srinivasan and Mullins 1976). The fruit of the 

grapevine is the grape, a berry that is more or less round in shape, juicy, and 

forms clusters. This berry is constituted by an outer film called the skin 

(epicarp), the pulp (mesocarp), and the endocarp, which generally contains a 

maximum of four seeds. 

 

II.I ORIGIN  

 The history of the grapevine is closely related to the development of 

human culture, and has been recently reviewed by This et al. (2006). While the 

oldest known fossils of the Vitaceae family date from the lower Eocene, about 

56 million years ago, the first wild vines appeared in Europe in the Pliocene 

(2-2.5 million years ago). Sheltered during the Quaternary in the 

Mediterranean basin and to the south of the Caspian Sea, at the end of this 

cold period they migrated to the east-west Mediterranean basin. Currently, the 

grapevine is found from the Atlantic coasts of Europe to Tajikistan and the 

western Himalayas, and from the slopes of the Rhine to the northern forests 

of Tunisia (Zohary and Hopf 2000; Hidalgo 2002; McGovern 2003). 

The hunter-gatherers of the Paleolithic (2.8 million - 8500 years BC) used the 

berries of wild vine (V. vinifera ssp. silvestris) as a food source (Zohary 1996). 

From that moment, man began to select hermaphrodite vine plants since their 

clusters bore more berries. Also selected were those plants whose berries were 
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larger and with a higher sugar content (Zohary and Hopf 2000). The selection 

was carried out both to obtain food and for wine making, a fact confirmed by 

the discovery of Neolithic pottery vessels (8500-4000 BC) containing the 

remains of seeds and tartaric acid (McGovern et al. 1996; Hidalgo 2002). This 

process of domestication resulted in the cultivated vine (V. vinifera ssp. sativa), 

which differs from the wild vine at both the phenotypic and genetic levels 

(reviewed by This et al. 2006). In addition to the archaeological and historical 

evidence suggesting that the first domestication of the vine occurred in the 

Middle East (McGovern et al. 1996), other genetic studies around the 

Mediterranean basin support the existence of secondary domestication events, 

independent of the initial domestication process in the center of diversity of 

the species (Arroyo-García et al. 2006; Lopes et al. 2009; Myles et al. 2011). 

Recent analysis of the genetic relationships between wild Spanish vines and 

cultivated vines suggests a genetic contribution of the wild accessions in Spain 

to contemporary Western varieties (De Andrés et al. 2011).  

 The expansion of the domesticated grapevine took place from the 

center of diversity of the vine, the Middle East, to regions such as the Jordan 

Valley (4000 BC), Egypt (3000 BC), the southern and central mountains of 

Zagros (Iran), and Lower Mesopotamia (around 3000 BC). The expansion 

towards the west is documented in Crete (2200 BC) and the coasts of the 

Italian and Iberian peninsulas (800 BC) (McGovern 2003). The cultivation of 

the grapevine reached China and Japan about 1200 BC. The expansion of 

wine consumption was made possible initially by the Phoenicians, who 

transported wine around the Mediterranean Sea. The Romans spread it 

throughout Europe and gave names to the different varieties. For them, wine 

was associated with the high classes of society and usually was drunk mixed 

with water, and always in company and at social events.  More details about 

the production and producers of wine were found in Egyptian pictures dating 

from around 1500 B.C. In Spain, the first findings were in a Phoenician 
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settlement in Almuñecar, where some vessels had remains of high quality wine 

from Egypt, dating from 717 B.C. (Hidalgo 2002). During the Imperial 

Roman Empire it reached many temperate regions of Europe, even reaching 

Germany. At the end of the Roman influence, the cultivation of grapevines 

was common in most of the parts of Europe where it is cultivated today. 

 In the Middle Ages, the Catholic Church – by means of the crusades - 

spread the cultivation of the grapevine and facilitated the exchange of 

germplasm. The spread of Islam to North Africa, Spain, and the Middle East 

also had an important role in the expansion of grape cultivation, especially 

table grapes (Royer 1988). During the Middle Ages varietal names appeared 

that are still used today. Later, missionaries introduced the cultivated vine into 

America, first as seeds (since they are easy to carry) and then as cuttings 

brought from France, Germany, Spain, Italy and Eastern Europe. In the 

nineteenth century, cuttings were also taken to South Africa, Australia, and 

New Zealand, and later to North Africa. The connexions between table grape 

varieties confirm that there is a closer relationship among them than for wine 

varieties. This shows that there has been more inter-breeding than for wine 

varieties, which are more ancient. Nonetheless, grapes have high 

heterozygosity compared with other domesticated crops and it is worth 

highlighting that relatively few varieties are used in the wine industry around 

the world. This poor variability among the cultivars helps to explain the 

phylloxera impact at the end of the 19th century in Europe, which 

necessitated the use of American vitis rootstocks and attempts to preserve the 

varieties through cuttings. However, for the winemaking industry cultivar 

homogeneity is important and it is achieved with the use of vegetative 

propagation. The southward movement of grapevines in Europe and western 

Asia would have been largely restricted by the east-west mountain ranges. 

This may explain the existence of only one Vitis sp. (V. vinifera) from the 

Atlantic coast of Europe to the western Himalayas, whereas China possesses 
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about 30 species, and North and Central America about 34 species (Jackson 

2008).  

 

II.II TAXONOMY 

 In taxonomic terms, the grapevine occurs within the division 

Magnoliophyta, class Magnoliatae, subclass Rosidae, superorder Celastranae, 

order Rhamnales, family Vitaceae, and genus Vitis – agronomically, Vitis is 

the most important genus of the Vitaceae. Originating from warm or 

temperate zones of the northern hemisphere, in America, Europe, and Asia, 

Vitis consists of approximately 60 inter-fertile species (This et al. 2006).  

Grapevines are distinguished from related genera primarily by floral 

characteristics. According to Galet (1967), in the genus Vitis two sections or 

subgenera can be distinguished: Muscadinia and Euvitis. 

 The subgenus Muscadinia includes three species (V. rotundifolia Michx, 

V. munsoniana Simpson, and V. popenoeii Fen) from the warm and temperate 

regions of southeastern North America. These species are characterized by 

the presence of simple tendrils, adherent bark with lenticels, nodes without a 

diaphragm, berries that are not very sweet and whose maturation is staggered, 

and a diploid chromosome number (2n) of 40. 

 The subgenus Euvitis includes more than 50 species characterized by 

the presence of bifurcated tendrils, bark that peels off, nodes with a 

diaphragm, and a diploid chromosome number (2n) of 38. Grapevines are 

thought to be ancestrally hexaploids. Its species can be classified by their 

natural geographical range, as American and European-Asian. Among the 

latter, the species Vitis vinifera is the only one with a significant economic 

importance, and the only one employed in wine production. Currently, two 

forms of this species co-exist in Eurasia and North Africa: the cultivated form 

V. vinifera ssp. vinifera (or sativa) and the wild form V. vinifera ssp. silvestris (or 

sylvestris). This separation into subspecies was based mainly on morphological 
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differences due to the selection or process of domestication of grapevine by 

man over time. 

 

II.III GENOME 

 Although the cultivated grapevine has hermaphrodite flowers that can 

be self-pollinated, cross-fertilization by insects and wind is normal; thus, it has 

a highly heterozygous genome with many lethal recessive mutations (Olmo 

1979; Thomas and Scott 1993). Recently the genome of Pinot Noir was 

sequenced (Velasco et al. 2007), as well as a highly homozygous line of the 

same variety, obtained by successive backcrosses (Jaillon et al. 2007). This 

sequencing work has yielded more detailed knowledge of specific 

characteristics of the grapevine genome that had previously been inferred 

using methods such as flow cytometry (Lodhi and Reisch 1995) or genetic 

maps (Lodhi et al. 1995; Dalbó et al. 2000; Doligez et al. 2002; Adam-

Blondon et al. 2004; Fischer et al. 2004; Riaz et al. 2004; Fanizza et al. 2005; 

Cabezas et al. 2006; Doligez et al. 2006 a and b; Di Gaspero et al. 2007; Mejía 

et al. 2007; Troggio et al. 2007; Welter et al. 2007; Costantini et al. 2008; 

Salmaso et al. 2008; Vezzulli et al. 2008; Doligez et al. 2010).  

 The grapevine genome is distributed in 19 chromosomes (2n = 38), 

with a size of between 487.1 Mb (Jaillon et al. 2007) and 504.6 Mb (Velasco et 

al. 2007). It is, therefore, of a size similar to that estimated for the balsam 

poplar of California [Populus trichocarpa, 485 Mb (Tuskan et al. 2006)] and rice 

[Oryza sativa, 420 Mb (Goff et al. 2002)], almost four times that of the 

Arabidopsis genome [Arabidopsis thaliana, 125 Mb (Kaul et al. 2000)], half that 

of tomato [Solanum lycopersicum, 1,000 Mb (Lodhi and Reisch 1995)], a sixth of 

that of corn (Zea mays, 3,000 Mb), and 33 times less than that of wheat 

[(Triticum spp., 16.000 Mb) (Goff et al. 2002)]. The estimated number of genes 

is 29,585 to 30,434, with an average of 372 codons and five exons per gene 

(Jaillon et al. 2007; Velasco et al. 2007).  
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 Analysis of the elements with repetitive sequences revealed that 24.7 to 

41.4% of the total genome are transposable elements, more abundant in 

grapevine than in the poplar, rice, or Arabidopsis. The distribution of these 

repetitive elements is not very uniform throughout the genome, being very 

abundant in introns (Jaillon et al. 2007). In addition, 88,909 microsatellite 

sequences (repetitions of very short and simple motifs) have been identified, 

which occupy 2.1 Mb, representing 0.42% of the total genome (Velasco et al. 

2007). 

 Velasco et al. (2007) identified and assessed two million polymorphisms 

arising from the substitution of one nucleotide in a sequence by another or 

SNPs (single nucleotide polymorphisms), with a frequency of 4.0 SNPs per 

kb, being less frequent in coding regions than in non-coding regions. Of the 

genes, 86.7% contain one or more SNPs, which is very interesting when it 

comes to using them as genetic markers, because the SNPs can cause natural 

phenotypic variation. 

 

II.IV ECONOMIC IMPORTANCE  

 The cultivation of the grapevine is an activity of great economic 

importance worldwide. In 2007, more than 7.7 million hectares of grapevine 

were cultivated, producing 66.5 million tonnes of grapes (OIV 2011), which 

makes grapes the fourth-most-produced fruit, after bananas, oranges, and 

apples (FAO 2007). Europe is the largest producer of grapes, with 44% of 

world production. The list of European grape-growing countries is headed by 

Italy, France, and Spain, the latter being the fifth-greatest producer on a global 

basis. Of the global grape production, 30.2% is consumed fresh (table grapes), 

with Asia the largest producer - led by China, Iran, Turkey, and India. Spain 

lies in twelfth place, and is the second-largest producer of table grapes in 

Europe, behind Italy. Of the 1,023 million ha of vine farmed in Spain in 2013, 

97.4% are dedicated to wine production, 2% to table grapes, 0.3% to the 
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production of raisins, and 0.3% to vineyard nurseries (www.mapa.es). The 

European Union is the largest wine producer in the world, accounting for 

about two-thirds of global production. Of the estimated 25.2 million tonnes 

of grapes produced in the EU in 2013, the vast majority (91%) were destined 

to wine production.  

 

            Figure 2. World production of grapes by continent (FAOSTAT) 

                            

 World wine production in 2013 was 218.6 million hectolitres (hl), 

representing an increase of about 24 million hl with respect to 2012. The 

largest producers of wine were Italy with 44.9 million hl (16.1% of world 

production), Spain with 42.7 million hl (15.3% of world production), and 

France with 42 million hl (15.1% of world production). Outside of Europe 

the production was 114.4 million hl, being highest in the USA (22 million hl), 

Argentina (15 million hl), Chile (12.8 million hl), and Australia (12.5 million 

hl). Spain is the country with the greatest cultivated area for this crop in both 

Europe (30% of the total area) and the World (13.4%).  Here, wine 

production was stable during a number of years at about 40 million hl, but in 

2013/2014 it increased to 52 million hl (FEGA; Federación Española de 

Garantía Agraria). In 2014 Spain took the lead in wine sales by volume but the 

average price was lower. By contrast, Italy weakly decreased its exports by 

volume but increased the profit. The cultivated areas inside Spain are shared 

out thus: 48.8% Castilla-La Mancha, 8.7% Extremadura, Valencia, Castilla and 
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León. In Spain there are 90 Geographic Denominations of Origin (D.O.), 

three of being located in Murcia (Bullas, Jumilla, and Yecla). 

 

   Figure 3. D.O. areas in the Region of Murcia 

                                 

       

 The Jumilla D.O., created in 1966, has 44 wineries and 1993 

viticulturists. This D.O. also comprises different areas of the Castilla-La 

Mancha region; Ontur, Fuente Álamo, Montealegre del Castillo, Tobarra, 

Albatana, and Hellín. The Yecla D.O. was formed in 1975 with 5824 ha, 493 

viticulturists, and eight wineries. The D.O. Bullas was created in 1994 with 

1036 ha and 496 winegrowers. This D.O. comprises several towns such as 

Bullas, Cehegín, Caravaca, Moratalla, and Lorca. Murcia has 30,916 ha of 

vineyards with a production of 187,814 tonnes in 2013. In this year the 

exports were 123,000 tonnes, with a value of 159 million Euros; this supposed 

6.24% of total national exports. In Spain this activity generated (in 

2013/2014) 73,816 jobs, 9% more than in previous years, due to the higher 

production than in previous seasons. 
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II.V GRAPE AND WINE: QUALITY 

 Although wine consists of two primary ingredients, water and ethanol, 

its quality depends on the quality of the grapes. The subtle differences that 

distinguish one varietal wine from another depend on a large number of 

compounds. The taste and mouth-feel sensations of a wine are due primarily 

to the few compounds that occur individually at concentrations above 

0.1g/liter. These include water, alcohol (ethanol), fixed acids (primarily tartaric 

and malic or lactic acids), sugars (glucose and fructose), and glycerol. Other 

than alcohol, wine generally contains about 0.8-1.2 g of aromatic 

compounds/liter. This constitutes about 1% relative to the wine’s ethanol 

content. The basic flavor of wine depends on additional 20 or more 

compounds. The most common aromatic compounds are fusel alcohols, 

volatile acids, and fatty acid esters. Of these, fusel alcohols often constitute 

50% of all volatile substances other than ethanol. The vast majority of 

chemicals found in wine are the metabolic by-products of yeast activity during 

fermentation. By comparison, the number of aromatic compounds derived 

from grapes is comparatively small. Nevertheless, these often constitute the 

compounds that make varietal wines distinctive. Even the mysteries of the 

benefits of ageing and barrel maturation are now yielding their secrets. This 

knowledge is beginning to guide vineyard and winery practise toward the 

production of more consistent and better-quality wine. Plant breeders are also 

using this information to streamline the development of new grape varieties. 

 Given the great importance of the cultivation of wine grapes in the 

agriculture of the region of Murcia, and ultimately in its economy, it is vital 

that genetics-based breeding projects aimed at yielding new varieties are 

developed, to maintain - and even improve - the competitiveness that 

characterizes this region. Such new varieties, adapted to the agro-climatic 

conditions of our region, would provide a higher profit margin for the farmer 
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and keep this ancient tradition, one of the foundations of our culture and 

economy, alive. 

 

II.VI BREEDING 

 II.VI.I Traits of interest 

Phenological traits 
 
 The phenology of plants consists of complex events that depend on the 

combination of different factors; external, such as the environment, and 

internal, such as the expression of different genes and hormonal levels. 

Phenology correlates specific phases of growth with climatic conditions 

(Mullins et al. 1992) and for farmers it is important to know these stages in 

order to optimize treatments or agricultural practices. For breeders it is crucial 

to find new cultivars with good adaptation to specific climatic conditions, for 

the optimal development of the vineyard. In the last decade has been an 

increase in temperatures and this change affects the phenological processes in 

grapevine areas (Jones and Davis 2000; Duchêne and Schneider 2005). 

 Classically, there are four phenological phases in grape: sprouting, 

flowering, veraison, and ripening. The optimal achievement of all of them 

allows a satisfactory yield. Bud break is an important event that occurs after 

dormancy, it being essential that plants sprout homogeneously in order to 

have an optimal development. Bud break, in a temperate region, is expressed 

by the number of chilling hours that are required for this event to begin. In 

these latitudes, vines have a dormant period; this is induced by short days, 

decreasing temperatures and a reduction of growth. In the same way, the 

initiation of growth depends on the external temperature and light as well as 

the internal status of the plant that stimulates growth. Three phases form this 

stage: paradormancy, endodormancy, and ecodormancy (Lang et al. 1987). In 

paradormancy buds are latent because of internal conditions but could sprout 

if the shoot tip or leaves are removed. In endodormacy buds are blocked by 
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physiological factors. Then, the plant transition to ecodormancy occurs when 

a range of chilling hours are accumulated, and buds break when 

environmental conditions became favorable (Horvath et al. 2003). Dormancy 

is crucial in temperate areas to survive in winter conditions. Bud break has 

been studied by several authors (Wake and Fennell 2000; Keilin et al. 2007; 

Halaly et al. 2008; Ophir et al. 2009; Díaz-Riquelme et al. 2012). All the 

studies concluded that bud burst has similarities with oxidative stress and 

hypoxia, is associate with catalase activity, and that some hormones as 

ethylene or ABA are involved in this phase. Bud break has a high influence in 

the rest of the phenological events, so its delay affects the normal 

development of the vine. In the Northern hemisphere, this stage occurs at the 

end of March or beginning of April, when temperatures rise after winter. 

 Flowering is the next step after bud break, and the onset of it depends 

on the previous stage. This event is absolutely linked with the production; 

therefore, flowering is a crucial step on the path to an optimal yield, one of 

the main objectives in the vineyard. It is well known that the initiation of the 

flowering process begins with the formation of the anlagen, in the previous 

year, followed by the floral induction in the subsequent season. The ‘anlagen’ 

is an “uncommitted primordial” and could develop in a tendril, shoot, or 

inflorescence, depending on external and internal cues. At bud break time 

flowering re-commences its development; the numbers of branches and 

flowers are not fixed and depend on the endo and exo conditions that prevail 

at this moment. Cytokinins and gibberellins are the main hormones that 

control the flowering event. Gibberellins promote the lateral meristem 

formation and tendril development. In contrast, cytokinins promote 

inflorescence development. Carmona et al. (2008) reviewed the genetic 

control of this phase and how the cultural practices affect the final 

production. The genes involve in this pathways are extensively studied in 

Arabidopsis (reviewed by Roux et al. 2006). In Vitis many genes involved in 
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floral induction (Joly et al. 2004; Boss et al. 2006; Sreekantan and Thomas 

2006; Carmona et al. 2007; Almada et al. 2009; Díaz-Riquelme et al. 2009), 

identity of floral meristem (Carmona et al. 2002; Calonje et al. 2004; Joly et al. 

2004; Boss et al. 2006; Díaz-Riquelme et al. 2009) and identity of floral organs 

(Boss et al. 2001; 2002; 2003; Sreekantan et al. 2006; Poupin et al. 2007; Díaz-

Riqueleme et al. 2009) has been studied. Of the environmental factors, high 

temperature and the light intensity are the factors that most influence in this 

event. Bunches in vines are formed by racemes with branches that produce 

the typical conical form of the inflorescence. The number of flowers per 

inflorescence and the whole production is almost constant between varieties 

and years if there are no environmental stresses that alter the flowering event. 

Grapevine cultivars are hermaphrodites and so the pollination is ensured, but 

only 20-30% of the flowers proceed to fruit set. This is favorable, to have a 

balanced yield in the field and to produce an optimal quality of berries. 

 The berry development is characterized by two sigmoidal growing 

cycles (Coombe 1992). The first phase begins with fruit set and finishes with 

veraison, the principal process being cell division. In this stage, the berry is an 

organ with chlorophyll, green and hard, which primarily accumulates acids. 

This phase includes two separate stages; in the first, the embryo develops but 

there is little cell division in seeds and pericarp; in the second stage the 

embryo grows, the length of this stage determining the ripening date of the 

variety. The second phase begins with the onset of veraison and includes 

different processes, such as softening (cell-wall degradation), cell expansion, 

and sugar, color, and aromatic compounds accumulation. These processes still 

carry on during the ripening phase and conclude at the harvest date. So, the 

beginning of veraison determines the harvest date. The transcriptomic analysis 

of this phase showed that a strong cellular reprogramming occur in the 

transition between pre- and post- veraison (Terrier et al. 2005; Deluc et al. 

2007, Pilati et al. 2007; Lijavetzky et al. 2012). 
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 The hormonal balance through berry development changes; in the first 

phase there are an accumulation of auxins, cytokinins and gibberellins that 

promote cell division. After veraison the main hormones are ethylene, abscisic 

acid and brassinosteroids (Conde et al. 2007). Although grapes are no-

climateric fruits, different works with ethylene show its connections with 

maturation process (Chervin et al. 2004; 2008). Moreover the accumulation of 

abscisic acid is faster in the post-veraison stage. Some works showed that 

ABA enhances sugar and anthocyanins accumulation and decreases acid 

concentration (Çakir et al. 2003; Sun et al. 2010). The final size of the berry 

depends on environmental and genetic factors, such as temperature and water 

availability; as well, the number of seeds is closely correlated with berry size. 

Also, it is limited by the capacity of cellular expansion and the numbers of 

cells that are fixed since stage I of development. The skin becomes thin in the 

ripening process, as the capacity of expansion of the mesocarp cells is higher 

than that of the skin cells. Degradation events of the cell wall are triggered, as 

the action of polygalacturonases and cellulases allows cell expansion 

(Barnavon et al. 2001; Nunan et al. 2001; Glissant et al. 2008), because the 

vacuoles need to increase in volume to store different metabolites. 

 Harvest date is closely related with the grape quality. In this sense, 

grape quality is the result of a set of many characteristics that hopefully mean 

a good product for consumers. For wine grapes it depends on the 

sugar/acidity ratio, the phenols concentration, and the volatile aromas 

formed. Acidity is generated in the first stage of growth, and at the onset of 

veraison it starts to decrease through several actions: dilution, synthesis 

inhibition, gluconeogenesis, and the use of acids as a source of energy. Sugar 

is accumulated during ripening as the berries act as sinks. In the same way, 

anthocyanins and phenols begin to be synthesized during veraison. 

Temperature affects all of these processes: in cold regions grapes have less 

sugar and more acids, and vice versa in warm places. In wine production the 



                                                                                                                                   II General Introduction 

 
17 

fermentative process transforms sugar into alcohol, and the acid level 

contributes to wine stability. There are a lot of factors and processes that 

control ripening, depending on the variety, year, and region, as well as the 

kind of wine to be produced, so the optimal time for harvest is a complex 

decision for growers. 

 

Productivity and morphological traits 

 There are different factors influencing the productivity, such as the 

variety, environmental conditions, or cultural practices. The cultivar 

production is mainly controlled by fruit set; although the cultivated vines are 

hermaphrodites only the 20-30% of total flowers develop into fruits (Mullins 

et al. 1992). In vine cultivars, the berry is the essential unit of the yield but the 

fertility index, measured as the number of clusters per shoot, is the major 

indicator of fruitfulness in the vineyard (Fanizza et al. 2005). The number of 

clusters is more important than cluster weight for final production. In the 

same way, the cluster weight depends more on the number of berries that the 

weight thereof. Other crucial component for final production is the 

compactness. It is associated with the healthy of the cluster and the final 

quality of the berries (Vail and Marois 1991). Dense clusters are more 

susceptible to fungal attack. Besides, greater compactness of the cluster 

implies a heterogeneous cluster. The different ripeness of the berries within 

the cluster depend on the position and sun exposure of each berry, and affect 

the final juice composition. Yield in grapes is mainly controlled by winter 

pruning but it could be modified in the productive season. Thinning clusters 

is a common practice to modify the final production. Also this technique is 

applied to transform the cluster shape. Nevertheless this technique could 

induce undesirable responses on the quality, and berry damages (Tardaguila et 

al. 2012).  
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 Wine industry prefers a small berry size, because it increases the skin-

to-flesh ratio and enhances the pigments and other secondary metabolites in 

the wine. Berry development has three different phases in a double sigmoid 

curve: the first involves cell division; the second is correlated with veraison; 

the third is related with cell enlargement (Coombe 1973; 1992). The final size 

depends on the plasticity of the cell wall that allows the cell enlargement by 

water and sugar accumulation. For growers, it is very important to have a 

variety with equilibrated production, which assures homogeneous and healthy 

maturity in all the berries. For these reasons the cluster size and the 

compactness become important parameters on breeding programs.  

 

Enologycal traits 

 Acidity is one of the main enological characters for both table and wine 

grapes, because the ratio sugar/acidity makes the taste pleasant or unpleasant 

for consumers. In particular, the level and composition of the acid fraction in 

the must influences the development of balanced and stable wines, since 

acidity affects the growth of the microorganisms that are needed in the 

fermentation process of wine. Although the acid composition depends on the 

cultivar, there are two main acids, tartaric and malic. They make up 70-90% of 

the total acidity in berries. Their synthesis starts in the first phase of berry 

growth, when the fruit is green and herbaceous, and decreases in the final 

phase, when sugars start to accumulate. Acids decrease due to degradation 

processes and their dilution by the increase of water and sugar accumulation 

in the vacuoles. Tartaric acid shows a peak of accumulation in the pre-

veraison stage and then the level keeps constant. Then a dilution occurs due 

to the water accumulation in the vacuoles in the final step of grape maturity. 

For malic acid the accumulation occurs in the first phase of fruit growth, as 

tartaric acid, but it is synthetized through sugar metabolism. Contrary to 

tartaric acid it shows a degradation process post-veraison. Malic acid degrades 
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during the ripening process because it is involved in other processes such as 

energy provision. Several genes, related with the production and degradation 

of this acid, have been studied and cloned (reviewed by Sweetman et al. 2009). 

 

 Another main trait in wine grapes is the color, which is crucial for the 

final quality of the wine. Anthocyanins are responsible for this character and 

their accumulation in grapes starts in the veraison stage and continues through 

all the ripening process. Color has been extensively studied in some species, 

such as petunia (Petunia hybrids), snapdragon (Antirrhinum majus), or maize (Zea 

mays). Anthocyanins belong to a big family of flavonoids which have six 

important groups: chalcones, flavones, flavonols, flavandiols, anthocyanins, 

and condensed tannins. Their function is linked with protection against 

pathogens and UV and with insect attraction for pollination. In grapes, 

anthocyanins are stored in the skin vacuoles, although a few cultivars can 

accumulate them in the flesh too. Tannins occur in the skin and, mainly, in 

the seeds of the grapes, contributing to wine stability. In general, the 

flavonoids have beneficial effects on human health.  

 Anthocyanins differ according to: i) the number and position of the 

hydroxyl groups; ii) the degree and position of the methylation of the 

hydroxyl groups; iii) the nature and number of the sugars linked and their 

position; iv) the nature and number of the aromatic acids linked with the 

sugars (acylation). All of these different combinations result in five basic 

anthocyanins: cyanidin, peonidin, delphinidin, petunidin, and malvidin. In 

Vitis vinifera the most usual forms of these anthocyanins are 3-monoglucoside, 

3-acetylglucoside, and 3-p-coumaroylglucoside. Malvidin-3-O-glucoside is the 

most abundant anthocyanin in grapes.  

 These secondary metabolites derive from the shikimate pathway. The 

principal genes involved in this pathway were cloned in Vitis by Sparvoli et al 

(1994), using the previously described genes from petunia and snapdragon. 
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Further work by Boss et al (1996) studied the expression pattern of these 

genes in flowers and berries of grapes.  

 The presence of color in Vitis vinifera and other Vitis genus depends on 

a MYB transcription factors family located on chromosome 2 (Kobayashi et 

al. 2004; Walker et al. 2007; Azuma et al. 2008). The insertion of a 

retrotransposon in a promoter region and the presence of one SNP mutation 

in a coding sequence are responsible of the absence of color. A more 

comprehensive study of this family (Fournier-Level et al. 2009) revealed 32 

polymorphisms in a core collection of natural source. The 84% of total 

anthocyanin variance could be explained by the combination of one 

retrotransposon, three SNPs and one insertion/deletion. 

 

II.VI.II Molecular Markers 

 Genetic markers represent genetic differences between individual 

organisms or species. Generally, they do not represent the target genes 

themselves but act as ‘signs’ or ‘flags’. Genetic markers that are located in 

close proximity to genes (tightly linked) may be referred to as gene ‘tags’. Such 

markers themselves do not affect the phenotype of the trait of interest 

because they are located only near or ‘linked’ to genes controlling the trait. All 

genetic markers occupy specific genomic positions within chromosomes 

called ‘loci’ (singular ‘locus’). There are three major types of genetic markers: 

morphological or visible markers which themselves are phenotypic traits; 

biochemical markers, which include allelic variants of enzymes called 

isozymes; and DNA or molecular markers (Jones et al. 1997; Winter and Kahl 

1995). Morphological markers are usually visually characterized phenotypic 

characters such as fruit color, growth habits or berry shape. Isozymes markers 

are differences in enzymes that are detected by electrophoresis and specific 

staining. The major disadvantages of morphological and biochemical markers 



                                                                                                                                   II General Introduction 

 
21 

are that they may be limited in number and are influenced by environmental 

factors or the developmental stage of the plant (Winter and Kahl 1995). 

 Since the 1970s, molecular techniques have permitted the detection and 

study of individual variations or polymorphisms at the level of the DNA 

sequence, and therefore the development of molecular genetic markers. Such 

polymorphisms can be detected by a diverse range of techniques which allow 

the genetic differentiation of organisms of the same or distinct species (De 

Vienne et al. 2003; Collard et al. 2005). Normally, a small fragment of DNA, 

that may or may not contain genes, is analyzed. DNA markers are the most 

widely used type of marker predominantly due to their abundance.  

 These techniques can be classified into two main groups: those based 

on the polymerase chain reaction (PCR) and the rest. The first, in turn, can be 

classified according to whether they amplify known sequences or random 

sequences, although there are markers that share both characteristics. The 

amplification of DNA fragments and the direct evaluation of the differences 

in length of the amplified products, without the need for transfer and 

hybridization, represented a qualitative change in the possibilities of using 

DNA markers in genetics-based plant breeding. 

 All molecular markers can be visualized, so that the alleles carried by an 

individual for a given marker can be identified. The display can be carried out 

by electrophoretic techniques on agarose or acrylamide gel, or by using 

sequencers. Depending on the information that molecular markers may 

provide, they are classified as dominant or codominant. A marker is dominant 

when homozygous individuals are indistinguishable from heterozygous ones, 

so that they are described by presence/absence of a fragment. If a dominant 

marker is visualized on an agarose gel as a band, it is impossible to know 

whether the individual carries the marker on both copies of the chromosome 

(homozygous) or on only one (heterozygote). The co-dominant markers do 

allow one to distinguish between homozygous and heterozygous individuals. 
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Such markers always amplify two alleles, so that two bands will be displayed if 

the individual is heterozygous, but only a single band if it is homozygous 

(Nuez et al. 2000; De Vienne et al. 2003). Below are described some of the 

markers used most widely for grapevine. 

 The first molecular markers used, the RFLP (Restriction Fragment 

Length Polymorphisms), were developed in the early 1980s (Botstein et al. 

1980; Wyman and White 1980). With these markers, the polymorphism will 

be detected as a difference in the length of the restriction fragments 

generated. They are co-dominant in character and possess major drawbacks: 

the requirement for information prior to their evaluation and their high 

economic and labor costs (García-Mas et al. 2000; De Vienne et al. 2003). The 

RFLPs were followed by a long list of markers that appeared in tandem with 

the evolution of the techniques of molecular analysis; here are described the 

ones used most in grapevine. The polymorphism of the RAPD (Random 

Amplified Polymorphic DNA) is generated by amplification of genomic DNA 

by PCR, using a single primer with a short (8-10 bp) and random sequence. 

They are markers that are simple and cheap to obtain, but have drawbacks: 

they are dominant by nature, have low reproducibility between laboratories, 

and are not transferable between crossings and, therefore, even less so 

between species (Williams et al. 1990; Welsh et al. 1991; García-Mas et al. 

2000). The AFLP (Amplified Fragment Length Polymorphisms) are based on 

the combination of digestion with restriction enzymes and selective PCR (Vos 

et al. 1995). They are dominant markers, more reproducible than the RAPDs, 

and do not require prior information, but do need more complex and 

expensive technology (García-Mas et al. 2000; De Vienne et al. 2003). Some 

markers, such as SAMPLs (Selective Amplification of Microsatellite 

Polymorphic Loci) (Vogel and Scolnick 1998) and the S-SAPS (Sequence-

Specific Amplification Polymorphisms) (Waugh et al. 1997), are derived from 

a modification of the AFLPs technique. The markers of type RFLP, RAPD, 
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or AFLP can be converted into specific PCR markers that are easier to assess, 

such as the SCARs (Sequence Characterized Amplified Regions). These 

markers, which can be codominant, allow the detection of a single locus, but 

require prior information on the sequence to be studied. The conversion to 

SCARs-type markers can cause loss of polymorphism (Konieczny and 

Ausubel 1993). To solve this drawback, the fragments amplified by PCR can 

be digested with restriction enzymes to generate polymorphism. This results 

in markers of the CAPS type (Cleaved Amplified Polymorphism Sequence) 

and their variant dCAPS; both are codominant in character. The SSCPs 

(Single Strand Conformation Polymorphisms) are developed by taking 

advantage of changes in the three-dimensional configuration caused by 

variations in the DNA sequence, which result in differences in mobility on the 

acrylamide gel, giving rise to polymorphism (Orita et al. 1989). This technique, 

which requires specific amplification by PCR of a region, is useful to detect 

polymorphisms which are due to only one base. In this work we have mainly 

used two types of molecular markers that are detailed below: microsatellites 

and SNPs. 

 

Microsatellites (SSRs, Simple Sequence Repeats) 

 Microsatellites, SSRs (Simple Sequence Repeats), and STRs (Short 

Tandem Repeats) are hypervariable genomic regions constituted by a small 

repeating unit of di-tri or tetranucleotides in tandem, although some more 

complex combinations are also possible. The design of primers specific for 

the unique sequences that flank the redundant region allows PCR 

amplification of the repeat region. The genetic basis of the polymorphism 

detected is the variability of the number of tandem repeats between 

individuals and, consequently, the size of the amplified fragment. When the 

differences in length of the amplified fragments are great, they can be assessed 

on agarose gels, although their evaluation on acrylamide gels or in DNA 
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sequencers is more common. The use of these markers has been limited by 

the difficulty in locating them in the genome and the need to predetermine 

the sequences flanking the repeat. They are expensive to develop and their use 

is limited to species where this information exists or where it can be 

transferred from related species. Once this information is obtained, they are 

markers of low cost have easily interpretable genetic profiles, allowing the 

exchange of information between laboratories (García-Mas et al. 2000; De 

Vienne et al. 2003). 

 A microsatellite may have many alleles, depending on the number of 

repetitions present in different individuals. This is because these sequences 

have a higher mutation rate than any other type of sequence. Although the 

reason for this is not fully elucidated, it may be because, during DNA 

replication, the newly formed strand pairs with the wrong repetition, so that 

the DNA polymerase can add or delete one or more copies of the repeat in 

the new DNA strand (Moxon and Wills 1999). It can also be due to errors in 

recombination (Oliveira et al. 2006). 

 Besides being highly polymorphic and abundant markers distributed 

throughout the genome, they are codominant, highly reproducible, and 

transferable between crossings, since the sequences flanking the repeats are 

conserved between individuals of the same species and partly between related 

species. Therefore, they have been the molecular markers used most 

commonly in genetic studies (Thomas et al. 1994; Bowers and Meredith 1997; 

Oliveira et al. 2006). 

 Currently, all available information about the microsatellites identified 

in the grapevine genome is in the NCBI database UniSTS 

(http://www.ncbi.nlm.nih.gov/) data. Many of them have been described in 

research journals such as the VMC (Di Gaspero et al. 2000, Pellerone et al. 

2001, Arroyo-García and Martínez-Zapater 2004), developed by the private 

consortium Vitis Microsatellite Consortium (Agrogene SA, Moissy, Cramayel, 
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France), as well as the VrZAG (Sefc et al. 1999), VVS (Thomas and Scott 

1993, Thomas et al. 1994), VVMD (Bowers et al. 1996, 1999), SCU (Scott et 

al. 2000), UDV (Di Gaspero et al. 2005), VVI (Merdinoglu et al. 2005), and 

VCHR (Cipriani et al. 2008). 

 

SNPs (Single Nucleotide Polymorphisms) 

 The SNPs are markers whose polymorphism is caused by variations in 

a single nucleotide in the DNA sequence. By their nature, SNPs can be 

present in any genomic region; so, they can mark any gene of interest for 

breeding and offer the possibility to exploit a huge variation. The level of 

polymorphism is very similar between coding and non-coding regions, 

although it is slightly higher in the latter. It is the most abundant 

polymorphism in most organisms (Rafalski 2002 a, b), but requires prior 

knowledge of the sequence of the alleles under investigation. In grapevine the 

presence of an SNP has been observed every 64 or 250 bp, according to 

studies (Lijavetzky et al. 2007; Velasco et al. 2007). Although they are biallelic 

markers, they have the advantages of being codominant and highly 

reproducible between laboratories and detection techniques, as the alleles 

differ by one nucleotide in a given position, rather than by their sizes (as with 

the rest of the molecular markers). For the above reasons, they are considered 

interesting and useful markers, both in the construction of genetic maps and 

in the identification of varieties (García-Mas et al. 2000; De Vienne et al. 

2003). 

 The detection of SNPs necessarily involves the amplification of 

genomic sequences, which may come from cDNAs, BACs (Bacterial Artificial 

Chromosomes), or databases published with ESTs (Expressed Sequence 

Tags). There are several methods for detecting SNPs in these sequences: the 

development of SSCPs (Orita et al. 1989) and CAPS (Konieczny and Ausubel 

1993), the re-sequencing of ESTs (Lijavetzky et al. 2007) and terminal 
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sequences of BACs (Salmaso et al. 2008), or the sequencing of complete 

genomes – such as the recently fully-sequenced genome of grapevine (Jaillon 

et al. 2007; Velasco et al. 2007). Due to recent advances in DNA sequencing, 

progress is being made in large-scale production of this type of polymorphism 

in plants (Margulies et al. 2005; Shen et al. 2005; Streemers and Gunderson 

2005; Tobler et al. 2005). 

 The assessment of the polymorphism can be accomplished on gels, 

which separate the amplification products generated using specific primers, 

one of which matches the 3' end with the nucleotide originating from the 

polymorphism. Polymorphisms can also be resolved by denaturing high-

performance liquid chromatography (DHPLC), provided the melting points 

of the PCR products of the alleles under study are known, based on their 

sequences. The usefulness of SNPs lies in their widespread use; due to this, 

more sophisticated methods have been proposed, which involve the use of 

microchips. 

 

 II.VI.III Maps 

 Genetic maps in animal and plants are based on the concept of linkage. 

A genetic or linkage map is a representation of the relative positions of 

markers or genes within a chromosome or linkage group. It is said that two 

markers are linked when they exist on the same chromosome and tend to be 

inherited together in the recombination event of meiosis. The population 

employed for their construction can derive from a cross (F1), one or more 

backcrosses (F1+n), or a group of individuals that are not directly related 

(germplasm). 

 The construction of a genetic map involves the estimation of the 

genetic distance or mapping distance between two loci, estimated two by two. 

This distance is defined as the value of the recombination fraction between 

loci; that is, the proportion of the new associations formed between two pairs 
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of markers with respect to the total number of associations. Its minimum 

value is 0 and the maximum 0.5, the latter value corresponding to the 

situation of independent genetic loci. The distance between markers is a 

relative value for each cross as it depends on the markers being considered 

(Kearsey and Pooni 1998; Nuez 2000; De Vienne 2003b).  

 After checking the linkage using a chi-squared test, one can estimate the 

recombination value by different methods. The methods based on regression 

and maximum likelihood give smaller standard deviations of the estimates, 

and therefore are the ones used most in the different software packages 

available. Once the pairs of values for the recombination between loci have 

been calculated, it is necessary to define their significance; that is, the 

probability that two loci are linked with the calculated value versus the 

probability that they are independent with the same segregation. This is 

known as the LOD (Likelihood Ratio, or Logarithm of Odds) value, the 

logarithm of the ratio of inequality (Morton 1955). A LOD >3 is equivalent to 

saying that the alternative hypothesis (linkage) is 1,000 times more likely than 

the null hypothesis (independence). The level of significance or LOD value is 

chosen by the researcher. Increasing its value will avoid the false inclusion of 

markers in the different linkage groups (LGs), and the number of groups 

established will increase. When a good set of data is available, and the 

appropriate markers for the available population are used, the number of LGs 

will be equal to the haploid complement of the species in question. It is not 

advisable to lower the LOD value in order to impose this situation; values 

greater than 3 are recommended (Kearsey and Pooni 1998; Nuez 2000; De 

Vienne 2003b). To organize the linked markers, different algorithms that 

calculate the goodness of a particular map (among all the possible ones) have 

been described (Lander and Green 1987). The JoinMap program 

automatically calculates the arrangements that minimize the squares of the 

differences between the observed values of recombination (obtained directly 
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from all pairs of values) and the ones estimated on the map. Thus, 

commencing from the two closest markers in the group to be ordered, new 

loci are added and ultimately the goodness of the map is obtained as a chi-

squared value. Provided common markers are available, this program also 

allows the maps obtained to be integrated with different or related 

populations, based on the distances between pairs of values (Stam 1993). The 

integration of maps allows establishment of the order of the markers 

genotyped initially in other populations, and the transfer of markers to the 

varieties used for the construction of the integrated map. The robustness of a 

map will depend on both the size of the population used and on the presence 

of markers showing biased or non-Mendelian segregation, as well as 

genotyping errors. 

 The formula relating the distance on a linkage map with the 

recombination fraction is known as a map function. The two map functions 

used most were developed by Haldane (Haldane 1919) and Kosambi 

(Kosambi 1944). That of Haldane assumes no interference while that of 

Kosambi considers the presence of positive interference. Thus, the Kosambi 

distance considers that the probability of a crossover in an interval decreases 

with the existence of a crossover in the adjacent interval. This distance is 

expressed in centimorgan (cM): one cM is the distance separating two loci 

between which the expected number of crossovers is 0.01. Values between 40 

and 50 cM indicate that the loci segregate independently (Kosambi 1944). 

 

Genetic maps in grapevine: Due to the highly heterozygous nature of 

the grapevine, the strategy for the construction of genetic maps is the 2-way 

pseudo-testcross test strategy (Grattapaglia and Sederoff 1994), using F1 

populations derived from intra or interspecific crosses, or self-crosses. It 

involves the construction of two maps of the same cross, one with the 

segregation due to the meiosis of the mother and one from the father. The 
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first genetic maps of grapevine were constructed by Lodhi et al. (1995) from a 

population of 60 F1 individuals, the result of crossing interspecific hybrids, 

using RFLP, RAPD, and isozymes markers. Since then, there have been 

numerous projects to develop genetic maps from intra- and interspecific 

crosses of grapevine, and the type of molecular markers used has varied over 

time. The first maps were constructed primarily with AFLPs, RAPDs, CAPS, 

and SSCPs (Dalbó et al. 2000; Doligez et al. 2002; Grando et al. 2003; 

Doucleff et al. 2004; Fischer et al. 2004; Cabezas et al. 2006). 

 Microsatellite markers (SSRs) are very useful for comparing 

homologous LGs of different maps, because they are highly transferable 

between laboratories and also due to their co-dominant character (Grando et 

al. 2003). Due to this, in 2004 they began to be used more frequently (Adam-

Blondon et al. 2004; Riaz et al. 2004; Fanizza et al. 2005; Doligez et al. 2006 a, 

b;. Lowe and Walker 2006; Riaz et al. 2006; Di Gaspero et al. 2007; Mejía et 

al. 2007; Welter et al. 2007; Costantini et al. 2008; Salmaso et al. 2008; Vezzulli 

et al. 2008; Battilana et al. 2009; Duchêne et al. 2009; Fournier-Level et al. 

2009; Doligez et al. 2010; Riaz et al. 2011). The map built by Adam-Blondon 

et al. (2004) from 245 SSRs in a progeny of an intraspecific cross of V. vinifera 

(Shiraz x Grenache) has been used as a reference by the IGGP (International 

Grape Genome Program) for the establishment of the nomenclature of the 

LGs of V. vinifera. 

 From 2007 onwards, improvements in the technology that facilitates 

the development of SNP-type markers, and the huge abundance of these 

polymorphisms in the DNA of grapevine, have led to the gradual 

incorporation of these markers into genetic maps. This has enabled the 

mapping of a large number of molecular markers developed from candidate 

genes involved in controlling the traits of interest. Thus, one can detect 

whether a particular gene co-localizes with a QTL, suggesting a possible role 

of the gene in the character (Di Gaspero et al. 2007; Troggio et al. 2007; 
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Welter et al. 2007; Costantini et al. 2008; Salmaso et al. 2008; Vezzulli et al. 

2008; Battilana et al. 2009; Duchêne et al. 2009). Although SNPs have allowed 

the mapping of more genes, we have also found polymorphisms of the SSR or 

AFLPs type, starting from gene sequences derived from ESTs or cDNAs 

(Scott et al. 2000; Decroocq et al. 2003; Riaz et al. 2006). 

 The first integrated map was built by Doligez et al. (2006a), using five 

progenies developed by different research groups: one from the selfing of 

Riesling, and others derived from the crosses Shiraz x Grenache, Chardonnay 

x Bianca, Riesling x Cabernet Sauvignon, and of table grape varieties 

MTP2223-27 (Dattier de Beyrouth x 75 Pirovano) and MTP2121-30 

(Alphonse Lavallée x Sultanina). In this reference map the order of 502 SSR 

markers was established; these are highly transferable and very useful for the 

construction of other genetic maps. 

 Di Gaspero et al. (2007) constructed an integrated map based on the 

search for QTLs associated with resistance to diseases. This map was 

constructed from four parental maps, derived from the interspecific crosses 

Chardonnay x Bianca and Cabernet Sauvignon x 20/3, using SSR markers and 

derivatives analogous to resistance genes (RGAs). Bianca and 20/3 are 

hybrids obtained by crossing, for which 80% of the genetic background 

corresponds to different species of the genus Vitis. This map was obtained in 

order to establish the chromosomal location of the markers derived from 

RGAs, using SSRs whose order was previously established by Doligez et al. 

(2006a). Vezulli et al. (2008) constructed an integrated map from three 

intraspecific crosses (Pinot Noir x Shiraz, Shiraz x Grenache, Cabernet 

Sauvignon x Riesling), which includes 283 SSRs and 501 SNPs. Cabezas et al. 

(2011) published an integrated map based on populations obtained from the 

crosses between eight varieties of grapevine (Dominga, Autumn Seedless, 

Monastrell, Cabernet Sauvignon, Ruby Seedless, Moscatuel, Muscat Hamburg, 

and Sugraone), which included 168 SSRs and 202 SNPs. 
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 For a map to be effective in the study of a character, it must be built 

with progeny which segregate for the desired character, so it is appropriate 

that the parents be phenotypically distinct for it. Following this approach, a 

range of useful maps has been generated for the investigation of a large 

number of fruit quality traits such as seedlessness (Doligez et al. 2002; 

Cabezas et al. 2006; Mejía et al. 2007; Costantini et al. 2008), size and weight 

of berries (Doligez et al. 2002; Fanizza et al. 2005; Cabezas et al. 2006; Mejía 

et al. 2007; Costantini et al. 2008; Doligez et al. 2013), berry color (Doligez et 

al. 2002; Fischer et al. 2004; Fournier-Level et al. 2009), and muscat flavor 

(Sevini et al. 2004; Doligez et al. 2006 b; Battilana et al. 2009; Duchêne et al. 

2009). This tool has also been used to study productivity - evaluated as the 

total yield per plant, number of bunches per plant, number of berries per 

cluster, and cluster weight (Fanizza et al. 2005), or the number of 

inflorescences per shoot (Doligez et al. 2010). Other maps have allowed the 

study of phenological characters such as the times of bud break, flowering, 

veraison, and ripening (Mejía et al. 2007; Costantini et al. 2008; Duchêne et al. 

2012; Grzeskowiak et al. 2013). 

 In the study of resistance to diseases and pests, maps from interspecific 

crosses have been used, in which at least one parent belonged to a species of 

the genus Vitis of American origin, which showed some resistance. Thus, 

there are maps on which analysis has been carried out of the QTLs for 

resistance to diseases such as mildew, powdery mildew, and black or gray rot 

(Lodhi et al. 1995; Dalbó et al. 2000; Fischer et al. 2004; Di Gaspero et al. 

2007; Welter et al. 2007; Salmaso et al. 2008), the bacterium Xylella fastidiosa, 

responsible for Pierce's disease (Doucleff et al. 2004; Riaz et al. 2006), or pests 

like the nematode Xypinema index (Doucleff et al. 2004; Xu et al. 2008). 

Grafts and rootstocks have also been studied by using genetic maps, since 

there are many characters of the species of the Vitaceae that can contribute to 

cultivation of grafted varieties of V. vinifera. Among these characters are 
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resistance to pests such as phylloxera and nematodes, tolerance of saline soils, 

vigorous growth, induced chlorosis, and the success of grafting (Lowe and 

Walker 2006). 

 After determining the involvement of a region (or regions) of the 

genome in a character, after a previous analysis of QTLs, some authors have 

employed a strategy of partial mapping, saturating this/these area(s) with 

additional markers in order to obtain more information about it/them (Adam-

Blondon et al. 2001; Duchêne et al. 2009; Riaz et al. 2011). 

 

 II.VI.IV Mapping QTLs 

 A QTL is a region of the genome responsible for the quantitative 

variation in the expression of a character. The first step in the genetic 

mapping of a locus that controls a quantitative character or QTL is the 

determination of the existence of a significant statistical association between 

the segregation of the character and the segregation of a genetic marker in a 

given population (Jensen 1989). This association indicates that the genetic 

marker is linked to a locus that controls all or part of the quantitative 

character. Once the linkage map for a population that shows continuous 

variation for a character has been obtained, the basic and simplified procedure 

for the analysis of QTLs for this character is similar to that used to construct 

the map. In the intervals between adjacent pairs of markers, the LOD is 

calculated for the presence of a locus influencing the trait under study (the 

probability of the presence of a QTL versus the probability of its absence). If 

the LOD score exceeds the critical threshold value, there is evidence of a 

QTL linked to the marker. The result is an assessment of the chromosomal 

regions affecting this character (Kearsey and Pooni 1998; De Vienne and 

Causse 2003). 

 There are several computer programs for the analysis of QTLs that 

employ very similar approaches (De Vienne and Causse 2003). Most of them 
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begin with the simple mapping interval (SIM) proposed by Lander and 

Botstein (1989). The programs calculate, by regression, the association 

between the values of the characters under study, for each individual, and 

their genotype, for each marker and at regular intervals between markers. This 

regression depends on some values, called maximum likelihood estimators 

(MLEs), which maximize the probability that the phenotypic data are linked 

to a possible QTL. The most effective estimator is the one that reflects the 

phenotypic effect caused by the substitution of one allele in this QTL (the 

effect would be zero if there were no linkage of the QTL). These MLEs are 

compared with the MLEs obtained under the assumption that there is no 

linked QTL, with the following equation: 

 

LOD = Log10 (MLE QTL linked/MLE QTL not linked) 

 

where LOD (Logarithm of Odds) reflects the estimated fit; that is, the 

probability of the presence of a QTL versus the probability of its absence. If 

the LOD exceeds a certain threshold value, the presence of a QTL is signaled. 

The statistical significance of the QTLs is obtained by calculating a threshold 

LOD value by different methods (Doerge and Rebaï 1996). Most computer 

programs use the empirical method developed by Churchill and Doerge 

(1994), based on the theory of permutation (Fischer 1935), which consists of 

randomly changing or permuting the quantitative data of the individuals of the 

mapped population, in order to destroy any relationship between the 

phenotypic values and the markers or genotypic values. This method, being an 

empirical method (which studies the data directly) and non-parametric (not 

applied to a model with a particular distribution), is valid for any experimental 

design, is undemanding in terms of the population size or mapping density, 

and can be applied to data that does not follow a normal distribution. 

Although not dependent on the mapping densities, Krugliak and Lander 
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(1995) recommended the use of the threshold obtained with a dense map, in 

order to minimize false positives. The accuracy with which the threshold 

values are calculated will be determined by the number of permutations. A 

number of 1,000 permutations is considered appropriate for a significance 

level of  α= 0.05 (Doerge and Churchill 1996). 

 The SIM analyzes pairs of markers throughout the genome, and 

provides information on all the chromosomes in a single analysis, so that it 

can detect several QTLs simultaneously. However, with this method QTLs 

are mapped one at a time, regardless of the presence of other QTLs (mapped 

or not). Therefore, this method by itself has little value since a quantitative 

characteristic - by definition - is controlled by several genes. The effect of 

other unlinked QTLs is equivalent to the environmental effect and reduces 

the LOD value. As a result, the power of detection can be compromised, and 

the estimates of the location and effects of the QTLs may be biased (Jansen 

1993). The linkage between two QTLs involved in the control of the character 

of interest leads to shifts in the peaks of maximum LOD. 

 However, the SIM allows detection of those markers that may be 

involved in the control of the character. These markers are used as cofactors 

in the models developed for the analysis of multiple QTLs, using a multiple 

regression model. The result is the reduction of background noise and better 

definition of the LOD values. Jansen (1992, 1993, 1994a) put forward a 

method very similar to that proposed by Zeng (1994), which combines 

multiple regression with the SIM. This method involves setting up models for 

a single QTL (one for each interval) and the use of markers selected as 

cofactors for the regression of the phenotype on the genotype. In this way it 

is possible to eliminate the effects of possible QTLs elsewhere in the genome. 

This framework for the unification of models used to detect and map multiple 

QTLs is called MQM (Jansen 1994a), which stands for Multiple-QTL Models 

and also for Marker-QTL-Marker (which reflects the insertion of QTLs 
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between markers in the linkage map). Jansen (1994b) showed that the 

probability of a Type II error (QTL present but not detected) in the case of 

unlinked QTLs (on different chromosomes) is lower with MQM than with 

the SIM. Also, the detection of different linked QTLs (on the same 

chromosome) is much easier with MQM than with the SIM, both for QTLs 

with (mutually neutralizing) opposite effects, which often go undetected, and 

for QTLs with the same sign (Martínez and Curnow 1992).  

 Currently, the procedure proposed by Van Ooijen (2009) for the 

detection and mapping of QTLs involves an initial search for possible QTLs 

using a multiple linear regression or SIM. Then, those markers closest to the 

detected QTLs are designated as cofactors, which will play the role of close 

QTLs in the subsequent MQM analysis. This MQM analysis will search for 

QTLs along the genome, like the SIM, but, due to the presence of the selected 

cofactors, the residual variance is reduced and - therefore - the power of 

detection of other QTLs increases. After the first MQM analysis the position 

of some QTLs detected earlier may vary, so the nearest cofactors must be 

marked again and the MQM analysis repeated. This process is repeated as 

often as necessary until a set of cofactors that maximizes the probability 

profile of the QTLs detected is obtained. 

 Computer programs generally produce, as part of their outputs, 

together with the estimated fit, a LOD value, the percentage of explained 

variability, and the additive component. The program used in this work, 

MapQTL® v 4.0 (Van Ooijen et al. 2002), incorporates the MQM and SIM 

methods, along with the permutations test. These methods are widely used by 

the scientific community. 

 

QTLs in grapevine: In grapes QTL detection has mostly been used to 

investigate the genes related to resistance to diseases such as powdery and 

downy mildew and Pierce’s disease (Doucleff et al. 2004; Fischer et al. 2004; 
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Barker et al. 2005; Krivanek et al. 2006; Riaz et al. 2006; Riaz et al. 2008; Xu et 

al. 2008; Coleman et al. 2009; Marguerit et al. 2009). It has also been used to 

examine the genes related to a range of agronomic traits: berry size, seed 

number, seed fresh and dry weights, berry weight, inflorescence and flower 

morphology, number of inflorescences per shoot, flowering date, timing and 

duration of flowering and of veraison, veraison-ripening interval, architecture 

of the inflorescence, aroma profile, firmness, acidity, anthocyanin content, 

number of clusters per vine, sexual traits, and fertility (Doligez et al. 2002; 

Fischer et al. 2004; Fanizza et al. 2005; Cabezas et al. 2006; Mejía et al. 2007; 

Costantini et al. 2008; Marguerit et al. 2009; Doligez et al. 2010; Mejía et al. 

2011; Duchêne et al. 2012; Fechter et al. 2012 Grzeskowiak et al. 2013; Viana 

et al. 2013; Correa et al. 2014; Fechter et al. 2014; Azuma et al. 2015; Carreño 

et al. 2015; Chen et al. 2015; Costantini et al. 2015; Houel et al. 2015). 

Although the QTLs have been detected using maps constructed by means of 

interspecific crosses, as in the case of disease resistance, they contribute to our 

knowledge of the chromosomal regions and genes involved in the traits of 

interest in V. vinifera. 
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III. OBJECTIVES 
 

The cultivation of wine grapes in the Region of Murcia is of great 

importance both economically and socially. The variety Monastrell is of great 

economic value - not only in the Region of Murcia, where it constitutes the 

main variety in the Jumilla, Yecla, and Bullas Denomination of Origin (D.O.) 

areas, but also in other areas of the Mediterranean.  

This variety has a great potential regarding grape and wine quality. 

Nevertheless, the IMIDA’s wine grape breeding program aims to obtain new 

varieties well adapted to Murcia’s climate conditions and with better genetic 

composition. These results will have a big socio-economic impact, helping to 

boost the profitability of the crop and increase the yield and quality of the 

wines of the area, by providing new varieties that are better adapted to the 

edaphoclimatic conditions of the area. These varieties will respond to the new 

social challenges and to the consumers who demand better-quality and healthy 

products. All this, undoubtedly, will consolidate and promote the DOs of the 

wines of Murcia, and will increase the competitiveness, production, and 

exportation of these wines, contributing significantly to the increased 

economic growth of this sector in the Region of Murcia. 

 

The global goal of this work is the identification of the major genetic 

determinants for a given phenotypic trait in genetic maps and their co-

localization with the position of candidate gene sequences related to the 

relevant phenotype. For this purpose, we considered three specific objectives: 

 1. The phenotypic evaluation of a progeny derived from a controlled 

cross between the wine grape cultivars Monastrell and Syrah. 

2. The construction of grapevine genetic maps using this progeny and 

molecular markers.  

3. The use of these maps and the phenotypic data of the progeny for 

QTL analyses, in order to develop helpful markers for breeding programs. 
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Phenotypic segregation and relationships of 

agronomic traits in Monastrell x Syrah  

wine grape progeny. 
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1.1 Introduction  

 Vitis vinifera L. is a temperate-climate species cultivated widely in the 

countries of the Mediterranean basin, principally for wine and fresh fruit. 

Wine production, historically the most-important use for grape berries, is 

based primarily on traditional cultivars of Vitis vinifera which have been 

perpetuated for centuries by vegetative propagation. Different studies have 

shown that the growth rate and quality of the grape can be affected by climate 

change, representing a risk to present and future grape production (Schultz 

2000; Brunet et al. 2007; Duchêne et al. 2005; 2010; Jones et al. 2005; Keller 

2010). Given this context, the development of new cultivars with new or 

improved attributes, caused by better combinations of alleles at multiple loci, 

is important. 

 Berry quality is a determinant factor of wine quality, and it is related to 

certain productive, morphological, and physicochemical parameters (Conde et 

al. 2007; Jackson 2008). Lower numbers of clusters per plant and smaller 

clusters have a positive effect on wine quality and reduce the production costs 

by decreasing the pruning of clusters (Howell 2001; Morris et al. 2004). 

Cluster structure and compactness affects berry illumination, ripeness 

homogeneity, disease susceptibility, and, therefore, fruit quality (Mullins et al. 

1992; Vail and Marois 1991). Fruit quality is also determined by different 

physicochemical parameters such as sugar content, acidity level and their ratio, 

and phenolic compounds. During fermentation, the sugar is converted to 

alcohol and this determines whether the wine tastes thin and watery or 

alcoholic and hot. Excessive acidity produces wines that are too tart, but 

grapes that are deficient in acid produce wines that have a flat and 

uninteresting taste. Acidity is also involved in the inhibition of oxidation and 

spoilage, and it is an important factor in wine stability. In this respect, a high 

content of potassium in grape berries may have a negative impact on wine 

quality, mainly because it decreases free tartrate during winemaking and 
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therefore reduces the tartrate:malate ratio, which is undesirable for high-

quality wines (Conde et al. 2007; Jackson 2008). 

 Grape berry skin color, one of the qualities used for selection in 

breeding programs for wine grapes, results from the vacuolar accumulation of 

anthocyanins in berry skin cells. In grapevine, most of the structural genes 

encoding the enzymes of the anthocyanins biosynthetic pathway have been 

identified (Sparvoli et al. 1994; Boss et al. 1996). Two adjacent transcription 

factors isolated from V. vinifera, VvmybA1 and VvmybA2, are involved in the 

control of the anthocyanins pathway (Kobayashi et al. 2002; 2004; Walker et 

al. 2007; Azuma et al. 2008). The presence or absence of anthocyanins in 

grape berries segregates as a monogenic trait determined by a locus in linkage 

group 2 (Doligez et al. 2002; Fischer et al. 2004; Salmaso et al. 2008). 

Recently, it was suggested that the color locus is a cluster of MYB genes, 

including VvmybA1 and VvmybA2, located on chromosome 2 (Matus et al. 

2008; Azuma et al. 2009; Fournier-Level et al. 2009). 

 In addition, grapevine phenology determines the production window of 

cultivars and their adaptation to local environmental conditions (Coombe 

1988; Jackson 2008). The most-important grapevine developmental stages are 

sprouting, flowering, veraison, and ripening. The time between these 

phenological stages varies greatly with grapevine variety, climate, and 

geographical location (Coombe 1988; Jackson 2008). Climatic changes can 

alter the environmental conditions, and cultivars adapted to specific regions 

may become less productive, necessitating the development of new viticulture 

techniques for the new conditions or a change of cultivar. 

 Grapevine breeding programs involve the crossing of heterozygous 

cultivars and selection in the F1, or later, for one or a few of the best hybrids. 

Few traits of viticultural importance are controlled by single genes or genes of 

major effect, including berry color (Doligez et al. 2002), flesh development 

(Fernandez et al. 2006), flower hermaphroditism (Dalbò et al. 2000; Riaz et al. 
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2006), and seedlessness (Lahogue et al. 1998; Doligez et al. 2002; Cabezas et 

al. 2006; Mejía et al. 2007; Costantini et al. 2008). Many traits of agricultural 

significance exhibit quantitative inheritance, which is often the result of 

multiple genes of minor effect (reviewed by Costantini et al. 2009; Martínez-

Zapater et al. 2009; Welter et al. 2011). The analysis of segregating progenies 

allows the efficiency of cross-breeding programs to be improved, increasing 

our knowledge of the inheritance and genetic architecture of quantitative traits 

(Mackay 2001). The establishment of correlations between traits might reduce 

the number of characters that need to be evaluated in future genotypes or 

progenies. Furthermore, it is important to know these correlations given that 

the improvement of one trait could have unfavorable impacts on others. 

Previous studies obtained relationships between some of the quality 

parameters in grapevine (Gawel et al. 2000; Jones and Davis 2000; Wei et al. 

2002; Mpelasoka et al. 2003; Liu et al. 2007; Costantini et al. 2008; Liang et al. 

2009; Leão et al. 2010). 

 Monastrell is the major red wine grape variety grown in Murcia and 

sometimes it is blended with other cultivars like Syrah or Cabernet Sauvignon. 

The main objective of the wine grape breeding program at the IMIDA is to 

obtain new cultivars well adapted to Murcia’s climate conditions and with 

better genetic composition, derived from crosses involving Monastrell as a 

parental genotype. With this purpose, a Monastrell x Syrah F1 progeny was 

generated. The goal of this work was to study the transmission of different 

agronomic and fruit quality traits in this progeny, as well as the correlations 

between these traits, in order to improve the selection of hybrids of interest 

for future studies. Four types of data have been evaluated and discussed: 

phenological, productive, morphological, and enological. 
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1.2 Materials and Methods 

1.2.1 Plant material 

 A segregating progeny of 229 plants resulting from hybridization 

between the wine grape cultivars Monastrell (female progenitor) and Syrah 

(male progenitor) was used in this work. A plant of each hybrid and 

representative plants of both progenitors were grown on their own roots 

under standard conditions of irrigation, fertilization, and pest and disease 

control, in the same experimental field of the IMIDA in Murcia (Southeast 

Spain) from the year 2000. The vine and row spacings were 1.25 and 2.5 m, 

respectively. The vines were pruned to two two-bud spurs (four nodes). 

Monastrell (unknown progenitors), a traditional Spanish variety adapted to the 

dry conditions of the Mediterranean climate, is cultivated widely in Murcia 

and contributes to the characteristic features of wines from this region. Syrah 

(Mondeuse Blanche x Dureza) (http://www.vivc.de) is a foreign variety, very 

well adapted to the warm climate of Murcia, which blends very well with 

Monastrell, contributing quality characters. This progeny segregates for 

several agricultural traits (phenology, yield, morphology, and enology) and has 

been used also to produce an integrated genetic map of Vitis vinifera (Bayo-

Canha et al. in preparation). Therefore, the plants derived from Monastrell 

self-pollination and from pollen-donors other than Syrah were identified 

genetically and discarded using the microsatellite (SSR, Simple Sequence 

Repeat) loci segregating <1:1:1:1>. The genetic identity of Monastrell and 

Syrah was verified by genotyping 6 SSR loci: VVMD5, VVMD7, VVMD27, 

VrZAG62, VrZAG79, and VVS2 (This et al. 2004).  

 The total DNA was extracted from 50 mg of frozen young leaves using 

a DNeasy Plant Mini Kit (Qiagen, Valencia, CA), following the 

manufacturer’s protocol. The SSR analyses were performed according to a 

previously described method (Ibáñez et al. 2003). The PCR products were 

separated by capillary electrophoresis performed on an ABI Prism 3730 
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clusters reached approximately 13.5 ºBaumé (ºBé) (colored grapes) or 12.5 ºBé 

(uncolored grapes) using a hand refractometer. The veraison-ripening interval 

was calculated as the number of days from veraison to ripening. 

 

Productive and morphological traits 

 Productive and morphological traits were evaluated at harvest 

(ripeness), except the fertility index which was scored before flowering. The 

numbers of hybrids evaluated for productive traits varied from 132 to 174 

(Table 1.1). The fertility index was scored as the number of inflorescences per 

young shoot. The average weight of the cluster was calculated using all the 

clusters per genotype, and the berry weight was calculated using about 300 

berries taken randomly per genotype. 

 The numbers of individuals evaluated for morphological traits varied 

from 117 to 174; from 141 to 173 for number of seeds per berry (Table 1.1); 

from 122 to 160 for cluster density; from 117 to 120 for cluster shape; from 

142 to 169 for berry shape; from 142 to 174 for berry skin color. For berry 

shape and the number of seeds per berry, 30 berries taken randomly were 

sampled per genotype. Berry skin color was determined visually as uncolored 

or colored. The cluster density was coded into five phenotypic groups, 

following the code OIV 204 (O.I.V. 2009): 1, very loose; 3, loose; 5, medium; 

7, dense; 9, very dense. The cluster shape was divided into six phenotypic 

groups: conical, conical with wings, funnel shaped, cylindrical, cylindrical with 

wings, and double branched. Finally, the berry shape was classified into three 

phenotypic groups, following the code OIV 223 (O.I.V. 2009): 2, globose; 3, 

broad ellipsoid; 4, narrow ellipsoid.  

 

Enology-related traits 

 The numbers of hybrids evaluated for enological parameters varied 

from 74 to 160 (Table 1.1). The physicochemical analyses of each sample were 

performed in triplicate at harvest. About 100 g of berries from different 
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positions within each cluster, considered as one replication, were mixed and 

squeezed to determine the physicochemical parameters of the juice. Total 

soluble solids were determined as ºBaumé, using an Atago RX-5000 digital 

refractometer (Atago, Tokyo, Japan). The juice pH and titratable acidity were 

determined by titration with 0.1 N NaOH, using a Metrohm 686 automatic 

titrator (Metrohm, Herisau, Switzerland). The titratable acidity was expressed 

as g/L tartaric acid equivalent. Tartaric and malic acids were measured using 

enzymatic kits from Boehringer Mannheim GmbH (Mannheim, Germany). 

The potassium content was determined by atomic absorption spectrometry, 

using a Unicam 969 spectrophotometer (Thermo Elemental, UK), and 

expressed as g/L. The phenolic potential of the grapes was determined based 

on the method described by Saint-Cricq et al. (1998), macerating the grapes 

for 4 hr at two pH values (3.6 and 1.0). The original pH 3.2 solution was 

exchanged for one of pH 3.6, which is better suited to the musts from Murcia 

(Romero-Cascales et al. 2005; Romero et al. 2010). The total and extractable 

anthocyanins contents of the two solutions were then assayed by measuring 

the absorbance at 520 nm at pH 1.0 and pH 3.6, respectively, and expressed 

as mg/L. The extractability index was calculated as described by Romero-

Cascales et al. (2005). 

 

1.2.3 Genotypic evaluation of the color 

 To establish whether the visual berry skin color phenotype and the total 

anthocyanins content were correlated with the VvmybA genotype, the CAPS 

(Cleaved Amplified Polymorphic Sequence) marker 20D18CB9 (Walker et al. 

2007) was tested against the progeny and parental plants, using a PCR assay. 

The amplification product obtained using the primers 20D18CB9f (5´-

GATGACCAAACTGCCACTGA-3´) and 20D18CB9r (5´-

ATGACCTTGTCCCACCAAAA-3´) was then restricted with DdeI and 

separated by gel electrophoresis on 2.5% agarose gels, using 1x TBE buffer. 

The separated DNA fragments were visualized under UV light, after staining 
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with ethidium bromide, and documented with Gel Doc XR software (Bio-

Rad). 

 

1.2.4 Statistical analysis 

 The normality of each trait distribution was evaluated by the 

Kolmogorov-Smirnov test. Differences between years for each trait were 

analyzed by the Kruskal-Wallis test. The correlation between traits was 

calculated by the Spearman test at P < 0.01. The cluster analysis of the 

quantitative phenotypic data was carried out using the squared Euclidian 

distance combined with the average linkage clustering method. All statistical 

analyses were performed using SPSS 18.0 for Windows. 

 

1.3 Results  

1.3.1 Phenotypic evaluation 

 The phenotypic data distributions, which are shown in Fig. 1.2 for 

season 2010, were very similar in the three years analyzed. Continuous 

variation and transgressive segregation were observed for the characters 

evaluated, except for the shape and visual color of the berries (Fig. 1.2b).  

The Kolmogorov-Smirnov test indicated that only malic acid and 

potassium showed a normal distribution in the three years studied. Berry 

weight distribution was normal in 2008 and 2009, number of seeds per berry 

and total soluble solids (ºBé) in 2009, and total acidity in 2008. The Kruskal-

Wallis test revealed a significant year effect (P < 0.05) for all the traits except 

for the fertility index, cluster shape, visual color of the berries, total acidity, 

and total and extractable anthocyanins.  
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Figure 1.2. Distribution of the progeny for different agronomic traits in 2010.  
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Figure 1.2. Continued. 
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The positions of the parents are indicated: Monastrell (Mn) and Syrah (Sy). (a) Histograms for phenological 
traits. (b) Histograms for productive and morphological traits. (c) Histograms for enological traits. 
 

Phenological traits 

 The average length of the growing season (from sprouting to ripening) 

was 141 days. The mean values of sprouting, flowering, and ripening (days 

since 1st January) and the mean length of the veraison-ripening interval 

showed significant differences among the three years of the study (Table 1.1). 

These differences show the influence of the environmental conditions on 

these traits, although the different numbers of plants analyzed each year could 

also have a partial effect on the differences. Syrah was the earlier parent for all 

the phenology-related traits (Fig. 1.2a). Most of the hybrids were later than 

Monastrell for flowering and veraison (63% and 94%, respectively). The mean 

dates of flowering and veraison of the progeny were delayed as the hybrids 

aged. The same happened for ripening, except in 2009 (Table 1.1). Since the 

(c) 
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colored hybrids require higher contents of sugar for ripening, the greater 

number of colored plants analyzed in 2010 (127), compared to 2008 (101) and 

2009 (109), could have delayed the ripening in this year. However, this does 

not hold when comparing 2009 to 2008. The veraison-ripening interval was 

between 15 and 67 days, and 9% of the hybrids showed a veraison-ripening 

interval greater than that of Monastrell (Table 1.1, Fig. 1.2a). 

 
Table 1.1. Mean values of 18 agronomic traits evaluated in the F1 Monastrell x Syrah       
      progeny.  

 

 Year  Total 

 n 2008 n 2009 n 2010  x m M 

Sprouting (days since 1st January) 229 99 a 228 106 b 228 103 c  103 90 118 

Flowering (days since 1st January) 150 146 a 149 149 b 176 151 c  149 138 167 

Veraison (days since 1st January) 147 211 a 150 210 a 173 215 b  213 201 223 

Ripening (days since 1st January) 142 241 a 151 236 b 174 252 c  244 229 275 

Veraison-ripening interval (days) 141 30 a 149 26 b 170 37 c  31 15 67 

Fertility index 152 0.6 a 153 0.6 a 174 0.6 a  0.6 0.0 2.2 

Cluster weight (g) 138 77.2 a 149 77.2 a 167 98.1 b  84.9 6.0 334.9 

Berry weight (g) 132 1.15 a 149 1.2 a 171 1.5 b  1.3 0.5 2.4 

Number of seeds per berry 141 2.4 a 149 2.2 a 173 2.2 a  2.3 1.0 3.8 

Total soluble solids (ºBé) 119 13.7 a 141 14.8 b 160 13.3 c  13.9 10.8 17.3 

Total acidity (g/L) 119 5.1 a 141 5.1 a 154 4.9 b  5.03 2.6 10.6 

Tartaric acid (g/L) 96 5.4 a 97 5.2 a 119 4.9 b  5.2 2.8 7.9 

Malic acid (g/L) 96 3.7 b 97 3.1 a 119 3.1 a  3.3 0.8 6.5 

pH 119 3.8 a 141 4.1 b 157 3.7 a  3.8 2.9 5.7 

Potassium (g/L) 96 2.8 a 97 2.3 a 119 3.0 b  2.6 1.3 5.0 

Total anthocyanins (mg/L) - - 74 1108 a 82 1125 a  1117 235 2969 

Extractable anthocyanins (mg/L) - - 74 688 a 82 554 b  618 108 1569 

Extractability index (%) - - 74 34.9 a 82 48.1 b  41.9 13.2 82.4 
 

 
Values with different letters show significant differences between years at the 5% level, according to de 
LSD test. n, number of plants evaluated each year, and mean values for each year. Mean (x), minimum 
(m), and maximum (M) values for the three years. 

 

Productive and morphological traits 

 The distribution of productive and morphological traits for the progeny 

in 2010 is shown in Fig. 1.2b. The mean fertility index (0.6) and the mean 

cluster weight (84.9 g) of the progeny were lower than the values of both 

progenitors (Table 1.1, Fig. 1.2b). Seventy-four percent of the hybrids were 

distributed in the low fertility index range (below 1.1) and 86% in the low 

cluster weight range (below 161 g). In relation to bunch compactness, 5% and 
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29% of the hybrids showed loose and medium clusters, respectively (Fig. 

1.2b), which are less sensitive to diseases than compact clusters. The berries of 

Monastrell and Syrah are colored and in agreement with the expected 

Mendelian segregation for a monogenic dominant trait (3:1): 74% and 26% of 

the progeny showed colored and uncolored berries, respectively (Fig. 1.2b).  

 

Enological traits 

 The total acidity ranged between 2.6 and 10.6 g/L with an average 

value in the progeny higher than the values of both progenitors. However, the 

mean tartaric acid content of the progeny was lower than that of both 

progenitors (Table 1.1, Fig 1.2c). Eighty-one percent of the hybrids were 

distributed in the low tartaric acid range and 71% in the low pH range (Fig 

1.2c). The malic acid content in the progeny ranged between 0.8 and 6.5 g/L 

and was less than that of tartaric acid (Table 1.1).  

 Colored plants were analyzed in the winery for total anthocyanins, 

extractable anthocyanins, and extractability index in 2009 and 2010 (Table 

1.1). The total anthocyanins ranged between 235 and 2969 mg/L and only 

17% of the hybrids had values higher than Syrah (above 1731 mg/L) (Fig. 

1.2c). The values of extractable anthocyanins ranged between 108 and 1569 

mg/L and only 15% of the hybrids had values higher than Syrah (above 871 

mg/L). Finally, 46% of the hybrids showed an optimal extractability index, 

between 40 and 50%.  

 

1.3.2 Correlations between traits 

 Table 1.2 shows the correlations between the traits detected by the 

Spearman correlation test (P < 0.01), excluding the traits that show none 

(berry shape), one weak correlation (fertility index, cluster shape, cluster 

density, and tartaric acid), or two weak correlations to other traits (number of 

seeds per berry). The values of the coefficients correspond to the year 2010.  
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Several associations between traits were revealed within each year, although 

few correlations were significant, with Spearman coefficients higher than 0.5. 

Many of them were significant in all years analyzed and concerned the 

component variables of the same character: a positive high correlation 

between veraison-ripening interval and ripening date; a positive high 

correlation between visual color, total anthocyanins, extractable anthocyanins, 

and extractability index; a negative moderate correlation between total acidity 

and pH. Also, a positive moderate correlation between total acidity and malic 

acid was found in 2008 and 2010 (Table 1.2).  

 Nevertheless, correlations between different traits were also detected in 

the three years analyzed or in two of the years (Table 1.2). With regard to the 

correlations between the different phenological characters, veraison correlated 

weakly with ripening and flowering, and flowering correlated moderately with 

sprouting. Cluster weight correlated positively with berry weight, fertility 

index (r = 0.49), and cluster shape (r = 0.37), and negatively with tartaric acid 

(r = -0.27). The number of seeds per berry only correlated weakly (r = 0.31) 

with cluster density in 2009 and 2010, and with potassium (in 2008 and 2009; 

r = 0.36). Total soluble solids (ºBé) correlated negatively with veraison (r = -

0.40 in 2008 and r = -0.38 in 2009) and positively with visual color, pH, and 

total and extractable anthocyanins. Visual color, total anthocyanins, and 

extractability index correlated positively with ripening and veraison-ripening 

interval. Total acidity correlated negatively with ripening, veraison-ripening 

interval, and visual color. Furthermore, malic acid correlated positively with 

sprouting and potassium, and negatively with veraison-ripening interval. 

Finally, pH correlated positively with veraison-ripening interval (r = 0.44 in 

2008 and r = 0.43 in 2009), visual color, extractable anthocyanins, and 

potassium. Correlations observed in only one year, as well as discordant 

correlations over different years, were not considered. 
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Table 1.2. Phenotypic correlations among 16 traits (Spearman correlation coefficient) during the three years. The values of the    
       coefficients correspond to the year 2010. 
 

 

 Sp Fl Vr Rp Vr_Rp VC CW BW TSS TA Mal pH K T_Ant E_Ant EI 

Sprouting 1 .64 ns ns ns ns ns ns ns ns .27 ns ns ns ns ns 

Flowering  1 .27 ns ns ns ns .24 ns ns ns ns ns ns ns ns 

Veraison   1 .32 ns ns ns ns -ns ns ns ns ns ns ns ns 

Ripening    1 .95 .48 ns ns ns -.50 ns ns ns ns ns .35 

Veraison-Ripening Interval     1 .48 ns ns ns -.50 -.60 ns ns .27 ns .31 

Visual Color of the berries      1 ns ns .56 -.31 i .27 ns .81 .81 .81 

Cluster Weight       1 .41 ns ns ns ns ns ns ns ns 

Berry Weight        1 ns ns ns ns ns ns ns ns 

Total Soluble Solids         1 ns ns .40 ns .55 .56 ns 

Total Acidity          1 .66 -.50 ns ns ns ns 

Malic acid           1 ns .64 ns ns ns 

pH            1 .46 ns .24 ns 

Potassium             1 ns ns ns 

Total Anthocyaninsa              1 .99 .84 

Extractable Anthocyaninsa               1 .77 

Extractability Indexa                1  
 
 
Abbreviations: Sp, Sprouting; Fl, Flowering; Vr, Veraison; Rp, Ripening; Vr_Rp, Veraison-ripening interval; VC, Visual color of the berries; CW, Cluster weight; BW, Berry 
weight; TSS, Total soluble solids; TA, Total acidity; Mal, Malic acid; K, Potassium; T_Ant, Total anthocyanins; E_Ant, Extractable anthocyanins; EI, Extractability index. 
Boldface font indicates correlations which are significant at the 0.01 level in the three years evaluated, and underlined font indicates correlations which are significant in two 
of the years. 
ns, not significant; i, inconsistent; -, negative correlation. 
a based only on years 2009 and 2010. 
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1.3.3 Cluster analysis of quantitative phenotypic data  

 Progeny classification based on quantitative phenotypic data for 18 

traits (all the phenotypic data evaluated except that of the visual color, cluster 

density, and cluster and berry shape) was carried out using only hybrids that 

had no missing values for these traits within each year. The uncolored hybrids 

were analyzed using the data of the three years, and the colored hybrids using 

only the data of 2009 and 2010. The hybrids were grouped on the basis of the 

same criteria with high significance for wine grape breeding in all the years 

analyzed: malic acid for uncolored grapes, and the content and extractability 

of anthocyanins for colored grapes. Fig. 1.3 shows the groups obtained, based 

only on the evaluation of 2010. 

The 37 uncolored hybrids were grouped into two main clusters (Fig. 

1.3a), in general accordance with their malic acid and potassium contents. 

Cluster one included the hybrids (from ‘93’ to ‘65’) with the highest average 

contents of malic acid and potassium (4.8 g/L and 3.6 g/L, respectively). 

Cluster two included the hybrids (from ‘30’ to ‘183’) with average malic acid 

and potassium contents of 3.2 g/L and 2.3 g/L, respectively. The hybrid ‘59’ 

showed the lowest malic acid and potassium contents (1 g/L and 1.6 g/L, 

respectively) and was placed outside of the others.  

 The 82 colored hybrids were grouped into two main clusters (Fig. 1.3b), 

in general accordance with their content and extractability of anthocyanins 

and their cluster and berry weights. Group one included the hybrids (from 

‘196’ to ‘46’) with the lowest content (average of 952 mg/L) and extractability 

(average of 479 mg/L) of anthocyanins, and the highest cluster and berry 

weights (averages of 121 g and 1.45 g, respectively). Group two includes the 

hybrids (from ‘104’ to ‘222’) with the highest content (average of 2292 mg/L) 

and extractability (average of 1061 mg/L) of anthocyanins, and the lowest 

cluster and berry weights (averages of 76 g and 1.31 g, respectively).  
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Figure1.3. Dendrogram of 37 uncolored (a) and 82 colored (b) Monastrell x Syrah hybrids, 

based on 18 quantitative agronomic traits. Boldface font indicates pre-selected hybrids.  
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 In the experimental winery of the IMIDA, a desirable new white variety 

should have pH < 3.7, malic acid > 3 g/L, and a berry weight of 1-1.6 g. 

Three uncolored hybrids (‘247’, ‘65’, and ‘30’) showed these values in the three 

years analyzed, and six (‘82’, ‘101’, ‘210’, ‘39’, ‘138’, and ‘187’) in two of the 

years (Fig. 1.3a, bold font). Likewise, a desirable new red variety should have 

pH < 3.8, total anthocyanins > 1400 mg/L, extractable anthocyanins > 700 

mg/L, and a berry weight < 1.5 g. Five colored hybrids (‘236’, ‘34’, ‘245’, 

‘170’, and ‘222’) showed these values in the two years analyzed (Fig. 1.3b, bold 

font). These white and red hybrids could be pre-selected from the initial 

breeding population.  

 

1.3.4 Association of visual berry color and total anthocyanins content 

 with allelic composition for VvmybA 

 The 186 F1 plants phenotyped for visual berry color, together with the 

Monastrell and Syrah progenitor cultivars, were tested also for color genotype 

with the CAPS marker 20D18CB9, which flanks the VvmybA genes (Walker et 

al. 2007). An example of a gel used to score the marker is presented in 

Fig.1.4a. All 137 plants bearing colored-skinned berries carried one (51%) or 

two copies (23%) of the functional allele, while all 49 uncolored-skinned 

berries were homozygous for the non-functional allele (26%). Thus, 100% of 

the berry color phenotype can be explained on the basis of the PCR-

established VvmybA genotype. 

 Eighty-two of the 186 F1 plants analyzed for visual color were analyzed 

also for total anthocyanins content in 2010. The LSD test for the average 

anthocyanins content of the corresponding genotypic classes showed 

significant differences (P < 0.05) between homozygous (two copies) and 

heterozygous plants (one copy). Although total anthocyanins differed even 

within the same genotypic classes (Fig. 1.4b), hybrids with two copies of the 
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functional allele had significantly higher anthocyanins contents (average value 

of 1637 mg/L) than hybrids with only one copy (average of 913 mg/L). 

Ninety-two percent of the hybrids homozygous for the functional allele were 

distributed in the high-anthocyanins-content range (above 1000 mg/L), in 

comparison with the 34% of the heterozygous hybrids (Fig. 1.4b). 

 

Figure 1.4. Association of visual berry color and total anthocyanins content with the   

        VvmybA genotype. 
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(a): PCR analysis of VvmybA alleles for uncolored (U) and colored (C) Monastrell (Mn) x Syrah (Sy) 

hybrids, with the CAPS marker 20D18CB9. M, molecular weight marker. 

(b): Average distribution of 82 colored hybrids for total anthocyanins. The number of copies of the 

functional VvmybA allele is indicated. 

 

 

1.4 Discussion  

 This study shows the high phenotypic variability found in a cross 
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progeny, suggesting a polygenic inheritance in agreement with previous 

studies (Sato et al. 2000; Wei et al. 2002; Liu et al. 2007; Costantini et al. 2008; 

Shiraishi et al. 2008; 2010; Liang et al. 2009; Duchêne et al. 2010; 2011).  

 In recent decades, the shortening of the intervals between phenological 

events has been reported in several areas of cultivation of the grapevine 

(Duchêne and Schneider 2005; Ramos et al. 2008; Soar et al. 2008) and it is 

accepted that elevated temperatures can impair the quality of grapes and wines 

(Jones and Davis 2000; Jones et al. 2005; Keller 2010). High temperatures are 

associated with elevated sugar content and tend to make the winemaking 

process more expensive because low-acid grape juice requires addition of 

tartaric acid. Likewise, high temperatures have been correlated with elevated 

synthesis of anthocyanins, but above 35 ºC anthocyanins stop accumulating 

and may even be degraded (Spayd et al. 2002; Mori et al. 2007). A possible 

adaptation to this climate change scenario in warm areas, like that of Murcia, 

is to grow late-ripening varieties with longer veraison-ripening intervals. These 

varieties might avoid the highest temperatures and have enough time to 

achieve full maturation in this area. Our results show that the possibility of 

obtaining offspring with a ripening date later than Monastrell (13-19%) and 

with a longer veraison-ripening interval (4-15%) is low. These late hybrids 

should be used as new progenitors to obtain offspring with a phenology 

adapted to this area in the future. 

 Also important is the selection of plants with better quality attributes, 

with regard to their adaptation to hot conditions. In this sense, the results of 

this work suggest that in order to get a high tartaric/malic acid ratio in the 

progeny, which improves the stability of wine, the mean tartaric acid content 

of the parents should be high, consistent with the results obtained by Liu et al. 

(2007). Moreover, the distribution of total content and extractability of 

anthocyanins in our progeny exhibited an additive model, and allowed the 
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identification of hybrids that showed total levels of anthocyanins above 1400 

mg/L (24-32%) and those with levels of extractable anthocyanins above 700 

mg/L (25-59%), the values preferred for the IMIDA’s breeding program. As 

expected, the mean total soluble solids of the progeny were lower than the 

values of both progenitors, due in part to the presence of white hybrids that 

require lower contents of sugar for their ripening. Inheritance patterns for 

table grape sugars were investigated previously in progenies by Liu et al. 

(2007). They concluded that parental sugar content has no significant effect 

on progeny sugar content. Finally, a low number of clusters per plant, 

together with small clusters, has a positive effect on wine quality and reduces 

the production costs by decreasing the cluster pruning (Morris et al. 2004). 

Fertility and cluster weight distribution exhibited a dominant model towards 

low values while berry weight exhibited an additive model, consistent with 

previous studies (Eibach 1990; Fanizza et al. 2005; Doligez et al. 2010). 

Nevertheless, these low values in our work could be a consequence of the 

mean value being calculated for the first years of production - when 

productivity is usually low - and of the narrow planting. 

 The selection of a particular phenotype can be a long process, due to 

the juvenile period (3-5 years) of grapevine plants and the additional time 

necessary for evaluation of important traits for wine production. On the one 

hand, phenotypic correlations between the traits of interest might be used to 

reduce the number of these to be evaluated in future studies. In this sense, we 

found that hybrids with high contents of anthocyanins also showed high 

anthocyanins extractability (r = 0.99). In addition, our results suggest that 

selection in breeding programs for hybrids homozygous for the functional 

color allele would be more likely to produce hybrids with high contents of 

anthocyanins. Similar results were reported also by Lijavetzky et al. (2006) and 

Azuma et al. (2008). So, the genotypic evaluation of color could be an 
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important tool in the pre-selection of hybrids with high contents and 

extractability of anthocyanins in the IMIDA wine breeding progeny. Although 

we also found a high correlation between ripening and the veraison-ripening 

interval (r = 0.95), the low correlation of these phenological events with 

veraison denotes the importance of assessing both veraison and ripening. 

 On the other hand, phenotypic correlations between traits may also 

restrict breeding progress given that the improvement of one trait could have 

unfavorable impacts on other traits. Thus, it is important to know the 

relationships between the traits of interest and to define the breeding 

objectives. In this work, only a few correlations were significant, with 

Spearman coefficients higher than 0.5. Weak or no correlations among traits 

indicate that each trait is genetically independent, such as fertility index, berry 

shape, cluster shape, cluster density, and tartaric acid. The intermediate 

correlation between sprouting and flowering (r = 0.64) could imply certain 

tendency of the late-sprouting hybrids to bloom later. To obtain balanced 

wines, it is necessary to have veraison-ripening periods that allow sugars to 

accumulate to favorable levels, maintain acid structure, and produce the 

optimum profile for phenols and flavor and aroma compounds. The data 

reported here indicate that selection for long veraison-ripening intervals would 

reduce the total acidity (r = -0.50) and malic acid (r = -0.60) and might also 

result in a weak increase of anthocyanins (r = 0.27). The negative correlation 

between ripening and acidity (r = -0.50) is in agreement with the data 

published by Wei et al. (2002) and in contrast to the positive correlation 

reported by Jones and Davis (2000). Excessive potassium in grape berries may 

have a negative impact on wine quality, mainly because it reduces the 

tartrate:malate ratio, which is undesirable for high-quality wines. The 

correlation of potassium with pH (r = 0.46) and malic acid (r = 0.64) is in 

agreement with previous results (Hale 1977; Boulton 1980; Gawel et al. 2000; 
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Mpelasoka et al. 2003). High potassium concentrations in a berry may impede 

malate transfer from the vacuolar storage pools to the cytoplasm and 

therefore may decrease the rate of malate degradation through malate 

respiration (Hale 1977). Other useful relationships were the moderate 

correlations between total soluble solids and total and extractable 

anthocyanins. 

 Seeds produce and act as sinks for hormones, which induce rapid 

growth of the developing ovary by increasing cell division and cell expansion 

(Bohner and Bangerth 1988). The relationship between seed number and 

berry size was reviewed by Ollat et al. (2002). In table grape, as in other fruit 

species, there is a positive correlation of berry weight or size with seed 

number (Coombe 1973) and a negative correlation with seedlessness (Wei et 

al. 2002). However, in our study with wine grapes, no correlation was found 

for berry weight and the number of seeds per berry, as Costantini et al. (2008) 

found in table grape. In accordance with these results, some QTLs 

(Quantitative Trait Loci) for seed number have been reported on linkage 

groups independent of QTLs for berry weight (Doligez et al. 2002; Cabezas et 

al. 2006; Mejía et al. 2007; Costantini et al. 2008).  

 

1.5 Conclusions 

 From the above results we deduce that crossing Monastrell and Syrah 

can generate a large phenotypic variability that may be useful in the 

development of new cultivars with improved attributes. Breeding new, late-

ripening varieties is a way to adapt the grapevine phenology to climate change 

in hot areas, and from this progeny we can select hybrids with a ripening date 

later than Monastrell. The selection of new parents should be based on high 

tartaric acid content, to improve the wine structure. We also suggest that the 

genotypic evaluation of the color could be an important tool in the pre-
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selection of hybrids with high content and extractability of anthocyanins. This 

progeny is maintained under experimental vineyard conditions, so pre-selected 

hybrids must be grafted and cultivated in commercial wine grape conditions in 

order to carry out new analyses of quality and micro-vinification procedures. 

Besides the common quality parameters, combinations of aromas, flavors, and 

tannins - which contribute to the unique and typical ‘varietal character’ - will 

be selected in these new cultivation conditions, depending on the type or style 

of wine that will be made. 
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2.1 Introduction 

 Molecular markers are differences at the chromosomal level made 

visible by molecular techniques. They enable us to follow the chromosomal 

segments which are passed on from one generation to the next. Molecular 

markers can be used to verify the identity of cultivars, to distinguish and 

compare cultivars, and also in the construction of genetic linkage maps and to 

study segregation of genes and the origin and inheritance of heritable traits. A 

linkage map is a representation of the genome of a biological species. In a 

diploid species every individual carries two genomes, one inherited from the 

mother and one from the father. Corresponding chromosomes from these 

two genomes are called homologous chromosomes. Molecular markers 

correspond to physical locations of DNA on these chromosomes (marker 

loci) and they allow the detection of differences between the homologs at the 

marker loci. These differences are called the marker alleles or the allelic variant 

of the marker.  

The construction of genetic linkage maps is nowadays a powerful tool 

to understand the genetic determination of many relevant grapevine traits that 

are generally controlled by multiple genes. The number of markers used to 

construct these maps varies dramatically and ranges from as few as 84 to more 

than 500. Lodhi et al. (1995) developed the first maps in grapevine using 

markers such as RAPD (Random Amplified Polymorphic DNA), RFLP 

(Restriction Fragment Length Polymorphisms), and isoenzymes. In the 

subsequent years several maps were generated, including different types of 

markers: AFLP, RAPD, CAPS, and SSCP (Dalbó et al. 2000; Doligez et al. 

2002; Grando et al. 2003; Doucleff et al. 2004; Fischer et al. 2004; Cabezas et 

al. 2006). These maps were improved with the addition of microsatellite (SSR) 

markers, which enabled the comparison of different genetic maps because 

they are highly transferable between laboratories and due to their co-dominant 
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character (Adam-Blondon et al. 2004; Riaz et al. 2004; 2006; Fanizza et al. 

2005; Doligez et al. 2006a,b; Lowe and Walker 2006; Di Gaspero et al. 2007; 

Mejía et al. 2007; Welter et al. 2007; Costantini et al. 2008; Salmaso et al. 2008; 

Vezzulli et al. 2008; Battilana et al. 2009; Duchêne et al. 2009; 2012; Fournier-

Level et al. 2009; Doligez et al. 2010; Riaz et al. 2011). The numbering of 

linkage groups has been performed according to Adam-Blondon et al. (2004). 

The reference map of Doligez et al. (2006a) was constructed using 502 loci 

SSR as well as five individual mapping populations.    

The development of SNP-type markers favored the gradual 

incorporation of these markers into genetic maps, together with markers 

developed from candidate genes (Di Gaspero et al. 2007; Troggio et al. 2007; 

Welter et al. 2007; Costantini et al. 2008; Salmaso et al. 2008; Vezzulli et al. 

2008; Battilana et al. 2009; Duchêne et al. 2009; Cabezas et al. 2011; Emanuelli 

et al. 2013; Grzeskowiak et al. 2013).  

Low and Walker (2006) generated the first interspecific rootstocks 

linkage map. While most maps to date have been constructed for V. vinifera, 

Blanc et al. (2012) recently published an SSR-based map for M. rotundifolia that 

showed a high degree of similarity to the V. vinifera reference map of Doligez 

et al. (2006a).  

These maps were used in QTL mapping of many relevant grapevine 

traits such as phenology, fertility, berry weight and composition, seedlessness, 

berry firmness, muscat flavor, cluster architecture, and tolerance to abiotic 

stresses or resistance to diseases and infestations (see, in particular, Costantini 

et al. 2009, as well as Battilana et al. 2009; Doligez et al. 2010; 2013; Riaz et al. 

2011; Huang et al. 2012; Duchêne et al. 2012; Emanuelli et al. 2013; 

Grzeskowiak et al. 2013; Barba et al. 2014; Correa et al. 2014; Coupel-Ledru et 

al. 2014; van Heerden et al. 2014; Carreño et al. 2015; Chen et al. 2015; Houel 

et al. 2015). 
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In breeding programs, markers linked to determined traits can be used 

to increase the chance of selecting those individual plants from the progeny of 

a cross that have the best-possible combination of desired properties. 

Molecular markers offer the possibility to select for a character at a stage long 

before it is expressed in the plant, since - for the analysis of molecular markers 

- usually only a small amount of DNA is needed. Another asset is the fact that 

markers tests can be applied at any time during the year and the plant 

development; also, they are not influenced by environmental noise and can be 

used even if the trait itself cannot be measured. In this work, linkage maps 

containing SSR and SNP markers were developed for a wine grape segregating 

F1 progeny (Monastrell x Syrah), to perform quantitative analysis in 

combination with phenotypic data collected over different years.  

 

2.2 Materials and Methods 

2.2.1 Plant material 

 The segregating progeny of 229 plants resulting from hybridization 

between the wine grape cultivars Monastrell and Syrah was used, including 

both parents (see chapter 1). 

 

2.2.2 Molecular marker analysis  

 Total DNA was isolated from 50 mg of young frozen leaves, using the 

DNeasy Plant Mini Kit (Qiagen, Valencia, CA) with extraction buffer 

supplemented with 1% polyvinylpyrrolidone to reduce polyphenols (Lodhi et 

al. 1995). The mapping population (229 F1 individuals) and the parents were 

genotyped using SSR (Simple Sequence Repeat), SNPs (Single Nucleotide 

Polymorphism), and one CAPS (Cleaved Amplified Polymorphic Sequence). 

Microsatellite primer sequences (SSR) were obtained from the UniSTS 

database of GeneBank (http://www.ncbi.nlm.nih.gov). The selection of 



Chapter 2   

 90 

suitable markers was based on their presence over the 19 linkage groups in 

previous genetic linkage maps of Vitis vinifera (Adam-Blondon et al. 2004; Riaz 

et al. 2004; Doligez et al. 2006). The mapping population was genotyped for 

104 SSR markers (Annex 1). The PCR amplifications were performed in 20-μl 

reactions containing 10-30 ng of template DNA, 0.2 µM of each primer 

(Applied Biosystems), 0.2 mM of each dNTP, 1x PCR buffer (Ecogen, 

Barcelona, Spain), 1.9 mM MgCl2, and 0.25 units of Taq DNA polymerase 

(Ecogen, Barcelona, Spain). Amplification reactions were carried out in a 96-

well block Thermal cycler (Eppendorf, Barcelona, Spain), using the following 

program: 5 min initial denaturation step at 94 ºC followed by 35 cycles (1 min 

denaturation at 94 ºC, 45 sec at the annealing temperature for the primer 

(Annex 1), and 1 min extension at 72 ºC), followed by 10 min final extension 

at 72 ºC. Primers failing to amplify were further tested using a touch-down 

PCR amplification program (Don et al. 1991), in which the initial annealing 

temperature (Ta) was reduced by 0.2 ºC per cycle for the following 14 cycles, 

followed by 20 cycles with an annealing temperature of Ta-3 ºC. All forward 

primers were labeled at their 5´-ends with fluorescent dyes (6-FAM, NED, 

VIC, or PET) and the PCR products were separated by capillary 

electrophoresis using the ABI Prism 3730 Genetic Analyzer sequencer 

(Applied Biosystems, Carlsbad, CA) in an external platform [Unidad de 

Genómica-Campus Moncloa del Parque Científico de Madrid 

(http://www.fpcm.es)]. Alleles were identified using GeneMapper software 

v3.7 (Applied Biosystems), and their sizes were determined using the internal 

size standard GS500LIZ (Applied Biosystems).  

The mapping population was also genotyped for 238 SNP (Single 

Nucleotide Polymorphism) markers (Lijavetzky et al. 2007; Cabezas et al. 

2011) using the Applied Biosystems SNPlexTM Genotyping System 48-plex 
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platform (De la Vega et al. 2005; Tobler et al. 2005) in the Centro Nacional de 

Genotipado (http://www.cegen.org).  

In addition, new SNP-based markers were analyzed in the mapping 

progeny (Annex 3), after their identification and development by applying the 

candidate genes (CG) approach (Pflieger et al. 2001). These markers were 

identified and developed at the Centre for Research and Innovation, 

Fondazione Edmund Mach (FEM) (San Michele all’Adige, Italy) from the 

cultivars Monastrell, Syrah, and Pinot Noir, in collaboration with the research 

team of Dr. Stella Grando. These candidate genes were selected based on 

different QTL intervals found in common for some phenological and 

productivity traits located in two different progenies with Syrah as a common 

parent for both of them. The database of the FEM genome sequence 

(http://genomics.research.iasma.it/) was used to identify different CG. 

Thirty-five pairs of primers were designed using the NCBI tool 

(www.ncbi.nlm.nih.gov/tools/primer-blast/) and were tested on the parents. 

Three of them produced multiple bands and were discarded. The remainders 

were sequenced as described in Battilana et al. (2009) and sequences were 

analyzed with the software GAP 4 (www.gap-system.org), manually, to find 

informative SNPs in the three varieties under study. Then, the segregation was 

tested in a few hybrids to confirm an equilibrated segregation. For suitable 

polymorphisms new primers were developed and a mini-sequencing protocol 

was applied, employing the SNaPshot Multiplex Kit protocol reported at 

http://docs.appliedbiosystems.com/search.taf. Subsequently, they were 

scored by GeneMapper v3.7 (Applied Biosystems, Carlsbad, CA).  

Moreover, the mapping population was also genotyped with the CAPS 

marker 20D18CB9, linked to berry color (Walker et al. 2007), as described in 

the first chapter of this manuscript.  
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2.2.3 Maps construction 

 Genetic maps were constructed using the JoinMap 3.0 software (Van 

Ooijen and Voorrips 2001), following the double pseudo-testcross strategy 

(Grattapaglia and Sederoff 1994) and applying the Kosambi mapping function 

(Kosambi 1944) to convert recombination rates into genetic distances. Both 

parental maps and a consensus map for the cross were constructed using 

double-haploid and cross-pollinated population types, respectively. 

Segregation patterns were assigned to each marker, following the JoinMap 

data entry notation: <abxaa>, <aaxab>, <abxab>, <abxac>, and <abxcd>. 

The segregation of each locus was tested for goodness-of-fit to the expected 

ratio using the chi-square test. Most markers showing distorted segregation 

were originally included in the map calculation unless they significantly 

affected the order of neighboring markers. For parental maps, markers of the 

<abxab> type were scored in the progeny as “ab” = missing data. Linkage 

groups (LGs) and marker order were determined using threshold values of 4.0 

(2.0 for LGs 8 and 12 on female map) for LOD (logarithm of odds) and 0.4 

for recombination rate. The marker order obtained was kept at around 2, but 

in some cases the marker order was fixed according to previously published 

maps and the position of the markers in the database of the grape genome 

sequences (www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/). The 

LGs were numbered from LG1 to LG19 according to the international 

agreement achieved within the IGGP (International Grape Genome Program; 

www.vitaceae.org). Female, male, and consensus genetic maps were aligned 

using MapChart v2.2 software (Voorrips 2002).  

Framework maps (one map for each progenitor and one consensus 

map for the cross) were also developed using the most informative markers, 

with very reliable positions, evenly distributed along LGs and keeping an 

inter-marker distance of 5-20 cM when possible.  
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2.2.4 Genome length and map coverage 

 The observed genome length for each linkage map was calculated as the 

sum of all the linkage groups lengths (Gob). The estimated genome size (Ge) 

was determined according to Hulbert et al. (1988), with the modifications 

introduced by the method 3 of Chakravarti et al. (1991): Ge = N(N-1)X/K, 

where N is the total number of markers, X is the maximum observed distance 

between marker pairs above a threshold LOD, 4 in this study, and K is the 

number of loci pairs with LOD 4 or above. The confidence interval was 

calculated according to Gerber and Rodolphe (1994) with the formula: I(Ge) 

= Ge(1±1.96K-1/2)-1, for α=5%. The expected genome map coverage was 

calculated by the formula of Lange and Boehnke (1982), adjusted for 

chromosomal ends: Gcl = 1-e(-XN/1.25Ge), where N is the number of markers 

and X is the maximum distance between two adjacent markers at a certain 

minimum LOD score (in this case, 4). The observed map coverage (Cob) was 

defined as the ratio between the observed genome and the estimated genome 

length (Gob/Ge).  

 

2.3 Results 

2.3.1 Molecular markers 

 One hundred and seventy-seven SSRs loci were initially analyzed in 

eight progeny individuals and both genitors. This allowed selection of 104 

SSRs (59%) polymorphic for at least one parent (Annex 1; Table 2.1). Of the 

238 SNPs previously identified by Lijavetzky et al. (2007) and studied in this 

work, 138 were polymorphic (58%) for at least one parent (Annex 2). In 

addition, in collaboration with the research team of Stella Grando (San 

Michele all’Adige, Italy), new SNP-based markers were analyzed in the 

mapping progeny, after their identification and development by applying the 

candidate genes (CG) approach (Pflieger et al. 2001). Of the 35 pairs of 
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primers designed and tested on the parental lines (see Material and Methods), 

eight new SNPs (representing six CG) were selected for the genotyping of the 

mapping progeny (Annex 2; Table 2.4).  

Finally, the total number of molecular markers useful for linkage 

analysis in the MnxSy mapping progeny was 251 (104 SSRs, 146 SNPs, and 1 

CAPS), of which 84% allowed discrimination between maternal and paternal 

inherited alleles (Table 2.1). One microsatellite marker (vmc5h11-200) showed 

a segregation pattern consistent with the presence of a null allele in ‘Syrah’ 

<aaxa0> and was re-coded as described by Doligez et al. (2002). A total of 

166 markers (66%) were useful to generate the female map of Monastrell 

(segregation types abxaa, abxab, abxac, and abxcd) and a total of 196 markers 

(78%) were useful to generate the male map of Syrah (segregation types aaxab, 

abxab, aaxa0, abxac, and abxcd).  

 

Table 2.1. Number and segregation type of the polymorphic markers genotyped in    

       the progeny. 

Marker type

Maternal 

1:1 

<abxaa>

Paternal 

1:1 

<aaxab>

1:2:1 

<abxab>

 1:3 

<aaxa0>

1:1:1 

<abxac>

1:1:1:1 

<abxcd> Total

SSRs 12 15 4 1* 49 23 104

SNPs 43 69 34 -- -- -- 146

CAPS -- -- 1 -- -- -- 1

Total 55 84 39 1 49 23 251  

* vmc5h11-200 for male parental line. 

 

2.3.2 Genetic maps 

 The complete parental and consensus maps are shown in Figure 2.1. Of 

the 251 markers useful for the consensus map, ten loci (2 SSRs and 8 SNPs) 

could not be assigned to any linkage group (ungrouped) and three loci (2 SSRs 

and 1 SNP) could not be mapped (unpositioned), so they were discarded 

(Annex 1 and Annex 2). Finally, 238 markers (100 SSRs, 137 SNPs, and 1 

CAPS) were assembled in the consensus map over the expected 19 LGs with 
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an average distance between loci of 5.23 cM (Figure 2.1; Table 2.2). The total 

number of positioned markers per LG was between 7 (LGs 10 and 16) and 18 

(LGs 7 and 18). The average size of the linkage groups was 61.84 cM, ranging 

from 42.2 (LG 13) to 90.7 (LG 7) cM. The segregation of 52 loci (22%) was 

significantly distorted (P<0.0001) (Annex 1 and Annex 2).  

This map had an observed size (Gob) of 1174.9 cM, which represents 

an observed coverage (Gob/Ge) of 76% (Table 2.3), and included only two 

intervals longer than 20 cM, the largest gap being 28.8 cM between VMC1E11 

and VVMD5 in LG 16 (Figure 2.1). The consensus framework map (131 loci) 

covered 1190 cM, with three gaps > 30 cM and six gaps between 20 and 30 

cM (data not shown). 

Of the 166 markers useful for the female map (Table 2.1), one SNP 

could not be assigned to any LG (ungrouped) and five markers (4 SNPs and 1 

SSR) were assigned to LGs but not mapped (unpositioned) (Annex 1 and 

Annex 2) because their inclusion in the linkage map led to inconsistencies in 

marker order. Accordingly, the Monastrell map was established on 160 

markers (87 SSRs, 72 SNPs, 1 CAPS) which were positioned on 19 LGs with 

an average distance between loci of 7.02 cM (Figure 2.1; Table 2.2). The 

average LG size was 54.52 cM, ranging from 11.5 (LG 10) to 89 (LG 7) cM. 

The total number of positioned markers per LG was between three (LG 10) 

and 18 (LG 18). This map had an observed size (Gob) of 1035.40 cM, which 

represents an observed coverage (Gob/Ge) of 61% (Table 2.3), and included 

four intervals longer than 20 cM and two longer than 30 cM, the largest gap 

(37 cM) being between VMC1E11 and VVMD5 in LG 16 (Figure 2.1). The 

maternal framework map (101 loci) spanned a total of 1056 cM, with two gaps 

> 30 cM and eight gaps between 20 and 30 cM (data not shown). 
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Table 2.2. Summary of the information generated for the Monastrell x Syrah maps, by linkage group.  
 

LG Total SSR SNP Total

average 

distance 

between 

adjacent 

markers

nº 

markers 

distorted Total SSR SNP Total

average 

distance 

between 

adjacent 

markers

nº 

markers 

distorted Total SSR SNP Total

average 

distance 

between 

adjacent 

markers

nº 

markers 

distorte

d

1 10 4 6 62.9 6.29 1 10 3 7 45.8 4.58 1 17 5 12 71.5 4.21 2

2 10* 5 4 52.9 5.29 0 11* 5 5 57 5.18 1 13* 6 6 62.3 4.79 4

3 5 4 1 44.9 8.98 1 9 5 4 41.3 4.59 0 10 5 5 51.7 5.17 1

4 11 5 6 56.6 5.14 2 13 5 8 57.7 4.44 0 17 5 12 58.5 3.44 4

5 11 5 6 63.7 5.79 1 11 5 6 43.5 3.95 1 15 5 10 60.8 4.05 4

6 9 5 4 52.5 5.83 0 12 5 7 64.1 5.34 3 16 6 10 68.1 4.26 2

7 11 6 5 89.4 8.12 5 16 6 10 88.5 5.53 3 18 6 12 90.7 5.04 5

8 4 3 1 58.4 14.6 1 17 5 12 60.5 3.56 0 17 5 12 60.5 3.56 1

9 8 5 3 75.4 9.42 3 5 3 2 37.5 7.5 0 10 5 5 74 7.4 2

10 3 2 1 11.5 3.83 3 7 4 3 51.1 7.3 5 7 4 3 51.3 7.33 5

11 7 5 2 53.7 7.67 3 8 4 4 44.7 5.59 2 9 6 3 59.6 6.62 6

12 7 4 3 62.5 8.93 2 8 4 4 45.3 5.66 2 11 5 6 54.5 4.95 2

13 8 4 4 21.3 2.66 1 4 3 1 48 12 2 9 4 5 42.2 4.68 2

14 9 5 4 68.1 7.57 3 11 5 6 66.7 6.06 0 14 5 9 73 5.21 5

15 10 4 6 43.4 4.34 0 9 4 5 56.8 6.31 0 11 4 7 57.9 5.26 5

16 5 4 1 59.7 11.94 0 5 4 1 51.7 10.34 0 7 5 2 61.2 8.74 0

17 8 4 4 44.3 5.54 0 5 4 1 46.1 9.22 0 9 4 5 46.3 5.14 0

18 18 8 10 69.2 3.84 2 16 8 8 76.6 4.78 1 18 8 10 78.8 4.38 8

19 6 5 1 45 7.5 1 9 6 3 56 6.22 8 10 7 3 52 5.2 7

Total 160 87 72 1035.4 7.02 29 186 88 97 1038.9 6.22 29 238 100 137 1174.9 5.23 65

Monastrell Syrah Consensus

nº of  markers Map length (cM) nº of  markers Map length (cM) nº of  markers Map length (cM)

 
*CAPS color; Segregation distortion P<0.05 
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Of the 196 markers useful for the male map (Table 2.1), five loci (2 SSR 

and 3 SNP) could not be assigned to any LG and five (1 SSR and 4 SNPs) 

could not be mapped (Annex 1 and Annex 2). Accordingly, the Syrah map 

was established on 186 markers (88 SSR, 97 SNP, and 1 CAPS) positioned on 

19 LGs, with an average distance between loci of 6.22 cM (Figure 2.1; Table 

2.2). The average LG size was 55 cM, ranging from 37.5 (LG 9) to 88.5 (LG 

7) cM. The total number of positioned markers per LG was between 4 (LG 

13) and 17 (LG 8). This map had an observed size (Gob) of 1038.9 cM, which 

represents an observed coverage (Gob/Ge) of 60% (Table 2.3), and included 

three intervals longer than 20 cM, the largest gap being 23.6 cM between 

VMC1E11 and VVMD5 in LG 16 (Figure 2.1). The paternal framework map 

(107 loci) spanned 1036 cM, with six gaps between 20 and 30 cM (data not 

shown). 
 

Table 2.3. Main features of the parental and consensus genetic maps. 
 

Monastrell Syrah Consensus
Nº. Of mapped markers 160 186 238

Genome length (cM)
Observed (Gob) 1035.4 1038.9 1174.9
Estimated (Ge) 1702.1 1741.6 1548.4
Confidence interval (95%) I(Ge) 1567.18 - 1862.54 1623.96 - 1877.81 1458.86 - 1649.63

Coverage (%)
Expected (Gcl) 96.7 97.7 98.0
Observed (Gob/Ge) 61 60 76

Average map distance between loci (cM) 7.02 6.22 5.23
No. of gaps between 20 and 30 cM 4(LGs 3, 7, 8, 8) 3(LGs 13, 14, 16) 2 (LGs 14, 16)
No. of gaps >30 cM 2(LGs 14, 16) 0 0
LGs with distorted markersa 14 10, 19 1, 2, 4, 5, 7, 10, 11, 14, 15, 18, 19  
Gob, sum of LG sizes; Ge, calculated by the method 3 of Chakravarti (Hulbert et al. 1988; Chakravarti et al. 

1991); I (Ge), calculated by the method of Gerber and Rodolphe (1994); Gcl, calculated by the method of 

Lange and Boehnke (1982), adjusted for chromosomal ends. 
a Linkage groups with two or more distorted markers at P<0.0001 

 

Chi-square analysis revealed a distorted segregation ratio (P<0.05) for 18.1% 

of the polymorphic markers in Monastrell and 15.6% of the polymorphic 

markers in Syrah. Most of the distorted markers were randomly distributed  
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throughout the genome but some of them were located in clusters with a high 

distortion level (Figure 2.1). For the female map three clusters were located on 

LGs 7, 10, and 14; for the male map on LGs 10 and 19, and for the consensus 

map on LGs 7, 10, 14, 18 and 19. The marker order was generally consistent 

between parental and consensus homologs linkage groups, with local 

inversions of closely linked markers and proximal markers (Figure 2.1). A 

general consistency in marker order was found compared with other 

published maps, except for a few local inversions. 

 

Figure 2.1. Parental and consensus complete linkage maps of the progeny  

        Monastrell x Syrah. 
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Figure 2.1. Continued 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2   

 
100 

Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 
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Figure 2.1. Continued 

 
 

 
Mn, Monastrell; Sy, Syrah; C, consensus. Distances are in cM Kosambi. The asterisks indicate significantly distorted loci 

(*P≤0.1, **P≤0.05, ***P≤0.01, ****P≤0.005, *****P≤0.001, ******P≤0.0005, *******P≤0.0001). Numbering of the 

linkage groups was performed according to previous reference maps. Ø, unpositioned markers. Marker colors indicate the 

types of segregation: blue <aaxab>, pink <abxaa>, black <abxab>, and green <abxac>, <abxcd>.  
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The heterozygosity levels of the parents were calculated with the total 

number of markers analyzed in both progenitors (450: 177 SSRs + 273 SNPs), 

considering the total percentage of heterozygous (67%) versus homozygous 

(33%) markers. The level of heterozygosity detected was similar in both 

parents, irrespective of the markers used (45% in Monastrell and 52% in 

Syrah). If we compare the level of heterozygosity of the 177 SSRs versus the 

273 SNPs for Monastrell and Syrah, a great difference between them is 

observed: 79-81% of the SSRs are heterozygous versus only 28-38% of the 

SNPs. 

 

2.3.3 Linkage of candidate genes 

 We used the genomic sequence of Pinot Noir, available at the FEM 

(http://genomics.research.iasma.it/), to identify positional candidate genes in 

the proximity of the markers underlying the corresponding QTLs (Table 2.4). 

Gene prediction was based on Vitis vinifera, Arabidopsis, and other species. Six 

positional candidate genes co-located with the QTLs for sprouting, flowering, 

veraison, and fertility index in three years.  
 

Table 2.4. Summary of eight new SNPs developed from six candidate genes.  

Marker name SNP LG Putative function

Sp1(20-21)8 tt x ct LG 1 Transcriptional factor B3
F3(3-6)6 cc x cg LG 3 Myb, DNA-binding
F5(1-4)1 ac x aa LG 5 squamosa promoter-binding like protein
F5(1-4)2 at x at regulation of transcription, DNA-dependent
Fl-7(17-19)3 ct x ct LG 7 Homeobox domain, ZF-HD class

DNA binding, regulation of transcription
Vr8(18-21)2 aa x at LG 8 cell wall, xyloglucan:xyloglucosyl transferase activity
Vr8(20-21)1 cc x ct
Sp14(0-4)2 tt x ct LG 14 Myb, DNA-binding  
Sp, sprouting; F, fertility index; Fl, flowering; Vr, veraison. The Monastrell x Syrah genotype is indicated 

(SNP), as well as the linkage group (LG) where the candidate genes were located.  
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Candidate genes were localized within the confidence interval of the 

QTLs for sprouting detected on LGs 1 and 14. The putative function of the 

gene located on LG1 is related to APETALA2 and the transcriptional factor 

B3 in Arabidopsis. These two domains are present in the RAV family of genes 

(Related to ABI3/VP1), which are characterized by an N-Terminal DNA-

binding AP2/EREBP domain and a C-terminal B3 domain. This family is 

involved in growth, development, and flowering time in Arabidopsis and other 

species (Romanel et al. 2009). Within the confidence interval of the QTL 

detected on LG 14, a Myb-like DNA binding domain was found (Table 2.4).  

Two QTLs were detected for fertility index, on LG3 and LG5. Within 

the confidence interval of the QTL detected on LG3 was located a gene with 

a putative function related to a Myb-like DNA binding domain. These genes 

are key in several processes, such as: seed development, cell pigmentation, 

response to stresses, pathogen resistance, light-sensing responses, and sucrose 

related responses. These genes have been identified in several woody species 

(poplar, apple, and grape) and in grape are mainly linked with flavonoid 

synthesis. The R2R3 subfamily is the most abundant in plants and the C-

terminal region interacts in the eukaryotic transcriptional machinery (Matus et 

al. 2008). The QTL detected on LG5 co-located with a Squamosa promoter 

binding (SBP) domain, a family of transcription factors with a MADS-box 

DNA binding domain that is involved in the identity of floral meristems and 

genetic control of flowering in Antirrhinum majus (Huijser et al. 1992). 

Moreover, recent studies showed that a microRNA156-Squamosa Promoter 

Binding Protein-Like3 (SPL3) regulates Flowering locus T (FT) expression in 

response to different temperatures in Arabidopsis (Kim et al. 2012). 

A gene related to flowering time was co-located within the confidence 

interval of the QTL detected on LG7. This gene was a zinc finger-

homeodomain (ZF-HD). The HD is a DNA-binding domain common in 

many transcription factors. There are many subfamilies with different 
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functions, such as: maintenance of meristematic cells, stem development, 

embryonic patterning, cell proliferation, or adaxial identity in leaves and 

embryos. The work by Tan and Irish (2006) showed that this subfamily (ZF) 

in Arabidopsis is expressed predominantly in floral tissue, playing a regulatory 

role in floral development. 

Finally, a gene related to veraison, with two domains, co-located within 

the confidence interval of the QTL detected on LG8 (Table 2.4). One domain 

of this gene was related to a family of glycosyl hydrolases, and the other to a 

xyloglucan endo-transglycoxylase C-terminus. Xyloglucan is the major 

component of the primary cell wall and therefore is involved in its properties. 

The glycosyl hydrolases family is a wide family with a lot of biological 

functions in organisms, such as storage, structure, or signaling in plants 

(Davies and Henrissat 1995). Moreover, the hydrolysis of glycosidic bonds is 

crucial for energy supply in cell wall expansion and degradation. The two 

domains act together during seed germination, fruit ripening, and rapid wall 

expansion (Baumann et al. 2007). 

The new SNPs developed were mapped and the QTLs were then re-

analyzed. The primer sequence and the code of the Gene Ontology 

Consortium of the eight new SNPs developed are shown in Annex 3. 

 

2.4 Discussion 

 The present work aims to contribute to our knowledge of the genetic 

determinants that control some of the most interesting characters related to 

the genetic improvement of wine grape. To address this goal, genetic maps 

covering most of the genome for a Vitis vinifera cross between two wine grape 

varieties, Monastrell and Syrah, were developed. The maps were constructed 

using molecular markers: SSR (Simple Sequence Repeat) and SNP (Single 

Nucleotide Polymorphism). First, the genetic maps ordered the molecular 

markers in linkage groups, based on their co-segregation in the mapping 
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population. Subsequently, the association of these markers with heritable 

characteristics will allow the prediction of the phenotype in the early stages of 

plant development and, therefore, the performance of a more efficient and 

faster markers-assisted selection of new varieties. Marker-assisted selection 

(MAS) may greatly increase the efficiency and effectiveness in plant breeding, 

compared to conventional breeding methods. The size of the population used 

to construct the linkage maps (n = 229) was suitable for a study of this type.  

Complete parental and consensus genetic maps were developed using 

238 informative molecular markers (100 SSRs, 137 SNPs, and 1 CAPS). The 

parental maps developed in this work reveal a similar length in both 

progenitors (1035.4 cM in Monastrell and 1038.9 cM in Syrah), with an 

observed coverage of 61% and 60%, respectively. The observed sizes (Gob) 

of the parental and consensus maps are within the range set by other 

published maps (Doligez et al. 2002; 2006; 2010; Grando et al. 2003; Riaz et 

al. 2004; 2006; Adam-Blondon et al. 2004; Doucleff et al. 2004; Cabezas et al. 

2006; Lowe and Walker 2006; Di Gaspero et al. 2007; Welter et al. 2007; 

Costantini et al. 2008; Salmaso et al. 2008; Duchêne et al. 2009). Nevertheless, 

the comparison of maps developed by different research groups must be 

considered with due caution, since the fitting of the various parameters (LOD, 

REC, etc.), as well as the software used for their construction (JoinMap, 

Mapmaker, Cartographer, Carthagene, R/qtl, ...), may greatly influence the 

outcome of the map. Also, in the present work the position of some of the 

markers has been fixed based on the information available in the physical map 

of the grapevine. In general, a greater number of markers positioned usually 

produces a larger map. In the population of the present work, the observed 

size (Gob) of the saturated consensus map was greater than that 

corresponding to each parent. However, this is a trend that, as such, does not 

always hold true, as with the maps of Doligez et al. (2006b and 2010). This 

could be due to the presence of a greater number of distorted regions, which 
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would shorten the maps due to the variation that they cause in the 

recombination rates (Doligez et al. 2002; Costantini et al. 2008). The small 

number of intervals between markers greater than 25 cM indicates that the 

maps reported here are at a good level of saturation for the proposed 

objectives. 

Based on markers common to other published maps, all the LGs were 

aligned to the 19 chromosomes of grape. Comparison of common markers 

among the three maps developed (Figure 2.1) showed a strong conservation 

of marker order with only minor changes detected. In some cases, this order 

was fixed following the physical database. The differences in the order of the 

markers may be caused by local variations in the frequency of recombination, 

by the segregation of specific markers in a single parent and by ruptures in the 

synteny of the parents (Salmaso et al. 2008). The changes of position in these 

maps are at sites of the genome in which they are more likely, such as the 

presence of markers with distorted segregation, or are partially informative in 

nature (abxab), as well as clusters of markers in a very narrow strip. A general 

consistency in marker order was also found, compared with other published 

maps.  

Segregation distortion of markers has often been observed in fruit and 

forest species (Bradsaw and Settler 1994; Grattapaglia and Sederoff 1994; 

Lanaud et al. 1995; Viruel et al. 1995; Barrenche et al. 1998; Paglia and 

Morgante et al. 1998; Cervera et al. 2001; De la Rosa et al. 2003; Lambert et al. 

2004). In this study, considering all the polymorphic markers, the distortion 

levels at P<0.05 found in the segregation of the alleles contributed by 

Monastrell was 18.1%, and 15.6% for Syrah. Of the useful markers for the 

construction of integrated map, 27.3% showed distortion in the segregation of 

the genotypes. These values are within the range presented by other genetic 

backgrounds of the genus Vitis that range from 3% to 20%. The ten LGs 

most susceptible to showing clusters of distorted markers are, in descending 
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order: 1, 17, 5, 14, 7, 18, 11, 4, 8, and 19 (Doligez et al. 2002; 2006; 2010; 

Grando et al. 2003; Riaz et al. 2004; 2006; Adam-Blondon et al. 2004; 

Doucleff et al. 2004; Cabezas et al. 2006; Lowe and Walker, 2006; Di Gaspero 

et al. 2007; Welter et al. 2007; Costantini et al. 2008; Salmaso et al. 2008; 

Duchêne et al. 2009). 

In this work, regions containing at least two adjacent distorted markers 

were observed in the maps (LGs 1, 2, 4, 5, 7, 10, 11, 14, 15, 18 and 19). There 

are indications that the presence of these distorted regions may arise because 

they are located in genes that, under certain allelic combinations, cause a 

strong deleterious effect, or resistance to a pathogen or disease, so that only 

certain genotypes develop into adult plants. Duchêne et al. (2009) observed 

that all the LGs in which QTLs for terpenol content were detected, were 

affected by the distortion in the segregation of the markers. They argued that 

the negative effects of terpenes on seed germination and seedling growth 

could have amplified the inbreeding depression, as they used two populations 

obtained by backcrossing a parent. Welter et al. (2007) detected a QTL with a 

major effect for powdery mildew resistance in a region of LG 15 having a 

cluster of distorted markers. Finally, Cabezas et al. (2006) detected a QTL 

with a major effect on seedlessness in the lower part of LG18 in the map of 

Autumn Seedless, in which the markers involved exhibited distortion. This 

author discussed a possible link between the presence of the QTL and the 

distortion, suggesting that it could de due to the abortion of a high number of 

embryos of a seedless genotype. In this work, LG 18 in the consensus map 

and LG19 in the Syrah map were the LGs with the higher number of markers 

having distorted segregation (8 in each of them), in agreement with other 

authors (Cabezas et al. 2006; Troggio et al. 2007).  

Grapevine is a species with a highly heterozygous genome, a 

characteristic which allows the construction of genetic maps using F1 

populations. The degree of heterozygosity of a genome, which can be 
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estimated by analysis of molecular markers, determines the efficiency of the 

construction of linkage maps. The level of heterozygosity of microsatellites 

(SSRs) analyzed in Monastrell (79%) and Syrah (81%) are within the range 

presented by other genetic backgrounds of the genus Vitis that range from 

56% to 90% (Doligez et al. 2002; Riaz et al. 2004; 2006; Adam-Blondon et al. 

2004; Cabezas 2004; Welter et al. 2007; Salmaso et al. 2008; Duchêne et al. 

2009). The big difference of heterozygosity between the two types of markers 

used (79% and 81% for SSRs, 28% and 38% for SNPs) is probably due to the 

fact that, while SSRs are the types of sequence with the highest mutation rate 

(Moxon and Wills 1999; Oliveira et al. 2006), the SNPs were developed from 

ESTs (Lijavetzky et al. 2007), with a mutation rate far below that of the SSRs.  

 

2.5 Conclusions 

 In this work, genetic maps were developed for a Vitis vinifera cross 

between two wine grape cultivars, Monastrell and Syrah, in order to identify 

the genetic determinants for given phenotypic traits. These maps will be used 

to carry out QTL detection for different traits of interest (see next chapter). 

Complete parental and consensus genetic maps were developed using 238 

informative molecular markers (100 SSRs, 137 SNPs, and 1 CAPS). The 

observed sizes of the Monastrell, Syrah, and consensus maps were 1035.4 cM, 

1038.9 cM, and 1174.9 cM, respectively, with observed coverages of 61%, 

60%, and 76%, respectively. These results are in the range of other genetic 

maps developed for grapevine. Based on markers common to other published 

maps, we were able to align all the LGs to the 19 chromosomes of grapevine. 

A general consistency in marker order was found compared with other 

published maps. Furthermore, eight new SNPs, linked to six candidate genes 

that could be involved in the control of different traits of interest, were 

generated and mapped. 
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3.1 Introduction 

 Most of the characters of agricultural interest are known to be 

quantitative, polygenic, or complex traits. These traits are controlled by a large 

number of genes.  The chromosomal regions involved in the genetic control 

of these traits are known as Quantitative Trait Loci (QTL). QTL mapping is 

the process used to identify the number and location of the genetic 

determinants responsible for the variation of the quantitative traits under 

study and their stability among different years (Collard et al. 2005). QTL 

analysis was initiated by the development of DNA or molecular markers in 

the 1980s and it is based on genetic maps and the phenotypic evaluation of a 

segregating progeny. The construction of linkage maps and QTL analysis take 

a considerable amount of time and effort. Nevertheless, the identification of 

markers linked to traits of interest allows improvement of the conventional 

breeding of grapevine, through more efficient marker-assisted selection 

(MAS).  

QTL analysis is based on the principle of detecting an association 

between the phenotypic segregation and the genotypic polymorphisms of 

markers. When a marker is linked only loosely or is not linked to a QTL, there 

is independent segregation of the marker and QTL. Three methods used 

widely to detect QTLs are single-marker analysis, simple interval mapping, 

and composite interval mapping (Liu 1998; Tanksley 1993). Single-marker 

analysis is the simplest method for detecting QTLs associated with single 

markers. This method does not require a complete linkage map and can be 

performed with basic statistical software programs. The simple interval 

mapping (SIM) method makes use of linkage maps and analyzes intervals 

between adjacent pairs of linked markers along chromosomes simultaneously, 

instead of analyzing single markers (Lander and Botstein 1989). The use of 

linked markers for analysis compensates for recombination between the 

markers and the QTL, and is considered, statistically, more powerful than 
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single-point analysis. In general terms, an individual QTL may be described as 

major or minor, based on the proportion of the phenotypic variation 

explained by the QTL.  

There are many factors that influence the detection of QTLs 

segregating in a population (Asíns 2002; Tanksley 1993). The main ones are 

the genetic properties of QTLs that control traits, environmental effects, 

population size, and experimental error. The genetic properties of QTLs that 

control traits include the magnitude of the effect of individual QTLs. Only 

QTLs with sufficiently large phenotypic effects will be detected; QTLs with 

small effects may fall below the significance threshold of detection. Another 

genetic property is the distance between linked QTLs: QTLs that are closely 

linked (≤ 20 cM) will usually be detected as a single QTL in typical population 

sizes (< 500 individuals) (Tanksley 1993). Environmental effects may have a 

profound influence on the expression of quantitative traits. Experiments 

replicated across sites and over time (for example, different seasons and years) 

may enable the determination of environmental influences on the QTLs 

affecting traits of interest. The most important experimental design factor is 

the size of the population used in the mapping study. The larger the 

population, the more accurate the mapping study and the more likely it is to 

allow detection of QTLs with smaller effects. An increase in population size 

provides gains in statistical power, estimates of gene effects, and confidence 

intervals of the locations of QTLs (Beavis 1998; Darvasi et al. 1993; Haley and 

Andersson 1997; Tanksley 1993).  

The main sources of experimental error are mistakes in marker 

genotyping and errors in phenotypic evaluation. Genotyping errors and 

missing data can affect the order of the markers and the distance between 

markers within linkage maps (Hackett 2002). The accuracy of phenotypic 

evaluation is of the utmost importance for the accuracy of QTL mapping. A 

reliable QTL map can only be produced from reliable phenotypic data.  
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The selection of plants in a segregating progeny that contain the 

appropriate combination of genes is a critical component of plant breeding. 

Moreover, plant breeders typically work with hundreds or even thousands of 

populations. Marker-assisted selection may greatly increase the efficiency and 

effectiveness in plant breeding compared to conventional breeding methods. 

Once markers that are tightly linked to genes or QTLs of interest have been 

identified, prior to field evaluation of large numbers of plants, breeders may 

use specific DNA marker alleles as a diagnostic tool to identify plants carrying 

the genes or QTLs.  

In this work, the progeny Monastrell x Syrah was used to map QTLs 

associated with the phenotypic variation in phenological, productive, 

morphological, and enological traits of interest in wine grape. Additionally, 

some putative candidate genes were also identified, based on the available 

molecular function annotation of grapevine and their colocation within the 

LOD-1 support intervals of the detected QTLs. 

 

3.2 Materials and Methods 

The phenotypic evaluation (phenological, productive, morphological, 

and enological traits) and linkage maps construction were described in the 

preceding chapters. Acidity and anthocyanin were measured three more years 

(2011-2013) with same protocols described before. The number of hybrids 

used was 76, 67 and 148, respectively.  

 

3.2.1 QTL analysis 

The QTL detection was carried out separately for the parental and 

consensus maps, using the software MapQTL v.4.0 (Van Ooijen et al. 2002) 

and the phenotypic data from each season. First, a non-parametric Kruskal-

Wallis (KW) rank-sum test was applied to verify the global segregation of each 

locus and to detect putative QTLs (Lehmann 1975). The QTLs detected were 
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considered significant at P > 0.0005 and if they were identified in different 

maps and/or in different years. Second, a simple interval mapping (SIM, 

Lander and Botstein 1989) was performed to find regions with potential QTL 

effects; then, scored markers in these regions were used as co-factors (no 

more than five) in multiple QTL mapping (MQM, Jansen and Stam 1994). All 

the cofactors used were selected with the ‘automatic cofactor selection’ test 

implemented in MapQTL. Both linkage-group-wide (LGW) and genome-wide 

(GW) LOD thresholds corresponding to =0.05 were used for both SIM and 

MQM detection of QTLs. The LOD thresholds were established through 

1000 permutations of the phenotypic data. The QTLs detected with a LOD 

score higher than the GW threshold were considered as significant, while 

QTLs detected only with a LOD score higher than the LGW threshold were 

considered as putative QTLs. The QTLs detected for GW and LGW were 

analyzed separately. The percentage of variance explained for each QTL and 

for the combined effect of all QTLs detected in the same season, as well the 

QTL location, was estimated in the final MQM model. The QTL position was 

estimated from the location of the maximum LOD value and was indicated by 

the LOD-1 confidence interval and the cofactor. The LOD-1 support 

intervals were calculated using restricted MQM mapping. A QTL was 

considered stable when detected in at least two growing seasons. 

 

3.2.2 Search for candidate genes 

Candidate genes linked with the trait under study were looked for 

within each confidence interval of the QTLs detected in two or more years, 

based on the annotated molecular function available (NCBI, 

http://www.ncbi.nlm.nih.gov/projects/mapview/map search.cgi?taxid=2976

0). The most proximal marker (SSR or SNP) was selected to delimit the 

confidence interval, and the position of these markers was identified in the 
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NCBI database. Only the most relevant sequences clearly linked with the trait 

were considered for the discussion of this work. 

 

3.3 Results 

 

3.3.1 Phenological QTLs 

Significant associations between single marker genotypes and 

phenotypic data were found with the non-parametric KW test for sprouting 

on LGs 1, 8, 13, and 14, flowering on LGs 7 and 14, veraison on LGs 2, 8, 

and 11, ripening on LGs 2 and 17, and veraison-ripening period on LG2 

(Annex 4). The QTLs detected at the GW for phenological data are shown in 

Table 3.1. One-LOD support confidence intervals of the main QTLs for 

phenological traits, detected with MQM, are represented in Figure 3.1. Five 

reliable QTLs for sprouting were detected, on LGs 1, 7, 8, 13, and 14 (Sp1, 

Sp7, Sp8, Sp13, Sp14) in the consensus and Mn maps. They individually 

explained between 6% and 12.6% of the total variance. The combined effect 

of all the QTLs detected in the same season explained up to 29.8% (in 2009) 

of the total variance in the consensus map. Only the Sp1 and Sp7 QTLs (in 

the Mn and consensus maps, respectively) were stable over years, explaining 

up to 11.3% of the total phenotypic variance. The Sp8 QTL was also detected 

only at the LGW level (putative QTL) in other seasons, in both the Mn and 

consensus maps, and the Sp13 region was detected in the consensus map 

(Annex 5). New unstable QTLs for sprouting were detected only at the LGW 

level (Sp2, Sp3, Sp11, Sp12, and Sp17) in the Sy and consensus maps (Annex 

5).  

For flowering time three QTLs were found, on LGs 5, 7, and 14 (Fw5, 

Fw7, and Fw14) in the Mn and consensus maps (Table 3.1), explaining 

individually up to 19% of the total phenotypic variance. The combined effect 

of all the QTLs detected in the same season explained up to 31% of the total 



Chapter 3   

128 

variance. Only the Fw7 QTL was consistent in the Mn map, explaining up to 

17.4% of total phenotypic variance. Fw7 and Fw5 were also detected only at 

the LGW level in other seasons (Annex 5). New putative QTLs for flowering 

(Fw8 and Fw12) were detected in the Sy and consensus maps (Annex 5). 

 

Table 3.1. QTLs identified for phenological traits in maps of the Monastrell x Syrah   

        progeny. 

Trait Map Year LG QTL

LOD 
max cM

Confidence 
interval Cofactor

GW LOD 
threshold

% variance 
QTL

% variance 

model
2008 14 Sp14 6.6 8.0 0-22 SNP251_159 4.1 12.6 12.6

1 Sp1 4.07 71.5 70-72 vvif52 4.0 7.8

7 Sp7 4.88 37.3 30-45 Vvi_1731 4.0 8.4

8 Sp8 5.26 15.0 4-32 vmc1b11 4.0 11.3

13 Sp13 4.26 10.0 4-17 SNP653_90 4.0 6.9

2010 7 Sp7 4.94 37.3 31-42 Vvi_1731 4.2 11.3 11.3

1 Sp1 4.57 60.6 35-62 vvif52 2.7 8.9

14 Sp14 5.90 5.0 0-24 vmc1e12 2.7 10.4

1 Sp1 3.63 55.6 42-62 vvif52 2.7 6.4

7 Sp7 4.23 39.8 28-54 Vvi_1731 2.7 7.2

8 Sp8 4.13 15.0 0-36 vmc1b11 2.7 8.8

13 Sp13 5.0 9.7 0-22 SNP653_90 2.7 8.0

2010 7 Sp7 3.99 39.8 35-52 Vvi_1731 2.7 8.7 8.7

2008 14 Fw14 5.02 13.5 9-18 vmc1e12 4.6 14.4 14.4

5 Fw5 4.85 14.2 0-15 SNP1071_151 4.0 9.5

7 Fw7 8.86 22.1 7-49 Vvi_1731 4.0 19.3

2008 14 Fw14 4.52 5.0 0-21 vmc1e12 2.6 13.1 13.1

2009 7 Fw7 3.1 39.8 35-52 Vvi_1731 2.1 10.1 10.1

5 Fw5 4.34 13.8 0-42 SNP1071_151 2.6 10.1

7 Fw7 6.16 24.9 5-54 Vvi_13076 2.6 17.4

2008 2 Vr2 5.08 21.2 14-25 vvib23 4.1 14.8 14.8

2009 2 Vr2 7.19 19.0 0-33 SNP581_114 4.1 20.5 20.5

2008 2 Vr2 5.04 11.4 0-48 vvib23 2.6 14.6 14.6

2009 2 Vr2 7.74 9.1 0-26 SNP581_114 2.6 22.7 22.7

5 Vr5 2.9 43.5 38-43.5 vmc4c6 2.7 7.4

8 Vr8 3.49 52.2 47-60 SNP1385_86 2.7 9.8

11 Vr11 3.09 20.5 19-30 vvib19 2.7 8.9

C 2010 2 Rp2 6.86 51.2 38-60 20D18CB9 5.4 18.1 18.1

2009 2 Rp2 2.91 31.9 24-48 vmc5g7 2.5 9.0 9.0

2 Rp2 5.5 31.9 18-50 vmc5g7 2.7 13.8

17 Rp17 3.38 0.0 0-6 SNP677_509 2.7 7.7

C 2010 2 Vr_Rp2 6.9 51.2 34-60 vmc5g7 5.4 18.5 18.5

2 Vr_Rp2 6.35 36.8 11-51 vmc5g7 2.6 16.7

17 Vr_Rp17 4.01 0.0 0-8 SNP677_509 2.6 10.4

2009 2 Vr_Rp2 5.69 21.9 2-52 vmc5g7 2.5 17.2 17.2

2 Vr_Rp2 6.23 31.9 17-49 vmc5g7 2.7 15.5

17 Vr_Rp17 3.25 0.0 0-5 SNP677_509 2.7 7.4

Rp
Mn 2010

Vr_Rp
Mn

2010

2008

Fw

C

Mn

2010

2010

Vr

C

Mn

Sy

2008

Sp

C

2009

Mn

2008

2009

20.6

27.5

22.4

29.8

17.8

27.2

31

19.9

23.8

 

The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. 

The QTLs are named using the LG number plus Sp, Fw, Vr, Rp, and Vr_Rp for sprouting, flowering, 

veraison, ripening, and veraison-ripening period, respectively. The QTL location is indicated by the position 

at which the highest LOD (LOD max) was detected (in cM), the LOD-1 confidence interval, and the 

cofactor. The QTLs considered are those with a maximum LOD value higher than that estimated for the 

genome-wide (GW) threshold, for a type I error rate of 5%. The percentage of the total variance explained by 
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each QTL, and when considering the combined effect of all QTLs detected in a season (model), is indicated. 

C, consensus; Mn, Monastrell; Sy, Syrah. 

 

Four significant QTLs were detected for veraison (Vr2, Vr5, Vr8, and 

Vr11). Only the Vr2 QTL was consistent in the Mn and consensus maps, 

explaining up to 22.7% of the total variance. The combined effect of the Vr5, 

Vr8, and Vr11 QTLs detected in the Sy map in the same season explained up 

to 23.8% of the total variance (Table 3.1). Nevertheless, they were also 

detected only at the LGW level in other seasons in the three maps, along with 

new putative QTLs (Vr11, Vr14, and Vr18) detected in the Mn and consensus 

maps (Annex 5). 

Ripening date was under the control of two genomic regions (Rp2 and 

Rp17), which explained between 7% and 18% of total phenotypic variance. 

The combined effect of the Rp2 and Rp17 QTLs detected in the Mn map in 

the same season explained up to 20.6% of the total variance (Table 3.1). They 

were also detected only at the LGW level in other seasons, along with a new 

putative QTL (Rp18) detected in Sy only in one season (Annex 5). 

For the veraison-ripening period two QTLs were found on LGs 2 and 

17 (Vr_Rp2 and Vr_Rp17), collocating with Rp2 and Rp17, respectively 

(Table 3.1). The combined effect of both QTLs detected in the Mn map in 

the same season explained up to 27.5% of the total variance (Table 3.1). New 

putative QTLs (Vr_Rp5 and Vr_Rp19) were detected in the Sy map in one 

season (Annex 5). 
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Figure 3.1. One-LOD support confidence intervals of the main QTLs for 

phenological traits detected with MQM.  
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Figure 3.1. Continued. 
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Figure 3.1. Continued. 
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Figure 3.1. Continued. 
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Figure 3.1. Continued. 
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Figure 3.1. Continued. 
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The QTLs detected at the genome-wide level (gw) are represented, as are the QTLs detected only at the 

linkage-group-wide (lg) level but found in at least two years or in two maps. The putative QTLs detected only 

in one year but which co-located with the QTL interval found at the GW level are also represented. C, 

consensus; Mn, Monastrell; Sy, Syrah. Sp, sprouting; Fw, flowering; Vr, veraison; Rp ripening; Vr_Rp, 

veraison-ripening interval.  
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3.3.2 Productive and morphological QTLs 

Significant associations between single marker genotypes and 

phenotypic data were found with the non-parametric KW test for fertility 

index on LGs 3 and 5, total production on LGs 5 and 8, cluster weight on 

LGs 2, 5, and 14, berry weight on LGs 5, 7, 14, and 17, and cluster 

compactness on LGs 2 and 5 (Annex 4). The QTLs detected at the GW level 

for productive and morphological data are shown in Table 3.2. The one-LOD 

support confidence intervals of the main QTLs for productive and 

morphological traits detected with MQM are represented in Figure 3.2.  

Two significant QTLs were detected for fertility index on LGs 3 and 5 

(Fi3 and Fi5). Only the Fi5 QTL was stable over years and was detected in the 

three maps, explaining up to 26.4% of the total phenotypic variance. The 

combined effect of the Fi3 and Fi5 QTLs detected in the same season (2008) 

explained 13.5% of the total variance in the Sy map. The Fi3 QTL was also 

detected only at the LGW level in other seasons, in both the Sy and consensus 

maps (Annex 6). New unstable QTLs for the fertility index were detected only 

at the LGW level (Fi8 and Fi11) in the consensus maps (Annex 6).  

Total production was under the control of one genomic region (P8), 

which explained only 10% of the total phenotypic variance. This QTL was 

found only in one season in the Mn map at the GW level, but also was 

detected in other seasons at the LGW level in the Mn and consensus maps, 

explaining up to 13% of the total variance (Annex 5). Six new putative QTLs 

for total production (P1, P3, P5, P12, P14, and P17) were detected, and the 

combined effect of some of them in the same season explained up to 33.4% 

of the total variance (Annex 6). Similarly, one significant QTL was detected 

for cluster weight on LG19 (CW19), explaining only 9.5% of the total 

variance. This QTL was found in only one season in the Sy map (Table 3.2). 

Eight new putative QTLs for cluster weight (CW1, CW2, CW5, CW7, CW8, 

CW10, CW14, and CW17) were detected, and the combined effect of some of 
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them in the same season explained up to 41.9% of the total variance (Annex 

6).  

 

Table 3.2. QTLs identified for productive and morphological traits in maps of the  

        Monastrell x Syrah progeny. 

Trait Map Year LG QTL LOD max cM

Confidence 
interval Cofactor

GW LOD 
threshold

% variance 
QTL

% variance 

model

2008 5 Fi5 9.08 0.0 0-16 SNP1027_69 4.8 21.6 21.6

2013 5 Fi5 11.67 0.0 0-32 SNP1027_69 4.4 26.4 26.4

2008 5 Fi5 4.31 0.0 0-7 SNP1027_69 2.7 8.4 8.4

2009 5 Fi5 4.14 0.0 0-8 SNP1027_69 2.7 8.1 8.1

2013 5 Fi5 7.22 0.0 0-17 SNP1027_69 2.7 14.3 14.3

3 Fi3 4.04 20.1 9-25 udv_043 2.8 7.4

5 Fi5 3.79 12.7 0-21 Vvi_5316 2.8 7.2

2009 5 Fi5 3.22 8.0 5-16 Vvi_5316 2.6 6.6 6.6

2010 5 Fi5 3.08 12.7 9-15 Vvi_5316 2.7 6.5 6.5

2013 5 Fi5 3.38 0.0 0-12 vrzag47 2.7 6.9 6.9

P Mn 2009 8 P8 2.64 40.8 36-49 SNP1385_86 2.5 10.1 10.1

CW Sy 2008 19 CW19 2.96 1.9 50-56 SNP819_210 2.7 9.5 9.5

14 BW14 5.01 8.0 1-14 vmcng1e1 4.1 12.6

17 BW17 4.56 10.6 9-13 vmc3c11_1 4.1 11.4

19 BW19 4.98 31.3 28-33 vvip31 4.1 12.5

5 BW5 4.95 0.0 0-10 SNP1027_69 4.0 11.5

7 BW7 5.28 27.2 22-48 vvis58 4.0 12.0

14 BW14 4.16 0.0 5-10 SNP251_159 4.0 9.4

5 BW5 4.08 30.9 29-35 SNP1235_35 3.9 9.8

17 BW17 4.05 10.6 9-16 vmc3c11_1 3.9 9.3

5 BW5 3.94 19.3 0-26.5 vrzag47 2.8 11.6

14 BW14 3.63 0.0 0-12 SNP251_159 2.8 10.7

1 BW1 2.91 40.0 35-48 SNP851_110 2.7 6.2

5 BW5 4.27 0.0 0-15 SNP1027_69 2.7 10.3

7 BW7 3.58 33.0 29.5-44 Vvi_1731 2.7 7.9

14 BW14 3.77 0.0 0-27 SNP251_159 2.7 7.9

2010 5 BW5 3.16 28.7 19-39 SNP855_103 2.6 8.7 8.7

2009 7 BW7 2.63 37.4 36-38 Vvi_1731 2.6 9.1 9.1

2010 17 BW17 3.57 4.3 0-8 vmc3c11_1 2.7 9.2 9.2

CN Mn 2009 8 CN8 3.17 45.8 36-55 SNP1385_86 2.6 11.9 11.9

2008 2 CC2 4.6 19.0 16-20 SNP581_114 4.5 16.9 16.9

2010 5 CC5 7.5 5.0 0-8 SNP1027_69 6.9 28.3 28.3

Mn 2010 5 CC5 2.95 5.0 0-8 SNP1027_69 2.6 9.7 9.7

Sy 2010 5 CC5 3.25 0.0 0-5.5 vrzag47 2.8 8.9 8.9

CC

C

2008

2008

2009

2010

2008

2009

Fi

C

Mn

Sy

BW

C

Mn

Sy

13.5

34.1

33.3

20.3

20.5

34.0

 

The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. 

The QTLs are named using the LG number plus Fi, P, CW, BW, CN, and CC for fertility index, total 

production, cluster weight, berry weight, cluster number, and cluster compactness, respectively. The QTL 

location is indicated by the position at which the highest LOD (LOD max) was detected (in cM), the LOD-1 

confidence interval, and the cofactor. The QTLs considered are those with a maximum LOD value higher 

than that estimated for the genome-wide (GW) threshold, for a type I error rate of 5%. The percentage of the 

total variance explained by each QTL, and when considering the combined effect of all QTLs detected in a 

season (model), is indicated. C, consensus; Mn, Monastrell; Sy, Syrah. 
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Berry weight was under the control of six genomic regions (LGs 1, 5, 7, 

14, 17, and 19), which explained between 6% and 12% of the total variance 

(Table 3.2). Only three of them (BW5, BW14, and BW17) were stable over 

the years. The combined effect of some of them in the same season explained 

up to 34.1% of the total variance (Table 3.2). The BW1 and BW7 QTLs also 

were detected in other seasons at the LGW level in Mn and Sy maps, along 

with a new putative QTL (BW4) detected in the Mn map in one season 

(Annex 6). 

For cluster number, one QTL was detected on LG8 (CN8), explaining 

11.9% of the total variance. This QTL was found only in one season in the 

Mn map (Table 3.2) and in two seasons at the LGW level in the consensus 

map (Annex 6). Eight new putative QTLs for cluster number (CN1, CN3, 

CN5, CN6, CN11, CN12, CN14, and CN15) were detected, and the 

combined effect of some of them in the same season explained up to 21.2% 

of the total variance (Annex 6). 

Two significant QTLs were detected for cluster compactness on LGs 2 

and 5 (CC2 and CC5) only in one season, explaining 28.3% of the total 

variance (Table 3.2). Nevertheless, these QTLs were also detected only at the 

LGW level in other seasons, along with three new putative QTLs (CC16, 

CC17, and CC19) (Annex 6). 
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Figure 3.2. Continued. 
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Figure 3.2. Continued. 
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Figure 3.2. Continued 
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Figure 3.2. Continued 
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Figure 3.2. Continued 
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The QTLs detected at the genome-wide level (gw) are represented, as are the QTLs detected only at the 

linkage group-wide (lg) level in at least two years or in two maps. The putative QTLs detected only in one 

year were included only if they co-located with the QTL interval found at the GW level. C, consensus; Mn, 

Monastrell; Sy, Syrah. Fi, fertility index; BW, berry weight; CW, cluster weight; CN, cluster number; P, total 

production; CC, cluster compactness. 
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3.3.3 Enological QTLs 

 Significant associations between single marker genotypes and 

phenotypic data were found with the non-parametric KW test for total acidity 

on LGs 2 and 18, the ratio of total soluble solids to total acidity on LGs2 and 

18, malic acid on LGs 2, 8, and 17, the ratio of tartaric to malic acid on LGs 1, 

2, and 8, and total anthocyanins on LG 2 (Annex 4). The QTLs detected at 

the GW level for enological data are shown in Table 3.3. The one-LOD 

support confidence intervals of the main QTLs for the enological traits 

detected with MQM are represented in Figure 3.3.  

For total acidity, two QTLs were detected on LGs 1 and 2 (Ac1 and 

Ac2), explaining between 7% and 18% of the total phenotypic variance. The 

Ac2 QTL was consistent only in the consensus map, but it was also located at 

the LGW level in other seasons in the Mn map and in one season in the Sy 

map (Annex 7). The Ac1 QTL was also detected at the LGW level in the Sy 

and consensus maps. New putative QTLs for total acidity were detected only 

at the LGW level (Ac4, Ac5, Ac6, Ac8, Ac9, Ac11, Ac12, Ac13, Ac16, Ac17, 

and Ac18). The combined effect of some of them in the same season 

explained up to 33.7% of the total variance (Annex 7). The Ac5 QTL was 

stable over the years in the Mn and Sy maps, and Ac18 QTL was stable in the 

Sy map. 

Three significant QTLs were detected for the ratio of total soluble 

solids to total acidity on LGs 1, 2, and 4 (TSS/Ac1, TSS/Ac2, and TSS/Ac4), 

but only the QTL on LG2 was consistent, explaining up to 19% of the total 

phenotypic variance. The combined effect of the TSS/Ac2 and TSS/Ac4 

QTLs detected in the same season explained up to 24% of the total variance 

in the Mn map (Table 3.3). The TSS/Ac4 QTL was also identified in other 

seasons in the Mn map at the LGW level (Annex 6). New putative QTLs for 

total acidity were detected only at the LGW level (TSS/Ac5, TSS/Ac8, 

TSS/Ac10, TSS/Ac11, TSS/Ac13, TSS/Ac14, TSS/Ac16, and TSS/Ac18).  
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Table 3.3. QTLs identified for enological traits in maps of the Monastrell x Syrah    

        progeny. 

Trait Map Year LG QTL

LOD 
max cM

Confidence 
interval Cofactor

GW LOD 
threshold

% variance 
QTL

% variance 
model

2009 2 Ac2 5.63 16.2 8-24 vvib23 4.0 18.5 18.5

2010 2 Ac2 5.82 56.1 47-62 20D18CB9 4.1 15.7 15.7

Mn 2009 2 Ac2 3.19 43.9 26-46 20D18CB9 2.7 11.0 11.0

Sy 2010 1 Ac1 2.5 45.3 44-46 SNP1021_163 2.2 7.3 7.3

2008 2 TSS/Ac2 4.45 56.8 54-58 20D18CB9 4.3 19.7 19.7

2009 2 TSS/Ac2 4.71 51.2 48-57 20D18CB9 4.3 15.6 15.6

2010 1 TSS/Ac1 5.37 71.6 67.5-71.6 SNP1157_64 4.0 16.0 16.0

2 TSS/Ac2 2.88 26.9 19-32 Vvi_9227 2.6 11.4

4 TSS/Ac4 2.91 27.6 21-34 Vvi_6668 2.6 11.6

2009 2 TSS/Ac2 5.2 31.9 19-50 Vvi_9227 2.8 17.4 17.4

2010 2 TSS/Ac2 3.73 43.9 26-51 20D18CB9 2.7 11.3 11.3

Sy 2010 1 TSS/Ac1 3.81 45.3 36-46 SNP1157_64 2.7 11.0 11.0

2010 18 Tar18 2.79 18.3 16-20 vvim93 2.6 10.3 10.3

2011 19 Tar19 2.93 49.5 49-51 vmc3b7_2 2.8 16.1 16.1

5 Ma5 4.85 43.9 42-54 vmc16d4 4.3 15.5

15 Ma15 4.56 56.5 48-58 SNP555_132 4.3 29.3

2013 8 Ma8 6.22 7.1 0-20 SNP699_311 4.2 19.6 19.6

4 Ma4 2.83 52.4 52-55 Vvi_2543 2.7 14.1

9 Ma9 2.81 70.3 62-75 Vvi_10329 2.7 14.9

17 Ma17 3.08 0.0 0-3.5 SNP677_509 2.7 17.3

18 Ma18 2.92 2.6 2-4 vmc3e5 2.7 16.3

5 Ma5 3.91 41.0 26-44 vmc4c6 2.7 13.0

8 Ma8 3.52 13.5 6-18 SNP853_312 2.7 11.1

2013 8 Ma8 6.21 7.1 0-24 vvip04 2.6 19.5 19.5

8 Tar/Ma8 7.18 7.1 0-22 SNP699_311 4.1 19.5

11 Tar/Ma11 4.7 9.3 5-18 SNP197_82 4.1 13.2

5 Tar/Ma5 3.69 41.0 15-43.5 vmc4c6 2.6 12.2

8 Tar/Ma8 3.52 7.1 0-22 vmc5g6_1 2.6 11.8

2013 8 Tar/Ma8 6.75 7.1 0-26 SNP699_311 2.7 21.1 21.1

2008 2 Ant2 15.95 56.1 20-62.4 20D18CB9 4.5 75.7 75.7

2010 2 Ant2 36.15 51.2 12-62.4 SNP1229_219 4.8 79.4 79.4

2011 2 Ant2 23.18 51.2 14-62.4 SNP1229_219 4.9 80.0 80.0

2012 2 Ant2 11.43 62.4 36-62.4 vmc7g3 5.6 54.6 54.6

2013 2 Ant2 43.04 56.8 12-62.4 SNP1229_219 4.7 77.5 77.5

2009 2 Ant2 5.16 52.9 26-53 vmc7g3 2.9 21.8 21.8

2010 2 Ant2 4.71 43.9 29-51 20D18CB9 2.7 17.6 17.6

2013 2 Ant2 6.64 43.9 19-53 20D18CB9 2.8 21.5 21.5

2008 2 Ant2 6.41 57.0 30-57 vmc7g3 2.9 53.1 53.1

2009 2 Ant2 2.98 51.6 49-55 20D18CB9 2.7 13.3 13.3

2010 2 Ant2 29.6 51.6 15-57 20D18CB9 2.8 69.8 69.8

2011 2 Ant2 20.18 51.6 15-57 20D18CB9 2.9 73.0 73.0

2012 2 Ant2 8.61 47.8 27-57 20D18CB9 2.6 47.8 47.8

2013 2 Ant2 30.68 51.6 15-57 20D18CB9 2.9 67.2 67.2

Ant

C

Mn

Sy

32.3

Sy

2010
24.0

Tar/ Ma

C
2013

31.1

Sy

2010

24.0

23.6

SyTar

Ma

C

2010
25.6

Mn

2011
22.8

2012

Ac
C

TSS/ Ac

C

Mn

2008

 

The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. 

The QTLs are named using the LG number plus Ac, TSS/Ac, Tar, Ma, Tar/Ma, and Ant for total acidity, 

ratio of total soluble solids to total acidity, tartaric acid, malic acid, ratio of tartaric acid to malic acid, and total 

anthocyanins, respectively. The QTL location is indicated by the position at which the highest LOD (LOD 

max) was detected (in cM), the LOD-1 confidence interval, and the cofactor. The QTLs considered are those 

with a maximum LOD value higher than that estimated for the genome-wide (GW) threshold, for a type I 

error rate of 5%. The percentage of the total variance explained by each QTL, and when considering the 

combined effect of all QTLs detected in a season (model), is indicated. C, consensus; Mn, Monastrell; Sy, 

Syrah. 
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The combined effect of some of them in the same season explained up to 

45.8% of the total variance (Annex 6). The TSS/Ac5 QTL was stable over the 

years in the three maps, the TSS/Ac11 QTL was stable in the Sy and 

consensus maps, and TSS/Ac14 was stable in the Mn map (Annex 6). 

For tartaric acid two QTLs were detected on LGs 18 and 19 (Tar18 and 

Tar19) in the Sy map, explaining 10.3% and 16.1% of the total phenotypic 

variance, respectively (Table 3.3). New suggestive QTLs for tartaric acid were 

detected only at the LGW level (Tar2, Tar3, Tar4, Tar5, Tar7, Tar9, Tar15, 

and Tar16). The combined effect of some of them in the same season 

explained up to 15.2% of the total variance (Annex 7). The Tar16 QTL was 

stable over the years in the Sy map (Annex 7). 

Malic acid was under the control of seven genomic regions (LGs 4, 5, 8, 

9, 15, 17, and 18), which explained between 11% and 29% of the total 

phenotypic variance. The combined effect of some of them in the same 

season explained up to 32.3% of the total variance (Table 3.3). Only Ma8 in 

the Sy map was consistent at the GW level; it was also consistent in the three 

maps at the LGW level (Annex 7), and the Ma17 QTL was stable over the 

years at the LGW level in the Mn map. New suggestive QTLs for malic acid 

were detected only at the LGW level (Ma2, Ma7, Ma11, and Ma14). The 

combined effect of some of them in the same season explained up to 65.5% 

of the total variance (Annex 7). The Ma7 and Ma11 QTLs were stable over 

the years in the Sy and Mn maps, respectively (Annex 7). 

For the ratio of tartaric acid to malic acid three QTLs were found, on 

LGs 5, 8, and 11, explaining between 11% and 21% of the variance. Only the 

Tar/Ma8 QTL was consistent in the Sy map (Table 3.3), explaining up to 

21.1% of the total variance. New suggestive QTLs for the ratio between 

tartaric acid and malic acid were detected only at the LGW level (Tar/Ma2, 

Tar/Ma7, Tar/Ma9, Tar/Ma14, Tar/Ma15, Tar/Ma17, and Tar/Ma18). The 

combined effect of some of them in the same season explained up to 39% of 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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Figure 3.3. Continued. 
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The QTLs detected at the genome-wide level (gw) are represented, as are the QTLs detected only at the 

linkage group-wide (lg) level in at least two years or in two maps. The putative QTLs detected in only one 

year were included only if they collocated with the QTL interval found at the GW level. C, consensus; Mn, 

Monastrell; Sy, Syrah. Ac, Total acidity; TSS_Ac, Ratio of total soluble solids to total acidity; Ma, Malic acid; 

Tar, Tartaric acid; Tar_Ma, Ratio of tartaric acid to malic acid, and Ant, total anthocyanins. 

 

 

3.4 Discussion 

 The QTL mapping methods rely on the assumption that the phenotype 

follows a normal distribution. In the present case, almost all the phenotype 

datasets displayed a non-normal distribution. Nevertheless, the SIM and 

MQM methods are quite robust against deviations from normality (van 

Ooijan 2009), therefore these methods were performed together with a 

maximum likelihood model and the permutation test based on the raw data. 

Moreover, recent work by Chen et al. (2015) produced similar QTL results 

with transformed and original data. On the other hand, most of the QTLs 

found by interval mapping were detected by KW tests, confirming that most 
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of the QTLs detected with interval mapping were not artefacts due to non-

normal distribution of traits, large gaps, or segregation distortion.  

The low number of genome-wide significant QTLs found could result 

from the limited size of the population analyzed in some seasons because of 

environmental conditions and disease incidence. In addition, the numbers of 

individuals analyzed for enological parameters were lower due to the minimal 

quantities of material necessary for these analyses.   

In some cases significant QTLs (GW level) were detected only in a 

single year. This might be due to a limited power of detection because of a 

moderate population size, only one replicate vine, or alternatively to year 

effects and/or to genotype x year interactions. The environment affects the 

development of plants and modifies the harvest quality of the samples. All of 

these factors show the difficulties in QTL studies in fruit species. 

Nevertheless, some of the identified significant QTLs were also detected at 

the LGW level (putative QTLs) in other seasons and/or maps, providing 

additional evidence about their reliability. Also, the reliability of the results in 

some cases was supported by similar findings in other segregating 

populations, as discussed below. 

Finally, the high number of QTLs detected for most of the traits 

analyzed shows the polygenic control of the respective traits. The percentage 

of total variance explained was low in most cases, indicating the existence of 

multiple genes involved in the control of the character. If a trait is composed 

of multiple QTLs the variance explained by each one is small. This complex 

genetic determinism, and the absence of major QTLs consistently explaining a 

large portion of the total phenotypic variance, makes it difficult to develop 

molecular markers for the genetic selection of the different traits studied. The 

markers significantly associated with the corresponding traits should be tested 

for their usefulness in marker-assisted selection. 
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In this work, some markers co-localized with QTLs and were 

significantly associated with the corresponding phenological, productive, 

morphological and enological traits in the KW analysis (Annex 4).  

 

3.4.1 Phenological QTLs 

Studies of phenology are important in the analysis of the behavior of a 

cultivar. For growers it is crucial to know these processes well enough to 

adequately perform cultural practices. There are four classical phenological 

stages (sprouting, flowering, veraison, and ripening). In grapevine the bud 

break is the first stage and starts when the required chilling hours are 

accumulated and the environmental conditions are favorable. To the best of 

our knowledge, there are only two reports of QTLs identified for sprouting in 

grapevine (Duchêne et al. 2012; Grzeskwiak et al. 2013), on LGs 4, 15, and 

19. In Monastrell x Syrah progeny five new QTLs for bud break were found 

(Figure 3.1), explaining a low percentage of the phenotypic variance. 

However, only the Sp1 and Sp7 QTLs, found in the Mn and C maps, 

respectively, were stable over years.  

Flowering is directly linked with the final production and involves 

complex processes. The initiation of the ‘anlagen’ starts in the year previous to 

the harvest and it is highly influenced by high temperatures and sun exposure. 

In the next season the final production depends on an effective fertilization, 

among other factors. In this work three significant QTLs for flowering time 

were found, but only Fw7 was consistent (Figure 3.1). This QTL has already 

been found in progenies from different crosses: Riesling x Gewurztraminer 

(Duchêne et al. 2012) and Syrah x Pinot Noir (Grzeskowiak et al. 2013). This 

locus contains several genes involved in the flowering process, such as VvFT 

(Flowering Locus T) and VvSVP1 (Short Vegetative Phase 1): VvFT and VvSVP1 

cooperate to regulate flowering in Arabidopsis (Sreekantan and Thomas 2006; 

Carmona et al. 2007; Díaz-Riquelme et al. 2009). VvSVP1 is expressed in 
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flowers and mediates the interaction with FLC (Flowering Locus C), according 

to the temperature. Moreover, a homolog of VvSVP1 has been associated 

with a QTL of flowering in tomato (Jimenez-Gomez et al. 2007). The putative 

Fw8 QTL found on the Syrah map co-localized with the VvAGL15.2 

(Agamous Like) gene that is expressed in Arabidopsis flowers too. In the 

present work, the Fw14 QTL was found only in one year but in two maps (C 

and Mn), and has also been found in other progenies (Duchêne et al. 2012; 

Carreño 2012; Fechter et al. 2014) but in different positions. Other QTLs for 

this trait were found in other progenies on LGs 1, 2, 6, 15, and 18 (Costantini 

et al. 2008; Carreño 2012; Duchêne et al. 2012). 

Veraison is composed of different processes such as softening and 

sugar and polyphenols accumulation. These results show only one stable QTL 

(Vr2), explaining up to 22% of the total phenotypic variance (Figure 3.1), in 

agreement with other authors (Costantini et al. 2008; Grzeskwiak et al. 2013). 

This QTL interval is close to the locus responsible for berry color, which 

includes the genes VvMybA1, VvMybA2, and VvMybA3 involved in the 

regulation of anthocyanin biosynthesis (Kobayashi et al. 2004; Azuma et al. 

2008; Fournier-Level et al. 2009). Significant, but not stable, Vr8 and Vr11 

QTLs were confirmed by the KW test and have also been detected by Fischer 

et al. (2004). Moreover, recent work by Fechter et al. (2014) found the same 

QTL on LG11, in the same position. This work used a parent (Börner), 

derived by a cross between V. riparia and V. cinerea, with the objective of 

obtaining a pathogen-resistant rootstock. This result shows that the Vr11 

QTL is present in different Vitis backgrounds. The putative Vr18 QTL, 

detected in two years in the present work, was found before by Duchêne et al. 

(2012). These authors found some genes in this interval related with sucrose 

(Gambetta et al. 2010), ABA, and a ripening-induced protein (Çakir et al. 

2003). One marker associated with this QTL was VMC7F2; this is linked with 

the transcription factor VvAGL11 (Mejía et al. 2011), related with seed 
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development. Other QTLs for this trait were found in different progenies on 

LGs 1, 3, 6, 15, 16, and 17 (Costantini et al. 2008; Carreño 2012; Duchêne et 

al. 2012; Grzeskowiak et al. 2013). 

The results for the ripening date and veraison-ripening period were 

consistent in this study (LGs 2 and 17) (Figure 3.1). The transcription factors 

involved in anthocyanin synthesis, VvMybA1, VvMybA2, and VvMybA3, were 

located within the confidence interval of the Rp2 QTL. This QTL has also 

been detected by Costantini et al. (2008) and Grzeskowiak et al. (2013) in wine 

grape cultivars. The Rp17 QTL was also found by Mejía et al. (2007), and co-

located with a QTL found for veraison by Carreño (2012), both in table grape 

progenies.  

In this work, QTLs for sprouting and flowering co-localized on LG7 

(in the Mn and consensus maps), and QTLs for flowering and veraison co-

localized on LG8 (on the Sy map). These results suggest the implication of 

common genes in different developmental stages. In this sense, Sreekantan et 

al. (2010) proposed a group of candidate genes -regulated by the photoperiod- 

that could be involved in both dormancy and floral initiation. 

 

3.4.2 Productive and morphological QTLs  

The fertility index is an important parameter in grapevine, linked with 

the yield of a variety. In this work, only the significant Fi5 QTL was 

consistent, explaining up to 26.4% of the total phenotypic variance (Figure 

3.2). This QTL has already been found in progenies from different crosses, by 

Doligez et al. (2010) and by Carreño (2012), suggesting that it interacts little 

with the genetic background and/or environment. The significant Fi3 QTL, 

detected in only one year on the Syrah map, has also been detected in the 

progeny Syrah x Pinot Noir (Grzeskowiak et al. 2013). These authors found 

that this locus contains several genes involved in cell wall biosynthesis, cell 

division, secondary metabolism, and a broad range of biochemical pathways. 
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Thus, these genes may be vital for normal plant growth and development. 

Other QTLs for this trait have been found in different progenies, on LGs 8, 

9, 12, 14, and 18 (Fanizza et al. 2005; Doligez et al. 2010; Carreño 2012; 

Grzeskowiak et al. 2013). 

The total production is one of the goals for growers; the number and 

weight of clusters, cluster compactness, and berry weight being associated 

with this parameter. For total production, one unstable QTL at the GW level 

was detected on LG8 (P8), collocating with CN8. Stable QTLs for total 

production were found only at the LGW level, on LGs 1, 5, and 8, and 

explained a low percentage of the phenotypic variance (Figure 3.2). Similarly, 

one significant QTL was detected for cluster weight, on LG19 (CW19) in the 

Sy map, but only in one year. Stable QTLs for this trait were found only at the 

LGW level, on LGs 1 and 5. Putative CW5 and CW17 QTLs, found only in 

one year in this work, have already been found by Fanizza et al. (2005).  

Berry weight was under the control of six genomic regions, which 

explained up to 12% of the total variance. Three of these QTLs (BW5, BW14, 

and BW17) were stable over the years (Figure 3.2) and were confirmed by the 

KW test. The BW5 QTL showed different, but overlapping, confidence 

intervals through the years. It cannot be stated for sure whether there is one 

or more QTLs in this region or if it is the same QTL previously found by 

Fanizza et al. (2005), on LG5, for berry weight. The BW17 QTL has already 

been found by Doligez et al. (2013), and co-localized with three candidate 

genes: a cytochrome P450 78A-like protein linked with fruit weight in tomato, 

a WRKY transcription factor, and another transcription factor linked with the 

pre-veraison process. Although the BW7 QTL was detected only in one year, 

it has been reported also by Houel et al. (2015), who detected a major and 

stable QTL for berry weight on LG7, in both the green- and mature-grape 

phases and at different (controlled) temperatures.  
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Finally, two significant QTLs were detected for cluster compactness 

(CC2 and CC5) only in one season (Figure 3.2), and were confirmed by the 

KW test (Annex 4). These QTLs explained up to 28.3% of the total variance 

and were also detected in other seasons, but only at the LGW level. There are 

no previous publications concerning QTLs for this character. 

It is worth highlighting the importance of LG5 in the control of all the 

production-related parameters studied in this work; QTLs for Fi and CC and 

for CW and BW were detected in similar QTL intervals on LG5 (Figure 3.2). 

The coincident interval between Fi and CC could be associated with the floral 

load - that affects both parameters. In this sense, Correa et al. (2014) studied 

the cluster architecture and found six QTLs for different parameters and 

ratios related to this trait in LG5. Also, some phenology and productivity 

QTLs co-localized, such as sprouting and berry weight on LG14 or ripening 

and berry weight on LG17.  

 

3.4.3 Enological QTLs  

The total acidity is the combination of both volatile (readily removed by 

steam distillation) and fixed (weakly volatile) acidity. The role of the acids in 

maintaining a low pH is crucial for the color stability of red wines. In this 

work, total acidity - expressed in tartaric acid equivalents - was under the 

control of two genomic regions (Ac1 and Ac2), which explained between 7% 

and 18% of the total phenotypic variance. Only the Ac2 QTL found in the 

consensus map was stable over years and was confirmed by the KW test. 

Although the Ac1 QTL was detected only in one year at the GW level, Viana 

et al. (2013) found a QTL for pH on LG1 in a table grape progeny. A 

consistent Ac18 QTL was found only at the LGW level and was confirmed by 

the KW test in this work. This result is in agreement with the results obtained 

by Chen et al. (2015) for total acidity.  
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Table 3.4. Genes located within the QTL intervals for total acidity. 
 

Chromosome position Gene Descriptor
Gene ID or Locus 
Tag Position Reference

Ch2:5062420..17197897 calcineurin B-like protein 01 GSVIVT00011978001 5592160..5598339 1

Ch5:17185187..24864931 2-isopropylmalate synthase 2, 
chloroplastic-like

100249820 20967342..21013384
2

2,3-dimethylmalate lyase-like GSVIVT00033586001 20385249..20410269 3

probable UDP-sugar 
transporter protien SLC35A5-
like

VIT_00013580001 21137773..21161143

fructokinase-2-like GSVIVT00001970001 22616311..22620258 4

3β-hydroxysteroid-
dehydrogenase/decarboxylase 
isoform 3-like

VIT_00010844001 23306676..23315434

probable 
hydroxyacylglutathione  
hydrolase 2, chloroplast-like

GSVIVT00010300001 23317514..23328535

Ch8:3320174..11073859 pyruvate decarboxylase 1 GSVIVT00001355001 8219848..8222883 5

CBL-interacting protein kinase 
07

VITISV_040419 10381868..10385364
6

Ch16:13708473..21845048 L-idonate dehydrogenase GSVIVT00012394001 15651418..15653988 7

Ch17:0-9000000 malate synthase, glyoxysomal-
like

100261216 1351757..1354948
8  

The table shows the chromosome position of the QTL interval delimited by the closest markers, gene 
description, gene ID, gene position, and reference: (1) Cuéllar et al. 2013; (2) de Kraker et al. 2007; (3) 
Schnarrenberger and Martin 2002; (4) Pego and Smeekens 2000; (5) Or et al. 2000; (6) Weinl and Kudla 2009; 
(7) DeBolt et al. 2006, and (8) Schnarrenberger and Martin 2002. 

 
In grapes, two dicarboxylic acids (tartaric and malic) often compose 

more than 90% of the fixed acidity (Jackson 2000; Conde et al. 2007). Malic 

acid may constitute about half the total acidity of grapes and wine. It is known 

that the principal synthesis of malic acid is linked with sugar metabolism 

(Sweetman et al. 2009). For that reason we looked for QTLs related to the 

total soluble solids/acidity ratio. A consistent QTL for the TSS/Ac ratio was 

found on LG2; it was confirmed by the KW test and co-located with Ac2 

(Figure 3.3). In this region the CBL01 (calcineurin B-like protein 01) gene was 

found (Table 3.4). This protein acts as a complex with a CBL-interacting  
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protein kinase (CIPK) in the activation of a K+ channel of the Shaker family, 

VvK1.2. Cuéllar et al. (2013) found that the expression of the VvK1.2 gene is 

induced in veraison and during ripening, and that the CBL/CIPK complex is 

involved in this activity. The CBL and CIPKs families develop several 

functions as stress responses: H+ transport, K+ homeostasis, or nitrate 

responses (Weinl and Kudla 2009). Two putative QTLs (Ac5 and TSS/Ac5) 

co-located on the Monastrell and Syrah maps and several genes were found 

within these QTLs intervals, related with the sugar and tricarboxylic acid 

(TCA) cycle. One gene encoded a probable UDP-sugar transporter 

(LOC100855157) and another a fructokinase-2-like activity (LOC100245852), 

both linked with sugar metabolism. Another candidate gene encoded a 2,3-

dimethylmalate lyase-like activity (LOC100244697), involved in the TCA cycle 

and with citric acid. All of these could be associated with malic acid because it 

is a source of energy when sugar has been accumulated in the vacuoles (Table 

3.4).  

Two significant, but not stable, QTLs on LGs 18 and 19 were found 

for tartaric acid (Figure 3.3). Viana et al. (2013) also found a QTL for tartaric 

acid on LG19 of table grape. They used a progeny with V. rupestris and V. 

arizonica as grandparents. So, this QTL could have an ancestral origin in the 

genus Vitis. In this work, the QTL analysis showed the presence of ten QTLs 

at the LGW level, but only the putative Tar16 was stable on the Syrah map. In 

this QTL interval the gene encoding L-idonate dehydrogenase was found. 

This is the key enzyme in the conversion of L-idonate to 5-keto D-gluconic 

acid - that produces oxalic acid (DeBolt et al. 2006). It is highly expressed in 

the first phase of berry development, pre-veraison, when tartaric acid is 

accumulating. Because of the low degree of explanation of the phenotypic 

variance provided by this QTL, other pathways for tartaric acid production 

have to be presented in grapes. In this sense, Houel et al. (2015) found two 
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QTLs for tartaric acid, on LGs 4 and 7. In the current study, putative QTLs 

were also found on these LGs, but only for one year and in one parental map.  

Consistent Ma8 and Tar/Ma8 QTLs were found (Figure 3.3) and were 

also confirmed by the KW test. Within these QTL intervals two candidate 

genes were found, for pyruvate decarboxylase 1 (PDC1) and a CBL-

interacting protein kinase. PDC1 was cloned in order to clarify the ethanol 

production in berries (Or et al. 2000). The increase in ethanol is linked with 

the pyruvate production derived from malic decarboxylation. PDC is the key 

enzyme in the fermentative metabolism and in the ethanol production. A 

malate synthase gene (LOC100261216) was located within the Ma17 and 

Tar/Ma17 QTLs intervals. This gene is up-regulated in the first phase of berry 

development, when malic acid is synthesized (Terrier et al. 2005). Finally, the 

putative Ma7 found in this work was also located by Houel et al. (2015) in 

another progeny. 

Regarding the total anthocyanin content, one stable and significant 

QTL (Ant2) was found in the three maps (Figure 3.3); this was confirmed by 

the KW test. This QTL explained up to 80% of the total phenotypic variance. 

The transcription factors involved in anthocyanin synthesis, VvMybA1, 

VvMybA2, and VvMybA3, were located within this region. Recently, 

Costantini et al. (2015) have shown that almost all the LGs have a QTL linked 

with a specific anthocyanin. Other work detected QTLs related with 

anthocyanins in LGs 1, 8, and 14 (Azuma et al. 2015; Ban et al. 2014). In 

agreement with these results, in the present work one putative QTL, found on 

LG10 in two years on the Monastrell map (Figure 3.3), explained 12% of the 

phenotypic variance. Also, other putative QTLs were found on LGs 3, 8, 14, 

16, 17, 18, and 19 (Annex 7), but only in one year. 
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3.5 Conclusions 

 Several QTLs have been identified for phenological, productive, 

morphological, and enological traits. The low number of genome-wide 

significant QTLs found could result from the limited size of the population 

analyzed in some seasons because of environmental conditions and disease 

incidence. Another reason could be the effect of the environment on the traits 

analyzed. The high number of QTLs detected for most of the traits analyzed 

shows the polygenic control of the respective traits. This complex genetic 

determinism, and the absence of major QTLs consistently explaining a large 

portion of the total phenotypic variance, makes it difficult to develop 

molecular markers for the genetic selection of the different traits studied.  
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IV. GENERAL CONCLUSIONS 

In this work genetic maps were developed for a Vitis vinifera cross 

between two wine grape varieties, Monastrell and Syrah. These maps were 

used to carry out QTL detection for phenological stages and productive and 

fruit quality traits, contributing to our knowledge of the genetic determinants 

that control these traits of interest. The results allowed the following 

conclusions to be drawn: 

(Chapter 1) 

1. Crossing Monastrell and Syrah generated a large phenotypic variability 

that may be useful in the development of new cultivars with improved 

attributes. 

2. Most of the phenotypic parameters evaluated showed transgressive and 

continuous variation within the progeny, suggesting a polygenic 

inheritance - in agreement with previous studies.  

3. The year effect was significant in all the traits under study except for 

fertility index, visual color, cluster shape, total acidity, and total and 

extractable anthocyanins. 

4. Weak or no correlation among traits indicated that traits such as fertility 

index, berry shape, cluster shape, cluster density, and tartaric acid may 

be genetically independent. 

5. The genotypic evaluation of the color could be an important tool in the 

pre-selection of hybrids with a high content and extractability of 

anthocyanins.  

(Chapter 2) 

6. Parental and consensus genetic maps were developed using 251 

informative markers (104 SSR, 146 SNP, and 1 CAPS). The observed 

sizes of the Monastrell, Syrah and consensus maps were 1035 cM, 1038 

cM, and 1174 cM, respectively, with an observed coverage of 96%, 

97%, and 98%. These results are within the range of other genetic 
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maps developed for grapevine. 

7. Based on markers common to other published maps we were able to 

align all the LGs to the 19 chromosomes of grape. A general 

consistency in marker order was found compared with other published 

maps.  

8. Eight new SNP markers, linked to six candidate genes that could be 

involved in the control of phenological stages and fertility index, were 

generated and mapped. 

(Chapter 3) 

9. Five QTLs were identified for sprouting, but only the QTLs on LG1 

and LG7 were consistently significant at the genome-wide level, 

explaining up to 11.3% of the total phenotypic variance.   

10. Three QTLs were located for flowering, but only the QTL on LG7 was 

consistent, explaining up to 19% of the total phenotypic variance. The 

VvFT gene was found within the confidence interval of this QTL. 

11.  The significant QTL detected on LG2 for veraison was consistent and 

explained up to 22.7% of the total variance.  

12.  Ripening time was under the control of two genomic regions on LGs 2 

and 17, explaining up to 18% of the total variance. These QTLs co-

located with the QTL detected for the veraison-ripening period.  

13.  Two significant QTLs were detected for fertility index on LGs 3 and 5. 

Only the QTL on LG5 was stable over years, explaining up to 26.4% of 

the total phenotypic variance.  

14.  For total production and number of clusters, one significant QTL was 

found on LG8, explaining up to 11.9% of the total variance. Similarly, 

one significant QTL was detected for cluster weight on LG19, 

explaining only 9.5% of the total variance.  

15.  Berry weight was under the control of six genomic regions, explaining 

up to 12% of total variance. Only the QTLs on LGs 5, 14, and 17 were 
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stable over the years.  

16.  Two significant QTLs were detected for cluster compactness on LGs 2 

and 5, only in one season, explaining up to 28.3% of total variance. 

Nevertheless, these QTLs were also detected only at the LGW level in 

other seasons.  

17.  For total acidity two QTLs were detected on LGs 1 and 2, explaining 

up to 18% of total phenotypic variance. The QTL on LG2 co-located 

with the stable QTL detected for the ratio of total soluble solids to 

acidity, explaining up to 19% of total phenotypic variance. The CBL01 

gene was found within the confidence interval of this QTL.  

18.  Two QTLs were found for tartaric acid on LGs 18 and 19, explaining 

up to 16.1% of total phenotypic variance.  

19. Malic acid was under the control of seven genomic regions, explaining 

up to 29% of total phenotypic variance. Only the QTL detected on 

LG8 was stable at the GW level, and co-located with the QTL detected 

for the ratio of tartaric acid to malic acid. The PDC1 gene was found 

within the confidence interval of this QTL.  

20.  One significant and consistent QTL was detected for total 

anthocyanins, on LG2, explaining up to 80% of total variance. The 

transcription factors VvmybA1, VvmybA2, and VvmybA3, which control 

the berry color in grapevine, were located within this region. 
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Annex 1. The 104 polymorphic SSRs and one CAPS used for the genotyping of the 
MnxSy progeny.  

 

Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position Distorsion Tª (ºC)

vmc8a7 <abxaa> 156 158 158 158 1 16.554 - 61

vviq57 <abxac> 169 172 167 172 1 28.919 ******* 54-51

vvip60 <abxaa> 315 319 315 315 1 40.836 - 55

vmc8d1 <aaxab> 196 196 200 210 1 55.699 - 63-60

vvif52 <abxcd> 259 268 257 279 1 65.824 - 61

vmc4f8 <aaxab> 115 115 116 121 1 unpositioned 56

vvib01 <aaxab> 292 292 292 296 2 0.000 - 56

vvmd34 <abxaa> 221 237 237 237 2 11.160 - 63-60

vvib23 <abxac> 281 283 283 289 2 21.176 * 57

vmc6f1 <abxac> 129 137 131 137 2 27.196 ** 54-51

vmc5g7 <abxac> 197 209 197 215 2 46.226 - 54-51

20D18CB9δ <abxab> 213 248 213 248 2 56.074 - 65

vmc7g3 <abxac> 115 117 115 131 2 62.369 - 58

vmc8f10 <abxac> 197 233 212 233 3 10.830 - 60

udv_043 <aaxab> 159 159 159 180 3 29.920 - 58

vvmd36 <abxcd> 260 266 250 289 3 37.862 - 63-60

vvin54 <abxac> 97 115 99 115 3 46.823 ******* 54-51

vvmd28 <abxcd> 242 255 216 226 3 51.794 - 63-60

vmcng1f1_1 <abxac> 151 161 153 161 4 0.000 - 52

vmc7h3 <abxac> 133 136 135 162 4 15.812 - 54-51

vrzag21 <abxcd> 199 203 189 205 4 34.678 - 63-60

vmc2e10 <abxac> 56 58 69 58 4 41.267 - 56

vrzag83 <abxac> 191 201 195 201 4 52.058 * 65-62

vrzag47 <abxac> 155 165 165 167 5 16.323 ** 61-58

vvmd27 <abxac> 179 188 188 190 5 19.326 - 62

vmc6e10 <abxcd> 90 115 104 107 5 41.502 - 58

vmc16d4 <abxcd> 154 170 168 205 5 46.464 - 55-52

vmc4c6 <abxcd> 165 168 159 177 5 60.824 - 50

udv_090 <aaxab> 145 145 143 171 6 5.437 - 57

vmc2h9 <abxcd> 114 120 116 155 6 27.819 - 56

vvmd21 <abxac> 240 246 245 263 6 43.593 * 61

vmc4g6 <abxaa> 119 123 132 132 6 48.082 - 55-52

vvin31 <abxac> 176 194 187 194 6 60.292 - 54-51

vvim43 <abxac> 81 99 81 97 6 68.067 - 54-51

vmc16f3 <abxcd> 177 184 180 188 7 0.000 * 55

vrzag62 <abxac> 189 204 189 194 7 13.131 ******* 65-62

vvis58 <abxac> 303 305 303 292 7 27.162 - 56

vmc8d11 <abxac> 122 141 124 141 7 51.102 - 58

vmc1a12 <abxac> 118 137 137 150 7 66.109 ******* 54

vvin56 <abxac> 161 172 169 171 7 86.236 - 57-54  
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Annex 1. Continued.  
 
 

 

Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position Distorsion Tª (ºC)

vvip04 <abxcd> 85 126 96 103 8 2.059 - 53

vmc5g6_1 <aaxab> 138 138 114 148 8 12.373 - 55

vmc1b11 <abxac> 171 187 165 187 8 25.222 - 63-60

vvib66 <aaxab> 103 103 99 103 8 44.859 - 58-55

vmc2h10 <abxcd> 105 115 103 127 8 59.554 - 58

vmc1c10 <abxac> 168 171 159 171 9 0.000 - 63-60

vmc3g8_2 <abxac> 165 175 161 175 9 20.092 - 59-57

vmc4h6 <abxac> 157 161 161 181 9 40.347 - 59

vmc2d9 <abxaa> 79 89 89 89 9 53.094 - 54-51

vmc2e11 <abxaa> 102 106 106 106 9 74.049 ******* 61

vmc3d7 <aaxab> 166 166 166 174 10 0.000 - 59

vmc2a10 <aaxab> 116 116 108 124 10 27.373 ******* 60-57

vmc8d3 <abxac> 161 167 167 171 10 42.316 ******* 56

vviv37 <abxac> 164 170 162 164 10 51.334 ******* 52

vmc3e12 <abxac> 115 136 115 153 11 4.317 - 59

vvmd25 <abxaa> 239 261 239 239 11 16.062 ** 63

vvs2 <abxaa> 130 150 130 130 11 30.799 ** 58

vvib19 <abxab> 311 391 311 391 11 30.987 ******* 54-51

vmc6g1 <abxac> 177 191 169 191 11 47.082 - 62-59

vviv35 <aaxab> 161 161 102 161 11 59.647 ** 54

vmc8g6 <abxac> 136 170 166 170 12 5.825 - 55

vmc2h4 <abxaa> 215 227 215 215 12 18.259 - 55

scu05 <abxac> 129 178 129 168 12 30.247 * 63

vviv05 <abxac> 361 363 363 398 12 47.055 - 57

vmc8g9 <aaxab> 175 175 158 184 12 50.193 ** 54

vmc4f3_1 <aaxab> 178 178 171 204 12 ungrouped 57

vmc3d12 <abxac> 200 205 200 216 13 0.000 ** 57

vviv61 <abxac> 168 182 168 186 13 8.515 ******* 56

vmc9h4_2 <abxac> 278 280 280 286 13 19.470 - 57

vmc2c7 <abxaa> 140 142 140 140 13 23.107 - 61-58

vvin62 <abxac> 356 360 354 360 13 unpositioned 55

vmcng1e1 <abxcd> 98 106 93 124 14 8.503 ******* 63

vmc1e12 <abxac> 240 244 240 254 14 13.543 ******* 63

vmc2h5 <abxac> 98 104 104 109 14 42.249 - 57

vvmd24 <abxac> 209 218 208 214 14 54.916 ** 61-58

vmcng1g1_1 <abxcd> 176 180 218 223 14 67.546 - 54-51

vviv67 <abxcd> 355 362 359 379 15 12.955 - 55

vvip33 <abxab> 392 394 392 394 15 21.599 ******* 56

vmc5g8 <abxcd> 301 317 309 315 15 28.910 - 56  
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Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position Distorsion Tª (ºC)

vmc4d9_2 <abxcd> 226 234 228 238 15 37.993 - 62

vvin52 <abxaa> 84 100 84 84 16 0.000 - 56

udv_104 <abxcd> 186 216 155 221 16 16.646 - 56

vmc1e11 <abxcd> 187 193 195 205 16 23.781 - 60

vvmd5 <abxac> 224 238 224 230 16 52.566 - 54-51

scu14 <aaxab> 182 182 168 182 16 61.231 - 63

vmc3c11_1 <abxac> 110 115 106 110 17 10.566 - 58

scu06 <abxac> 174 178 172 174 17 19.057 - 58

vmc3a9 <abxac> 83 141 81 141 17 28.471 - 57

vvib09 <abxcd> 277 279 270 274 17 42.329 - 54-51

vvin73 <aaxab> 265 265 263 265 17 ungrouped 55-52

vmc3e5 <abxab> 108 110 108 110 18 0.000 ******* 57

vviv16 <abxab> 102 104 102 104 18 4.931 ******* 56

vvim72 <abxcd> 321 334 316 346 18 15.707 - 52-49

vvim93 <abxcd> 115 122 108 126 18 25.051 * 57-54

vvin83 <abxac> 235 237 233 235 18 40.131 - 56

udv_134 <abxac> 215 223 171 223 18 57.186 - 58

vvin16 <abxac> 152 158 150 152 18 71.361 - 52

vmc7f2 <abxac> 198 202 198 200 18 78.808 * 58

vmc5h11-198 <aaxab> - - -198 19 0.000 * 58

vmc5h11-200 <aaxa0> 200 - 200 - 19 0.377 ******* 58

udv_023 <abxac> 180 200 196 200 19 8.301 - 58

vmc5e9 <abxcd> 211 225 215 219 19 18.730 ******* 58

vvip31 <abxcd> 178 190 181 188 19 31.333 ******* 58-55

vmc3b7_2 <abxac> 100 103 96 103 19 34.578 ******* 58-55

vviv33 <abxaa> 339 353 343 343 19 51.994 - 56  
 
δ CAPS marker. 
For every locus the table shows the segregation type, the maternal (Mn, Monastrell) and paternal (Sy, Syrah) 
genotypes, the linkage group (LG), the position (cM) in the consensus map, the level of distortion (- none, 
*P<0.1, **P<0.05, *******P<0.0001), and the annealing temperature used for the amplification (Tª, ºC). 
The ungrouped markers were assigned to a LG based on a previous reference map (Doligez et al. 2002). 
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Annex 2. The 146 polymorphic SNPs used for the genotyping of MnxSy progeny. 
 
 

Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position (cM) Distorsion

SNP1439_90 <abxaa> AG AA 1 0.000 -

Vvi_1196 <abxaa> CT TT 1 10.336 -

SNP1427_120 <abxaa> AG GG 1 22.490 -

SNP1517_271 <aaxab> AA AC 1 39.502 *

SNP851_110 <abxaa> AG AA 1 44.260 *

SNP517_224 <abxaa> AG AA 1 50.602 -

SNP1241_207 <abxab> CT CT 1 53.464 *******

Sp1(20-21)8
δ

<aaxab> TT CT 1 60.668 *

Vvi_6934 <aaxab> GG CG 1 63.092 -

SNP477_239 <aaxab> GG CG 1 63.217 -

SNP1021_163 <aaxab> GG AG 1 71.542 -

SNP1157_64 <aaxab> TT AT 1 71.562 -

SNP1025_100 <abxaa> CT CC 1 unpositioned

SNP1527_144 <aaxab> TT CT 1 unpositioned

SNP229_112 <aaxab> CC AC 1 unpositioned

SNP269_308 <abxaa> AG AA 1 unpositioned

SNP683_120 <aaxab> GG AG 1 unpositioned

SNP1293_294 <abxab> AG AG 2 7.830 *******

SNP437_129 <aaxab> TT CT 2 11.153 -

SNP1487_41 <abxab> AG AG 2 18.541 *******

SNP581_114 <abxab> AG AG 2 19.033 *******

Vvi_9227 <abxaa> AT TT 2 36.569 -

SNP1229_219 <aaxab> CC CG 2 56.758 -

SNP613_315 <abxaa> CT CC 3 0.000 -

SNP553_98 <aaxab> AA AG 3 16.405 -

F3(3-6)6
δ

<aaxab> CC CG 3 20.283 -

SNP1563_280 <aaxab> CC CT 3 36.118 -

SNP867_170 <aaxab> GG CG 3 36.131 -

SNP1513_153 <abxaa> CT CC 4 1.004 -

SNP655_93 <aaxab> CC CT 4 16.680 -

SNP191_100 <aaxab> CC CT 4 25.597 -

Vvi_6668 <abxaa> CG CC 4 28.194 **

SNP715_260 <aaxab> CC CT 4 29.576 -

SNP281_64 <abxab> AT AT 4 43.490 *******

SNP891_109 <abxaa> AG GG 4 47.004 -

SNP551_351 <aaxab> CC CT 4 49.090 -

SNP811_42 <abxab> AT AT 4 50.503 *******  
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Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position (cM) Distorsion

SNP1559_291 <abxab> CG CG 4 50.927 *******

Vvi_2543 <abxaa> AT TT 4 56.256 -

Vvi_10516 <aaxab> CC AC 4 58.578 -

SNP1027_69 <abxaa> CT CC 5 0.000 -

F5(1-4)1
δ

<abxaa> AC AA 5 10.327 -

F5(1-4)2
δ

<abxab> AT AT 5 11.949 **

SNP1071_151 <abxaa> CT CC 5 14.164 -

SNP625_278 <abxab> AC AC 5 22.601 *******

Vvi_5316 <aaxab> CC AC 5 25.545 -

SNP855_103 <abxab> CT CT 5 26.400 *******

SNP1235_35 <abxaa> CT CC 5 30.888 -

Vvi_10113 <aaxab> AA AG 5 33.775 -

Vvi_11572 <aaxab> CC CT 5 43.939 -

SNP1109_253 <aaxab> TT CT 6 0.000 -

SNP945_88 <aaxab> AA AG 6 0.485 -

SNP709_258 <abxaa> CT CC 6 19.583 -

SNP873_244 <abxab> CT CT 6 20.590 *******

SNP1213_99 <aaxab> TT GT 6 22.067 -

SNP915_88 <aaxab> AA AC 6 24.978 -

Vvi_2021 <abxaa> CT CC 6 25.830 -

SNP1393_62 <aaxab> GG GT 6 29.402 *

SNP1473_95 <aaxab> CC CT 6 50.800 **

SNP559_110 <abxaa> AG GG 6 51.672 -

SNP1347_100 <abxab> AG AG 7 4.348 *******

Vvi_2623 <abxab> GT GT 7 9.462 *******

Vvi_13076 <abxaa> AT TT 7 22.071 *

Vvi_3400 <aaxab> TT GT 7 24.782 -

Vvi_1731 <abxab> AC AC 7 37.292 *******

Vvi_5629 <aaxab> CC CT 7 49.371 -

SNP575_128 <aaxab> CC CT 7 49.378 -

SNP961_139 <aaxab> CC CT 7 49.393 -

Fl7(17-19)3
δ

<abxab> CT CT 7 55.838 -

SNP1445_218 <aaxab> AA AG 7 78.053 -

Vvi_377 <aaxab> TT GT 7 81.874 -

Vvi_12805 <aaxab> CC CT 7 90.771 -

SNP1011_337 <aaxab> TT CT 7 unpositioned -

Vvi_6936 <aaxab> TT AT 8 0.000 -

SNP593_149 <aaxab> TT CT 8 0.001 -

SNP699_311 <aaxab> TT CT 8 11.262 -

SNP853_312 <aaxab> AA AT 8 13.534 -  
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Annex 2. Continued. 
 

Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position (cM) Distorsion

SNP1203_88 <aaxab> TT AT 8 14.969 -

SNP1553_395 <aaxab> AA AG 8 30.403 -

Vvi_2283 <aaxab> GG AG 8 48.262 -

SNP1385_86 <abxab> GT GT 8 51.832 *******

Vr8(18-21)2
δ

<aaxab> AA AT 8 53.517 -

Vr8(20-21)1
δ

<aaxab> CC CT 8 54.118 -

SNP1295_225 <aaxab> CC CT 8 60.407 -

SNP881_202 <aaxab> AA AG 8 60.522 -

SNP311_198 <abxaa> AC AA 9 0.600 **

SNP663_578 <aaxab> GG AG 9 4.433 *

Vvi_10992 <abxaa> AT AA 9 13.245 *

Vvi_7871 <aaxab> CC CT 9 28.111 -

Vvi_10329 <abxaa> CT TT 9 58.915 -

SNP947_288 <aaxab> GG AG 10 7.801 -

SNP1437_100 <abxab> AG AG 10 40.211 *******

SNP447_244 <aaxab> TT CT 10 41.590 *******

SNP197_82 <aaxab> AA AC 11 0.000 -

SNP635_21 <abxab> AG AG 11 1.446 *******

SNP317_155 <abxab> GT GT 11 47.855 *******

SNP1215_138 <abxaa> CT TT 12 0.000 -

SNP189_131 <abxaa> CT TT 12 7.653 -

SNP651_658 <aaxab> CC CT 12 19.039 -

Vvi_589 <aaxab> CC CT 12 34.779 *

Vvi_12882 <aaxab> CC CT 12 34.787 *

SNP1119_176 <abxab> AC AC 12 54.502 *******

SNP653_90 <abxaa> CG GG 13 13.286 -

SNP351_85 <abxaa> CT TT 13 16.688 -

Vvi_7387 <abxaa> AG AA 13 17.586 -

SNP259_199 <abxaa> AT TT 13 25.085 -

SNP1577_72 <aaxab> CC CT 13 42.261 -

SNP659_73 <aaxab> CC CT 13 unpositioned

SNP605_120i <aaxab> -- -A 14 0.000 -

Sp14(0-4)2
δ

<aaxab> TT CT 14 5.147 -

SNP251_159 <abxaa> AG GG 14 8.009 *******

SNP897_57 <aaxab> TT AT 14 15.558 -

Vvi_2292 <abxaa> AG AA 14 38.409 -

SNP1411_565 <abxab> AT AT 14 52.366 *******

SNP421_234 <aaxab> AA AG 14 56.743 -

Vvi_3163 <abxaa> AG AA 14 60.885 -

SNP1035_226 <aaxab> TT CT 14 73.083 -  
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Locus

Segregation 

type

Mn 

genotype

Sy 

genotype LG Position (cM) Distorsion

SNP341_196 <abxab> CG CG 15 0.000 *******

SNP451_287 <abxab> CG CG 15 0.018 *******

SNP1371_290 <abxaa> AC AA 15 14.130 -

SNP227_191 <abxab> AC AC 15 27.801 *******

SNP555_132 <abxaa> AC AA 15 43.756 -

SNP591_148 <abxab> AT AT 15 46.461 *******

SNP1311_48 <aaxab> CC CT 15 57.895 -

SNP1335_204 <aaxab> CC CT 16 5.391 -

SNP1079_58 <abxaa> AG GG 16 22.166 -

SNP677_509 <abxaa> GT GG 17 0.000 -

Vvi_6987 <aaxab> GG GT 17 6.626 -

SNP455_141 <abxaa> CT TT 17 15.657 -

SNP579_187 <abxaa> CT TT 17 31.254 -

SNP879_308 <abxaa> AG AA 17 46.250 -

SNP1023_227 <abxab> CT CT 18 4.061 *******

SNP1001_250 <aaxab> GG AG 18 9.941 *

SNP1519_47 <abxaa> CT CC 18 10.236 -

SNP355_154 <abxab> CT CT 18 12.714 *******

Vvi_1617 <abxab> AC AC 18 16.731 *******

Vvi_196 <abxab> GT GT 18 18.810 *******

SNP883_160 <abxaa> CG GG 18 51.249 -

SNP859_294 <abxab> CT CT 18 63.969 *******

SNP1391_48 <abxab> AG AG 18 64.999 *******

Vvi_10777 <abxaa> CT CC 18 76.702 -

SNP1003_336 <abxab> AC AC 18 unpositioned -

SNP253_145 <aaxab> CC AC 19 28.640 *******

SNP819_210 <aaxab> AA AT 19 35.937 *******

Vvi_7824 <abxab> AG AG 19 43.684 *******

Vvi_2319 <abxab> CT CT 19 ungrouped  
 
For every SNP the table shows the segregation type, the maternal (Mn, Monastrell) and paternal (Sy, Syrah) 
genotypes, the linkage group (LG), the position (cM) in the consensus map, and the level of distortion (- 
none, *P<0.1, **P<0.05, *******P<0.0001). The ungrouped markers were assigned to a LG based on 
previous maps (Cabezas et al. 2011). 
δ Locus selected by CG systems 
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Annex 3. Primer sequences of the eight new SNPs developed using six candidate   
      genes. 
 
Marker name Primer sequence GO_ID
Sp1(20-21)8 Fwd: GACAGTGCCGCCATTAAGCT GO:0006355

Rev: AAAATGGCTGCCCATCGTGA

F3(3-6)6 Fwd: TCCCTCTTGCACTCATGCCTA GO:0045449

Rev: CTCGCCTTTGAGGAGTCACC

F5(1-4)1 Fwd: CGGTGCAGGTGTTAATGTGAC GO:0005634

Rev: TGCCCATGAGGTGGGGTATT

F5(1-4)2 Fwd: TCGGCTCTATGGGATTGGGG

Rev: GTCACATTAACACCTGCACCGA

Fl-7(17-19)3 Fwd: GTGCAGCAGTTCTGTAGCGA GO:0003677

Rev: AAATCACAAGCACACGCACG

Vr8(18-21)2 Fwd: GGCTTGACAGTACCTCAGGTCT GO:0005618

Rev: GCTTCCCGAATGTGGTTCCA

Vr8(20-21)1 Fwd: GGCTTGACAGTACCTCAGGTCT

Rev: GCTTCCCGAATGTGGTTCCA

Sp14(0-4)2 Fwd: GAGGGCTAGTGGAGAGGCTT GO:0005634

Rev: GGTCATGCCACACACCTTCA  
 
The marker name refers to each trait; Sp (Sprouting), F (Fertility index), Fl (Flowering), Vr (Veraison). 
Forward (Fwd) and reverse (Rev) sequences were used for the specific amplification. GO_ID, code of the 
Gene Ontology Consortium. 
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Annex 4. QTLs detected using non-parametric Kruskal-Wallis (KW) analysis.  
 
Trait LG Map Year Marker Kw

Sp 1 Mn 08, 09 vvif52 6, 7

Mn/C 09 vvip60 6

8 Mn/C 08/09 vmc1b11 7

13 Mn/C 09 SNP653_90 7/6

14 Mn/C 08 SNP251_159 7

vmcng1e1 7

vmc1e12 7

Fw 7 Mn/C 10 Vvi_13076 7

14 Mn/C 08 SNP251_159 7

vmcng1e1 7

vmc1e12 7

Vr 2 Mn/C 08 ,09 vvmd34 7

vvib23 7

08, 09/09 vmc6f1 6, 7/6

08 Vvi_9227 7

Mn/Sy/C 09 SNP581_114 6

8 Sy/C 08 SNP853_312 6

11 Mn/Sy 08 vvib19 6

Rp 2 Mn/C 09, 10 vmc5g7 6, 7

10 Vvi_9227 7

Mn/Sy/C 09, 10 20D18CB9 6, 7/6, 7/7

17 Mn/C 09 SNP455_141 6

Vr_Rp 2 Mn/C 08,09 vmc6f1 6, 7

08, 09, 10 Vvi_9227 6, 7, 7

vmc5g7 7

09 vvib23 7

vvmd34 7

Mn/Sy/C 08, 09, 10 20D18CB9 7

C 08, 10 vmc7g3 7  
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Annex 4. Continued. 

 
Trait LG Map Year Marker Kw

Fi 3 Sy/C 08 udv_043 6

5 Mn/C 08, 09, 13 SNP1027_69 7

13 F5(1-4)1 6

SNP1071_151 7

Sy/C 09, 13/08, 09, 13 vrzag47 6/7

08,09/08 Vvi_5316 6

08 Vvi_10113 6

C 08, 09, 13 vvmd27 7

P 5 Mn/Sy/C 08 SNP625_278 6

Sy/C 10 Vvi_5316 6

8 Mn/Sy/C 09 SNP1385_86 6

CW 2 Mn/Sy 08 SNP1487_41 6

5 Mn/Sy/C 08 SNP625_278 6

14 Mn/C 09 SNP251_159 6

BW 5 Mn/C 09 SNP1027_69 6

09, 10/09 SNP1235_35 6

Mn/Sy/C 10 SNP855_103 6

7 Mn/Sy/C 10 Vvi_1731 6

14 Mn/C 09 SNP251_159 6

vmcng1e1 7/6

17 Sy/C 10 Vvi_6987 7

vmc3c11_1 7/6

CC 2 Mn/Sy/C 08 SNP1487_41 6

SNP581_114 7/7/6

5 Mn/C 10 SNP1027_69 6

Sy/C 10 vvmd27 6  
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Annex 4. Continued. 
 

Trait LG Map Year Marker Kw

Ac 2 Mn/C 09 Vvi_9227 6

Mn/Sy/C 09/09/10 20D18CB9 6/7/7

18 Mn/Sy/C 12 vmc3e5 6

TSS/Ac 2 Mn 09, 10 vmc5g7 7, 6

Mn/Sy/C 09, 10/09, 10/08, 09 20D18CB9 7, 6/7/7

Mn/C 09 Vvi_9227 7/6

18 Mn/Sy/C 12 vmc3e5 6

Ma 2 Mn/C 10 Vvi_9227 6

8 Sy/C 13 Vvi_6936 7

SNP593_149 7

vvip04 7

SNP699_311 7

SNP1203_88 7

10, 13 vmc5g6_1 6, 7

SNP853_312 6, 7

17 Mn/C 12 SNP677_509 6

Tar/Ma 1 Mn/Sy/C 09/08/09 SNP1241_207 6/6/7

2 Mn/C 10 Vvi_9227 6

8 Sy/C 10, 13 SNP699_311 6, 7

vmc5g6_1 6, 7

SNP853_312 6, 7

13 Vvi_6936 7

SNP593_149 7

vvip04 7

SNP1203_88 7

Ant 2 Mn/Sy/C 13 SNP1487_41 6

10/10-13/08,10-13 vmc6f1 6/7/7,7,7,6,7

09-13/08,10-13/08-13 vmc5g7 7,7,6,6,7/6,7,7,7,7/7

09-13/09-13/08-13 20D18CB9 7

09,13/08-13/09-13 vmc7g3 7,6/7,6,7,7,7,7/7

Mn/C 13 Vvi_9227 6

Sy/C 10-13/08,10-13 vvib23 7

08,10-13/08-13 SNP1229_219 7/7,6,7,7,7,7

Sy 11, 13 SNP437_129 6

C 11, 13 SNP1293_129 6  
 

Markers statistically associated with traits are shown: Sp, sprouting; Fw, flowering; Vr, veraison; Rp, ripening; 

Vr_Rp, veraison ripening period; Fi, fertility index; P, total production; CW, cluster weight; BW, berry weight; 

CC, cluster compactness; Ac, total acidity; TSS/Ac, ratio of total soluble solids to total acidity; Ma, malic acid; 

Tar/Ma, ratio of tartaric acid to malic acid; Ant, total anthocyanins. The linkage group (LG), map (Mn, 

Monastrell; Sy, Syrah; C, Consensus), year (08, 2008; 09, 2009; 10, 2010; 11, 2011; 12, 2012, 13, 2013), and 

KW significance (6 = 0.0005; 7 = 0.0001) are shown. 
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Annex 5. Putative QTLs identified for phenological traits in maps of the Monastrell 
x Syrah progeny. 

 

 

Trait Map Year LG QTL

LOD 

max cM

Confidence 

interval Cofactor

LGW LOD 

threshold

% variance 

QTL
% variance 

model

1 Sp1 4.51 55.7 35-72 vvif52 2.6 6.6

8 Sp8 3.71 7.1 0-19 vvip04 2.6 6.6

3 Sp3 3.85 42.9 39-52 vvmd28 2.4 9.1

17 Sp17 3.33 10.6 0-15 vmc3c11_1 2.5 6.1

2 Sp2 3.29 21.2 11-24 SNP581_114 2.6 5.5

8 Sp8 3.23 13.5 2-33 vmc1b11 2.7 7.2

11 Sp11 3.16 52.9 47-58 SNP317_155 2.5 6.5

13 Sp13 3.08 5.0 0-16 SNP653_90 2.3 5.8

2008 8 Sp8 2.98 10.0 0-40 vvip04 1.3 8.0 8.0

2010 8 Sp8 2.0 10.0 0-48 vvip04 1.3 5.6 5.6

2008 12 Sp12 2.45 45.3 33-45 vmc8g9 1.4 5.3 5.3

2009 3 Sp3 2.7 41.3 21-41 vvmd28 1.4 5.3 5.3

2 Sp2 1.65 25.7 24-32 vvib23 1.4 3.1

11 Sp11 1.84 38.9 33-44 SNP317_155 1.3 4.3

7 Fw7 3.61 13.1 10-18 vrzag62 2.8 9.4

8 Fw8 3.51 54.1 49-60 Vr8(18-21)2 2.6 9.4

2009 7 Fw7 3.49 37.3 32-51 Vvi_1731 2.6 12.2 12.2

Mn 2009 5 Fw5 1.41 30.7 26-38 SNP1235_35 1.2 5.2 5.2

2008 8 Fw8 2.48 54.1 50-60 Vr8(18-21)2 1.6 7.4 7.4

2009 8 Fw8 1.81 52.2 40-60 Vr8(20-21)1 1.2 5.5 5.5

8 Fw8 1.94 60.4 60-60.4 SNP1295_225 1.6 4.8

12 Fw12 2.3 38.1 33-42 vviv05 1.4 5.7

5 Vr5 3.24 51.5 43-60 vmc4c6 2.6 9.4

8 Vr8 2.93 7.1 0-20 SNP853_312 2.6 8.2

18 Vr18 2.75 76.4 74-78.8 Vvi_10777 2.7 7.3

11 Vr11 3.82 31 28-47 vvib19 2.6 10.8

14 Vr14 4.55 65.9 48-72 vmcng1g1_1 2.7 14.2

2010 18 Vr18 3.32 65 59-78 SNP1391_48 2.5 9.5 9.5

14 Vr14 2.2 5.3 2-16 vmc1e12 1.5 6.2

18 Vr18 1.98 66.4 55-69 vmc7f2 1.5 5.6

2009 11 Vr11 2.67 39 34-44 vvib19 1.4 9.2 9.2

2010 18 Vr18 3.11 56.8 52-62 Vvi_10777 1.7 9.1 9.1

5 Vr5 1.92 8.0 5-8 F5(1-4)2 1.5 5.6

11 Vr11 1.93 25.5 18-39 vmc6g1 1.3 6.8

2010 8 Vr8 2.16 59.5 55-60 vmc2h10 1.5 5.6 5.6

2008 2 Rp2 3.80 46.2 31-62.4 vmc5g7 2.5 11.6

2 Rp2 5.12 36.6 4-60 Vvi_9227 2.5 16.7

17 Rp17 3.02 15.7 2-18 SNP455_141 2.5 7.8

2010 17 Rp17 4.49 0.0 0-17 SNP677_509 2.6 12.3 12.3

Mn 2009 17 Rp17 1.83 15.5 15-16 SNP455_141 1.8 5.4 5.4

2008 2 Rp2 1.68 46.7 32-57 20D18CB9 1.4 5.8 5.8

2010 18 Rp18 1.78 36.6 22-46 vvin83 1.2 5.6 5.6

2 Vr_Rp2 8.37 41.6 0-62 vmc5g7 2.6 24.3

17 Vr_Rp17 4.7 0.0 0-10 SNP677_509 2.4 12.7

2009 2 Vr_Rp2 6.55 32.2 0-62 vmc6f1 2.7 20.5 20.5

2010 17 Vr_Rp17 3.94 0.0 0-16 SNP677_509 2.3 10.9 10.9

Mn 2009 17 Vr_Rp17 1.55 21.0 3-23 scu06 1.3 4.7 4.7

2008 2 Vr_Rp2 2.44 21.1 0-57 vmc6f1 1.4 7.7 7.7

5 Vr_Rp5 1.91 17.7 9-25 Vvi_10113 1.3 5.2

19 Vr_Rp19 1.63 0.0 0-2 vmc5h11-200 1.5 4.2

19.2

10.2

13.4

13.0

21.7

7.4

9.2

25.1

21.2

12.9

11.6

23.5

33.5

Sy

2008

Sp

C

Mn

Sy

2008

2009

2010

2010

Fw

C

Sy

2008

2010

2009

2008

2009

Rp

C

Sy

2009

Vr

C

Mn

Vr_Rp

C

Sy

2008

2010
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The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. The QTLs 

are named using the LG number plus Sp, Fw, Vr, Rp, and Vr_Rp for sprouting, flowering, veraison, ripening, and 

veraison-ripening period, respectively. The QTL location is indicated by the position at which the highest LOD (LOD 

max) was detected (in cM), the LOD-1 confidence interval, and the cofactor. The QTLs considered are those with a 

maximum LOD value higher than that estimated for the linkage-group-wide (LGW) threshold, for a type I error rate of 

5%. The percentage of the total variance explained by each QTL, and when considering the combined effect of all QTLs 

detected in a season (model), is indicated. C, consensus; Mn, Monastrell; Sy, Syrah. 
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Annex 6. Putative QTLs identified for productive and morphological traits in maps 
of the Monastrell x Syrah progeny.  

 

Trait Map Year LG QTL LOD max cM

Confidence 
interval Cofactor

LGW LOD 
threshold

% variance 
QTL

% variance 

model
2008 3 Fi3 4.24 29.9 18-52 udv_43 2.4 8.7 8.7

2009 5 Fi5 7.84 0.0 0-38 SNP1027_69 2.6 17.7 17.7

5 Fi5 6.0 0.0 0-36 SNP1027_69 2.6 13.1

8 Fi8 5.63 7.1 0-37 vmc1b11 2.4 11.8

2013 11 Fi11 3.6 16.1 10-24 vvmd25 2.5 9.1 9.1

Mn 2010 5 Fi5 2.24 0.0 0-5 SNP1027_69 1.4 4.6 4.6

2009 3 Fi3 2.05 38.9 33-42 vvin54 1.4 4.1 4.1

2010 3 Fi3 2.57 38.9 31-41 vvin54 1.5 5.2 5.2

2013 3 Fi3 2.1 41.3 40-42 vvmd28 1.3 4.3 4.3

2008 5 P5 2.86 22.6 22-26 SNP625_278 2.7 9.2 9.2

3 P3 2.67 42.9 42-47 vvin54 2.5 7.3

8 P8 2.99 25.2 20-28 vmc1b11 2.4 6.3

14 P14 3.3 42.2 42-50 vmc2h5 2.9 7.3

17 P17 3.62 46.2 35-46.5 SNP879_308 2.4 8.8

5 P5 3.4 25.5 22-28 SNP855_103 2.6 8.5

8 P8 4.39 20.0 4-13 vmc1b11 2.5 13.0

2008 12 P12 1.88 33.8 29-49 scu05 1.3 6.0 6.0

1 P1 2.05 62.9 55-63 vvif52 1.4 5.5

14 P14 1.74 0.0 0-7 SNP251_159 1.3 4.7

17 P17 1.87 44.3 40-45 SNP879_308 1.2 5.1

1 P1 1.78 62.9 52-63 vvif52 1.4 4.5

8 P8 1.87 10.0 0-52 SNP1385_86 1.1 6.7

2008 5 P5 2.37 10.3 4.5-17 SNP625_278 1.4 7.6 7.6

2010 5 P5 2.02 12.7 6.5-18 SNP855_103 1.4 5.4 5.4

2 CW2 4.69 19.0 11-42 SNP581_114 2.6 10.3

5 CW5 3.21 22.6 20-28 SNP625_278 2.5 1.9

10 CW10 3.83 0.0 0-3 vmc3d7 3.4 19.2

1 CW1 3.34 40.8 36-42 vvip60 2.6 9.3

14 CW14 3.56 42.2 35-42 vmc2h5 2.8 9.2

1 CW1 3.51 63.2 55-71.5 SNP477_239 2.7 7.6

5 CW5 3.48 25.5 21-30 SNP855_103 2.5 7.9

17 CW17 3.52 0.0 0-29 SNP677_509 2.4 8.9

2008 5 CW5 1.86 19.3 8-27 vvmd27 1.5 6.0 6.0

1 CW1 2.55 60.6 35-63.5 vvif52 1.5 7.6

14 CW14 2.63 0.0 0-15 SNP251_159 1.4 7.3

1 CW1 2.44 60.6 57-63.5 vvif52 1.4 5.9

7 CW7 2.36 11.5 6-19 vmc16f3 1.5 6.1

8 CW8 1.69 47.1 35-58 SNP1385_86 1.3 4.8

17 CW17 2.26 26.1 20-29 vmc3a9 1.5 5.0

5 CW5 2.05 10.3 5-15 SNP625_278 1.4 6.3

10 CW10 1.57 0.0 0-4 vmc3d7 1.3 4.7

5 CW5 1.79 12.7 9-15 SNP855_103 1.4 4.6

17 CW17 2.35 0.0 0-12 Vvi_6987 1.2 6.0

2008 5 BW5 3.24 16.3 15-32.5 vrzag47 2.5 10.7 10.7

2009 1 BW1 3.68 39.5 35-48 vvip60 2.7 11.7 11.7

2010 14 BW14 5.0 5.1 2-9 Sp14(0-4)2 2.5 9.2 9.2

2008 1 BW1 1.64 34.8 32-45 SNP851_110 1.5 7.0 7.0

4 BW4 2.31 56.6 49-56.6 Vvi_2543 1.5 5.8

7 BW7 2.84 44.8 32-58 Fl7(17-19)3 1.6 8.5

17 BW17 2.27 0.0 0-26 Vvi_6987 1.3 7.2

19 BW19 1.59 44.8 44-48 SNP253_145 1.4 5.2

2010 7 BW7 1.74 37.4 28-41 Vvi_1731 1.5 5.1 5.1

2010

2008

2009

2010

2009

2010

2008

2010

2010

2009

2010

2009

2010

2008

CW

C

Mn

Sy

BW

C

Mn

Sy

Fi

C

Sy

P

C

Mn

Sy

12.9

12.7

20.3

26.9

14.3

21.3

12.3

11.1

23.4

33.4

18.6

15.4

9.8

41.9
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Annex 6. Continued. 
 

Trait Map Year LG QTL LOD max cM

Confidence 
interval Cofactor

LGW LOD 
threshold

% variance 
QTL

% variance 

model
2008 3 CN3 3.41 46.8 41-50 vvin54 2.5 10.8 10.8

3 CN3 3.26 29.9 18-34 udv_43 2.5 10.5

8 CN8 3.86 44.9 34-61 SNP1385_86 2.7 15.1

2010 8 CN8 3.49 20.0 14-40 vmc1b11 2.5 13.0 13.0

2008 15 CN15 1.96 21.8 17-25 vvip33 1.3 6.7 6.7

3 CN3 1.63 21.3 11-33 vmc8f10 1.3 6.0

11 CN11 2.05 20.0 11-30 vvmd25 1.4 7.5

14 CN14 1.46 54.3 53-55 vvmd24 1.4 3.5

15 CN15 1.68 21.8 16-23 vvip33 1.4 4.7

3 CN3 2.07 41.3 34-42 vvin54 1.3 6.2

5 CN5 1.68 8.0 6-13 SNP625_278 1.4 5.2

6 CN6 1.63 64.1 62-64 vvim43 1.4 4.6

12 CN12 1.66 38.1 32-40 vviv05 1.3 4.7

1 CN1 1.4 0.0 0-2 vviq57 1.3 3.2

3 CN3 1.56 38.9 35-40 vvin54 1.3 3.6

5 CN5 1.91 11.0 7-16 Vvi_5316 1.4 4.4

6 CN6 2.05 63.4 56-64 vvim43 1.5 4.8

5 CC5 3.84 0.0 0-15 F5(1-4)2 2.5 23.8

16 CC16 2.6 52.6 48-54 vvmd5 2.5 8.6

2009 19 CC19 2.92 34.6 32-36 vmc3b7_2 2.5 9.7 9.7

2 CC2 2.01 0.0 0-13 vvmd34 1.5 6.7

17 CC17 1.96 39.1 34-41 vvib09 1.4 6.5

2 CC2 1.89 43.9 36-53 vmc7g3 1.4 6.6

5 CC5 1.59 0.0 0-2 SNP1027_69 1.4 5.1

2010 2 CC2 1.62 0.0 0-2 vvmd34 1.4 4.6 4.6

Sy 2008 5 CC5 1.99 7.7 0-10 vvmd27 1.3 8.1 8.1

CC

C

2008
21.5

Mn

2008
15.0

2009
10.9

2008
11.6

2009
9.7

2010

17.2

CN

C
2009

21.2

Mn

2009
9.8

2010
9.5

Sy

 
 
The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. 

The QTLs are named using the LG number plus Fi, P, CW, BW, CN, and CC for fertility index, total 

production, cluster weight, berry weight, cluster number, and cluster compactness, respectively. The QTL 

location is indicated by the position at which the highest LOD (LOD max) was detected (in cM), the LOD-1 

confidence interval, and the cofactor. The QTLs considered are those with a maximum LOD value higher 

than that estimated for the linkage-group-wide (LGW) threshold, for a type I error rate of 5%. The 

percentage of the total variance explained by each QTL, and when considering the combined effect of all 

QTLs detected in a season (model), is indicated. C, consensus; Mn, Monastrell; Sy, Syrah. 
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Annex 7. Putative QTLs identified for enological traits in maps of the Monastrell x 
Syrah progeny. 

 

Trait Map Year LG QTL LOD max cM

Confidence 

interval Cofactor

LGW LOD 

threshold

% variance 

QTL

% variance 

model
4 Ac4 3 5 34 7 17-37 5 vrzag21 2 7 13 3

5 Ac5 3 27 60 8 54-61 vmc4c6 2 6 12 3

6 Ac6 3 92 25 0 13-35 SNP1213_99 2 7 11 1

16 Ac16 4 05 61 2 32-61 vvmd5 2 4 16 0

2010 1 Ac1 2 97 55 7 48-58 vmc8d1 2 5 8 9 8 9

2011 12 Ac12 3 32 24 0 11-30 SNP651_658 2 6 22 8 22 8

2012 18 Ac18 3 33 0 0 0-2 vmc3e5 2 8 23 0 23 0

2 Ac2 2 13 26 9 18-42 Vvi_9227 1 4 7 1

4 Ac4 3 18 11 0 0-56 Vvi_6668 1 5 12 7

9 Ac9 1 66 75 4 65-75 vmc2e11 1 5 5 4

17 Ac17 2 23 0 0 0-7 SNP677_509 1 3 7 5

5 Ac5 2 44 23 7 16-32 SNP855_103 1 5 8 1

13 Ac13 1 77 9 7 4-12 5 SNP653_90 1 3 5 3

2 Ac2 2 12 41 8 21-53 20D18CB9 1 3 6 3

5 Ac5 1 33 19 3 19-21 vvmd27 1 3 3 6

2011 5 Ac5 1 63 35 7 32-36 SNP1235_35 1 6 10 2 10 2

2 Ac2 2 32 21 9 12-30 Vvi_9227 1 5 13 7

18 Ac2 2 88 2 6 0-7 vmc3e5 1 3 17 4

2013 5 Ac5 1 71 28 7 24-34 SNP1235_35 1 5 5 9 5 9

5 Ac5 2 71 36 0 15-44 vmc4c6 1 3 12 8

11 Ac11 2 61 25 5 17-33 vmc6g1 1 4 7 7

2009 2 Ac2 1 95 47 0 44 5-57 vmc7g3 1 5 6 2 6 2

5 Ac5 1 5 36 0 29-44 vmc16d4 1 3 4 4

18 Ac2 1 59 31 6 26-40 vvin83 1 4 4 3

12 Ac12 2 33 28 8 25-40 scu05 1 3 11 9

16 Ac16 2 26 0 0 0-10 SNP1335_204 1 2 11 6

2012 18 Ac18 2 0 58 7 32-68 vvin16 1 4 14 2 14 2

1 Ac1 1 64 45 9 43-46 SNP1021_163 1 5 4 5

8 Ac8 1 78 7 1 1-14 SNP699_311 1 3 5 4

11 Ac11 1 68 32 1 25-33 vmc6g1 1 3 4 6

4 TSS/Ac4 3 61 34 6 17-40 vrzag21 2 6 9 7

5 TSS/Ac5 3 94 60 8 52-61 vmc4c6 2 6 12 6

11 TSS/Ac11 2 97 36 0 25-47 vviv35 2 5 10 8

2009 5 TSS/Ac5 3 02 26 4 24-28 SNP855_103 2 8 11 1 11 1

2010 2 TSS/Ac2 4 0 56 8 30-61 SNP1229_219 2 6 11 4 11 4

2012 18 TSS/Ac18 3 47 0 0 0-2 vmc3e5 2 8 23 8 23 8

8 TSS/Ac8 3 09 25 2 16-28 vmc1b11 2 6 8 5

11 TSS/Ac11 3 22 26 1 18-39 vvib19 2 5 11 8

5 TSS/Ac5 1 67 19 3 19-24 vvmd27 1 6 4 7

13 TSS/Ac13 1 7 9 7 4 5-13 SNP653_90 1 2 4 8

14 TSS/AC14 2 03 30 3 14-48 vmc2h5 1 4 7 9

2010 16 TSS/Ac16 1 59 10 0 0-18 udv_104 1 2 5 5 5 5

2 TSS/Ac2 3 64 21 9 0-34 Vvi_9227 1 4 16 9

4 TSS/Ac4 1 72 0 0 0-1 vmcng1f1_1 1 5 6 7

14 TSS/AC14 2 07 68 1 63-68 vmcng1g1_1 1 4 8 3

18 TSS/Ac18 2 3 2 6 1-4 vmc3e5 1 5 10 0

2013 5 TSS/Ac5 1 86 35 7 20-47 SNP1235_35 1 4 6 2 6 2

5 TSS/Ac5 2 36 36 0 18-44 vmc4c6 1 4 10 9

11 TSS/Ac11 2 41 43 9 15-44 vviv35 1 4 10 1

2009 2 TSS/Ac2 2 09 30 7 21-44 vvib23 1 5 8 1 8 1

5 TSS/Ac5 1 58 31 0 30-36 Vvi_11572 1 4 4 3

11 TSS/Ac11 1 59 44 7 43-45 vviv35 1 4 4 4

2011 11 TSS/Ac11 2 11 0 0 0-17 SNP197_82 1 3 12 1 12 1

8 TSS/Ac8 1 96 14 9 2-26 SNP1203_88 1 5 5 7

10 TSS/Ac10 2 25 48 8 21-51 vviv37 1 3 7 4

Ac

C

27 5

20 9

Mn

33 7

12 9

9 9

29 1

Sy

17 8

8 2

21 2

15 0

TSS/ Ac

C

39 3

17 6

Mn

15 9

45 8

Sy

19 8

8 5

10 6

2008

2009

2012

2008

2009

2008

2010

2010

2011

2013

2008

2013

2009

2012

2008

2010

2013
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Annex 7. Continued. 

Trait Map Year LG QTL LOD max cM
Confidence 

interval Cofactor
LGW LOD 

threshold

% variance 

QTL

% variance 

model
2008 7 Tar7 2 80 55 8 54-58 Fl7(17-19)3 2 7 12 9 12 9

2009 15 Tar15 3 20 0 0 0-8 SNP341_196 2 5 18 7 18 7

2010 18 Tar18 2 91 25 1 24-26 vvim93 2 8 10 6 10 6

2011 19 Tar19 2 92 34 6 30-48 vmc3b7_2 2 5 16 2 16 2

2012 9 Tar9 3 41 58 9 54-68 Vvi_10329 2 8 34 6 34 6

2013 2 Tar2 3 35 21 2 18-37 vvib23 2 7 10 0 10 0

2010 3 Tar3 1 42 0 0 0-1 SNP613_315 1 4 5 6 5 6

2011 5 Tar5 1 86 30 7 26-36 SNP1235_35 1 5 11 4 11 4

2 Tar2 2 92 21 9 3-35 Vvi_9227 1 4 9 9

4 Tar4 2 49 32 6 23-53 vrzag21 1 4 7 4

2 Tar2 1 82 0 0 0-4 vvib01 1 5 7 7

16 Tar16 1 54 51 7 49-52 scu14 1 4 6 5

2009 15 Tar15 2 61 0 0 0-33 SNP5451_287 1 4 14 2 14 2

7 Tar7 1 62 36 1 35-38 Vvi_1731 1 6 6 6

16 Tar16 2 05 16 0 6-28 udv_104 1 3 7 6

2012 16 Tar16 1 54 47 5 32 5-52 vvmd5 1 3 10 8 10 8

8 Ma8 3 75 59 1 30-60 5 vmc2h10 2 5 14 4

9 Ma9 3 32 74 0 64-74 vmc2e11 2 6 23 9

14 Ma14 3 93 13 5 10-24 vmc1e12 2 6 14 7

2010 8 Ma8 4 07 15 4 4-38 SNP853_312 2 5 15 4 15 4

2011 8 Ma8 2 85 7 1 6-8 SNP699_311 2 8 19 5 19 5

8 Ma8 4 02 12 4 0-22 SNP699_311 2 6 20 4

17 Ma17 5 41 0 0 0-9 SNP677_509 2 7 27 2

18 Ma18 5 68 0 0 0-8 vmc3e5 2 6 29 2

11 Ma11 4 31 14 3 0-25 vvmd25 2 7 14 4

15 Ma15 3 94 38 0 33-58 vmc4d9_2 2 5 11 0

8 Ma8 2 34 57 1 32-59 vmc2h10 1 3 9 6

11 Ma11 1 68 0 0 0-7 vmc3e12 1 5 6 4

17 Ma17 2 08 26 1 22-41 vmc3a9 1 5 8 1

2009 18 Ma18 1 68 2 6 1-4 SNP1519_47 1 5 8 1 8 1

2 Ma2 2 77 31 9 17-51 vmc5g7 1 5 10 1

8 Ma8 1 85 30 8 18-46 vmc1b11 1 3 7 2

17 Ma17 1 92 0 0 0-5 SNP677_509 1 3 6 3

11 Ma11 2 58 15 0 3-22 SNP635_21 1 4 6 8

15 Ma15 2 01 40 9 31-44 vmc4d9_2 1 4 5 8

17 Ma17 1 73 30 0 24-37 SNP579_187 1 3 4 7

2008 5 Ma5 2 12 41 0 28-41 vmc4c6 1 4 10 5 10 5

2009 7 Ma7 1 82 63 9 55-70 vmc1a12 1 5 8 3 8 3

7 Ma7 2 35 88 5 68-88 5 SNP1445_218 1 5 11 9

8 Ma8 2 08 7 1 0-15 SNP699_311 1 6 11 5

2012 8 Ma8 2 44 2 1 0-23 vvip04 1 5 15 4 15 4

2013 11 Ma11 1 64 0 0 0-3 5 SNP197_82 1 3 5 1 5 1

2008 8 Tar/Ma8 2 88 12 4 6-26 vmc5g6_1 2 5 15 8 15 8

2009 7 Tar/Ma7 2 57 49 4 45-50 Vvi_5629 2 4 11 9 11 9

2 Tar/Ma2 3 6 5 0 0-60 vvib01 2 6 15 4

5 Tar/Ma5 3 11 51 5 31-61 vmc16d4 2 6 8 4

8 Tar/Ma8 5 09 11 3 0-45 vmc5g6_1 2 5 15 2

2011 8 Tar/Ma8 2 59 11 3 6-11 SNP699_311 2 5 15 7 15 7

2012 8 Tar/Ma8 3 39 20 0 2-28 SNP1203_88 2 6 25 3 25 3

2013 15 Tar/Ma15 2 55 38 0 37-42 vmc4d9_2 2 4 7 7 7 7

8 Tar/Ma8 1 67 58 4 38-58 SNP1385_86 1 2 6 7

14 Tar/Ma14 2 28 15 7 4-28 vmc1e12 1 3 22 1

17 Tar/Ma17 2 03 39 1 0-41 vvib09 1 3 8 6

2 Tar/Ma2 2 75 31 9 0-49 vmc5g7 1 4 9 3

8 Tar/Ma8 2 37 30 8 11-56 vmc1b11 1 3 8 9

17 Tar/Ma17 2 05 0 0 0-16 SNP677_509 1 2 6 7

2011 9 Tar/Ma9 1 81 11 0 1-25 Vvi_10992 1 5 11 0 11 0

17 Tar/Ma17 2 02 0 0 0-7 SNP677_509 1 4 12 0

18 Tar/Ma18 2 30 2 6 0-8 vmc3e5 1 5 13 6

2011 8 Tar/Ma8 2 18 7 1 0-18 SNP699_311 1 5 12 9 12 9

2012 8 Tar/Ma8 1 53 2 1 2-8 SNP1203_88 1 5 10 0 10 0

2013 11 Tar/Ma11 1 48 1 5 0-3 SNP635_21 1 3 4 8 4 8

Tar

C

Mn

13 8

Sy

15 2

14 7

Ma

C

52 8

65 5

24 2

Mn

23 9

20 1

16 4

Sy 21 1

Tar/ Ma

C
39 0

Mn

20 5

22 1

24 8

Sy

2013

2008

2010

2008

2012

2013

2008

2010

2013

2011

2010

2008

2010

2012
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Annex 7. Continued. 
 

Trait Map Year LG QTL LOD max cM
Confidence 

interval Cofactor
LGW LOD 

threshold

% variance 

QTL

% variance 

model
2 Ant2 10 53 56 8 52-62 4 SNP1229_219 2 6 33 2

3 Ant3 3 18 20 3 16-26 F3(3-6)6 2 3 9 3

2013 16 Ant16 3 12 22 2 17-40 vmc1c11 2 4 10 4 10 4

8 Ant8 2 25 0 0 0-11 vvip04 1 3 16 6

10 Ant10 1 89 11 5 3-11 5 vviv37 0 9 11 5

17 Ant17 2 53 44 3 40-44 5 SNP879_308 1 5 19 4

14 Ant14 2 03 42 8 21-48 Vvi_2292 1 5 7 3

19 Ant19 2 13 21 5 16-36 vvip31 1 4 7 4

2011 2 Ant2 2 43 41 8 21-48 20D18CB9 1 4 14 7 14 7

2 Ant2 2 0 36 8 29-53 vmc5g7 1 2 9 4

10 Ant10 2 56 2 7 0-10 vmc8d3 1 0 12 2

18 Ant18 2 53 48 8 35-62 udv_134 1 4 12 1

2009 3 Ant3 2 63 10 2 0-36 F3(3-6)6 1 4 11 7 11 7

2013 16 Ant16 1 99 23 9 16-39 vmc1e11 1 3 8 5 8 5

Ant

C
51 4

Mn

51 6

13 5

36 5

Sy

2012

2009

2008

2010

 
 
The table shows the trait, the map, the year, and the linkage group (LG) in which the QTLs were identified. 

The QTLs are named using the LG number plus Ac, TSS/Ac, Tar, Ma, Tar/Ma, and Ant for total acidity, 

ratio of total soluble solids to total acidity, tartaric acid, malic acid, ratio of tartaric acid to malic acid, and total 

anthocyanins, respectively. The QTL location is indicated by the position at which the highest LOD (LOD 

max) was detected (in cM), the LOD-1 confidence interval, and the cofactor. The QTLs considered are those 

with a maximum LOD value higher than that estimated for the linkage-group-wide (LGW) threshold, for a 

type I error rate of 5%. The percentage of the total variance explained by each QTL, and when considering 

the combined effect of all QTLs detected in a season (model), is indicated. C, consensus; Mn, Monastrell; Sy, 

Syrah. 

 




