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Abstract 

The utilization of unmanned aerial vehicle (UAV) for soybean seedling detection is an effective way to estimate soybean yield, which 

plays a crucial role in agricultural planning and decision-making. However, the soybean seedlings objects in the UAV image are small, 

in clusters, and occluded each other, which makes it very challenging to achieve accurate object detection and counting. To address 

these issues, we optimize the YOLOv8 model and propose a GAS-YOLOv8 network, aiming to enhance the detection accuracy for the 

task of soybean seedling detection based on UAV images. Firstly, a global attention mechanism (GAM) is incorporated into the neck 

module of YOLOv8, which reallocates weights and prioritizes global information to more effectively extract soybean seedling features. 

Secondly, the CIOU loss function is replaced with the SIOU loss, which includes an angle loss term to guide the regression of bounding 

boxes. Experimental results show that, on the soybean seedling dataset, the proposed GAS-YOLOv8 model achieves a 1.3% 

improvement in mAP@0.5 and a 6% enhancement in detection performance in dense seedling areas, when compared to the baseline 

model YOLOv8s.When compared to other object detection models (YOLOv5, Faster R-CNN, etc.), the GAS-YOLOv8 model similarly 

achieved the best detection performance. These results demonstrate the effectiveness of the GAS-YOLOv8 in detecting dense soybean 

seedlings, providing more accurate theoretical support for subsequent yield estimation. 

 

 

1. Introduction 

 

Soybean is an important source of plant-based protein and 

represent the main oilseed consumed worldwide, which is 

beneficial for human health and crucial for world economic 

participation(Manenti et al. 2023). In the soybean production 

process, seedling detection and counting is an effective way to 

estimate soybean yield, which plays a crucial role in agricultural 

planning and decision-making. By accurately detecting and 

identifying soybean seedlings, monitoring and evaluating their 

growth status and distribution become feasible, enabling precise 

prediction and management of soybean yields. The conventional 

approach to assessing soybean seedling emergence has typically 

involved a combination of manual counting and sampling(Shuai 

et al. 2019). This method, however, is labor-intensive and 

susceptible to errors, owing to factors such as plant density, 

limitations of human visual perception, and the 

representativeness of sampling. Furthermore, it is challenging to 

fulfill the need for continuous spatio-temporal monitoring of 

large-scale fields. 

With the rapid development of UAV (Unmanned Aerial Vehicle) 

technology and computer vision techniques, UAV images have 

the advantages of cost-effectiveness, flexibility, and timeliness, 

which are widely used in various fields of precision agriculture, 

particularly showing unique advantages in crop growth 

monitoring and yield estimation(She et al. 2024). In conjunction 

with object detection techniques, automatic recognition of 

soybean seedlings enables comprehensive monitoring and 

automated management of soybean cultivation areas, resulting in 

increased efficiency and reduced labor intensity. 

However, the images captured by UAV are affected by various 

factors, including high flight altitude, lighting and weather 

conditions, complex field backgrounds, and uneven distribution 

of soybean seedlings. These factors can result in challenges such 

as small target size, image blurring, presence of shadows, 

seedling clustering, and occlusion in the images, which makes it 

very challenging to achieve accurate object detection and 
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counting. Most existing detection methods struggle to deal with 

the complexity of large-scale soybean seedling scenes and suffer 

from poor detection accuracy. Therefore, an intelligent and 

efficient method for detecting soybean seedlings is needed to 

promote the development of soybean yield estimation towards 

precision and automation. 

To this end, this paper proposes an improved GAS-YOLOv8 

model based on YOLOv8, aiming to overcome the challenges of 

soybean seedling detection in complex backgrounds. The 

proposed model incorporates two key improvements. Firstly, a 

GAM attention mechanism(Liu et al. 2021) is integrated into the 

Neck component to enhance its capacity for capturing features of 

small targets, thereby reducing the miss-detection rate. Secondly, 

the loss function is modified to SIOU(Gevorgyan, 2022), which 

addresses the problem of direction mismatch during the 

prediction process, enabling the model to better identify the 

position of soybean seedlings and improve the accuracy of 

soybean seedling position prediction. These two improvements 

will provide more accurate data support for soybean seedling 

detection. 

 

2. Related Work 

 

Crop detection is a significant issue in agricultural production 

management and decision-making. Traditional manual methods 

rely on agricultural workers to manually and visually count(Si, 

2023). However, these methods are time-consuming, limiting 

detection efficiency, and unable to provide precise location and 

other relevant data, thereby restricting further analysis and 

decision-making. In recent years, the continuous development of 

computer vision technology has paved the way for object 

detection algorithms to address this challenge. Researchers have 

proposed various object detection algorithms to enhance the 

efficiency and accuracy of crop detection. These algorithms can 

be categorized into two groups: two-stage algorithms, such as R-

CNN and Faster R-CNN(Ren et al. 2015), and single-stage 

algorithms such as YOLO(Redmon et al. 2015) and SSD(Liu et 

al. 2020). These methods employ training networks to discern 

and localize regions of crops, thereby achieving the detection and 

recognition of different crops in agricultural fields. 

The two-stage algorithm is widely utilized to detect and locate 

different parts of crops, including fruits, leaves, or the entire crop. 

It achieves detection by randomly selecting candidate boxes, 

extracting features using neural networks, and subsequently 

feeding the features into classifiers and regressors. It has the 

advantages such as high accuracy, robust fault tolerance, and 

effective detection of small targets and shapes. For instance, 

Rafael A. et al.(2019) conducted a research study on the 

estimation model for corn seedling density using deep learning 

techniques based on UAV imagery. This method demonstrates the 

capability to accurately and reliably estimate the density of corn 

seedlings in field conditions. Lim et al.(2006). conducted a study 

on the real-time detection of mango inflorescence in orchard 

environments using deep neural networks. They utilized Faster 

R-CNN and SSD detectors to detect the collected mango 

inflorescence and construct an accurate and fast autonomous 

pollination robot system. 

The single-stage detection method, known for its end-to-end 

training characteristics, offers advantages such as simplicity, 

efficiency, strong real-time performance, and the avoidance of 

error accumulation between stages. However, this method 

exhibits relatively lower positioning accuracy and faces 

challenges in handling small targets and dense target scenarios. 

To address these issues, Earl Vories et al.(2020) proposed a 

method to evaluate the emergence rate of cotton seedlings in 

cotton fields. They employed the ResNet18 network to train a 

processed dataset for detecting the number of cotton seedlings 

and canopy size in each image. The results demonstrate the 

significant guiding implications of this method for real-time 

statistics of cotton forest scores. Liu et al.(2020) proposed the 

YOLO-Tomato, detector, which introduced the concept of a 

circular detection box specifically designed for tomato detection. 

This detection box is capable of matching the position and size 

of tomatoes and is ultimately integrated into the dense 

architecture of YOLOv3 for tomato detection. 

Compared with traditional manual counting methods, above deep 

learning-based object detection algorithms can achieve more 

accurate and efficient crop detection. However, the application of 

object detection in crop detection still encounters challenges and 

problems. Take soybean seedling detection as an example. 

Soybean seedling UAV images involve complex backgrounds, 

such as dense growth and mutual occlusion. Additionally, 

different crop types and growth stages can exhibit distinct 

characteristics, and factors like the presence of lush weeds in crop 

fields can affect crop identification results. These problems will 

have a negative impact on the detection of soybean seedlings.  

In conclusion, current object detection algorithms can fulfill most 

crop statistics tasks, but there is still significant room for 

improvement in detection accuracy. Further in-depth research is 

needed to reduce false detection rates and missed detection rates, 
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both in theoretical research and practical applications. In this 

paper, we proposed an improved network based on YOLOv8, 

aiming to enhance the model's feature extraction capabilities for 

small targets, which to some extent addresses the challenges in 

recognizing densely growing, crowded, and occluded soybean 

seedlings. 

 

3. Methodology 

 

In this study, we propose an object detection model based on 

UAV images, called GAS-YOLOv8, using YOLOv8 as the 

backbone network. This model aims to improve the performance 

of small object detection, especially in dense and occluded areas, 

by employing the GAM module and SIOU loss function. The 

network details of our proposed model are provided in the 

following section.  

 

3.1 Overall structure of GAS-YOLOv8 

 

3.1.1 YOLOv8:YOLOv8 is the next major update version of 

YOLOv5 open-sourced by Ultralytics. The YOLOv8 algorithm 

provides a new state-of-the-art (SOTA) model that can be used 

for tasks such as object detection, image classification, instance 

segmentation, and object tracking in the field of computer vision. 

The YOLOv8 network consists of four modules: input, Backbone, 

Neck, and head. The input uses Mosaic data augmentation to 

expand the diversity and quantity of the training set, improving 

small object detection and the performance and robustness of the 

network model. The Backbone replaces the C3 module with the 

C2f module for lightweight processing, parallelizing more 

gradient flow branches to obtain more gradient flow information. 

The Neck uses FPN and PAN(Piao et al. 2021) to make features 

more fully fused, effectively fusing the low-level and high-level 

features of the network, and improving the model's perception 

and recognition capabilities for targets at various scales. The 

Head uses a Decoupled Head and Anchor Free strategy, which 

differs from the Coupled Head and Anchor Based strategy in 

YOLOv5, making it more suitable for dense detection. 

3.1.1 GAS-YOLOv8:To improve the accuracy of soybean 

seedling detection, this paper introduces an attention mechanism 

to fully focus on the feature information of soybean seedlings and 

enhance detection precision. The global attention mechanism 

GAM is integrated into the 12th, 15th, 18th, and 21st layers of 

the Neck part of the YOLOv8 network, as shown in Figure 1. 

GAM is capable of magnifying global dimension interaction 

features while reducing information dispersion. It employs a 

sequential channel-spatial attention mechanism and redesigns the 

CBAM submodule(Sanghyun et al. 2018). GAM learns to 

automatically obtain the importance of each feature space and 

feature channel and assigns different weights based on 

importance to strengthen the extraction of important features and 

suppress irrelevant information. This enables more effective 

extraction of soybean seedling feature information. Furthermore, 

the original CIOU loss function of YOLOv8 is modified to SIOU, 

making the loss function smoother. By accurately calculating the 

similarity between the predicted bounding box and the ground 

truth bounding box, SIOU alleviates the problem of bounding 

box drift. In the soybean seedling detection task, SIOU helps the 

model better recognize the location of soybean seedlings, 

especially in dense and crowded soybean populations.  

  

Figure 1 GAS-YOLOv8 Network Architecture 

 

3.2 GAM 

 

The structure of GAM is depicted in Figure 2, which consists of 

two modules: the channel attention module (CAM) and the 

spatial attention module (SAM). The input feature F1 undergoes 

the joint action of the channel attention submodule and the spatial 

attention submodule, resulting in the output feature F3. The 

intermediate feature map F2 and the output feature map F3 are 

given by Equations (1) and (2), respectively.  

F2 = Mc(F1)⨂F1 (1) 

F3 = Ms(F2)⨂F2 (2) 
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𝑀𝐶 and 𝑀𝑆 represent channel and spatial attention feature maps 

respectively, and ⨂ represent element-wise multiplication. 

 

Figure 2 Global Attention Mechanism 

 

3.2.1 Channel attention mechanism: The channel attention 

mechanism (CAM) is commonly used in tasks such as image 

classification and semantic segmentation to help the network 

learn the relationships between different channels and extract 

important channel information. The structure is shown in Figure 

3. Firstly, the input feature maps undergo max pooling and 

average pooling operations, resulting in two feature vectors with 

dimensions of 1x1 and the same number of channels as the 

original feature maps. Subsequently, these two feature vectors are 

processed by a shared fully connected layer and then added 

together and normalized using the Sigmoid function. Finally, the 

normalized result is element-wise multiplied with the input 

feature maps, thereby incorporating the channel attention 

mechanism. The channel attention mechanism assigns the 

weights to the channels to emphasize significant channel 

information, helping the network automatically learn the 

importance of different channels. In this paper, we employed 

CAM in the model to assist the network in better focusing on the 

color and texture features of soybean seedlings, enabling more 

accurate differentiation between soybean seedlings, weeds, and 

other forms of vegetation.  

 

Figure 3 Channel Attention Mechanism 

 

3.2.2 Spatial attention mechanism: The spatial attention 

mechanism (SAM) is commonly used in tasks such as object 

detection and image segmentation to help the network focus on 

the spatial locations of target objects. The structure is shown in 

Figure 4. SAM first performs average pooling and maximum 

pooling operations on each feature point of the input image. 

Unlike the CAM which operates on the height and width, SAM 

operates on channels. The input feature map is compressed into a 

feature map with the original height, width, and 2 channels. These 

two feature maps are then concatenated to create a new feature 

map, which is then convolved with a 1-channel convolutional 

layer and processed by the sigmoid function to obtain the weights 

for each feature point. These weights are element-wise multiplied 

with the input feature map to incorporate the spatial attention 

mechanism. SAM focuses on the regions of interest in the image, 

helping the network concentrate on important areas. In this paper, 

we employed SAM in the network to pay more attention to the 

green vegetation in the image, specifically the area of soybean 

seedlings, while ignoring a large amount of background 

information. This effectively reduces background interference 

and improves the accuracy of soybean seedling detection. 

 

Figure 4 Spatial Attention Mechanism 

 

3.3 SIOU loss function 

 

There are some commonly used loss functions for object 

detection, such as GIOU, CIOU, DIOU, etc. These loss functions 

take into account the overlap area, distance, and aspect ratio 

between the predicted bounding box and the ground truth box. 

However, none of these loss functions consider the issue of 

orientation between the ground truth box and the predicted box. 

If there is a mismatch in orientation, it can lead to the predicted 

box wandering around, making it difficult to accurately predict 

the target and resulting in slower convergence and lower 

efficiency in object detection. To address this problem, 

Gevorgyan(2022) proposed a new loss function called SIOU, 

which consists of four components: angle loss, distance loss, 

shape loss, and IoU loss. The angle loss is defined as follows: 

Λ = 1− 2 × sin2 (arcsin(
ch
σ
) −

π

4
) (3) 

The distance loss is defined as follows: 

∆= 2 − e−γρx − e−γρy (4) 
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The shape cost is defined as follows: 

Ω =(1− e−ww)𝜃 + (1− e−wh)𝜃 (5) 

The IoU cost is defined as follows: 

IoU =
Intersection

Union
(6) 

In summary, the SIOU is defined by the following formula (7) 

LLossSIOU = 1− IoU+
∆+ Ω

2
(7) 

SIOU redefines the angular penalty metric, enabling the 

prediction box to swiftly drift towards the nearest axis, 

subsequently requiring the regression of only a single coordinate. 

This effective reduction in the total degrees of freedom serves to 

significantly enhance both the velocity of model training and the 

precision of inference. 

 

4. Experiments 

 

4.1 Dataset 

 

The soybean seedling dataset used in this experiment was 

collected in the soybean experimental field in Shijiazhuang city, 

which is located at a center longitude of E114.724° and latitude 

of N37.941°, covering an area of approximately 17 acres. The 

soybean seedlings in this dataset were sown on July 1st. The 

images were captured at a flight altitude of 12m by a UAV and 

manually annotated using the LabelImg software. The dataset 

consists of 3312 images for training and 369 images for 

validation. Furthermore, the dataset exhibits characteristics such 

as uneven distribution of seedling sowing and clustering of 

seedling growth. As shown in Figure 5, (a) shows sparsely sown 

soybean seedlings, which are relatively easier to detect, while (b) 

shows densely grown soybean seedlings, posing challenges for 

precise detection. 

 

Figure 5 Soybean Seedling Growth Characteristics 

 

4.2 Evaluation Metrics 

 

This experiment evaluates the results using the precision, recall, 

and mean average precision (mAP) metrics. Precision is defined 

as the ratio of true positive (TP) predictions to all positive 

predictions (TP+FP), which represents the number of correctly 

predicted soybean samples out of all predicted soybean samples. 

It is calculated using the formula (8): 

Precision =
TP

TP+ FP
(8) 

Recall is defined as the ratio of true positive (TP) predictions to 

all actual positive samples (TP+FN), which represents the 

number of soybean samples correctly predicted as soybeans. It is 

calculated using formula (9): 

Recall =
TP

TP+ FN
(9) 

Mean Average Precision (mAP) is an average precision value 

across multiple classes, denoted by mAP@0.5 represents the 

average precision for a specific class when the IoU threshold in 

the confusion matrix is set to 0.5. mAP@0.5 is the average of 

precision values for all classes, reflecting the variation of 

precision with recall and it is defined by formula (10). 

mAP@0.5:0.95 represents the average mAP across different IoU 

thresholds (from 0.5 to 0.95 with a step size of 0.05). 

mAP@0.5 =
1

C
∑AP@0.5k

n

i=1

(10) 

 

4.3 Experiment Settings 

 

This experiment was conducted on the Ubuntu 22.04.4 operating 

system. The GPU is the NVIDIA GeForce RTX 4090 with a 

memory capacity of 24209MiB The CUDA Toolkit version is 

11.8, and the CUDNN version is 8.9.4. The experiments are 

performed using the deep learning framework PyTorch 2.0.0. The 

specific parameter settings are summarized in Table 1. 
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Parameter Value 

Input Size 512 

Initial Learning Rate 0.006 

Minimum Learning Rate 0.1 

Learning Rate Schedule cos 

Early Stopping 50 

Epochs 300 

Batch Size 32 

Momentum 0.937 

Image Flip (Vertical) 0.5 

image rotation 0.2 

Table 1 Specific Experimental Parameters for GAS-YOLOv8 

 

5. Experimental Results and analysis 

 

5.1 Comparison with YOLOv8 

 

In this section, a comparison was made between GAS-YOLOv8 

and YOLOv8 in terms of boundary loss, classification loss, 

distribution focal loss, and the mAP@0.5 curve, as shown in 

Figure 6. The results indicate that with increasing training epochs, 

GAS-YOLOv8 converges faster and achieves lower values for all 

loss metrics compared to the baseline YOLOv8 model. In 

particular, the YOLOv8 model exhibits overfitting in the 

distribution focal loss towards the end of training, while the 

proposed model avoids this issue. As for mAP@0.5, the 

improved GAS-YOLOv8 achieves higher accuracy with 

increasing training epochs. These results demonstrate that the 

improved GAS-YOLOv8 model in this study achieves better 

performance in training. 

 

Figure 6 Comparison of Various Losses and mAP@0.5 Curves 

between GAS-YOLOv8 and YOLOv8 

 

5.2 Ablation Studies 

 

To validate the effectiveness of the two proposed improvement 

modules on YOLOv8, four ablation experiments were designed 

as shown in Table 2. The symbol "√" indicates the presence of a 

module in the model, while "×" indicates its absence. The 

experimental results show that the baseline YOLOv8n model 

achieves a mAP@0.5 of only 85.4%. When only the GAM 

module is added, the precision improves by 0.3%, recall 

improves by 3.1%, and mAP@0.5 increases by 1%. When only 

the SIOU module is added, mAP@0.5 improves by 0.9%, and 

there are corresponding improvements in precision and recall. 

When both the GAM and SIOU modules are added, mAP@0.5 

reaches 86.7%, an improvement of 1.3% compared to the 

baseline model original, and the precision and recall increase by 

1.57%and 2.78%, respectively. This indicates that GAS-

YOLOv8 shows improvements in various metrics. 

GAM SIOU P R mAP@0.5 
mAP@

0.5:0.95 

× × 86.1 79.02 85.4 36.4 

√ × 86.41 82.13 86.4 36.5 

× √ 86.35 81.47 86.3 36.8 

√ √ 87.67 81.80 86.7 37.0 

Table 2 Ablation Experiments 

 

5.3 Comparison with other methods 

 

To assess the effectiveness of our proposed method in 

comparison with other existing methods, we have conducted 

experiments comparing GAS-YOLOv8 with other models, 

including Faster-RCNN, YOLOv5n, YOLOv5s, YOLOv7x, and 

YOLOv8n, as shown in Table 3. From the table, it can be 

observed that Faster-RCNN exhibits relatively poor detection 

results due to the loss of feature extraction for small objects 

caused by its deep network architecture. In contrast, our proposed 

algorithm demonstrates improvements in precision, recall, and 

mAP@0.5 when compared to other YOLO series algorithms. 

Specifically, the mAP@0.5 metric of our algorithm surpasses that 

of the relatively higher-performing YOLOv5s model by 0.7%. 

Moreover, when compared to the YOLOv8n model, which 

exhibits higher precision, our algorithm achieves a 0.57% 

improvement. Notably, the results of the mAP@0.95 comparison 

consistently indicate that our algorithm outperforms other 
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network models in terms of detection performance. In summary, 

the GAS-YOLOv8 model exhibits superior detection 

performance compared to the current mainstream models. 

Models P/% mAP@0.5/% mAP@0.95/% 

Faster RCNN 79.32 82.38 32.23 

YOLOv5n 82.90 86.0 35.50 

YOLOv5s 83.03 86.0 35.70 

YOLOv7x 80.20 84.6 32.51 

YOLOv8n 86.10 85.4 36.40 

GAS-YOLOv8 87.67 86.70 37.0 

Table 3 Comparison of Accuracy Metrics across Different 

Models 

 

5.4 Counting and Detection Results 

 

5.4.1 Counting results： To evaluate the performance of the 

improved GAS-YOLOv8 algorithm in counting for soybean 

seedlings, the actual number of soybean seedlings in each 

experimental area was obtained by manually counting. The real 

soybean seedling number was then compared with the predicted 

seedling number, as shown in Table 4. From the table, it can be 

seen that the Faster RCNN model predicts only 5546 seedlings, 

which is 799 seedlings (9.56%) less than the 6345 seedlings 

predicted by the YOLOv8 network. This significant discrepancy 

indicates the relatively poor performance of the Faster RCNN 

model in counting and detection for soybean seedlings. However, 

the proposed GAS-YOLOv8 in this paper exhibits superior 

performance compared to YOLOv8. The predicted number of 

seedlings for GAS-YOLOv8 is 6789, which is an increase of 444 

seedlings compared to the baseline model YOLOv8. The 

detection rate of the YOLOv8 network for seedlings is only 

75.88%, whereas the improved GAS-YOLOv8 algorithm 

achieves a detection rate of 81.19%, representing a 5.31% 

improvement in detection rate. Based on the aforementioned 

comparative analysis, it is shown that the proposed GAS-

YOLOv8 model has achieved significant results in terms of 

detection rate. 

Models 
Ground 

Truth 
Predicted 

Detection 

Rate 

Faster RCNN 8362 5546 66.32% 

YOLOv8 8362 6345 75.88% 

GAS-YOLOv8 8362 6789 81.19% 

Table 4 Comparison of Count Estimation among Different 

Network Models 

 

To further validate the superiority of the proposed GAS-YOLOv8 

model in small object detection, we divided the soybean 

experimental data into five areas based on the different densities. 

The distribution of soybean seedling density in each area is 

shown in Figure 7. From the figure, it can be seen that the density 

of seedlings in each area is mainly concentrated between 50 and 

90 seedlings, with 9% of the areas having a density of over 110 

seedlings. These areas exhibit dense planting, making it more 

challenging to achieve accurate estimation. 

Figure 8 shows the detection rates for each density area. Through 

comparative analysis, it was found that YOLOv8 outperforms 

Faster RCNN in every density area. In the low-density area, 

YOLOv8 achieves a detection rate of approximately 80%, while 

in the high-density area, the prediction rate reaches around 60%. 

These prediction results far exceed the 65%-70% prediction rate 

of Faster RCNN. Furthermore, the improved GAS-YOLOv8 

algorithm demonstrates significant improvements in prediction 

for different soybean seedling densities. The detection rates in the 

70-90 and 90-110 density intervals increased by 4.41% and 

5.83%, respectively. Additionally, there is a 6.23% improvement 

in the detection rate in the highest density interval of 110-140. 

These results show the proposed method exhibits certain 

improvements in detecting small target seedlings, particularly in 

scenarios involving crowded growth and mutual occlusion. 

 

Figure 7 Distribution of True Soybean Seedling Count in the 

Experimental Area 
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Figure 8 Comparison of Estimation Rates at Different Density 

Intervals across Models 

 

5.4.2 Visualization Analysis： To visually illustrate the efficacy 

of the proposed algorithm in detecting dense and crowded small 

objects, we present a comparison of the visual detection results 

predicted by different models in Figure 9. From the figure, it is 

clear that our model detects a larger number of soybean seedlings 

and achieves superior detection performance. Notably, it is 

capable of detecting targets that the baseline model fails to 

identify. Particularly in the regions indicated by the arrows in 

Figure 9, these areas are densely populated with soybean seedling 

growth. In the detection of seedlings in such high-density areas, 

both Faster RCNN and YOLOv8 exhibit relatively poor detection 

performance, while our GAS-YOLOv8 model demonstrates 

significant advantages in the detection results. Therefore, it can 

be concluded that the proposed GAS-YOLOv8 model exhibits 

superior detection performance and higher recognition accuracy 

in handling densely grown and crowded soybean seedlings. This 

is of significant importance for soybean monitoring and 

management in the agricultural field, as it enables more accurate 

and efficient tracking of soybean growth and development. 

 

Figure 9 Visual Comparison of Detection Results from Different 

Models 

 

6. Conclusion 

 

In this paper, we present a novel soybean seedling detection 

network model, GAS-YOLOv8, based on the YOLOv8 

architecture for UAV imagery. The proposed model incorporates 

a global attention mechanism to effectively capture and extract 

the feature information of soybean seedlings, enhancing the 

overall accuracy of the detection process. Furthermore, we have 

replaced the original loss function of YOLOv8 with the SIOU 

loss function to improve the precision of soybean seedling 

position predictions and accelerate the convergence speed during 

the training phase. Our experimental results demonstrate that 

GAS-YOLOv8 achieves a significant improvement in mean 

average precision (mAP@0.5) of 1.3% on a soybean dataset and 

a notable 5.31% improvement in detection rate. The visual results 

show that our model can achieve favorable performance in the 

task of soybean detection and counting, especially in dense and 

occluded areas. 

Compared to other mainstream soybean seedling detection 

models, GAS-YOLOv8 exhibits superior detection rates, 

providing more reliable data support for soybean detection and 

yield estimation tasks. However, it is important to note that the 

inclusion of the GAM increases the computational complexity of 

the proposed network model, resulting in a larger model size. 

Therefore, there is still considerable room for improvement in 
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optimizing the proposed network model for lightweight 

processing to better meet the real-time requirements of modern 

agricultural detection applications. In future work, we plan to 

focus on optimizing the model architecture to reduce its 

computational complexity while maintaining its high detection 

accuracy. 
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