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Abstract: 
 

Nowadays, semantic segmentation results of 3D point cloud have been widely applied in the fields of robotics, autonomous driving, 

and augmented reality etc. Thanks to the development of relevant deep learning models (such as PointNet), supervised training methods 

have become hotspot, in which two common limitations exists: inferior feature representation of 3D points and massive annotations. 

To improve 3D point feature, inspired by the idea of transformer, we employ a so-call LCP network that extracts better feature by 

investigating attentions between target 3D points and its corresponding local neighbors via local context propagation. Training 

transformer-based network needs amount of training samples, which itself is a labor-intensive, costly and error-prone work, therefore, 

this work proposes a weakly supervised framework, in particular, pseudo-labels are estimated based on the feature distances between 

unlabeled points and prototypes, which are calculated based on labeled data. The extensive experimental results show that, the proposed 

PL-LCP can yield considerable results (67.6% mIOU for indoor and 67.3% for outdoor) even if only using 1% real labels, and 

comparing to several state-of-the-art method using all labels, we achieve superior results in mIOU, OA for indoor (65.9%, 89.2%). 

 
 

1. Introduction 

Semantic segmentation is a key technique to assign a semantic 

label to each individual point in a point cloud. This technology is 

widely used in areas such as autonomous driving, augmented 

reality and 3D reconstruction. Traditional semantic segmentation 

methods such as Ransac (Jung, 2014), regional growth (Wang, 

2015) and other methods are difficult to adapt to complex scenes. 

Emerging semantic segmentation methods (Zhao, 2021; Xu, 

2020; Milioto, 2019) based on deep learning can process point 

clouds in multiple scenarios more accurately by learning the 

characteristics of supervised point cloud data. However, the large 

demand for supervised data and the difficulty of learning local 

features of point cloud are still unsolved problems. 
 

The Transformer has achieved remarkable success in various 

fields such as natural language processing (NLP) (Vaswani, 2017; 

Wu, 2019; Devlin, 2018) and 2D image processing (Zhao, 2020; 

Ramachandran, 2019; Hu, 2019). In the domain of point cloud 

semantic segmentation, it plays a critical role in leveraging 

contextual features. The use of the Transformer (Zhao, 2021; 

Guo, 2021) has shown potential in capturing crucial features, 

thanks to its fundamental attention mechanism and the ability to 

capture long-range dependencies. This makes it a reasonable 

choice for handling unstructured and unordered point cloud data. 

However, the inherent limitation of the Transformer network is 

the lack of integration of local information, which has been 

described as a drawback (Liu, 2021). LCPFormer (Huang, 2023) 

introduces a simple and effective module called LCP (Local 

Context Propagation) to facilitate message passing between 

adjacent local regions. Specifically, it leverages information 

exchange between neighboring local regions to provide each 

local region with more informative and discriminative features. 

The goal of this method is to enhance the capability of 

Transformer in integrating local information by integrating 

relational information between adjacent local regions, thereby 

improving the performance of point cloud semantic segmentation 

networks. Furthermore, most existing large-scale point cloud 

datasets heavily rely on manually annotating each point, which is 
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a labor-intensive, expensive, and error-prone task. Transformer 

architecture requires extensive datasets for training, which would 

incur significant costs. Weakly supervised training provides an 

effective solution to reduce annotation costs. Pseudo-labeling 

techniques (Lee, 2013) are a method of leveraging unlabeled data 

in weakly supervised training. Initially, the model (Zhang, 2021) 

is trained using a small amount of labeled data. Then, the trained 

model is used to predict the unlabeled data, and these predictions 

serve as pseudo-labels. Subsequently, the model is trained using 

a combination of labeled and unlabeled data, incorporating both 

the real labels and the pseudo-labels. The model's performance is 

evaluated on the test set. In addition, entropy regularization loss 

(Grandvalet, 2006; Shannon, 1948) and distribution alignment 

loss (Zhang, 2021; Saito, 2019) have been introduced in 3D 

segmentation tasks for weakly supervised learning. These 

techniques aim to utilize the information from all unlabeled 

points by mitigating the negative impact of pseudo-label noise 

and addressing distribution discrepancies (Li, 2023). 

 
Figure 1. Flowchart of the proposed method 

 

Overall, this paper combines weakly supervised learning with a 

Transformer framework with LCP to achieve superior results 

compared to other point cloud semantic segmentation methods 

such as RandLA-Net (Hu, 2020), even with limited annotations. 
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The methodology and workflow of our approach are illustrated 

in Figure 1. We begin by feeding the point cloud into an LCP 

network to predict the initial semantic information of the point 

cloud. Next, we employ a prototype pseudo-label generation 

strategy based on momentum (Xu, 2020) to generate pseudo-

labels for unlabeled points. These pseudo-labels, along with the 

predicted results, are optimized using a loss function. Our main 

contributions are threefold: 

1. Propose a novel PL-LCP framework that combines pseudo-

labeling with Transformer, achieving good performance 

even with limited training samples.  

2. Entropy regularization loss and distribution alignment loss 

are incorporated into pseudo-label generation, allowing for 

better utilization of information from all unlabeled points. 

3. We employ varying degrees of labeling on the original data: 

1%, 10%, and full, to investigate the performance of this 

framework with limited labelled 3D points. 

 

2. Related Work  

2.1 Semantic segmentation for large-scale point cloud 

Point cloud semantic segmentation aims to assign semantic labels 

to 3D points. Early research in the field of point cloud 

segmentation witnessed numerous traditional segmentation 

methods, which achieved certain effectiveness. However, they 

were mostly constrained by specific scenarios and prior 

knowledge, rendering them less applicable across diverse 

contexts and often time-consuming. With the rapid advancement 

of deep learning in recent years, the focus of research on point 

cloud semantic segmentation has shifted towards methods 

primarily based on deep learning. Compared to the earlier 

traditional methods, these approaches have seen significant 

improvements in segmentation accuracy. State-of-art deep 

learning methods on point cloud can be categorized as projection-

based, voxel-based, and point-based methods which are outlined 

here. 

 

2.1.1 Projection-based methods: Projection-based methods 

benefit from mature 2D convolutional neural networks. These 

methods project 3D point clouds onto 2D images, then utilize 

existing 2D image segmentation methods to run customized 

image projection for identifying class labels. After labeling each 

point, the 2D images are projected back to their respective point 

clouds. In this process, the quality of point cloud projection 

determines the final segmentation outcome. Tatarchenko (2018) 

introduces tangent convolutions for dense point cloud 

segmentation. The method first projects the local surface 

geometry around each point onto a virtual tangent plane. Then, it 

directly performs tangent convolution operations on the surface 

geometry. This approach exhibits excellent scalability, capable 

of handling large-scale point clouds with millions of points. Zuo 

et al. (2021) proposes transforming three-dimensional point 

clouds into dense bird's-eye view projections and designs an 

attention-based fusion network for multi-modal learning of the 

projected images. The segmentation task is simplified due to the 

reduction of class imbalance and the feasibility of utilizing 

various 2D segmentation methods. Milioto (2019) proposes a 

real-time semantic segmentation method for LiDAR point clouds 

based on RangeNet++. Initially, it converts the semantic labels of 

2D depth images to 3D point clouds, further utilizing KNN post-

processing steps to mitigate issues related to discretization errors 

and blurry inference outputs. The performance of projection-

based segmentation methods is sensitive to viewpoint selection 

and occlusion. Additionally, due to the inevitable information 

loss introduced by the projection step, these methods do not fully 

exploit the potential geometric and structural information. 

 

2.1.2 Voxel-based methods: Voxel-based methods involve 

decomposing the entire point cloud into 3D regular cubic 

elements called voxels or volumetric elements, and applying 3D 

Convolutional Neural Networks (CNNs) on each voxel. 

Voxelization is the process of discretizing continuous three-

dimensional space into a finite number of cubic units (referred to 

as voxels). In voxel-based semantic segmentation, the point cloud 

is partitioned into a uniform cubic grid, where each cubic unit 

represents a voxel in space. These voxels typically have the same 

size, allowing the point cloud to be represented and processed in 

a regular manner, such as with Convolutional Neural Networks 

(CNNs) or their variants, performing classification tasks on each 

voxel. Huang er al. (2016) divides the point cloud into a set of 

occupancy voxels, then feeds these intermediate data into a fully 

3D CNN for voxel-wise segmentation. Finally, all points within 

a voxel are assigned the same semantic label as that voxel. In 

general, voxelization naturally preserves the neighborhood 

structure of three-dimensional point clouds. Its regular data 

format also allows for the direct application of standard 3D 

convolutions. However, voxelization inevitably introduces 

discretization artifacts and information loss, with high 

resolutions leading to high memory and computational costs, 

while low resolutions result in loss of detail. In practical 

applications, it's challenging to choose the appropriate grid 

resolution. 

 

2.1.3 Point-based methods: Point-based methods directly work 

on the unstructured and irregular point clouds. These methods 

directly interact with points, taking individual points as input and 

outputting a labeled point or labeling the entire point cloud. 

PointNet (Qi, 2017) is a pioneering work and breakthrough that 

opened deep learning for direct work with points without 

rendering them to voxels or 2D images. PointNet used the max-

pooling function with each layer in the network by learning an 

optimization function and aggregating the optimized values to a 

global descriptor. The final fully connected layers of the network 

aggregate these learnt optimal values into the global descriptor 

for the entire shape or are used to predict per point labels. Hu er 

al. (2020) proposes an efficient lightweight network, RandLA-

Net, for large-scale point cloud segmentation. This network 

utilizes random point sampling and achieves very high efficiency 

in terms of memory and computation. Furthermore, it introduces 

the Local Feature Aggregation module to capture and retain 

geometric features. Pointvector (Deng, 2023) proposes a 

Vectororiented Point Set Abstraction that can aggregate 

neighboring features through higher-dimensional vectors. To 

facilitate network optimization, it constructs a transformation 

from scalar to vector using independent angles based on 3D 

vector rotations. 

 

2.2 Transformers in 3D Point Clouds 

Self-attention networks have revolutionized natural language 

processing and are making impressive strides in image analysis 

tasks such as image classification and object detection. The 

transformer models are especially suited for point cloud 
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Figure 2. Overall architecture of our 3D vector rotations 

 

processing because the self-attention operator, which is 

fundamental to transformer architectures, is in essence a set 

operator: it is invariant to permutation and cardinality of the input 

elements. The application of self-attention to 3D point clouds is 

therefore quite natural, since point clouds are essentially sets 

embedded in 3D space. Currently, many transformer-based 

methods for 3D point clouds have been proposed to produce more 

precise detection results. Robert, er al. (2023) proposed a novel 

transformer architecture based on superpoint. Specifically, the 

three-dimensional point cloud is first partitioned into a 

hierarchical superpoint structure, which adapts to local attributes 

collected at multiple scales. To efficiently compute this 

partitioning, a novel algorithm is introduced, which is an order of 

magnitude faster than existing superpoint preprocessing 

algorithms. Next, the Superpoint Transformer (SPT) architecture 

is introduced, which employs sparse self-attention mechanisms 

to learn relationships between superpoints at multiple scales. By 

treating semantic segmentation of large-scale point clouds as 

classification of a small number of superpoints, the model can 

accurately classify millions of 3D points. Stratified Transformer 

(Lai, 2022) proposed a hierarchical transformation to capture 

long-range contexts effectively, which has strong generalization 

ability and high performance. For each query point, it densely 

samples neighbor points in a hierarchical manner and sparsely 

samples distant points as its keys, enabling the model to expand 

its effective receptive field at a lower computational cost and 

leverage long-range contexts. Additionally, Stratified 

Transformer utilizes first-layer point embedding to aggregate 

local information, enhancing convergence and performance, and 

employs context-relative positional encoding to adaptively 

capture positional information. 

 

2.3 Weakly-supervised point cloud segmentation 

Existing large-scale point cloud semantic segmentation methods 

require expensive, laborious, and error-prone manual point-wise 

annotations. Intuitively, weakly supervised training is a direct 

solution to reducing annotation costs. Generally, weakly-

supervised point cloud segmentation tasks focus on sparsely 

labeled data: only a small number of scattered points are 

annotated in large point cloud scenes. There are few researches 

on weakly supervised point cloud semantic segmentation. Su, er 

al. (2023) proposed a multi-prototype classifier, abbreviated as 

MulPro, for weakly supervised 3D point cloud segmentation. 

Specifically, a multi-template memory bank is designed to store 

prototypes for each semantic class, where each prototype 

represents a subclass. In contrast to K-means clustering or offline 

prototype updates using sliding average, this design avoids 

introducing any non-differentiable operations between 

prototypes and loss functions, enabling end-to-end training. 

Additionally, a subclass-wise averaging constraint is introduced 

to supervise prototype learning using labeled and unlabeled data, 

akin to nesting K-means clustering within the classifier. Pan, er 

al. (2024) proposed a novel framework for weakly supervised 

semantic segmentation of point clouds, which includes three 

stages: inductive bias learning, recommendation for annotated 

points, and weakly supervised point cloud semantic segmentation 

learning. Specifically, the framework begins by introducing a 

point cloud upsampling task to induce inductive bias from 

structural information. In the recommendation stage, a cross-

scene clustering strategy is proposed to generate cluster centers 

as recommendation points. Subsequently, a recommendation 

point positional attention module, LabelAttention, is introduced 

to model long-range dependency relationships under sparse 

annotation. 

 

3. Methodology 

This paper aims to leverage pseudo-label generation techniques 

to implement a point cloud segmentation network trained with a 

small amount of annotated points based on Transformer. 

Furthermore, aiming to enhance the Transformer's ability to 

integrate information across adjacent local regions, the LCP 

module is added to the Transformer. We propose an effective 
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weakly supervised framework based on Transformer, and the 

overview of the framework is illustrated in Figure 2. 

 

Our approach combines a Transformer network with LCP (Local 

Context Perception) modules and pseudo-label generation 

techniques to achieve better semantic segmentation results with 

only a small amount of real annotations. In Section 3.1, we 

provide a brief introduction to the Transformer network. Next, in 

Section 3.2, we present a detailed description of the LCP 

module's structure and analysis its principle of integrating 

overlapping regions. Finally, in Section 3.3, we extensively 

discuss the process of generating pseudo-labels and the reasons 

for introducing entropy regularization loss and distribution 

alignment loss. 

 

3.1 Preliminary  

The transformer consists of an encoder and a decoder. The 

encoder is responsible for transforming the input sequence into a 

series of hidden representations, while the decoder generates the 

target sequence based on the outputs from the encoder and the 

previous decoder states. Each encoder and decoder layer consists 

of multiple identical sub-layers, including multi-head self-

attention mechanism (MHSA) and feed-forward neural network 

(FFN). First, we review the commonly used MHSA, which aims 

to enable the model to simultaneously attend to different parts of 

the inputs with different representations. By performing multiple 

attention operations in parallel, each attention head can learn 

different semantic information. Given a set of point cloud 𝑋 =
{𝑥𝑖},we denote its positions 𝑃 = {𝑝𝑖} and corresponding features 

𝐹 = {𝑓𝑖}. It can be formulated as follows: 

 
𝐹𝑛 = PE(𝑃) + 𝐹                                             (1) 

 

𝑄𝑠 = 𝐹𝑛𝑊𝑠
𝑄, 𝐾𝑠 = 𝐹𝑛𝑊𝑠

𝐾, 𝑉𝑠 = 𝐹𝑛𝑊𝑠
𝑉                      (2) 

 

ℎ𝑒𝑎𝑑𝑠 = Softmax(
𝑄𝐾𝑇

√𝑑
)𝑉                                        (3) 

 

output = concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑𝑠) ∗ 𝑊𝑂             (4) 

 

where PE() means the position encoding function. 𝑊𝑠
𝑄 ,𝑊𝑠

𝐾 ,𝑊𝑠
𝑉 

are projections of the 𝑠 -th head for query, key and value 

respectively. 𝑑 is the feature dimension. 𝑊𝑂 is the projection of 

The FFN is a fundamental structure in neural networks. The 

transformation layer consists of MHSA and FFN with skip 

connections. 
𝑌 = MHSA(𝑋, 𝐹) + 𝐹                                             (5) 

 

𝑂 = 𝑌 + FNN(𝑌)                                     (6) 
 

3.2 Local Context Propagation 

While transformers primarily emphasize long-range 

dependencies, local structural information remains crucial in a 

transformer-based 3D point cloud model. To enable transformers 

to incorporate such local structural information, we utilize the 

LCPFormer (Huang, 2023) architecture as the backbone for a 

weakly supervised semantic segmentation network. LCPFormer 

is based on a simple observation that when dividing the whole 

point cloud into different local regions, naturally there is overlap 

among them. It works by updating point features in overlapping 

areas of different regions. Given a point 𝑥𝑖 , we denote its 

corresponding local regions as {𝑆1, ..., 𝑆𝑚}. After the Transformer 

independently operates on these regions, for each local region 𝑆𝑗, 

point 𝑥𝑖 should possess corresponding features within it, denoted 

as 𝑓𝑖
𝑗. To obtain features for each local region, LCP combines the 

results of max pooling and mean pooling. Max pooling captures 

important features, while mean pooling captures features from 

the surrounding area. We assuming that the whole point cloud 

contains N points grouped into C local regions. The input is 𝐹in ∈

𝑅𝐶×𝐾×𝐷, where K is the number of points in each local region and 

D is the feature dimension of each point. Then, we obtain 

representations 𝐴 ∈ 𝑅𝐶×2𝐷  for each local region through max 

pooling and mean pooling, followed by a 1x1 convolution to 

generate the weight matrix 𝑊 ∈ 𝑅𝐶×𝐷  corresponding to each 

region. Finally, we update the feature of 𝒙𝒊 by using the weight 

matrix. This process can be formulated as: 

 
𝐴 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹𝑖𝑛) ⊕ 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑖𝑛)                        (7) 

 

𝑊 = Softmax(Conv(𝐴))                                      (8) 

 

𝑓𝑖
𝑛𝑒𝑤 = ∑ 𝑤𝑗𝑓𝑖

𝑗
𝑗                                             (9) 

 

Based on the preceding discussion, the LCP Block is constructed 

as illustrated in Figure 3. The LCP Block consists of a grouping 

layer, two MHSA, and an intermediate LCP module. The 

grouping layer utilizes FPS sampling to select central points, and 

for each central point, K nearest neighbors (kNN) are gathered 

within the local neighborhood to construct local regions. The k 

of kNN is set as 16. 

  
Figure 3. The specific content of the LCP Block. 

 

3.3 Pseudo-Label Generation 

We employ a momentum-based prototype pseudo-label 

generation process Xu er al. (2020). Specifically, prototypes 

denote the centroid of a class in the feature space, which is 

calculated based on labeled data, while pseudo-labels are 

estimated based on the feature distance between unlabeled points 

and class centroids. To reduce computational costs, we employ 

the momentum optimization algorithm for optimization, 

supplemented by an MLP-based projection network to aid in 

pseudo-label generation. The specific process is illustrated in 

Figure 2. We assume the input point cloud X, where the labeled 

point cloud is denoted as 
lX , and the unlabeled point cloud as 

uX . The pseudo-label generation process can be described as 

follows: 

 

�̂�𝑘 =
1

𝑁𝑘
𝑙 ∑ 𝑔 ∘ 𝑓(𝑥)𝑥∈𝑋𝑙∧𝑦=𝑘 , 𝐶𝑘 ← 𝑚𝐶𝑘 + (1 − 𝑚)�̂�𝑘         (10) 

 

∀𝑥 ∈ 𝑋𝑢, 𝑠𝑘 = 𝑑(𝑔 ∘ 𝑓(𝑥), 𝐶𝑘), 𝑝 = Softmax(𝑠)            (11) 

 

where y is the label of a labeled point, 𝐶𝑘 represents the global 

class centroid for the k-th class, 𝑁𝑘
𝑙  denotes the number of labeled 

points of the k-th class, 𝑔 ∘ 𝑓 = 𝑔(𝑓(⋅)) signifies the 

transformation through the backbone network f and the 

projection network 𝑔, 𝑚 represents the momentum coefficient, 

and cosine similarity is employed for 𝑑(⋅,⋅)to generate the scores. 

By default, we utilize 2-layer MLPs for the projection network 𝑔 

and set 𝑚 = 0.999. 

 

Existing pseudo-label generation methods often rely on empirical 

label selection strategies, such as confidence thresholds, to 

generate pseudo-labels that are beneficial for model training. 

This approach may potentially waste unlabeled points. In this 

paper, pseudo-labels are generated for all unlabeled points, and 
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entropy regularization loss and distribution alignment loss are 

introduced to minimize the disparity between pseudo-labels and 

model predictions. We denote the two loss functions as 𝐿𝐸𝑅 and 

𝐿𝐷𝐴, respectively (Li, 2023). Then, we have the overall loss of 

ERDA as follows: 
 

𝐿𝑃 = 𝜆𝐿𝐸𝑅 + 𝐿𝐷𝐴                                             (12) 
 

where the 𝜆 > 0 modulates the entropy regularization. 

 

For the entropy regularization loss, we posit that when pseudo-

labels fail to provide reliable outcomes, they are more susceptible 

to noise interference, resulting in a high-entropy distribution 

within 𝒑 . To alleviate this issue, we propose minimizing its 

Shannon entropy to reduce the noise level in 𝒑. By minimizing 

the entropy of pseudo-labels, we enhance their quality. Therefore, 

we have: 

𝑳𝑬𝑹 = 𝑯(𝒑)                                                (13) 

where 𝑯(𝒑) = ∑ −𝒑𝒊 𝒍𝒐𝒈 𝒑𝒊𝒊  and i iterates over the vector. 

While the entropy regularization can mitigate the impact of noise 

in pseudo-labels, significant disparities between pseudo-labels 

and predictions from the segmentation network can still confound 

the learning process, leading to unreliable segmentation results. 

To address this issue, we propose a joint optimization approach 

for pseudo-labels and the network to narrow this gap, ensuring 

that generated pseudo-labels do not deviate too far from 

segmentation predictions. Therefore, we introduce the 

distribution alignment loss as follows: 

𝑳𝑫𝑨 = 𝑲𝑳(𝒑||𝒒)                                             (14) 

With the 𝑳𝑬𝑹 and 𝑳𝑫𝑨 formulated as above, given that 𝑲𝑳(𝒑||𝒒) =

𝑯(𝒑, 𝒒) − 𝑯(𝒑) where 𝑯(𝒑, 𝒒) is the cross entropy between 𝒑 and 

𝒒, we can have a simplified ERDA formulation as: 

𝑳𝒑 = 𝑯(𝒑, 𝒒) + (𝝀 − 𝟏)𝑯(𝒑)                               (15) 

In particular, when 𝝀 = 1, we obtain the final ERDA loss: 

𝑳𝒑 = 𝑯(𝒑, 𝒒) = ∑ −𝒑𝒊 𝒍𝒐𝒈 𝒒𝒊𝒊                                     (16) 

The above simplified ERDA loss differs from traditional cross-

entropy loss. Traditional cross-entropy loss employs fixed labels 

and only optimizes the term within the logarithmic function, 

whereas the loss proposed above simultaneously optimizes both 

𝑝 and 𝑞. Finally, with the above simplified ERDA, the final loss 

is given as: 
 

𝐿 =
1

𝑁𝑙
∑ 𝐿𝑐𝑒(𝑞, 𝑦) + 𝛼

1

𝑁𝑢
∑ 𝐿𝑝(𝑞, 𝑝)𝑥∈𝑋𝑢𝑥∈𝑋𝑙                    (17)  

 

where 𝑳𝒑(𝒒, 𝒑) = 𝑳𝒄𝒆(𝒒, 𝒑) = 𝑯(𝒒, 𝒑) is the typical cross-entropy 

loss used for point cloud segmentation, 𝑵𝒍  and 𝑵𝒖  are the 

numbers of labeled and unlabeled points, and 𝜶 is the loss weight. 

 

4. Experiments 

To demonstrate the efficacy of our proposed PL-LCP, we 

evaluate 3D semantic segmentation results on both indoor and 

outdoor scenarios using two large-scale point cloud datasets. 

First, we do two ablation experiments to validate the ability of 

the LCP module to integrate inter-block information and the 

effect of pseudo-labels. Then, our method is compared with other 

relevant approaches, primarily to demonstrate the effectiveness 

of the PL-LCP network architecture. Our experimental 

environment is: Intel Core i7-8700 CPU (3.70GHz), 64GB RAM, 

NVIDIA GeForce RTX 4090 24GB GPU, 64-bit Ubuntu 22.04.3 

LTS Operating System (5.4.0-149-generic). 

 

We trained the network for 200 epochs using the Adam optimizer 

with momentum, batch size and weight decay set to 0.9, 4 and 

0.0001, respectively. The initial learning rate was set to 0.01, and 

decreased by a factor of 10 at 120 epochs. 

 

4.1 Datasets 

The S3DIS (Stanford Large-Scale 3D Indoor Spaces Dataset) is 

a vast collection of three-dimensional indoor space data provided 

by Stanford University (Armeni, 2016). It comprises six distinct 

indoor scenes, each containing three-dimensional reconstruction 

data. All points are labeled with their semantic ground truth from 

13 categories including board, bookcase, chair, ceiling, beam, etc. 

SensatUrban (Hu, 2022) is an urban-scale photogrammetric point 

cloud dataset with nearly three billion richly annotated points, 

which is five times the number of labeled points than the existing 

largest point cloud dataset. Our dataset consists of large areas 

from two UK cities, covering about 6 km2 of the city landscape. 

In SensatUrban, each 3D point is labeled as one of 13 semantic 

classes, such as ground, vegetation, car, etc. 

 

4.2 LCP Network Architecture 

We constructed a UNet-like (Ronneberger, 2015) network for 

semantic segmentation tasks using 4 LCP Blocks and 4 up-

sampling layers, as depicted in Figure 2, as it requires per-point 

features for dense prediction. Before entering the first LCP Block, 

the data passes through a shared MLP. The specific structure of 

an LCP block is illustrated in Figure 3. For each up-sampling 

layer, we first employ the KNN algorithm to find the nearest 

neighbour point for each query point, and then perform up-

sampling on the point feature set through nearest neighbour 

interpolation. Subsequently, the up-sampled feature maps are 

concatenated with the intermediate feature maps generated by the 

encoding layers via skip connections, followed by applying a 

shared MLP to the concatenated feature maps. The dimensions of 

each layer in the network are 128, 256, 512, and 1024, 

respectively. The input consists of 40960 points. 

 

4.3 Evaluation Metrics 

Taking into consideration simplicity and representativeness, this 

paper compares and analyzes various point cloud semantic 

segmentation methods using three evaluation metrics: Overall 

Accuracy (OA), mean accuracy (mAcc), and mean Intersection 

over Union (mIoU). For ease of description, we assume there are 

N semantic classes. 𝑴ij represents the number of units where the 

actual semantic type is i and the predicted type is j, and vice versa 

for 𝑴ji. 𝑴ii represents the number of units with both actual and 

predicted semantic type i. 

OA is the ratio of the number of samples correctly predicted by 

the segmentation algorithms to the total number of samples. Its 

formulation is given as: 

OA =
∑ 𝑴𝒊𝒊

𝑵
𝒊=𝟎

∑ ∑ 𝑴𝒊𝒋
𝑵
𝒋=𝟎

𝑵
𝒊=𝟎

                                          (18) 

mAcc represents an enhancement of OA, which computes the 

precision for each category individually and subsequently 

averages the accumulated results based on the number of 

categories. Its formulation is given as: 

mAcc =
𝟏

𝑵+𝟏
∑

𝑴𝒊𝒊

∑ 𝑴𝒊𝒋
𝑵
𝒋=𝟎

𝑵
𝒊=𝟎                                   (19) 

mIOU stands out as the primary metric for evaluating 

segmentation methods' performance. It initially computes the 
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intersection-over-union ratio for each category, reflecting the 

overlap between predicted and true regions of the models. 

Subsequently, it calculates the average value of the accumulated 

results based on the number of categories. Its formulation is given 

as: 

mIOU =
𝟏

𝑵+𝟏
∑

𝑴𝒊𝒊

∑ 𝑴𝒊𝒋+∑ 𝑴𝒋𝒊−𝑴𝒊𝒊
𝑵
𝒊=𝟎

𝑵
𝒋=𝟎

𝑵
𝒊=𝟎                      (20) 

 

4.4 Experiment 1: Ablation study 

Part LCP OA(%) mAcc(%) mIOU(%) Labels 

1 √ 90.2 74.3 67.6 fully 

2 × 87.6 74.5 64.6 fully 

3 √ 90.1 74.4 67.1 10% 

4 √ 89.2 73.2 65.9 1% 

Table 1. Ablation experiments on S3DIS 

In this section, we conducted extensive ablation experiments to 

validate our approach, including the effectiveness of the 

proposed LCP module and the impact of varying degrees of 

ground truth annotations on PL-LCP. The results of the ablation 

experiments are presented in Table 1. We first examined the 

effectiveness of the LCP module. Through comparison, the LCP 

module resulted in improvements of 6.6%, 3.2%, and 9.3% on 

OA, mAcc, and mIOU, respectively, demonstrating the 

importance of integrating information across different blocks for 

semantic segmentation. Part 3 and part 4 respectively reduced the 

quantity of ground truth labels to 10% and 1% to assess the 

effectiveness of pseudo-labels, resulting in varying degrees of 

decrease compared to part 1. It is noteworthy that even with only 

1% of ground truth labels, our approach achieved results that 

match or surpass those of some strong supervised networks. The 

results above demonstrate that the LCP module indeed enhances 

the network's local aggregation capability. The integration with 

weak supervision enables our network to perform remarkably 

well even with a limited amount of real annotations. 

 

To visually evaluate the impact of our proposed PL-LCP, we 

randomly selected several point cloud scenes from the S3DIS 

dataset and visualized their output results, as shown in Figure 4. 

We present the detection results using the LCP module and 

compare them with the results obtained without using the LCP 

module, along with the ground truth labels. It can be observed 

that the results without the LCP module show relatively poorer 

handling of boundary regions, indicating that the separation 

sampling of local regions leads to the degradation of instance 

information. In contrast, our proposed LCP module effectively 

improves the point cloud features, providing richer information 

and more discriminative representations. 

 

Figure 4. Visualization of segmentation results on S3DIS
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PointNet 80.8 23.7 68.0 89.5 80.0 0.0 0.0 4.0 0.0 31.6 0.0 35.1 0.0 0.0 0.0 

PointNet++ 84.3 32.9 72.5 94.2 84.8 2.7 2.1 25.8 0.0 31.5 11.4 38.8 7.1 0.0 56.9 

TrangenConv 77.0 33.3 71.5 91.4 75.9 35.2 0.0 45.3 0.0 26.7 19.2 67.6 0.0 0.0 0.0 

SPGraphr 85,3 37.3 69.9 94.6 88.9 32.8 12.6 15.8 15.5 30.6 23.0 56.4 0.5 0.0 44.2 

SparseConv 88.7 42.7 74.1 97.9 94.2 63.3 7.5 24.2 0.0 30.1 34.0 74.4 0.0 0.0 54.8 

KPConv 93.2 57.6 87.1 98.9 95.3 74.4 28.7 41.4 0.0 56.0 54.4 85.7 40.4 0.0 86.3 

RandLA-Net 89.8 52.7 80.1 98.1 91.6 48.9 40.8 51.6 0.0 56.7 33.2 80.1 32.6 0.0 71.3 

PL-LCP（ours） 93.9 67.3 83.5 98.7 96.3 72.3 84.2 57.0 46.9 74.5 54.9 90.1 43.5 0.0 72.8 

Table 2. Performance comparisons with existing sota methods on SensatUrban test set. overall accuracy (OA), mean IOU (mIOU), and per-class IOU 

scores are reported from the leaderboard of SensatUrban. 

 

 

 

4.5 Experiment 2: Comparison with state-of-the art methods  

The results on the S3DIS dataset are presented in Table 3. Our 

proposed method was evaluated by excluding Region 5 during 

training and using it for testing. Our method achieved an OA of 

90.12%, mAcc of 74.3%, and mIOU of 67.14%. 

 

 

 

 

 OA(%) mAcc(%) mIOU(%) 

PointNet - 23.7 41.1 

TragenConv 82.5 63.2 52.8 

SPGraph 86.4 66.5 58.0 

LocalTransformer 87.6 71.9 64.1 

RandLA-Net 87.2 71.4 62.4 

PSNet 87.8 - 64.9 

PL-LCP（ours） 90.2 74.3 67.6 

Table 3. Performance comparisons with previous methods on S3DIS, 

evaluated on Region 5. 
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In Table 3, it is evident that our method outperforms certain non-

Transformer architectures, such as RandLA-Net(Hu, 2020), 

which achieves an OA of 87.2%, mAcc of 71.4%, and mIOU of 

62.4%. Our method surpasses LocalTransformer by 2.6%, 3.6%, 

and 3.5% in terms of OA, mAcc, and mIOU respectively, 

demonstrating the efficacy of our LCP module in integrating 

local information. 

 

As shown in Table 2, we also evaluated our method on the 

challenging urban-scale segmentation dataset SensatUrban, 

achieving significant improvements. Compared to the previously 

popular methods KPConv and renowned RandLA-Net, our 

method demonstrated an increase in mIOU by approximately 9.7% 

and 14.6%, respectively. Particularly in smaller categories, our 

approach showcased remarkable potential. For instance, we 

achieved 46.9% in the railway category and 84.2% in the bridge 

category. Across all categories, our method decisively 

outperformed other approaches. 

 

5. Conclusion 

This work explores the combination of Transformers and weak 

supervision for 3D point cloud semantic segmentation, 

emphasizing the integration of semantic information across local 

regions. We introduce a novel and effective weakly supervised 

network, PL-LCP. In contrast to previous approaches, our 

method not only exploits the Transformer's capability to process 

sequential data but also addresses the challenge of the 

Transformer architecture's reliance on extensive datasets for 

training. Moreover, by introducing the LCP module, we 

effectively mitigate the issue of Transformers solely focusing on 

long-range dependencies while neglecting structural information. 

Ultimately, our proposed approach demonstrates significant 

improvements compared to various relevant methods and 

Transformer-based approaches in the dense prediction task for 

semantic segmentation on the S3DIS dataset. 

 

In this paper, we combine the Transformer with an LCP module 

to form a network that achieves promising results even with 

limited true annotations. Subsequent experiments will involve 

the use of a custom dataset to further validate the effectiveness of 

our approach. Additionally, we plan to make some improvements, 

such as replacing precise nearest neighbour search with efficient 

serialized neighbour mapping organized according to specific 

patterns of point clouds. This enhancement will significantly 

increase the receptive field while accelerating processing speed 

and runtime efficiency, thereby enhancing its performance on 

outdoor point cloud datasets. 
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