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Abstract 

 
Monitoring crop phenology is essential for managing field disasters, protecting the environment, and making decisions about 

agricultural productivity. Because of its high timeliness, high resolution, great penetration, and sensitivity to specific structural 

elements, synthetic aperture radar (SAR) is a valuable technique for crop phenology estimation. Particle filtering (PF) belon gs to the 
family of dynamical approach and has the ability to predict crop phenology with SAR data in real time. The observation equation is a 

key factor affecting the accuracy of particle filtering estimation and depends on fitting. Compared to the common polynomial fitting 

(POLY), machine learning methods can automatically learn features and handle complex data structures, offering greater flexibility 
and generalization capabilities. Therefore, incorporating two ensemble learning algorithms consisting of support vector machine 

regression (SVR), random forest regression (RFR), respectively, we proposed two machine learning-aided particle filtering approaches 

(PF-SVR, PF-RFR) to estimate crop phenology. One year of time-series Sentinel-1 GRD SAR data in 2017 covering rice fields in 

Sevilla region in Spain was used for establishing the observation and prediction equations, and the other year of data in 2018 was used 
for validating the prediction accuracy of PF methods. Four polarization features (VV, VH, VH/VV and Radar Vegetation Index (RVI)) 

were exploited as the observations in modeling. Experimental results reveals that the machine learning-aided methods are superior 

than the PF-POLY method. The PF-SVR exhibited better performance than the PF-RFR and PF-POLY methods. The optimal outcome 
from PF-SVR yielded a root-mean-square error (RMSE) of 7.79, compared to 7.94 for PF-RFR and 9.1 for PF-POLY. Moreover, the 

results suggest that the RVI is generally more sensitive than other features to crop phenology and the performance of polarization 

features presented consistent among all methods, i.e., RVI＞VV＞VH＞VH/VV. Our findings offer valuable references for real-time 

crop phenology monitoring with SAR data. 

 

 

1. Introduction 

Crop phenology is a significant biophysical feature of crops. For 

crop growth monitoring and yield estimation, access to crop 
phenology data can be very helpful. Crop phenology has the 

ability to accurately reflect important time periods, such as 

sowing and harvesting. This precise timing information is then 
utilized to implement irrigation and fertilizer applications, which 

in turn encourages more effective planting practices. Therefore, 

crop phenology monitoring is crucial for controlling field dangers, 
safeguarding the environment, and determining agricultural 

productivity. 

 

Rice is the staple food for more than half of the world's 
population. Accurate crop phenology information can provide 

decision support for rice yield and irrigation. Traditional 

monitoring of crop phenology information is mostly obtained 
through field observations, which is time-consuming and labor-

intensive. With the development of modern technology, remote 

sensing technology makes it possible to monitor crop phenology 
information on a large scale (Khanal  et al., 2014). And the study 

area can be sampled several times in a short period of time, hence 

it can be used for dynamic monitoring of crop phenology 

information. 
 

 
* Corresponding author. 

Optical data and synthetic aperture radar (SAR) data are widely 

employed in phenology monitoring. The advantage of optical 

data in phenology monitoring primarily arises from the varying 
sensitivities of different spectra to the canopy structure of 

different crops. At the culmination of the crop growth cycle, 

vegetation indices are amalgamated to identify key phenological 
periods, such as the start of the growing season (SOS) and the 

end of the growing season (EOS) (Yang et al., 2017; Sisheber et 

al., 2023; Liao et al.,2023). By utilizing various techniques, such 
as Savitzky-Golay filtering, fourier transform, and wavelet 

transform, to smooth the time series of vegetation indices, the 

optical remote sensing enables the extraction of pivotal nodes 

such as maxima, minima, and inflection points, thus pinpointing 
critical time points within the crop growth cycle. Nevertheless, 

this method is limited to monitoring specific crop growth stages 

and remains susceptible to external environmental factors such as 
soil conditions, temperature, and climate. 

 

The primary advantage of SAR technology lies in its high 
penetration capability, allowing for all-weather, all-day 

acquisition of surface information. Additionally, different SAR 

feature parameters exhibit high sensitivity to the morphological 

structure of crops (Liu et al.,2013). Research indicates significant 
potential for SAR data's feature information in monitoring crop 

growth (Wiseman et al., 2014). Crop phenology estimation 
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problems are typically treated as classification problems, with 

researchers employing methods such as decision trees and K-

means clustering. To enhance accuracy, machine learning has 

been applied to phenology classification, achieving promising 
results when combined with algorithms like Support Vector 

Machine (SVM) and K-Nearest Neighbor (KNN) (Mascolo et 

al.,2016; Taskin et al., 2016; Yuzugullu et al.,2015). To achieve 
continuous estimation of crop lifecycles, the principles of 

dynamic system theory have been introduced into phenology 

estimation research. Based on this theory, Kalman Filtering (KF) 
and Extended Kalman Filtering (EKF) have gradually been used 

in SAR data for rice crop phenology studies (Mascolo et al.,2021). 

However, due to KF's applicability to linear problems and EKF's 

suitability for linearizing nonlinear problems (Mascolo et 
al.,2021). Particle Filtering (PF) is not constrained by model 

limitations, has begun to be applied in crop phenology estimation. 

When constructing predictive and observational models, curve 
fitting methods are commonly employed, including polynomial 

fitting (for state equations) and Logistic growth model fitting (for 

observations or state equations) (De Bernardis et al.,2016;), with 
few alternatives considered for model construction. 

 

Therefore, this paper combines dynamic systems theory with 

machine learning regression algorithms to provide novel insights 
in crop phenology estimation. The application of machine 

learning combined with dynamic systems theory makes it 

possible to estimate crop phenology and growth in real time. 
Compared with the common polynomial fitting (POLY), this 

paper proposes two machine learning-assisted particle filtering 

methods (PF-SVR, PF-RFR) for crop phenology estimation by 
combining two integrated learning algorithms consisting of 

Support Vector Machine Regression (SVR) and Random Forest 

Regression (RFR), respectively. Four common polarization 

features including VV polarization, VH polarization, VH/VV 
polarization and Radar vegetation index (RVI) were integrated as 

observational information for model construction. Confirming 

that RVI is usually more sensitive to crop phenology than other 
features in the study area, and that the polarization features 

perform consistently across all methods, our results provide a 

valuable reference for real-time monitoring of crop phenology 
using SAR data. 

 

The paper content is structured as follows: In Section 2, the study 

area and the data used are introduced. Section 3 describes the 
principles of dynamical systems theory, particle filtering and the 

main machine learning algorithms used. Section 4 specifically 

analyses the experimental results obtained. Section 5 summarizes 
the paper and draws conclusions. 

 

2. Study site and Data set  

2.1 Study site 

This paper uses Sentinel-1 GRD SAR data to monitor the 

phenology of rice fields through the experimental technique. The 

research site is located in a rice crop cultivation region close to 
the mouth of the Guadalquivir River, Sevilla, southwest Spain. 

The planting area measures roughly 30 km by 30 km, and rice is 

grown there from May to October every year. The present work 
centers on the experimental examination of seven rice parcels, 

the distribution of which is depicted in Figure 1. The rice growth 

season in this location is approximately 135-150 days. 
 

 
Figure. 1. Google–Earth picture of rice fields in Sevilla, Spain 

 

2.2 Remote sensing image data 

In this study, we downloaded all the images of the Sentinel-1 A/B 
constellation covering the rice cultivation time in the study area 

during 2017 and 2018 via the ESA official website, thus ensuring 

a revisit time of 6 days with a dual-polarized VV-VH image in 
Ground Range Detected (GRD) format. The images were 

processed using the SNAP software provided by 

ESA(http://step.esa.int/main/download/snap-download/), which 

includes orbit correction, thermal noise removal, radiometric 
calibration, speckle filter, conversion from linear to dB and 

terrain correction. 

 

2.3 Ground Campaign Data 

Our ground-truthing data come from the local group of rice 

farmers (Federacion de Arroceros de Sevilla), where each year 
throughout the rice-growing season, meticulous phenology data 

are measured in the field on four to seven rice-growing plots. 

These statistics represent the key phenological time using the 

worldwide standard definition of Biologische Bundesanstalt, 
Bundessortenamt and CHemical industry (BBCH). 

 

3. Methods 

3.1 Dynamic Systems Theory 

A mathematical framework for examining how complex systems 

behave over time is called dynamic systems theory. According to 
the idea, a system is usually described as a set of variables and 

the interactions between them. The crop growth cycle can be 

viewed as a continuous dynamic process that changes over time. 

Among these, the collection of states 𝑋𝑁 ( 𝑋𝑁 = [𝑥1，𝑥2，
𝑥3 … 𝑥𝑁]) in the system across time can be thought of as the crop 

phenology information. It can be known that the state equation of 
the system, also known as the prediction equation, is as shown in 

equation (1). This is in accordance with the first-order Markov 

assumption, which states that the current moment state 𝑋𝑘 of the 

system is only determined by the previous moment state 𝑋𝑘−1. 

 

 𝑋𝑘 = 𝐹(𝑋𝑘−1) + 𝑣𝑘, (1) 

 

where  𝑋𝑘 = current moment 

 𝑋𝑘−1 = previous moment 

 𝑣𝑘 = random noise 

 F = corresponding functional relationship 
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The observation equation is as shown in equation (2), which 

mainly reflects the relationship between the observed value 𝑌𝑘 

and the current moment state 𝑋𝑘. 
 

 𝑌𝑘 = 𝐻(𝑋𝑘) + 𝑤𝑘 , (2) 

 

where  𝑌𝑘 = observed value 

 𝑋𝑘 = current moment 

 𝑤𝑘  = random noise 

 H = corresponding functional relationship 

 

Hence, precise formulation of state and observation equations 
within dynamic system theory is paramount for achieving 

optimal estimation. PF and KF stand out as commonly employed 

parameter estimation methods in dynamic system theory. 
 

3.2 Particle Filtering 

In general, obtaining direct crop phenology state 𝑋𝑘  is 

challenging and is primarily achieved through field observations. 

In cases where field observation is impractical, indirect 

parameter estimation relies on other observational information 𝑌𝑘, 
such as vegetation index, climate data, SAR polarization 

characteristics, etc. 

 
Particle filtering is a Bayesian filtering method for state 

estimation of dynamic systems, which is particularly suitable for 

nonlinear and non-Gaussian systems (Arulampalam et al.,2002). 

For example, crop phenology over time dynamics is a nonlinear 
process of change, and thus is well suited for corresponding crop 

phenology estimation by PF algorithms. It represents the 

probability distribution of the state of the system by a set of 
randomly sampled particles, and updates and estimates it 

according to the observed data. PF algorithm is an "observation-

update" form of parameter estimation, which roughly consists of 
five parts: (1) particle initialization; (2) prediction; (3) update; (4) 

updating the particle weights; and (5) particle resampling. The 

details of each of these parts are as follows: 

 
(1) Particle initialization 

During the particle initialization phase, a random set of particles, 

denoted by the number N, is drawn from the a priori probability 
distribution to represent the potential distribution of the system 

state. Typically, the initial positions of these particles can be 

determined based on the prior knowledge of the system or 
existing observations. Each particle is assigned a weight, which 

is initially set to an equal value of 
1

𝑁
. 

 
(2) Prediction 

During the prediction phase, the state of each particle is 

forecasted based on a dynamic model of the system. This is 
accomplished by applying the state transition function of the 

system, typically incorporating a model of system dynamics 

noise to account for uncertainty. The formula for predicting the 
state is as shown in equation (3). 

 

 𝑋𝑘
[𝑖]

= F(𝑋𝑘−1
[𝑖]

) + 𝑣𝑘
[𝑖]

, (3) 

where  𝑋𝑘
[𝑖]

 = predicted state of the i-th particle at time k 

 𝑋𝑘−1
[𝑖]

 = predicted state of the i-th particle at time k-1 

 𝑣𝑘
[𝑖]

 = random noise of the i-th particle 

 F = corresponding functional relationship 
 

(3) Update 

During the state update stage, the state of each particle is 

corrected based on the observed data. This is achieved by 

considering the difference between the observed value and the 

actual observation for each particle. The formula for updating the 

state is as shown in equation (4). 

 

 𝑤𝑘
[𝑖]

= p(𝑌𝑘|𝑋𝑘
[𝑖]

), (4) 

 

where  𝑤𝑘
[𝑖]

 = the weight of the i-th particle at moment k 

 p(𝑌𝑘|𝑋𝑘
[𝑖]

)= conditional probability 

 
(4) Updating particle weights 

During the stage of updating particle weights, new weights for 

each particle are computed based on the state and observation 
data of each particle. Typically, the weights of the particles are 

calculated using normalized observation probabilities to ensure 

that the sum of the weights equals 1. The formula for updating 

the particle weights is as shown in equation (5). 
 

  𝑤𝑘
[𝑖]

= p (𝑌𝑘|𝑋𝑘
[𝑖]) /𝛴𝑗=1

𝑁 p(𝑌𝑘|𝑋𝑘

[𝑗]
), (5) 

 

where  𝑤𝑘
[𝑖]

 = the weight of the i-th particle at the moment k 

 p(𝑌𝑘|𝑋𝑘
[𝑖]

) = conditional probability 

 N = total number of particles 

 𝛴𝑗=1
𝑁 p(𝑌𝑘|𝑋𝑘

[𝑗]
) = sum of observation probabilities 

 

(5) Particle resampling 
Resampling is based on the weight of the particles, so that the 

high-weight particles are more repeated, so as to maintain the 

diversity of the particle population and solve the problem of 
particle degradation. In this paper, residual resampling is mainly 

used. 

 

3.3 Equation construction process 

3.3.1 Prediction Equation: The state equation in this study 

chiefly delineates the correlation between crop phenology (state 

variables) over time, typically depicted by a first-order time-
varying differential equation. Therefore, predetermining the 

change pattern is imperative, commonly achieved through a crop 

growth model. Considering the diverse growth models across 
different crop types, this paper predominantly adopts a 

straightforward empirical model to formulate the state equation. 

Hence, a polynomial fitting function serves as the functional 
relationship between the state variable and time, succinctly 

captured as follows: 

 

 𝑋𝑘 = 𝑎0 + 𝑎1𝑘 + 𝑎2𝑘2 + ⋯ + 𝑎𝑛𝑘𝑛, (6) 

 

where  𝑎0 , 𝑎1 , 𝑎2 , … 𝑎𝑛  = polynomial fitting factors 

 
Ordinary Least Square Fitting approach can be used to solve the 

parameters. The polynomial order of the fitted crop biophysical 

parameters is typically not greater than 5 in order to avoid 

overfitting, which can result in decreased accuracy. 
 

3.3.2 Observation Equation: In this instance, the link 

between the system state 𝑋𝑘 at a given moment H and the SAR 

feature or vegetation index acquisition 𝑌𝑘 will be represented by 

the observation equation. The observation equation's formulation 

is akin to that of the state equation, and the measured data can be 
used to empirically fit the observation equation between the crop 

phenology and the polarized SAR observation feature. 

 
Three primary methods of fitting were used in this paper: (1) 

polynomial fitting; (2) support vector machine regression; (3) 
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random forest regression. Polynomial fitting is a straightforward, 

intuitive technique that is easy to comprehend and apply, which 

is why the first strategy is employed. Polynomials can be tailored 

to fit a range of nonlinear relationships and data forms and 
patterns. 

 

In addition, this paper also adopts two other algorithms for 
machine learning: SVR, RFR. Firstly, SVR has a strong ability to 

fit non-linear datasets, and secondly, SVR can achieve the fitting 

of non-linear relationship through kernel function, which is 
suitable for complex data patterns. At the same time, SVR has 

less effect on noise and local extremes, and has strong robustness. 

The decision function of SVR can be represented by support 

vectors, which is easy to explain and understand. RFR can 
process data efficiently without feature selection, and at the same 

time, it has relatively less effect on outliers and can deal with data 

with more noise. 

 

4. Results 

In this study, we used this method to estimate the phenological 

information (BBCH) of crops. Based on the data in 2017, we used 
the polynomial fitting method to construct a prediction model, 

and used polynomial fitting, SVR and RFR algorithms to 

construct an observation model, aiming to compare the impact of 
different algorithms on the parameter estimation results. Based 

on the established prediction model and observation model, we 

made prediction estimates of the phenological information in 
2018, and compared the real phenological information in 2018 to 

verify the accuracy of the results. 

 

4.1 Predictive equation construction 

In this paper, the prediction equation describes the relationship 

between rice crop phenology and time (DoS). Due to the 

inconsistency of the sowing date of rice in different plots, we 
converted the original time coordinate system with the day of 

year (DoY) as the time coordinate system to the DoS time 

coordinate system with the sowing date starting from 0. 
 

 

Figure 2. Predictive equations to construct a plot of results. 

 

The equation is mainly completed by polynomial fitting, and after 
many fittings, we select the optimal fitting polynomial order of 5, 

and the specific expression is as shown in equation (8). 

 

 𝑦 = a𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓, (8) 

 

where  a=7.88316233e-10 

 b=-1.56373028e-6 
 c=3.86594439e-4 

 d=-2.97796674e-2 

 e=1.27101659 

 f=3.25316695e-1 

 

As shown in Figure 2, the fitting results of the prediction equation 

constructed from the measured data in 2017 are presented, where 
the red line represents the fitting result and the black star dot 

represents the actual ground observation. It can be seen from the 

figure that in the middle and late stages of rice growth, the 
dispersion degree of BBCH information is higher than that in the 

early stage, and the growth trend of rice is basically the same 

among different plots. 
 

4.2 Observational equation construction 

In this paper, the observation equation describes the relationship 

between SAR observation feature information and rice crop 
phenology, and three curve fitting algorithms are mainly used for 

the construction of the observation equation, including 

polynomial fitting, SVR, and RFR. As shown in Figure 3,4,5, 
where the black line represents the actual observed value and the 

red line represents the fitting curve, and it can be seen from the 

observation equation that the four polarization characteristics are 
more sensitive in the early stage of rice growth, and the 

sensitivity is lower in the late growth stage. 

 

  
BBCH-VV BBCH-VH 

  
BBCH-VH/VV BBCH-RVI 

Figure 3. Observation equation based on POLY. 

 

  
BBCH-VV BBCH-VH 

  
BBCH-VH/VV BBCH-RVI 

Figure 4. Observation equation based on SVR. 
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BBCH-VV BBCH-VH 

  
BBCH-VH/VV BBCH-RVI 

Figure 5. Observation equation based on RFR. 
 

4.3 Estimation of phenology 

By constructing the prediction equation and observation equation 

based on the 2017 data, combined with the polarization 
characteristics of the Sentinel-1 GRD data, we can use the 

particle filter algorithm to estimate the phenology of rice crops in 

2018. Different observation equation fitting algorithms were 
used to estimate different phenological parameters, as shown in 

Figure2. It can be observed that among the phenological 

estimation information obtained by the observation equations 
constructed by the three algorithms, the Root Mean Square Error 

(RMSE) values are as follows: RVI < VV < VH < VH/VV. In 

addition, the observation equation constructed by the SVR 

algorithm obtained the best accuracy of the results, with an 
RMSE of 7.79, and the results obtained by RFR also showed 

good accuracy, with an RMSE of 7.94. Both algorithms 

outperformed the polynomial fitting results, with an RMSE of 9.1. 
However, it is worth noting that in the later stages of rice crops, 

there is a certain reduction in estimation accuracy. This may be 

due to the fact that the polarization feature does not exhibit a high 
degree of sensitivity at all stages of the crop growth cycle. 

 

  
VV VH 

  
VH/VV RVI 

Figure 6. BBCH estimation results based on POLY. 

 

  
VV VH 

  
VH/VV RVI 

Figure 7. BBCH estimation results based on SVR. 

 
 

  
VV VH 

  
VH/VV RVI 

Figure 8. BBCH estimation results based on RFR. 
 

5. Conclusions 

In this paper, we propose a method for estimating rice 

phenological parameters by integrating machine learning and 
dynamical systems theory. By comparing the effects of two 

typical machine learning algorithms (SVR and RFR) in the 

process of constructing observation equations, and combining PF 
algorithm and SAR polarization features for rice phenology 

estimation. The following main conclusions were drawn from 

this study: 
 

(1) The rice phenology estimates obtained from constructing 

observation equations using the SVR algorithm had an optimal 

RMSE of 7.79 over the full growth cycle. In comparison, the 
results obtained using the RFR algorithm had an RMSE of 7.94, 

while polynomial fitting yielded a result of 9.1. This 

demonstrates the superiority of machine learning algorithms in 
the construction of observation equations. 
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(2) For different model building algorithms, the results of the four 

polarization features in rice crop phenology estimation showed 

the following results: RVI > VV > VH > VH/VV. This indicates 

that the RVI feature has a higher dominance in rice phenology 
estimation and is more sensitive than the other features over the 

whole growth cycle of rice. 

 
In future, we will consider introducing more polarization features, 

such as feature parameters after polarization decomposition. In 

addition, since rice grows in water for a long time, the 
backscattering coefficient features are susceptible to the 

influence of the water body and soil, etc. Therefore, we will 

consider adding the corresponding feature information to 

attenuate these influences and improve the accuracy of rice 
phenology estimation. This will provide a more reliable reference 

value for rice phenology estimation, thus supporting applications 

such as crop yield estimation and crop growth monitoring. 
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