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Abstract

The ground fissures caused by coal mining have seriously affected the ecological environment of the land. Timely and accurate
identification and landfill treatment of ground fissures can avoid secondary geological disasters in coal mine areas. At present, the
fissure identification methods based on deep learning show excellent performance on roads and walls, etc. Nevertheless, the
automatic and reliable segmentation of ground fissures in remote sensing images poses a challenge for deep learning networks, due to
the diverse and complex texture information included in the minning ground fissures and background.

To overcome these challenges, we propose an improved YOLOVS instance segmentation network to automatically and efficiently
segment the ground fissures in coal mining areas. In detail, a model called FS_YOLOVS is proposed. The DSPP (Dynamic Snake
convolutional Pyramid Pooling) module is incorporated into the FS_YOLOvV8 model to establish a multi-scale dynamic snake
convolution feature aggregation structure. This module replaces the conventional convolution found in the SPPF module of YOLOvV8
and aims to enhance the model's ability to extract features related to fissures with tubular structures. Furthermore, the D-LKA
(Deformable Large Kernel Attention) module is employed to autonomously collect fissure context information. To enhance the
detection capability of challenging samples in remote sensing images with intricate background and fissure texture, we employ a
Slide Loss function. Ultimately, the ground fissure dataset of unmanned aerial vehicle (UAV) images in coal mine areas is subjected
to experimental analysis. The experimental findings demonstrate that FS_ YOLOvVS exhibits exceptional proficiency in segmenting

ground fissures within intricate and expansive mining areas.

1. Introduction

Prolonged and intensive mining has led to the eventual
exhaustion of coal reserves, resulting in significant harm and
deterioration of the surface environment. Surface movement
and deformation caused by high-intensity underground coal
mining activities lead to the occurrence of rock subsidence and
fissures. Ultimately, this process results in the collapse of the
surface, resulting in the formation of ground fissures. The
presence of ground fissures significantly affects various aspects
of the environment, such as inducing mechanical harm to plant
roots, diminishing vegetation, degrading soil quality,
exacerbating soil water loss, and presenting other ecological
and environmental challenges. Therefore, it is imperative to
investigate and map ground fissures promptly, efficiently, and
comprehensively.

During the twentieth century,the investigation of the origins
and patterns of ground fissures was initiated by scholars in
several nations due to the heightened occurrence of geological
disasters. The researchers developed a set of classification
criteria and constructed a prediction model for ground fractures,
utilizing fracture development mechanisms, with the aim of
offering a theoretical foundation and technological assistance
for future research endeavors. However, the aforementioned
study is not without flaws. For example, the study of the
mechanism of fissure formation is unable to determine the
specific position and distribution of fissures.

The current state of research on ground fissure localization
demonstrates that field survey and measurement approaches
exhibit a high level of accuracy. However, these methods are
constrained by several environmental constraints, including
terrain  and geographical range (Zhao et al, 2021).

Consequently, conducting field surveys and measurements
necessitates a significant investment of time and energy. The
conventional techniques employed for satellite data collecting
exhibit notable constraints, including the inability to detect
fissures with narrow widths and the dependence on satellite
revisit intervals. Hence, their utilization in the monitoring of
ground fracture dynamics poses a significant challenge.

In recent years, the surveying and mapping business has been
greatly influenced by the rapid advancement of the UAV
Oblique Photogrammetry technology (Wu, 2022; He, et al.,
2019). the UAV Oblique Photogrammetry technology enables
the quick acquisition of high-resolution digital images of
subsidence areas in a short amount of time. Furthermore, the
integration of this technology with image processing techniques
facilitates the precise retrieval of ground fissures. The
foregoing techniques have several significant advantages,
including cost effectiveness, lightweight design, flexibility, and
high spatio-temporal resolution, which is suitable for ground
fissures detection.

Currently, ground fissures detection are performed through
manual interpretation, object-oriented approaches, and deep
learning-based methods (Kheradmandi and Mehranfar, 2022).
Manual interpretation is labor-intensive, inefficient, and error-
prone. The use of object-oriented strategies is common in the
field of ground fissure extraction. Wei Changjing et al. (2012)
created a knowledge model for extracting fissures from the
Majiliang mining area in Shanxi Province. This model mixes
the UAV images with satellite remote sensing data. Wei Bowen
et al. (2018) used ground fissures in the Yaojie mining area as
objects and proposed an improved first-order Gaussian
difference matching filter (MF-FDOG) method for extracting
ground fissure information in the loess area. This strategy was
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used with the UAV images. Zhang Xinghang et al. (2019) used
Ge-oEye imaging to collect ground fissure data for their
investigation. They then proposed an object-based approach for
determining the distribution of ground fissures. Tang Fuquan et
al. (2023) used the visible light band difference index (VDVI)
to reduce the impact of subsidence data on vegetation cover
area, improving accuracy. In their study, they used the UAV to
acquire coal surface information, and the results showed the
effectiveness of this method in coal mine subsidence area
detection. Zhao Yixin et al. (2021). used the UAV infrared
remote sensing and edge detection technology to discover
ground fissures in infrared images. The researchers evaluated
the efficacy of several edge detection approaches in detecting
fissures and determined the best time frame for UAV infrared
remote sensing to perform fissure identification. Nonetheless,
because of the abundance of vegetation on the surface of
mining areas and the similarity in spectral color characteristics
between ground fissures and ground dry vegetation,
determining a universally applicable threshold value for
extracting ground fissures using threshold segmentation and
edge detection techniques is difficult.

Machine learning based on feature engineering extracts fissure
features manually.These features are then fed into regression
models such as support vector Machine (SVM) (Prasanna et al.,
2014), random forest (Shi et al., 2016), and Neural network
(Nn) (Chen et al., 2017) to obtain ground fissure extraction
results. Nonetheless, these models mostly rely on manually
derived features (Fan et al., 2018). It is very difficult to create
fracture features that are universally applicable to all coal mine
areas manually.

Deep learning-based methods can autonomously generate all
the prominent characteristics of fissures and detect ground
fissures in large quantities. The present state of deep learning-
based methods, including semantic segmentation and object
detection, mostly centers on the examination of fissures in
artificial structures, such as sidewalks, bridges, buildings, walls,
and other civil infrastructures. In contrast to fissures observed
in smooth and homogeneous structures, the real large-scale
remote sensing scene is characterized by the presence of
background noise, light, and shadow interference resulting
from diverse types of grass, fallen leaves, and gravel.
Additionally, the target of ground fissures exhibits a range of
morphologies. As a result, the extraction of ground fissures is
more challenging than that of artificial fissures.

Deep learning-based methods for extracting ground fissures
from high-resolution remote sensing images have received little
attention in the scholarly literature.Yu et al. (2022) created an
automated framework for detecting fissures following an
earthquake using remote sensing technology. They used the
UAV to capture high-resolution aerial images of earthquake-
affected areas, which were then processed using
photogrammetry software to generate a digital orthophoto map.
Then, crack-CADNET, a new neural network for ground
fissure detection in terrain, is developed. This paper is the first
in-depth study of earthquack fissure detection using the UAV
and deep learning-based processes. It differs from previous
methods, which were primarily used to detect fissures on the
surface of man-made objects (such as flat roads), by studying
the spatial properties of curved linear fissures and introducing
adaptive the Deformable Convolution with context channel
space enhancement mechanism to address this problem. Xiao et
al. (2022) introduced the MFPANet deep learning model,
which used an encoder-decoder framework to automatically
extract ground fissures in mining areas from UAV images.
MFPANet introduced a set of modules that aggregate context
information, such as DRN, DAM, ASPP, and MFPN, to assist
the model in extracting fissures more precisely. To address the

issue of complex background noise in ground fissures, Cheng
Jian et al. (2020) proposed a mixed domain attentional
deformation convolutional network to increase the contribution
degree of specific channels and spatial locations in feature
maps to ground fissure recognition. Studies have demonstrated
that this strategy can considerably enhance the accuracy of
fissure detection.

In conclusion, the preceding investigation and examination of
ground fissures and artificial structure fissures have revealed
that the extraction of multi-scale high-rise features and the
integration of multi-level pyramid features may effectively
detect finer fissure pixels. Furthermore, the Deformable
Convolution (Dai et al., 2017), various attention methods, and
other modules have recently been included into the fissure
extraction model to focus on the morphological aspects of
fissures, allowing for more exact fissure extraction.

Drawing upon previous studies on the extraction of ground
fissures, this study aggregates the ground fissure features in the
multi-scale pyramid feature fusion module, furthermore, used
the attention mechanism and the deformable convolution to
focus on the morphological properties of fissures. This study
presents a novel multi-scale pyramid feature fusion module
called the DSPP module. This module is designed to leverage
the morphological qualities of fissures and utilizes a modified
version of the deformable convolution known as the Dynamic
Snake Convolution (DSConv) (Yaolei Qi et al, 2023).
conventional convolution and the dilation convolution (Chen et
al., 2017) are incapable of capturing the intricate geometric
characteristics of the target. Furthermore, deformable
convolution allows for free learning of deformation
shifts,which cause the perceived field to deviate from the target,
especially for thin tubular structures. The DSConv algorithm
directs the convolution kernel towards the extraction of features
from tubular targets, specifically fissures, by imposing a
tubular constraint on the translation of deformations.
Furthermore, the proposed approach incorporates a D-LKA
module that facilitates the extraction of comprehensive
contextual information from ground fissures.

Many scholarly works pertaining to ground fissure extraction
utilize semantic segmentation methods, which lack the
capability to directly extract information from the ground
fissure instance. In the domain of artificial structural
fissure investigation, numerous methodologies employ target
identification methods to ascertain the exact spatial coordinates
for each fissure. Nevertheless, these methodologies are unable
to accurately delineate the intricate morphological
characteristics of fissures. In order to provide a thorough
comprehension of ground fissures, this study employs an
instance segmentation methodology. The most often employed
instance segmentation models currently are the R-CNN series
network and the YOLO series network. The YOLO series
network has superior performance in terms of detection time
and model enhancement when compared to the R-CNN series
network. In addition, the YOLO algorithm has undergone
multiple updates, which evolving into YOLOvV9 (Wang et al.,
2024). In relation to the accuracy of detection, YOLO has
progressively reached a level of parity with the R-CNN
framework.

This research uses the widely used YOLOVS version as the
established paradigm for instance segmentation of ground
fissures. The DSPP module and D-LKA (Azad et al., 2024)
module developed in this study are merged into YOLOVS to
form the FS YOLOvVS model. This model is intended to
reliably detect and segment ground fissures in mining area
images. In conclusion, the primary contributions of this study
are summarized as follows:
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(1) Investigates the viability of using the instance segmentation
network FS YOLOvV8 to locate ground fissures in coal
mining areas, laying the groundwork for further research
and implementation of deep learning technologies in coal
mining surface monitoring.

(2) A Dynamic Snake convolutional Pyramid Pooling (DSPP)
module is proposed for extracting multi-scale tubular
features of ground fissures. By this means, FS_YOLOv8
demonstrates strong recognition capability for ground
fissures of varying scales, widths, and shapes in remote
sensing images.

2. Method
2.1 YOLOVvVS8 Network Architecture

The YOLOVS algorithm is a fast single-stage network for target
detection. Figure 1 shows the network architecture of YOLOVS,
which comprises of a backbone stage and a segmentation head
stage. YOLOV8 incorporates two notable modules, namely C2f
and SPPF. The C2f module leverages the advantages of the
ELAN structure found in YOLOvV7 (Wang et al., 2023) and
effectively employs the bottleneck module to record
supplementary gradient flow information. The SPPF module
integrates the feature maps through the process of pooling
kernels of varying sizes.

2.2 FS_YOLOVS8 Model for Ground Fissures Segmention

Based on YOLOVS structure, we produce FS YOLOvVS that
replaces the SPPF module with the DSPP module for tubular
targets detection. Here, the forcus is on ground fissures
detection in UAV high resolution images. This modification
enables the extraction of features from multi-scale tubular
targets, resulting in a more comprehensive integration of
tubular features from multi-layer receptor fields. Furthermore,
a D-KLA module is added as an output layer within the
backbone architecture to improve the target's overall contextual
features. The structure of the FS_YOLOVS network is shown
in Figure 2, where the modifications are marked in Yellow.
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Figure 1. The structure of YOLOVS.
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Figure 2. The structure of FS_YOLOVS.
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2.2.1  Dynamic Snake Convolution
The Dynamic Snake Convolution demonstrates a favorable
performance in extracting the distinctive characteristics of
slender, elongated tubular structures, such as roadways and
blood arteries. This research applies the method to the ground
fissures that possess comparable structures.
Figure 3 depicts the process an iterative strategy of the DSConv.
In order to maintain the topological continuity of the
convolution kernel deformation, the algorithm selects the
observed offset of the subsequent location of each target to be
processed sequentially. The offset is limited to the range of [-
1,1]. There are two templates available for the DSConv, one
positioned along the x-axis and the other along the y-axis. The
standard convolution kernel has dimensions of 3x3, resulting in
a horizontal grid of 9 convolution nuclei.For the DSConv of the
x template, consider the center grid of the convolution kernel as
(0,0). The offset in the y direction, which is learnt, represents
the vertical distances from other convolution kernels to the
center grid. The procedure of selecting each grid point in the
convolution kernel commences with the accumulation process
of the center grid. In the event that the X-axis distance is
increased by one unit, it is necessary to provide the
corresponding Y-axis offset. Equation (1) can be utilized to
explain the spatial arrangement of each convolution kernel.
_(+,+):(+, + +A), 1)
* ( _, _ ) = ( -, + _A ),

The offset is a decimal, and the corresponding position cannot
be identified in the feature map, so the bilinear interpolation
method is used to find the corresponding coordinates on the
feature map once the convolution kernel is offset. Equation (2)
illustrates the principle of bilinear interpolation.

= () 2

Figure 4 demonstrates the merging of the DSConvs in both
directions with a conventional convolution to form the DSFA
module. The DSFA module employs three distinct convolution
branches, namely the conventional convolution, the DSConv
deformed in the x direction, and the DSConv deformed in the y
direction, to compute the input features. The feature
aggregation module of DSConv combines the features
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produced by the three branches and modifies the output channel

number to align with the input channel number using a 1x1
conventional convolution.
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Figure 3. Principle of the DSConv.
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Figure 4. The structure of DSFA module.

2.2.2 DSPP Module

The structure of the DSPP module is illustrated in Figure 5.
The module for the DSPP structure comprises three main
components: 1x1 convolution, SPP structure, and adaptive
average pooling. Following the processing of the input features,
the three sub-modules employ an alignment connection to
splice the resultant three feature maps, so generating the output
features. The adaptive average pooling module is designed to
capture the global feature information of the input feature map.
On the other hand, the pooling pyramid structure is composed
of three DSFA modules that utilize different convolution
kernels. This enables the model to capture the tubular
characteristics of multi-scale receptive fields.

The DSPP module configures the convolution kernels of the
three DSFA modules to {5,9,13}. In order to get multi-scale
receptive field features, the DSPP module combines the
receptive field features from various DSFA modules with
different convolution kernels. In contrast, the DSConv module
employs a fixed convolution kernel of 9. The YOLOVS
backbone network architecture incorporates the DSPP module
as a substitute for the SPPF module, enabling the extraction of
multi-scale receptive field features and the integration of high-
level semantic information. Both the DSPP module and the
SPPF module have a common receptive field. However, the
DSPP module utilizes the DSFA module instead of the
conventional convolution or pooling layer. The DSFA module
is more suitable for segmenting ground fissure targets that
possess tubular form features. Simultaneously, the DSPP
module has the capability to attain variable scale receptive field
characteristics by the manipulation of the convolution kernel,
hence enhancing its versatility.
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Figure 5. The structure of DSPP module.

2.23 D-LKA Module

The fundamental concept underlying Deformable Large Kernel
Attention (D-LKA) involves the integration of the attention
mechanism of a large convolution kernel and the deformable
donvolution. By utilizing a large convolution kernel, D-LKA
aims to replicate the receptive field akin to self-attention, while
circumventing the computational burden associated with
conventional self-attention mechanisms. In addition, D-LKA
employs the deformable convolution to dynamically adjust the
evaluation grid, hence enhancing the model's capacity to
accommodate diverse input patterns.

The model structure of D-LKA is depicted in Figure 5. The
integration of depth-separable convolution (DW Conv) kernels
and depth-separable convolution with extension (DW-D Conv)
in the underlying architecture enables the generation of large
convolution nuclei, thereby replicating the receptive field of the
self-attention mechanism. This approach facilitates the
acquisition of features by the network across a wide range of
receptive fields, while simultaneously reducing the parameter
count through the utilization of separable convolution. The DW
Conv and DW-D Conv of the D-KLA module are created by
substituting all conventional convolutions with deformable
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conv. By combining a large convolution kernel with

deformation-DW-D Conv, the D-LKA module enhances the
model's ability to handle complex visual patterns.
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Figure 6. The structure of D-LKA module.

2.2.4 Slide Loss Function
Slide Loss, as proposed by Yu et al. (2022), is employed to
direct the model's attention towards difficult samples within the
dataset. The remote sensing data comprises a diverse range of
ground fissure samples, a significant portion of which pose
challenges in terms of identification. The concept of slide loss
posits that the model will acquire the ability to optimize these
samples and utilize them more efficiently in model training.
The distinction between a simple and a difficult sample is
established based on the Intersection over Union (IoU) size of
the prediction and ground truth boxes. A difficult sample is
characterized by an IoU value that is smaller than the average
of the ToU values of all bounding boxes ( ). The calculation of
Slide Loss is determined by employing the formula presented
in equation 3.
1 = -01
O={" < < -01 3)
1= =

The slide loss function assigns a greater weight to difficult
samples falling within the range of [ -0.1, ], while assigning a
lower weight to simple samples outside the average IoU as the
prediction box IoU increases. This suggests that the model
diminishes its focus on easily identifiable samples.
In FS_YOLOVS, the original model's loss functions are utilized,
but the Slide loss function is incorporated into the classification
loss function calculation. This modification of the weights
obtained through CIoU, used for the cross-entropy loss value,

~

(a) Huangyuchuan mining area

enabling the model to prioritize the identification of
difficult samples.

3. Study Area and Evaluation Evaluation Metrics
3.1 Study Area and Dataset

The study obtained the UAV imagery of areas impacted by
subsurface mining operations. Figure 7 shows the example
UAV imagery over two mining areas in China, namely the
Huangyuchuan and Sandaogou coal mines. The Huangyuchuan
mining area is situated in a hilly region with a reasonably
gentle slope. The area is characterized by a high vegetation
coverage, with vegetation and bare land spread alternately. The
Sandaogou mining area is situated in a rugged mountainous
region, characterized by steep terrain, abundant vegetation,
intricate geological features, and a wide variety of fissures.
Figure 8 displays examples of ground fissures within the study
area.
The study area yielded a ground fissure datset with an image
resolution ranging from 1 to 2cm. This dataset was segmented
into 640 640 pixel samples using a clipping approach with a
50% overlap rate, resulting in a total of 3300 images. The
images have been categorized into three distinct sets, namely
train, validation, and test, with a ratio of 8:1:1. Every image has
multiple occurrences of ground fissures. The training dataset
comprises over 8,000 cases of fissures, whereas the verification
and testing dataset consists of 2,400 sample instances.
M e b 3 f

(b) Sandaogou mining area
Figure 7. UAV imagery of the two study areas. The green lines are the fissures annotations.
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3.2 Evaluation Metrics

The YOLOVS evaluation measures were employed to provide
an unbiased assessment of the ground fissure instance
segmentation model's performance. The metrics used
encompassed precision, recall, mAP@0.5, and mAP@0.95 for
both the regression boxs and segmentation pixels. The area
under the Precision-Recall curve, which interpolates the
Precision at different recall rates and calculates the area under
the interpolated curve, is referred to as AP. The subscript "@"
denotes the iou threshold used to determine the positive or
negative nature of a sample. mAP@0.5 represents the average
mAP with a threshold exceeding 0.5, whereas mAP@0.95
signifies the average mAP with different IoU thresholds
ranging from 0.5 to 0.95, with a step size of 0.05. The
fundamental metric for evaluating each regression box is
the  primary metric. This is because in the instance
segmentation task, the regression box is initially positioned,
and then the ground fissure pixels are segmented within the
positioning box.

4. Experiment Results
4.1 Experimental Setup

The training of all models was conducted using the "start from
scratch" methodology, wherein consistent hyperparameters
were employed throughout all trials. The hyperparameters
utilized during the training process are presented in Table 1.
The purpose of setting the training epochs to 1000 is to achieve
convergence of the training evaluation metrics for each model
on the dataset. This convergence enables the comparison and
study of the performance of each model.

Hyperparameters Value
Learning Rate 0.01
Image Size 640X 640
Monetum 0.937
Optimizer SGD
Batch Size 4
Epoch 1000
Weight Decay 0.0005

Table 1. Hyperparametric configuration.
4.2 Experimental Results and Ablation Study

This section compares the baseline model YOLOvVS8 and the
improved model FS_YOLOVS using the ground fissure dataset
from the mining area. The feasibility of the upgraded technique
proposed in this work was confirmed through ablation studies
conducted on the baseline model YOLOv8 and the
FS_YOLOv8 model. It is noteworthy to emphasize that the
YOLOv8 model described in this study represents the default
version of YOLOv8n, while the evaluation of different versions
remains to be conducted.

4.2.1 Experimental Analysis of Module Ablation

Table 2 presents the evaluation metrics for the YOLOvE model
and its enhanced counterpart, FS YOLOVS, on the mining
ground fissure dataset. The ablation process of module
enhancement from YOLOvVS8 to FS_YOLOWVS is denoted by the
symbols "+" and "replaces".

According to the findings presented in Table 2, the replacement
of the SPPF module with the DSPP module yields notable
enhancements in all evaluation metrics in comparison to the
original YOLOv8 model. Notably, the mAP@0.5** and
mAP@0.95** metrics experience a substantial increase of
7.9% and 12.6% respectively. The successful application of the
DSPP module showcases the efficacy of employing multi-scale
dynamic snake convolution for the extraction of ground fissure
targets exhibiting diverse tubular, size, and morphological
characteristics.

The experimental findings presented in the second row of the
table indicate that the YOLOvVS8 improved model's output layer
only included the D-LKA module. In comparison to the
original model, the precision of the fissure regression box and
segmentation outcomes exhibited improvement, while the
recall metric experienced a decline. In FS_YOLOVS, the SPPF
module is substituted with the DSPP module, and subsequently,
the embedded D-LKA module is incorporated, resulting in a
slight enhancement of each metric. One plausible hypothesis is
that the SPPF module only incorporates conventional
convolution, that is susceptible to interference from the
background, leading to the generation of noisy feature graphs.
Nevertheless, the deformable convolution in the D-LKA
module exhibits excessive flexibility in learning the offset,
leading to the acquisition of offset as noise. Consequently, the
extraction of high-level characteristics by the D-LKA module
yields inaccurate contextual information. The morphological
aspects of ground fissures are modeled using the Dynamic
Snake Convolution in the DSPP module, resulting in a feature
map that is free from noise. The Deformable Convolution in the
subsequent D-LKA module learns an offset that is better suited
for fissures, resulting in more accurate extraction of fissure
context information.

The visual contrast between YOLOv8 and FS_YOLOVS is
depicted in Figure 9. One of the main benefits of FS_ YOLOvS8
in comparison to the YOLOv8 model is its superior overall
confidence level (IoU) in accurately predicting ground fissures.
Additionally, the comparative analysis of the models in
columns 2 and 3 of Figure 9 reveals that YOLOVS exhibits a
tendency to erroneously classify background items as ground
fissures, including branches and tree shadows. By combining
the qualitative and quantitative experimental data,
FS_YOLOv8 displays better performance than the original
model YOLOVS in instance segmentation of ground fissures.
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Method Precision®™ | Recall” | mAP@0.5"* | mAP@0.95"* | Precision™** | Recall™®* | mAP@0.5™** | mAP@0.95™*
YOLOvV8 76.5% 71.0% 76.9% 52.3% 75.3% 69.3% 73.8% 30.9%
YOLOvV8+D-LKA 79.4% 69.7% 76.5% 53.2% 77.8% 68.5% 73.5% 30.9%
DSPP replaces SPPF 88.3% 77.8% 84.8% 64.9% 88.1% 76.0% 82.2% 40.5%
FS YOLOv8 90.4% 78.3% 85.8% 66.9% 89.4% 77.1% 84.1% 44.5%

Table 2. Module ablation experiment of FS YOLOVS. The superscript of the evaluation metrics, “box” represents the evaluation
metric belonging to the regression box result, “mask” represents the evaluation metric belonging to the segmentation result.
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Figure 9. Comparison of prediction results of ground fissures by YOLOv8 and FS_YOLOVS.

ToU Loss Precision®™ | Recall®®* | mAP@0.5"*

mAP@0.95">

Precision™¥ | Recall™* | mAP@0.5™* | mAP@0.95m*

BCE
BCE+Slide Loss

90.4%
90.5%

78.3%
79.4%

85.8%
85.8%

66.9%
67.0%

89.4%
90.6%

77.1%
78.7%

84.1%
84.7%

44.5%
43.6%

Table 3. Ablation experiment of loss function.

4.2.2  Ablation Study of Loss Function

The impact of incorporating the Slide Loss function into the
classification loss of the model, utilizing FS YOLOVS, is
presented in Table 3. According to Table 3, Slide Loss
improves the precision of segmenting fissure instances, mostly
by increasing the recall of regression boxs and segmentation.
This indicates that the Slide Loss function focuses the model's
attention on difficult samples. However, because the dataset
used in this paper did not purposefully include too many
difficult samples, so the Slide Loss function did not
significantly improve the metrics, which can only show that
Slide Loss function plays a certain role in the model.

5. Discussion
5.1 Parameter Analysis of FS_YOLOvS8

Table 4 presents a comprehensive overview of the model
complexity parameters observed in the ablation experiment,
comparing YOLOvVS to FS YOLOvS. These parameters
include the parameter count, GFLOPs (Gigabit floating point
operations per second), which quantifies the network model's
execution time in billions of floating point operations per
second, and the number of network layers. The utilization of
the DSPP module results in a significant increase in both the
complexity and parameter count of the model. Because the
DSPP module processes the input features through five
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branches, with the DSFA module being the primary source of
the parameter count. The DSFA module has a more
sophisticated network structure than extensible convolution
since it includes the Dynamic Snake Convolution and
conventional convolution with many big convolution kernels.
The process of generating feature graphs and combining
features using convolutions leads to a redundancy in the
number of feature parameters. In the future, it is necessary to
reconstruct the DSPP module.

Method Para (M) | GFLOPs | Layers
YOLOvV8 3.26 12.0 195
YOLOv8+D-LKA 4.89 13.3 203
YOLOv8+DSPP 29.98 30.3 282
FS YOLOvS 31.34 31.6 290
Table 4. The influence of modules on model complexity in FS
YOLOVS.

5.2 Limitations and Future Work

5.2.1 Limitations

This study solely examines the feasibility of YOLOVS and its
improved method on the ground fissure dataset within the coal
mining region. Nevertheless, it is important to acknowledge
that the research is not without its limitations:

(1) Despite the exploration of multi-scale Dynamic Snake
Convolution's potential in ground fissure feature extraction by
FS_YOLOVS, the existing structure of the DSPP module was
found to be excessively coarse. This resulted in an increased
number of parameters within the model, hence requiring the
implementation of lightweight processing techniques for the
DSPP module.

(2) This research solely evaluated the performance of
FS YOLOvV8 on the mining ground fissure dataset, without
providing any information about its ability to handle other
fissure open datasets. FS_YOLOvVS8 will be utilized in the future
to assess the suitability of each fissure dataset.

5.2.2  Future Work

Regarding the identification of ground fissures at coal mining
sites, we are now conducting research on several topics that
will be further explored in future studies. These topics include:
(1) Labeling data samples can be a laborious task, particularly
when there are numerous additional background targets that
resemble ground fissure targets in remote sensing images and
require  differentiation. Consequently, several weakly
supervised and semi-supervised deep learning algorithms are
required to automatically generate ground fissure samples from
heterogeneous data or crowdsourced data, minimizing models'
need on manually labeled samples.

(2) Analyze the spatial arrangement of ground fractures by
utilizing remote sensing data from multiple sources. The
utilization of thermal infrared imaging enables the visualization
of temperature disparities between the fissure region and
adjacent background regions at different temporal intervals.
InSAR imagery has the capability to identify regions of ground
subsidence resulting from mining activities, as well as ground
fissures. When combined with multi-source remote sensing
data, the model demonstrates enhanced accuracy in detecting
ground fissures compared to that solely relies on visible light
pictures.

(3) Interpretation of ground fissures using the fissure
mechanism model. The general deep learning model is now
data-driven, with data determining the model's performance. It
is worthwhile to investigate how to spatialize the primary
knowledge of mining subsidence, mechanical model, fissure

development law, and so on, in order to build the
characteristics and limits of mining areas for the detection of
ground fissures, and to incorporate a knowledge-driven model
into the model. The knowledge base for ground fissures is
added to the model, and the fissure sample data is updated and
learned, allowing the model to be applied to a variety of large-
scale scenarios in real mining locations.

(4) Creating a deep learning dataset of mining ground fissure is
crucial. At now, there is a limited number of individuals that
have publicly released ground fissure datasets in mining areas.
Due to the intricate nature of remote sensing image scenes, past
research has predominantly concentrated on small working
surfaces. Researchers tend to favor using simpler scenes as test
areas. Consequently, the proposed model method is not
applicable to real-world settings. Currently, there is a scarcity
of datasets appropriate to diverse scenarios. The following
research should look into creating more realistic datasets to
explain how deep learning models can be used more effectively
in practical engineering applications.

6. Conclusion

This paper introduces a deep learning model called
FS_YOLOvV8 specifically designed for detecting ground
fissures in mining areas. Additionally, we propose a DSPP
module within FS YOLOVS to extract multi-scale tubular
properties of ground fissures. The efficacy of the DSPP module
in the detection of ground fissures of diverse sizes and shapes is
evaluated through the utilization of the ground fissure dataset.
While our study has made tremendous progress, we continue to
face challenges and limits, such as the amount of parameters in
the DSPP module and the scenario applicability of the
FS_YOLOv8 model. The present study constitutes a first
inquiry. Additional areas within the field of ground fissure
study warrant additional investigation, including the
prospective research directions indicated in this paper, which
are anticipated to be progressively incorporated in future
studies.
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