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Abstract: 

 

Over the last few years, implicit 3D representation has attracted more and more research endeavors, typified by the so-called Neural 

Radiance Fields (NeRF). The original NeRF and some relevant variants mostly address on small-scale scene (such as, indoor or tiny 

toys), which already show good novel views rendering results. It still remains challenging when dealing with wide coverage area that 

is captured by large number of high-resolution images, the time efficiency and rendering quality is generally limited. To cope with 

large-scale scenario, recently, Mega-NeRF was proposed to divide the area into several overlapping sub-area and train corresponding 

sub-NeRFs, respectively. Mega-NeRF adopts the method of parallel training of multiple sub-modules, which means sub-modules are 

absolutely independent of each other, which might in principle not be an optimal solution, as two sub-NeRFs of adjacent sub-models 

obtained by parallel training are likely to get different rendering results for the overlapping area, and the final rendering result is 

supposed to be negative affected. Therefore, we present Mega-NeRF++, and our goal is to improve Mega-NeRF by implementing extra 

sub-models optimization that alleviate the rendering discrepancy of overlapping sub-NeRFs. More specifically, we further fine tune 

the original Mega-NeRFs by considering the consistency of adjacent overlapping area, which means the training data used in the 

optimization are only from the overlapping region, and we also proposed a novel loss, so that it not only takes into account the difference 

between the prediction of each sub-model and the true value, but also considers the consistency of the predicted results between various 

adjacent sub-modules in the overlapping region. The experimental results show that, for the overlapping area, our Mega-NeRF++ can 

qualitatively render better images with higher fidelity and quantitively have higher PNSR and SSIM compare to original Mega-NeRF. 

 

 

1. Introduction 

Nowadays, novel view synthesis based on collected images has 

again become a research hotspot (SfM, NeRF, Mip-NeRF, Mega-

NeRF etc.), mainly due to the development of neuron-based deep 

learning techniques. The way that traditional photogrammetry 

does typically contains several very complex processing, 

including feature extraction and matching, image orientation and 

sparse point cloud generation, dense matching, delaunay 

triangulation and mesh model generation etc., and novel view is 

synthesized via back-projection based on mesh model and image 

orientation parameters (Schonberger et al., 2016). Recently, the 

emergence of NeRF has made the neuron-based implicit 

representation of 3D scene be possible (Mildenhall et al., 2020). 

Based on the input images with known orientation parameters, 

NeRF train a MLP and implicitly learns 3D information of the 

scene, and it can be then used to predicts the color information 

and volume density at any sample point along a specific ray, 

which are integrated to obtain the color of the corresponding 

pixel, thus completing the synthesis of new view from arbitrary 

pose. 

 

The original NeRF has already been demonstrated to be able to 

achieve good rendering results when the scene is controlled (e.g., 

desktop-sized) and the image resolution is not very high (Turki 

et al., 2022). However, for the photogrammetric dataset that is 

typically with high resolution of abundant detail information, 

large number of images covering wide ground area, it is hardly 

and feasible for original NeRF to be trained on a common 

consumer computer, regarding training time and hardware 

memory storage; Moreover, due to the limitations of original 

NeRF in rendering unbounded scenes and the change of 

illumination conditions, it is difficult to directly apply traditional 

NeRF technology to large-scale and high-resolution UAV images. 

 

 
 Corresponding author 

To address the abovementioned issues, recently, Turki et al. 

(2022) proposed Mega-NeRF that successfully trained NeRF on 

UAV images. It mainly partitions the whole scene into several 

sub-blocks and trains smaller sub-NeRF for each sub-blocks, 

after that, rendering new views only needs to splice all the 

relevant sub-NeRFs rendering results together. As the sub-NeRF 

of each sub-block is a self-contained MLP, it is typically trained 

individually in parallel with no inter-block communication 

(Turki et al., 2022), which means all sub-models are independent 

of each other. This may result in ambiguous rendering, i.e., the 

adjacent sub-models obtained by parallel training are likely to get 

different results when rendering a certain overlapping area. 

Although Mega-NeRF has already applied a weighted averaging 

strategy to filter out the discrepancy in overlapping region, we 

can still find a relatively clear brightness discontinuous variation, 

as Figure 1 illustrates. 

 

Therefore, we present Mega-NeRF++, whose main goal is to 

improve Mega-NeRF by implementing extra fine tuning (or 

optimization) for the original sub-NeRFs. This extra fine tuning 

is akin to Mega-NeRF when training each sub-NeRFs, but we 

have made the following improvements: 1) To perform the fine 

tuning, for any two adjacent sub-models, only rays from 

corresponding overlapping region are sampled as training data;  

2) To optimize the original Mega-Nerf so that it takes into 

account the consistency of the different predicted results from 

two adjacent sub-models, we proposed an improved original loss 

function which considers the rendering consistency existing in 

overlapping area. The overall working pipeline is shown in Fig.2. 

which mainly contains steps :  

I. Dataset Preparation: For the collected images, the open-

source framework COLMAP is used to estimate the poses of the 

images, and partition the large scene into several sub-blocks 

according to the estimated poses.  
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II. Mega-NeRF Training: Based on the partitioning results, the 

original Mega-NeRF is used to train small sub-NeRF for each 

sub-block.  

III. Mega-NeRF++ Optimization: Due to the obviously 

inconsistent prediction results (shown in Figure 1.) in the 

overlapping region generated adjacent sub-NeRFs (trained by 

Mega-NeRF), our Mega-NeRF++ optimizes all sub-models so 

that the rendering results from different sub-models in the 

overlapping region are as consistent as possible, while also as 

close to the ground truth as possible. 

 

In sum, this paper proposes an improved Mega-NeRF, named as 

Mega-NeRF++, as an updated derivative of Mega-NeRF, an 

improved loss function is used to fine tune the original Mega-

NeRF and all the relevant  sub-NeRFs are optimized by using the 

training data only sampled from overlapping regions. After fine 

tuning, the predicted rendering results of the adjacent sub-models 

in the overlapping region are supposed to be more consistent. 

 

 
Figure 1. Results of vanilla Mega-NeRF. Final rendering results (left), rendering result only from sub-model1 (middle) and rendering 

result only from sub-model2 (right). Final rendering results (left) is obtained by merging the rendering result only from sub-model1 

(middle) and rendering result only from sub-model2 (right), and it shows the brightness variation between overlapping region and non-

overlapping regions on the left and right sides.  

 

 
Figure 2. The workflow of our Mega-NeRF++. 

 

 

2. Related works 

Novel view synthesis and NeRF. Novel view synthesis typically 

refers to the task of generating a new target image based on some 

collected images whose relevant information is known (such as, 

exterior and interior orientation parameters). Before the 

emergence of NeRF, traditional algorithms had already made 

strides in novel view synthesis to a certain extent. Chen et al. 

(1993) proposed the concept of interpolation, presenting a 

method for predicting intermediate image from multiple images 

stored at adjacent view points. Struct from Motion (SfM) and 

Multi-View Stereo (MVS) construct the mesh model according 

to the images obtained in corresponding scene, and generate the 

image of any view point via back-projection (Schonberger et al., 

2016). With the development of machine learning, the emergence 
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of NeRF proposed a method for implicit reconstruction of 3D 

scenes using MLP. The original NeRF employed MLPs to predict 

the color and volume density at multiple sampling points on the 

ray, and use the discrete form of volume rendering integral 

formula to obtain the color of the corresponding pixel 

(Mildenhall et al., 2020). NeRF’s variants have improved the 

performance of origin NeRF in many aspects: NeRF++ begins by 

examining the mechanisms underlying the effective resolution of 

the shape-radiance ambiguity in the original NeRF. Additionally, 

it employs the inverted sphere parametrization method to 

enhance NeRF's rendering performance in unbounded scenes 

(Zhang et al., 2020). Mip-NeRF utilizes a conical frustums-based 

rendering sampling approach and integrates Positional Encoding 

to mitigate aliasing in NeRF's original rendering process, thereby 

enhancing rendering quality (Martin-Brualla et al., 2021). NeRF-

W utilizes appearance embedding vectors to enable the NeRF 

model to accommodate varying lighting conditions in image data, 

and incorporates an additional MLP for predicting transient 

objects to address potential transient occlusion in multi-source 

images (Martin-Brualla et al., 2021). BlockNeRF (Tancik et al., 

2022) and Mega-NeRF (Turki et al., 2022) both employ the 

strategy of partitioning complex large-scale scenes and utilizing 

individual NeRF models to learn 3D information of each sub-

block, thereby successfully extending the application of NeRF to 

large-scale scenes. 

 

Unbounded scenes. To lift NeRF out of desktop-sized scene and 

address the issue of unbounded application, Zhang et al. (2020) 

introduced the NeRF++ and Barron et al. (2022) proposed the 

Mip-NeRF 360 to tackle the challenge. NeRF++ divides the 

entire unbounded scene into foreground and background, 

separately training an individual MLP for the foreground and 

background, and utilizes the corresponding MLP to predict the 

color and volume density of sampling points within the 

foreground and background (Zhang et al., 2020). Mip-NeRF 360 

employs a non-linear scene parameterization approach, 

effectively confining the unbounded scene within a bounded 

space. Furthermore, Mip-NeRF 360 introduces online distillation 

and a novel distortion-based regularization, enhancing model 

training and rendering efficiency while also mitigating the 

blurring artifacts encountered during the rendering of unbounded 

scenes (Barron et al., 2022). 

 

Lighting differences and transient occlusions. In practice, the 

collected image data often exhibit various lighting conditions and 

transient occlusions, both of them are likely to impact NeRF's 

ability to capture the 3D characteristics of static objects within 

the scene. NeRF in the wild (NeRF-W) addresses this challenge 

by employing an additional MLP to analyze all transient objects 

present in the images, thus facilitating the separation of static 

objects from transient ones across the entire image dataset. 

Additionally, NeRF-W assigns an appearance embedding vector 

to each training image, leveraging it as an input parameter for the 

MLP, enabling the trained NeRF model to effectively mitigate 

differences in illumination among different images (Martin-

Brualla et al., 2021). 

 

Fast training and rendering. The computational overhead 

associated with NeRF training and rendering escalates sharply 

with scene complexity and image resolution, prompting a critical 

need to mitigate time costs while upholding NeRF performance 

standards. Instant-NGP introduces a multiresolution hash 

encoding approach, enabling NeRF implementation with a 

reduced network size without sacrificing accuracy. This 

innovation effectively compresses training time from hours to 

seconds (Muller et al., 2022). 3D Gaussian Splatting utilizes 3D 

Gaussian spheres to model the entire scene, offering a 

representation that overcomes noise and rendering mode 

limitations while significantly curtailing rendering time (Kerbl et 

al., 2023). Mega-NeRF (Turki et al., 2022), which is most relative 

to us, employs various strategies to expedite both training and 

rendering. During training, Mega-NeRF utilizes Spatial Data 

Pruning to eliminate extraneous rays from training images, and 

Guided Sampling to skip empty spaces and sample fewer points 

near the surface of objects, thereby markedly reducing the 

number of sampling points per ray. Furthermore, Mega-NeRF 

optimizes rendering efficiency by reusing results from previously 

rendered images, thereby accelerating the rendering of 

subsequent frames and enhancing the efficiency of continuous 

rendering sequences. 

 

Large-scale NeRF. The original NeRF and subsequent 

advancements have predominantly focused on training and 

rendering small-scale scenes, yielding notable achievements. 

However, due to the constraints posed by limited computing 

resources and the substantial time investment required for 

training, the feasibility of training a NeRF for large-scale scenes 

on conventional consumer computers is severely limited. 

Consequently, efforts have been directed towards adapting NeRF 

for large-scale scene training with limited computing resources 

and time. Notable approaches in this context include Urban 

Radiance Fields, CityNeRF, BlockNeRF, and Mega-NeRF: 

Urban Radiance Fields (Rematas et al., 2021) integrates LiDAR 

scanning data with RGB imagery, introducing a range of LiDAR-

based losses to facilitate accurate surface estimations of solid 

structures and volumetric structures. CityNeRF (Xiangli et al., 

2021) adopts a progressive learning strategy to address the 

challenges associated with applying NeRF solely to single-scale 

image data, which enables the incorporation of multi-scale data 

with varying levels of detail and spatial coverage. Tancik et al. 

(2022) proposed BlockNeRF that implements a blocking 

approach, dividing complex scenes into sub-blocks and training 

a sub-model for each block using parallel training methods. 

Subsequently, relevant sub-NeRF rendering results are 

seamlessly integrated when generating new views. Similarly, 

Mega-NeRF employs the same strategy (Turki et al., 2022), 

dividing large-scale scenes into sub-blocks to manage 

computational complexity. Additionally, Mega-NeRF utilizes the 

inverted sphere parameterization method to address rendering 

challenges in unbounded scenes (Zhang et al., 2020). 

Furthermore, the introduction of appearance embedding vectors 

in Mega-NeRF helps mitigate issues stemming from inconsistent 

imaging conditions in outdoor images (Martin-Brualla et al., 

2021). 

 

3. Methodology 

3.1 Mega-NeRF Revisiting 

In general, to train large-scale NeRF with an ordinary consumer 

machine, Mega-NeRF employs the solution of dividing into 

several sub-block in training, it sets a centroid 𝑵 = (𝑋𝑛, 𝑌𝑛, 𝑍𝑛) 

for each sub-block and trains an individual NeRF model to learn 

the 3D scene information for each sub-block (Turki et al., 2022). 

Each sub-model within Mega-NeRF adopts a network 

architecture akin to the original NeRF, with a MLP (responsible 

for volume desity prediction) consisting of 8 layers of 256 

channels and a fully connected ReLU layer of 128 channels and 

another small MLP (responsible for color prediction), as shown 

in Fig.4. Additionally, it incorporates an appearance embedding 

vector 𝑙(𝑎) , as introduced by Martin-Brualla et al. (2021) in 

NeRF-W, as an additional input to the MLP for predicting the 

color. Employing the Appearance embedding vector enables 

Mega-NeRF to effectively accommodate datasets featuring 
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images under diverse lighting conditions. This capability is 

essential for Mega-NeRF to accurately render extensive outdoor 

scenes characterized by varying lighting conditions. Therefore, 

for any given 3D position 𝑿 = (𝑥, 𝑦, 𝑧), the viewing direction D 

and the corresponding appearance embedding vector 𝑙(𝑎), Mega-

NeRF use the trained NeRF of the sub-block that is closest to the 

target point to predict the corresponding color 𝒄 = (𝑟, 𝑔, 𝑏) and 

its volume density 𝜎 . Mega-NeRF first predicts the volume 

density 𝜎 from 3D position 𝑿 and outputs an intermediate vector 

𝑙′ (Eq.1). The direction D, appearance embedding vector 𝑙(𝑎) and 

intermediate vector 𝑙′ are then fed into another MLP to predict 

color 𝒄  (Eq.2). Finally, for a ray 𝒓(𝑡) = 𝒐 + 𝑡𝒅 , Mega-NeRF 

only needs to predict the color and volume density along the 

sampling points on the ray, and integrates according to the 

volume fraction formula to obtain the color 𝑪 (Eq. 3): 

 

𝜎𝑖 , 𝑙𝑖
′ = 𝑓𝑵(𝑿𝒊), 𝑤ℎ𝑒𝑟𝑒 𝑵 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑵 − 𝑿𝒊‖

2 (1) 

 

 𝒄𝒊 = 𝑓𝑵(𝑙𝑖
′, 𝑫𝒊, 𝑙𝑖

(𝑎)
) (2) 

 

𝑪 = ∑ 𝑤𝑖𝒄𝒊

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 𝑇𝑖(1 − 𝑒−∆𝑖𝜎𝑖) (3) 

 

𝑇𝑖 = 𝑒𝑥𝑝 (− ∑ ∆𝑗𝜎𝑗

𝑖

𝑗=1

) , ∆𝑖= 𝑡𝑖 − 𝑡𝑖−1 (4) 

 

Moreover, in the process of scene partitioning by Mega-NeRF, 

there exists an overlapping region between adjacent sub-blocks. 

Consequently, when a sampled point falls within the overlapping 

region of two or more sub-blocks, Mega-NeRF employs multiple 

sub-models to individually predict the RGB and volume density 

of the point. A weighting mechanism is determined based on the 

reciprocal distance between the point and the center of each sub-

block. Ultimately, a weighted average method is employed to 

derive both the color 𝒄 and the volume density 𝜎 at this sampled 

point (Turki et al., 2022). 

 

 
Figure 3. Dual Sub-model Optimization Strategy. Any two 

adjacent sub-models will be optimized considering the 

consistency of adjacent overlapping region. In the case shown in 

the figure, any sub-model will be optimized twice. For example, 

sub-model 1 will be jointly trained with both sub-model 2 and 

sub-model 3.  

 

3.2 Extra fine-tuning of the proposed Mega-NeRF++ 

Due to the independent parallel train strategy of Mega-NeRF 

(Turki et al., 2022), the overlapping information between any two 

adjacent sub-model are not considered. Therefore, when training 

Mega-NeRF in this paper, we perform extra training after the 

independent parallel training, and a new loss function is used to 

fine tune each NeRF of sub-block.  

 

Fine-tuning. In terms of sub-NeRF optimization, we propose 

Dual Sub-model Optimization strategies: essentially, this 

strategy can be considered as an incremental fine-tuning solution, 

as Fig. 3 illustrates. Firstly, a pair of adjacent sub-models, whose 

training are individually started with the original Mega-NeRF 

method for a certain number of epochs, is selected. Subsequently, 

individual training based on original photometric information 

(identical to Mega-NeRF) and joint training based on 

photometric consistency in overlapping regions (employing 

consistency training loss, see Eq. 7 and 8) are alternated applied 

until pre-set iterations are achieved. Secondly, for all other sub-

model pairs with overlapping relationships, we will optimize 

based on their performance in the overlapping region until any 

sub-model pair with overlapping relationships has been 

optimized once. Finally, when rendering images with 

overlapping regions, this strategy uses the rendering results from 

original Mega-NeRF and the optimized model. For overlapping 

regions, we use the rendering results of the optimized model, 

while for non-overlapping regions, we continue to use the 

rendering results of the original Mega-NeRF. In the subsequent 

experimental parts, we conduct a corresponding efficacy analysis 

of this strategies (Tab. 3).  

 

Hybrid Rendering. When rendering images containing 

overlapping regions, we employ a hybrid approach utilizing 

rendering results from both the original Mega-NeRF and the 

corresponding optimized sub-models. Non-overlapping sections 

of the image uses the rendering results from original Mega-NeRF, 

while the overlapping regions uses the rendering results from the 

corresponding optimized sub-models. 

 

Consistency Training Loss. Compared to the loss of original 

Mega-NeRF, we proposed an improved loss. In addition to 

computing the Mean Squared Error (MSE) loss between the 

predicted RGB and ground truth, we introduce a novel 

regularization based on the ambiguous rendering result between 

any two adjacent sub-models. Our refined loss not only considers 

the discrepancy between predicted RGB and ground truth but 

also incorporates the reciprocal influence exerted by adjacent 

sub-models. When calculating loss for any two adjacent sub-

model A and B, whose corresponding model weights (i.e., NeRF 

parameters) are 𝑓𝑨 and 𝑓𝑩, we first acquire the predicted RGB 

of sub-model A and B for the shared ray respectively (Eq. 5 and 

Eq. 6), and then estimate the corresponding loss of sub-model A 

and B (Eq. 7 and Eq. 8): 

 

𝜎𝐴, 𝒄𝐴 = 𝑓𝑨(𝑿, 𝑫, 𝑙(𝑎))    𝜎𝐵, 𝒄𝐵 = 𝑓𝑩(𝑿, 𝑫, 𝑙(𝑎)) (5) 

 

𝑪𝐴 = ∑ 𝑤(𝜎𝐴)𝒄𝐴 , 𝑪𝐵 = ∑ 𝑤(𝜎𝐵)𝒄𝐵 (6) 

 

𝐿𝑜𝑠𝑠𝐴 =
1

𝑛
∑ [𝐿𝑀𝑆𝐸(𝑪𝐴 − 𝑪𝑇𝑟𝑢𝑒) + 𝑓𝑙𝑜𝑠𝑠(𝑪𝐴 − 𝑪𝐵)]

𝑛

𝑖=1
(7) 

 

𝐿𝑜𝑠𝑠𝐵 =
1

𝑛
∑ [𝐿𝑀𝑆𝐸(𝑪𝐵 − 𝑪𝑇𝑟𝑢𝑒) + 𝑓𝑙𝑜𝑠𝑠(𝑪𝐵 − 𝑪𝐴)]

𝑛

𝑖=1
(8) 

 

where 𝑪𝐴, 𝑪𝐵 = color of a shared ray 

 𝑪𝑇𝑟𝑢𝑒 = ground truth 

 𝜎𝐴, 𝜎𝐵 = volume density of shared point 

 𝒄𝐴, 𝒄𝐵 = predicted color of a shared point 

 𝐿𝑜𝑠𝑠𝐴, 𝐿𝑜𝑠𝑠𝐵 = loss of model A and B 

 𝑓𝑙𝑜𝑠𝑠(𝑥) = 𝜇 ∙ 𝐿𝑀𝑆𝐸(𝑥), 𝜇 is a constant 
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Then each NeRF model is optimized based on 𝐿𝑜𝑠𝑠𝐴 and 𝐿𝑜𝑠𝑠𝐵. 

The following section of this paper shows more details about the 

experiments and compare the rendering results of the Mega-

NeRF++ model with the original Mega-NeRF model. 

 

 

 
Figure 4. Vanilla Mega-NeRF architecture. 

 

4. Experiment 

To investigate the performance of our Mega-NeRF++, we 

primarily conduct the evaluation from two key perspectives: 1) 

The capability of the fine-tuned sub-model for generating higher-

quality rendered images, with a particular attention on its 

rendering performance in the overlapping regions of adjacent 

sub-models. 2) The computational resources and time required 

for model optimization.  

 

4.1 Experimental details 

Datasets and Preprocess. For a more intuitive comparison 

between Mega-NeRF++ and the original Mega-NeRF, several 

datasets previously employed in Mega-NeRF are leveraged, 

including Mill 19 dataset (Turki et al., 2022) which consists of 

two scenes (buildings and rubble) and Quad 6k image dataset 

(Crandall et al., 2011) captured from a large-scale scene for SfM. 

Akin to Mega-NeRF, before utilizing these images for model 

training, COLMAP (Schonberger et al., 2016) is employed to 

estimate pose information for images. Subsequently, based on the 

pose information derived from previous method, we partition the 

entire scene into several sub-blocks, facilitating the subsequent 

parallel training of multiple sub-models.  

 

Model architecture and parameter settings. Similar to Mega-

NeRF (Turki et al., 2022), Mega-NeRF++ involves partitioning 

testing scenario into 8 sub-blocks (note that more sub-block can 

be divided for larger scenario) and sequentially training each sub-

model. Each sub-model contains two MLPs. The first one is 

trained for predicting volume density, containing 8 layers of 256 

hidden channels and a fully connected layer whose activation 

function is Rectified Linear Unit (ReLU). Another smaller MLP 

is responsible for predicting RGB, containing a fully connected 

layer utilizing Sigmoid activation function. Hierarchical 

sampling is used for both foreground NeRF and background 

NeRF during training, sampling 256 coarse points and 512 fine 

points per rays for foreground NeRF, while also sampling 128 

coarse points and 256 fine points per rays for background NeRF. 

1024 rays are sampled per batch for training any foreground 

NeRF or background NeRF. Adam optimizer is used for training 

and the initial learning rate is 5 × 10−4, gradually decaying to  

5 × 10−5. Each sub-model will be trained 500000 iterations (for 

model construction) and another additional 10000 iterations (for 

appearance matching).  

 

Training details. We follow the training strategies outlined in 

section 3.2. Over all the 500,000 training iterations, the starting 

100,000 iterations will focus solely on training the sub-models 

individually, disregarding the consistency of adjacent sub-

models within the overlapping regions. For the remaining 

optimization iterations, we adopt a regimen of alternating 

between individual and joint training. During individual training, 

only rays sampled within a single sub-module are utilized for 

training. Joint training incorporates rays sampled from the 

overlapping regions of adjacent sub-modules. The consistency of 

predictions across the two sub-models for the shared ray serves 

as new constraint to optimize the parameters of the corresponding 

adjacent sub-models. Throughout the experiment, the training 

regimen alternates every 10,000 iterations between individual 

and joint training. Consequently, out of the total 500,000 training 

iterations, we first individually train all sub-models for 100,000 

iterations. Then, in the remaining training iterations, 200,000 

iterations of training for all sub-models utilizing individual and 

joint training.  

 

Evaluation metrics. For quantitative evaluation, we assess the 

performance of the Mega-NeRF++ method using metrics such as 

PSNR, SSIM (Wang et al., 2004), and the VGG implementation 

of LPIPS (Zhang et al., 2018). Additionally, we evaluated the 

time cost and computational resources for training on one 

NVIDIA GeForce RTX 4090 GPU. Tancik et al. (2022) proposed 

appearance matching approach in BlockNeRF to cope with 

inconsistencies between views, so that we also compare Mega-

NeRF++ to appearance matching approach in the following 

experiments.  

  

4.2 Ablation Studies 

Diagnostics. To demonstrate the effectiveness of the proposed 

fine-tuning strategy and hybrid rendering solution, we conduct 

ablation studies including: the proposed Mega-NeRF++ that uses 

both our fine-tuning strategy and hybrid rendering solution to 

several ablations, Mega-NeRF++_no_merge that does not 

applied the hybrid rendering while the fine-tuned NeRFs are used 

to render images for both overlapping and non-overlapping area, 
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and the original Mega-NeRF. The qualitative and quantitative 

comparison are shown in Fig. 5 and Tab. 1, respectively.  We can 

find that our Mega-NeRF++ can basically outperform the other 

two variants of Mega-NeRF++_no_merge and original Mega-

NeRF,  Fig. 5 clearly shows that our method is always higher than 

the other two in terms of PSNR, which is in general consistent to 

Tab. 1. This proves that our joint training based on overlapping 

regions of adjacent sub-models and the hybrid rendering results 

from original Mega-NeRF is able to significantly improving 

novel view synthesis performance. 

 

 
Figure 5. Ablation study of PSNR value. PSNR in region 1 (left) and PSNR in region 2 (right). We conduct rendering for 20 images 

within region 1 and region 2, and assess the corresponding their PSNR values. 

  

 
Figure 6. Rendering results. In every scene, we utilize each method to render images in both overlapping and non-overlapping regions, 

depending on how the scene was partitioned during training with Mega-NeRF++. Mega-NeRF++ effectively enhances the image 

rendering quality in overlapping regions while preserving the rendering capability in non-overlapping regions. 
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Mega-NeRF++ Mega-NeRF++_no_merge Mega-NeRF 

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 

Region1 26.638 0.639 0.513 26.560 0.635 0.513 26.457 0.633 0.511 

Region2 22.818 0.538 0.533 22.744 0.532 0.538 22. 661 0. 531 0.531 

Table 1. Ablation studies. We compare Mega-NeRF++ to its multiple ablations. Mega-NeRF++_no_merge doesn’t combine the 

rendering result of original Mega-NeRF and our optimized NeRFs.  

Mega-NeRF++ Mega-NeRF Appearance matching 

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 

Region1 26.638 0.639 0.513 26.457 0.633 0.511 26.479 0.634 0.511 

Region2 22.818 0.538 0.533 22.661 0.531 0.531 22.638 0.530 0.531 

Table 2. Optimized model evaluation. Each method is employed on each scene for novel view synthesis. PSNR, SSIM and LPIPS are 

calculated separately for each method on each scene. Mega-NeRF++ consistently outperforms other methods, consistently yielding 

superior rendering results with the highest PSNR and SSIM. 

4.3 Comparison with other methods 

We present the evaluation results of all methods in Table. 2. 

Additionally, we present partial rendering results obtained from 

each method when rendering from a new perspective in each 

scene in Figure. 6. Mega-NeRF++ demonstrates superior 

performance compared to Mega-NeRF and other methods, 

achieving better rendering results while maintaining comparable 

training and rendering times to Mega-NeRF. 

Discussion. Although the current training strategy has 

demonstrated effective optimization, our training strategy 

requires two models to be trained simultaneously in each training 

iteration, which significantly increases the time cost and 

computational resources required for model training. 

Additionally, there still remain several untested and unverified 

training strategies due to the limitations on time consumption and 

computational resource. Examples include simultaneously 

training all sub-models of the entire scene and optimizing a single 

sub-model while considering all prediction results from other 

overlapping sub-models, allowing for synchronous adjustment of 

all sub-models. Additionally, this paper currently employs only 

Mean Squared Error (MSE) losses to calculate losses in the 

overlapping regions between adjacent sub-models during 

training, with a weight value of μ=1. Therefore, we will try to 

solve the existing problems in the following work and try more 

training strategies. 

5. Conclusion

This paper presents an improved method, Mega-NeRF++, for 

boosting the original large-scale Mega-NeRF based on the 

consistency of overlapping regions between adjacent sub-models. 

By taking the consistency of rendering results across adjacent 

sub-models within overlapping regions as a novel constraint, we 

incorporate discrepancies between predicted rendering result and 

ground truth, as well as discrepancies between predicted 

rendering result from adjacent sub-models for the shared ray 

during training, establishing a more effective large-scale NerF 

fine-tuning approach. This method successfully minimizes 

deviations between Mega-NeRF++ predicted rendering results 

and ground truth, while mitigating color inconsistency errors that 

may arise during rendering in overlapping regions of adjacent 

sub-models. Furthermore, ours Mega-NeRF++ consistently 

achieves the best rendering results compared to Mega-NeRF and 

other SOTA methods employed for novel view synthesis. 

In the future, we would like to focus on exploring and selecting 

optimal training strategies, refining the selection of loss functions 

for overlapping regions, and determining appropriate weight 𝜇 

for the two types of losses (loss between model-predicted values 

and ground truth, and loss in overlapping regions). Furthermore, 

we will leverage established model fast training strategies to 

optimize model, while concurrently minimizing the time cost and 

computational resources overhead associated with our proposed 

methodology. 
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