

- 1 Effect of straw retention and mineral fertilization on P
- 2 speciation and P-transformation microorganisms in water

3 extractable colloids of a Vertisol

- 4 Shanshan Bai ^{a,b}, Yifei Ge^a, Dongtan Yao^a, Yifan Wang^a, Jinfang Tan^{a,b}, Shuai Zhang^c, Yutao Peng^a,
- 5 Xiaoqian Jiang^{a,b*}
- 6 a School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China
- 7 ^bModern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, Zhumadian, Henan 463000, PR
- 8 China
- 9 ^c Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and
- 10 Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR
- 11 China
- 12 * Corresponding author: jiangxq7@mail.sysu.edu.cn (X. Jiang).
- 13

14 Abstract

- 15 Water extractable colloids (WECs) serve as crucial micro particulate components in soils, playing a vital
- 16 role in the cycling and potential bioavailability of soil phosphorus (P). Yet, the underlying information
- 17 regarding soil P species and P-transformation microorganisms at the microparticle scale under long-term
- 18 straw retention and mineral fertilization is barely known. Here, a fixed field experiment (~13 years) in a

19	Vertisol was performed to explore the impacts of straw retention and mineral fertilization on inorganic P,
20	organic P and P-transformation microorganisms in bulk soils and WECs by sequential extraction
21	procedure, P K-edge X-ray absorptions near-edge structure (XANES), ³¹ P nuclear magnetic resonance
22	(NMR), and metagenomics analysis. In bulk soil, mineral fertilization led to increases in the levels of
23	total P, available P, acid phosphatase (ACP), high-activity inorganic P fractions (Ca ₂ -P, Ca ₈ -P, Al-P, and
24	Fe-P) and organic P (orthophosphate monoesters and orthophosphate diesters), but significantly
25	decreased the abundances of P cycling genes including P mineralization, P-starvation response regulation,
26	P-uptake and transport by decreasing soil pH and increasing P in bulk soil. Straw retention had no
27	significant effects on P species and P-transformation microorganisms in bulk soils but brought increases
28	for organic carbon, total P, available P concentrations in WECs. Furthermore, straw retention caused
29	greater change in P cycling genes between WECs and bulk soils compared with the effect of mineral
30	fertilization. The abundances of <i>phoD</i> gene and <i>phoD</i> -harbouring <i>Proteobacteria</i> in WECs increased
31	significantly under straw retention, suggesting that the P mineralizing capacity increased. Thus, straw
32	retention could potentially accelerate the turnover, mobility and availability of P by increasing the
33	nutrient contents and P mineralizing capacity in microscopic colloidal scale.
34	Keywords: water extractable colloids, inorganic P, organic P, P-cycling genes, straw retention, mineral
35	fertilization

36

1. Introduction

38	Phosphorus (P) has a vital function in the productivity of agroecological system (Jiang et al., 2015).
39	Vertisol (Staff, 2010), also known as a Shajiang black soil in Chinese Soil Taxonomy, covers
40	approximately 4 \times 10 6 hectares in the Huang-Huai-Hai Plain of China (Guo et al., 2022). The
41	characteristics of the Vertisol contain abundant calcium, scant organic matter, and poor fertility (Chen et
42	al., 2020). The strong P fixation capacity by abundant calcium and poor supply capacity of P restrict
43	agricultural production severely (Ma et al., 2019). Straw retention and mineral fertilization are commonly
44	employed to enhance soil nutrient contents in this area (Zhao et al., 2018). Under mineral fertilization
45	and straw retention, Ca ₂ -P, Fe-P and Al-P contents increased, but Ca ₁₀ -P concentration reduced, thereby
46	promoting the transformation of P fractions (Xu et al., 2022). Cao et al. (2022) suggested that the
47	combination of straw retention and mineral fertilization significantly increased both inorganic and
48	organic P species concentrations. Crop straw, which is rich in organic matter and contains a certain
49	amount of nitrogen (N), P, and other nutrients, has demonstrated potential effects on the cycling and
50	processing of P (Damon et al., 2014).
51	The assessment of potential bioavailability and mobility of soil P heavily relies on the speciation and
52	distribution of P in soil aggregates (Ranatunga et al., 2013). Agricultural management practices like the
53	application of fertilizer and straw could modify the microhabitat's physicochemical environment through
54	their influence on soil aggregation (Ju et al., 2023). Maize straw promoted the accumulation and

55	stabilization of inorganic and organic P in soil aggregates, particularly in the 250-2000 µm fraction.
56	Additionally, it decreased the relative contribution rates of the <53 µm fraction to inorganic and organic
57	P fractions compared with mineral fertilizer (Cao et al., 2021). Generally, soil aggregate fractionation
58	contains the particle size of > 0.25 mm, 0.053-0.25 mm, and <0.053 mm, and the distribution and
59	dynamics of P in these aggregates have been widely researched (Cheng et al., 2019; Deng et al., 2021).
60	However, there are few studies on the forms and distribution of P in soil water-extractable colloids
61	(WECs; <2 μm in size), which significantly contribute to P cycling due to the large binding ability, high
62	mobility and bioavailability of P (Fresne et al., 2022; Jiang et al., 2023). WECs, readily extracted upon
63	water contact, are regarded as indexes of mobile soil colloids (Missong et al., 2018) and main factors
64	that impact the mobility and availability of soil P (Zhang et al., 2021). Colloidal P could contribute to
65	plant-available P as reported by Montavo et al. (2015). Additionally, the microaggregates (including
66	colloidal size fractions) provided a favorable habitat for microorganisms and the biochemical processes
67	functioning at the microparticle scale would be also important for soil P cycling and availability (Totsche
68	et al., 2018). However, the information related to how straw retention and mineral fertilization
69	managements affect soil P dynamics at scales of WECs remains scarce.
70	Microorganisms are instrumental in facilitating the transformation of soil P species, P cycling and P
71	availability regulation (Bergkemper et al., 2016). The processes of microbial P transformation primarily
72	consists of: (1) inorganic P solubilization (e.g., gcd); (2) organic P mineralization (e.g., phoD, phoA, phy);

73	(3) P starvation response regulation (e.g., <i>phoR</i> , <i>phoB</i>); and (4) P uptake and transport system (e.g., <i>pst</i>)
74	(Richardson and Simpson, 2011). Fertilization could further change the abundance and taxonomic
75	assignments of P cycling gene clusters (Dai et al., 2020; Zhang et al., 2023). For example, continuous N
76	fertilization over an extended period may lead to a decline in soil pH, inhibition of microbial growth,
77	alterations in the composition of the microbial community, and ultimately the reduction in the capacity
78	for P solubilization (Rousk et al., 2010). Additionally, genes expression related to organic P
79	mineralization, P-starvation regulation, P-uptake and transport are primarily affected by the
80	environmental P supply (Hsieh and Wanner, 2010). Several researches have shown that the adequate P
81	supply inhibited the genes expression associated with P-starvation response (e.g. <i>phoR</i>), as well as genes
82	encoding alkaline phosphatase (e.g. <i>phoD</i>) and phytase (e.g. <i>phy</i>) (Yao et al., 2018; Xie et al., 2020).
83	Straw retention could bring the increase in soil organic C, potentially enhancing the diversity and richness
84	of <i>phoD</i> -harboring microbes and the <i>phoD</i> abundance (Cao et al., 2022). Moreover, alterations in the P
85	transformation genes are driven by the structural effects of soil aggregates in addition to P availability
86	(Neal et al., 2017). However, little is known about the richness and distribution of genes related to P
87	transformation in WECs fraction with the treatments of straw retention and mineral fertilization, which
88	will offer a new perspective on P cycling and availability from a microbial perspective.
89	The long-term field experiments (~13 years) under straw retention and mineral fertilization were
90	conducted. This study aims to: (1) investigate the responses of P speciation, P-cycling-related genes and

- 91 taxonomic assignments in bulk soils and WECs under straw retention and fertilization management
- 92 strategies; (2) explore the relationship between P species, P-transformation genes and soil properties.
- 93 Finally, these results could elucidate the underlying mechanisms of soil P cycling and availability under
- 94 mineral fertilization and straw retention from the microparticle and microbial perspective, providing an
- 95 important insight into regulating P cycling in agriculture soils.

96 2. Materials and methods

97 2.1 Experimental design

- 98 In 2008, a field trial was conducted in Mengcheng County (33°9'N, 116°32'E), Anhui Province, China,
- 99 to investigate the rotation of winter wheat and summer maize. The soil is classified as a Vertisol (Staff,
- 100 2010), which is derived from fluvio-lacustrine sediments. The region experiences an average annual
- 101 temperature and precipitation of 14.8°C and 732.6 mm respectively.
- 102 Six treatments with three replicates (each plot area was 43.2 m²) were carried out: (1) the control
- 103 treatment, without straw retention and mineral fertilizer (W0M0F0), (2) single application of mineral
- 104 fertilizer (W0M0F1), (3) maize straw retention combined with mineral fertilization (W0M1F1), (4)
- 105 wheat straw retention combined with mineral fertilization (W1M0F1), (5) both wheat and maize straw
- 106 retention without fertilization (W1M1F0), and (6) a combination of both wheat and maize straw retention
- 107 with mineral fertilization (W1M1F1). In the W0M1F1 treatment, maize straw was chopped into
- 108 fragments approximately 10 cm in length and uniformly distributed in each plot after harvest, while

109	wheat straw was removed. In the W1M0F1 treatment, wheat straw was similarly returned to plots and
110	maize straw was removed. For W1M1F0 and W1M1F1 treatments, maize and wheat straw are both
111	returned to plots when they are harvested. The amounts of residue incorporation for wheat and maize
112	were 7500 and 12000 kg/ha respectively. For the fertilization treatments (i.e., W0M0F1, W0M1F1,
113	W1M0F1, W1M1F1), 240.0 kg/ha N (55% as basal fertilizer and 45% as topdressing during the reviving-
114	jointing period), 90.0 kg/ha P, and 90.0 kg/ha K (100% as basal fertilizer) were applied in each growing
115	season of winter wheat. The 300.0 kg/ha N (50% as basal fertilizer and 50% as topdressing at the flare
116	opening period), 90.0 kg/ha P and 90.0 kg/ha K (100% as basal fertilizer) were applied in each growing
117	season of summer maize. The fertilizers comprised of compound and urea fertilizer (N-P ₂ O ₅ -K ₂ O: 15-
118	15-15). The contents of P in maize straw and wheat straw was about 1.5 and 0.8 g/kg respectively (Chai
119	et al., 2021). In addition, weeds, disease, and pest control for both wheat and maize were consistent.
120	2.2 Soil sampling and water extractable colloids (WECs)
121	The soil samples with six treatments were conducted after wheat harvest in June 2021. Five soil cores
122	(0–20 cm) were gathered from each replicate plot using the quincunx sampling method, and then blended
123	evenly to create a composite sample. The divisions of three subsamples were made for each sample. The
124	first subsample was preserved at 4 °C to examine P (MBP) and microbial biomass C (MBC), along with
125	the acid and alkaline phosphatase activities (ACP and ALP). Another sample was at stored -80 °C for
126	metagenomics analysis. For other soil chemical properties test, the last sample was subjected to air-

127	drying, grinding, and subsequently sieving through a 2 mm mesh. In this study, the soil fraction consisting
128	of particles smaller than 2 mm was designated as bulk soil.
129	To further investigate the impact the sole straw retention and sole mineral fertilization on P cycling in
130	soil colloids, the particle-size fractionation method following Stokes' Law (Sequaris and Lewandowski,
131	2003) was utilized to obtain WECs for the W0M0F0, W0M0F1 and W1M1F0 treatments in this study.
132	About 113-116 g of moist soil samples (equivalent to 100 g of dry soil) was blended with 200 mL
133	ultrapure water, and then shaken at a speed of 150 rpm for a duration of 6 h. Afterward, we added an
134	extra 600 mL of ultrapure water and blended thoroughly. The particles >20 μ m were allowed to settle for
135	a period of 6 min. The 2-20 μm was then obtained by eliminating the supernatant following an addition
136	sedimentation of 12 h. The final supernatant containing colloidal particle fraction (<2 μ m) was obtained
137	and defined as WECs. The proportions of particles with >20 μm , 2-20 μm and <2 μm to bulk soil were
138	shown in Fig. S1.
139	2.3 Soil chemical properties
140	A pH meter was utilized to measure soil pH. An elementary analyzer was utilized for soil organic carbon
141	(SOC), and total nitrogen (TN). After microwave digestion, total P concentrations (TP) were gained by
142	inductively coupled plasma optical emission spectroscopy (ICP-OES). Available P (AP, Olsen-P)
143	concentration was quantified by Olsen and Sommers (1982).
144	The chloroform fumigation method outlined by Vance et al. (1987) and Brookes et al. (1982) was utilized

8

145	to quantify the soil MBC and MBP. The extracted C with 0.5 M $\mathrm{K_2SO_4}$ in non-fumigated and fumigated
146	samples was determined with the Multi N/C 2100S TOC-TN analyzer. The dissolved organic carbon
147	(DOC) was quantified as the extracted organic C by K_2SO_4 extract from the non-fumigated samples (Wu
148	et al., 2019). MBC was quantified by measuring the variation in extractable C content between the non-
149	fumigated and fumigated soil samples, using the universal conversion factor of 0.45. MBP was calculated
150	as the variation in extractable P with 0.5 M $\mathrm{NaHCO_3}$ between the non-fumigated and fumigated soil
151	samples, with a conversion factor of 0.40. The measurement of ACP and ALP followed the procedures
152	outlined by Tabatabai and Bremner (1969).
153	2.4 Phosphorus sequential extraction procedure and P K-edge XANES spectroscopy
154	The modified sequential extraction procedure, as described by Jiang and Gu (1989) and Audette et al.
155	(2016), was utilized to extract various P fractions including Ca ₂ -P, Ca ₈ -P, Al-P, Fe-P, occluded-P (O-P)
156	and Ca_{10} -P in bulk soils. Then the method outlined by Murphy and Riley (1962) was utilized to ascertain
157	the concentration of each P fraction.
158	P K-edge X-ray absorptions near-edge structure (XANES) spectra were utilized to clarify the P bonding
159	fractions in WECs, and acquired at Beamline 4B7A of the Beijing Synchrotron Radiation Facility,
160	Beijing, China. Dibasic calcium phosphate dihydrate (DCP, CaHPO4·2H2O), hydroxyapatite (HAP,
161	Ca ₅ (PO ₄) ₃ OH), aluminum phosphate (Al-P, AlPO ₄), iron phosphate dihydrate (Fe-P, FePO ₄ ·2H ₂ O) and

163	and soil samples were thinly spread on the carbon tape with a P-free, double-sided in PFY mode with a
164	SiLi detector. Multiple spectra were obtained with three duplicates for each sample and then averaged.
165	The spectra were studied using Athena (0.9.26) with the energy calibration at 2149 eV (E0), aligning
166	with the peak position of AlPO ₄ , as described by Beauchemin et al. (2003). Then, we performed the
167	Linear combination fitting (LCF) within the energy range spanning from -10 eV to 30 eV relative to E0,
168	and the goodness of fit was determined based on the chi-squared and R values. The most likely P species
169	considered was considered based on these results. The P K-edge XANES spectra of P reference
170	compounds were as shown in Fig. S2.
171	2.5 Solution ³¹ P NMR spectroscopy
172	Solution ³¹ P-NMR spectroscopy were performed to clarify P species (Turner, 2008). The 1 g bulk soil
173	and WECs sample was mixed with 10 mL of 0.25 M NaOH and 0.05 M Na ₂ EDTA and shaken for 4 h to
174	extract P (Cade-Menun and Liu, 2014; Jiang et al., 2017). The procedure was outlined in our prior study
175	(Bai et al., 2023). The ³¹ P-NMR spectra were acquired using a Bruker 500-MHz spectrometer with 4.32
176	s relaxation delay, 0.68 s acquisition time, 5000 scans, and 90° pulse width(Cade-Menun et al., 2010).
177	Compound identification relied on their chemical shifts following the calibration of the orthophosphate
178	peak to 6.0 ppm (Table S1). To validate peak identification, samples were spiked with myo-inositol
179	hexakisphosphate, α - and β - glycerophosphate, as well as adenosine monophosphate (Fig. S3). Instead
180	of being classified as monoesters, the α - and β -glycerophosphate as well as mononucleotides (Glyc+nucl)

181	were categorized as orthophosphate diesters (Doolette et al., 2009). Integration was conducted on spectra
182	with broadening at 7 and 2 Hz to calculate the area under each peak. To quantify the concentrations of P
183	species, the peak areas were multiplied by the concentration of NaOH-Na ₂ EDTA extractable P. The
184	spectra of bulk soil and WECs were processed using MestReNova 10.0.2 software, as shown in Fig. S4.
185	2.6 DNA extraction and metagenomics analysis
186	The process of soil DNA extraction was carried out with a FastDNA Spin kit (MP Biomedicals, USA).
187	The Agilent 5400 was utilized to determine the purity, integrity and concentration of the extracted DNA.
188	The generation of sequencing libraries was carried out using the NEBNext® Ultra [™] DNA Library Prep
189	Kit (PerkinElmer, USA). For each sample, barcodes were incorporated to enable sequence attribution.
190	After end-polished, A- tailing, and adapter ligation, the DNA fragments were subsequently subjected to
191	PCR amplification. Finally, a NovaSeq 6000 instrument was utilized for sequencing, generating paired-
192	end reads. Reads containing low-quality bases and N base were removed (Hua et al., 2015).
193	MEGAHIT was used to assemble the filtered reads (fastq formats) by de Bruijn graph with the minimum
194	k-mer size of 21 (Li et al., 2015). The default settings of Prodigal were used to identify the protein-
195	coding genes, as described by Hyatt et al. (2010). For functional annotation, we employed the Diamond
196	software to align the identified genes against the nonredundant protein sequences database of NCBI and
197	Kyoto Encyclopedia of Genes and Genomes (KEGG) databases following the methodologies as outlined
198	by Kanehisa and Goto (2000), Buchfink et al. (2015) and Huson et al. (2016).

199	According to the prior studies of Bergkemper et al. (2016), a cumulative of 29 genes associated with P-
200	transformation were identified, along with their corresponding KO numbers. These genes were
201	categorized into four distinct groups: (1) genes associated with inorganic P-solubilization; (2) genes
202	associated with organic P-mineralization; (3) genes associated with P-starvation regulation, and (4) genes
203	associated with microbial P-uptake and transport. Table S2 provides a comprehensive list of the
204	categorized genes along with their names, function descriptions, and KEGG Orthology (KO) numbers.
205	The sequence data have been submitted in the NCBI Sequence Read Archive (PRJNA909638).
206	2.7 Statistical analysis
207	The IBM SPSS and R software were utilized for statistical analyses and data visualization. The normality
208	distribution (Shapiro-Wilks tests) were performed before ANOVA. To identify significant differences
209	among mean values at a significance level of 0.05, the Tukey's honestly significant differences (HSD)
210	test was employed. The differences of soil properties, total P, inorganic P, organic P, ACP, and ALP
211	between bulk soils and WECs were tested by independent-samples T test. The differences of P cycling
212	genes composition in bulk soils and WECs were displayed by principal component analysis (PCA).
213	Principal coordinate analysis (PCoA) was utilized to present the microbial bacterial β -diversity for
214	typical P-solubilization (gcd) and mineralization (phoD) genes. The associations between the abundances
215	of P-transformation genes and soil characteristics were assessed using Spearman's correlations with the
216	correlation coefficients (R) > 0.6 and P-value <0.05. Structural equation modeling (SEM) was used to

- 217 explore the relationships among agricultural managements, soil properties, and P-cycling related genes
- 218 by Amos (24.0). The model fit was assessed with goodness of fit (GFI) and root square mean error of
- 219 approximation (RMSEA).
- 220 **3. Results**
- 221 **3.1 Soil properties in bulk soils and WECs**

222	Straw retention incorporated with mineral fertilization (i.e., W0M1F1, W1M0F1, W1M1F1) decreased
223	soil pH by 1.76-1.89 units and alkaline phosphatase activity (ALP) by 160.25-183.37 $\mu g/(g \cdot h)$
224	significantly, but increased significantly organic C by 2.66-4.73 g/kg, total N by 0.36-0.60 g/kg, total P
225	by 0.17-0.19 g/kg, available P by 28.11-31.97 mg/kg, and acid phosphatase activity (ACP) by 174.12-
226	449.25 $\mu g/(g \cdot h),$ respectively compared with the control treatment (i.e., W0M0F0) (Table 1). The
227	variations primarily resulted from the utilization of mineral fertilizers, as there were no noteworthy
228	distinctions observed in these parameters between straw retention combined with mineral fertilization
229	treatments and sole mineral fertilizer (i.e., W0M0F1). The application of straw retention (i.e., W1M1F0)
230	had little effect on these soil properties except for slight increases in soil MBC and MBP contents
231	compared with the control treatment. The outcomes suggested mineral fertilization showed more
232	prominent impact on soil characteristics compared to that of straw retention. Mineral fertilization indeed
233	enhanced soil nutrient contents, but caused soil acidification. The soil acidification was not effectively
234	alleviated under straw returning combined with mineral fertilization.

235	The WECs accounted for 9.73-11.05% of bulk soils, and the proportions of WECs were not affected by
236	mineral fertilization and straw retention (Fig. S1). The significantly higher concentrations of SOC, TN,
237	TP and available P were monitored in WECs than those in bulk soils for all the tested samples including
238	the control treatment (i.e., W0M0F0), sole mineral fertilization (i.e., W0M0F1) and sole straw retention
239	(i.e., W1M1F0) (Fig. 1 A-D). The influence of either mineral fertilization or straw retention on
240	physicochemical properties of WECs was more obvious than that on bulk soils. For example, organic C
241	and total N contents in WECs experienced a substantial rise following the implementation of straw
242	retention compared with the control treatment from Fig. 1 A and B.
243	3.2 P bonding fractions in bulk soils and WECs
244	The concentrations of total inorganic P and Ca2-P, Ca8-P, Al-P, and Fe-P under straw retention
245	incorporated with mineral fertilization increased remarkably by 128.93-146.99 mg/kg, 15.41-17.30
246	mg/kg, 3.19-4.38 mg/kg, 59.74-68.97 mg/kg, and 44.08-54.46 mg/kg, respectively compared with the
247	control as shown in Table 2. Accordingly, the marked increases in the proportion of Ca ₂ -P, Ca ₈ -P, Al-P,
248	and Fe-P were observed, while the proportion of Ca_{10} -P decreased remarkably (Fig. S4). These
249	differences were mainly caused by mineral fertilization. There was also no significant difference between
250	straw retention incorporated with mineral fertilization and sole mineral fertilization. The straw retention
251	had little impact on the concentrations of each inorganic P fraction compared with the control.
252	According to the XANES analysis of WECs, there were notable increases in the proportions of Al-P and

253	Fe-P, but remarkable decreases in the proportions of DCP and IHP was observed after mineral
254	fertilization compared with the control treatment (Table 3 and Fig. S5). However, the straw retention
255	brought slight increases in the proportions of Fe-P and IHP.
256	3.3 Solution ³¹ P NMR analysis of bulk soils and WECs
257	The concentrations and proportion of orthophosphate in bulk soils increased by 146.4-182.6 mg/kg and
258	18.6-21.3% significantly under straw retention incorporated with mineral fertilization compared with the
259	control and sole straw retention treatments (Table 4 and Fig. S6A). Organic P concentrations also
260	increased under mineral fertilization, among which orthophosphate monoesters and orthophosphate
261	diesters increased by 12.78-27.00 mg/kg and 7.55-10.05 mg/kg, respectively. Furthermore, the
262	concentration of each P specie in bulk soil showed no notable difference between straw retention
263	incorporated with mineral fertilization treatments and sole mineral fertilization treatment (Table 4). In
264	comparison with the control, the concentration of orthophosphate monoesters and orthophosphate
265	diesters in bulk soil increased slightly under sole straw retention, but this difference was not statistically
266	significant. These results manifested that the effect of mineral fertilization on P species concentration
267	was more apparent than that of straw retention.
268	Notably, the concentrations of orthophosphate, orthophosphate monoesters, orthophosphate diesters, and
269	Glyc+nucl (i.e., α/β -glycerophosphate and mononucleotides) in WECs were significantly greater (~2.5
270	times) than those in bulk soil for all the tested samples (Table 4 and 5). Mineral fertilization had more

271	significant effects on the concentrations of P species in WECs compared with those in bulk soils. Relative
272	to the control, the concentrations of orthophosphate, orthophosphate monoesters and orthophosphate
273	diesters rise sharply after mineral fertilization for WECs, while the significant increase of only
274	orthophosphate concentrations was detected for bulk soils. Furthermore, the concentration of these P
275	species in WECs under sole straw retention increased slightly in comparison with the control (Table 5).
276	3.4 Genes associated with P transformation in bulk soils and WECs
277	In bulk soils, there were remarkable decreases in total relative abundances of genes associated with P-
278	transformation under the combined application of straw retention and mineral fertilization compared with
279	the control. These genes included those related to organic P-mineralization (e.g., phoA, phoD, phy, ugpQ),
280	P-starvation regulation (e.g., <i>phoR</i>), P-uptake and transport (e.g., <i>phnCDE</i>) as described in Figs. 2A and
281	B. No notable difference was observed in the abundances of these P transformation genes in bulk soils
282	between straw retention combined with mineral fertilization and sole mineral fertilization, but they were
283	significantly different from those for sole straw retention. This indicated that the decrease in abundances
284	of P transformation genes was mainly caused by mineral fertilization but not by straw retention.
285	Correspondingly, the PCA results also revealed clear separations for the genes related to P-cycling
286	between with (i.e., W0M0F1, W1M0F1, W0M1F1, and W1M1F1) and without (i.e., W0M0F0 and
287	WM1F0) mineral fertilization treatments (Fig. 3 A).
288	The PCA analysis (Fig. 3 B) exhibited a clear segregation between the P-cycling genes in WECs and

289	those in bulk soils for all the tested samples, including sole mineral fertilization, sole straw retention and
290	the control treatments. Straw retention caused significant differences of relative abundance for many
291	gene species including ppa, ppk, phoD, phoN, phy, phoR, phnCDE and ugpBAEC between WECs and
292	bulk soils. In contrast, sole mineral fertilization caused significant differences of less gene species
293	including gcd, ppx, glpABCK and phoR, and the control treatment caused significant differences of
294	glpABCK and phoR genes (Fig. 4 B). These results suggested that straw retention caused greater change
295	of P cycling gene between WECs and bulk soils compared with mineral fertilization.
296	3.5 Taxonomic assignments of <i>phoD</i> and <i>gcd</i> genes
297	The <i>phoD</i> gene (encoding alkaline phosphatases) and <i>gcd</i> gene (encoding glucose dehydrogenase for
298	synthesizing) serve as critical indicators of P mineralization and solubilization, respectively. As shown
299	in Fig. 4, straw retention caused significant increase of the abundance for <i>phoD</i> gene and mineral
300	fertilization caused significant decrease of the abundance for gcd genes in WECs compared with bulk
301	soils. Thus, we further performed the taxonomic assignments of <i>phoD</i> and <i>gcd</i> genes.
302	For bacterial taxa containing the phoD gene in WECs (Fig. 5 A), the abundance of Proteobacteria
303	increased significantly under sole straw retention when compared to those in bulk soils. For bacterial
304	taxa containing the gcd gene in WECs (Fig. 5 B), the abundance of Acidobacteria decreased significantly
305	compared with those in bulk soils under mineral fertilization. Additionally, the bacterial β -diversity in
306	WECs showed a clear divergence from those in bulk soils for all the treatments (Fig. S7).

307	3.6 Correlations between P-cycling genes and soil properties, P species in bulk soils and WECs
308	According to Spearman's Rank correlations (Fig. S8), more P gene species were correlated with soil
309	properties and nutrients in bulk soils than WECs (R \geq 0.6, P \leq 0.05), suggesting that the response of P
310	cycling genes to soil properties in bulk soil were more sensitive than those in WECs. Specially, a
311	correlation was detected between the majority of P cycling genes and soil nutrients including C, N, P in
312	bulk soils. Whereas, there was no consistent trends in WECs.
313	According to Fig. 6, mineral fertilization influenced the P-cycling genes by decreasing soil pH and
314	increasing total P in bulk soil. The model fit in bulk soil was : GFI=0.939, RMSEA=0.036. Furthermore,
315	the decrease in soil pH affected positively the genes involved in organic P mineralization (0.82, $P < 0.01$)
316	and the increase in total P had negative effect on the genes involved in P-starvation regulation (-0.77, P
317	< 0.01). In WECs, agricultural managements affected the P-cycling genes by increasing total P (0.98, P
318	< 0.01) and organic C (0.92, P $<$ 0.01).The model fit in WECs was : GFI=0.964, RMSEA=0.000.
319	Moreover, total P had negatively affected the genes related to and organic P mineralization (-0.67, P \leq
320	0.01) and inorganic P solubilization (-0.69, $P < 0.05$).
321	4. Discussions
322	4.1 Response of soil properties, P species and transformation genes in bulk soils

323 In bulk soil, mineral fertilization decreased soil pH, increased soil TP, thus decreasing the abundances of

324 P transformation genes. Soil acidification might be due to the increased protons release from nitrification

325	processes occurring under mineral N fertilization (Guo et al., 2010). The significant increases in TP
326	concentrations under mineral fertilization might be closely associated to the enhanced organic matter
327	from crop residues and the input of P fertilizers (Zhang et al., 2018). Moreover, Tong et al. (2019)
328	reported that mineral fertilization also increased root exudates, which brought the increases in soil
329	organic matter and nutrients.
330	Generally, the P mineralization, P-starvation regulation, P-uptake and transport genes were primarily
331	influenced by the environmental availability of P (Hsieh and Wanner, 2010; Richardson and Simpson,
332	2011). Under conditions of low soil P, microorganisms exhibited an upregulation of genes within the Pho
333	regulon, specifically those encoding phosphatases and phosphate transporters (Vershinina and
334	Znamenskaya, 2002). The expression of <i>phoR</i> and <i>phoD</i> was governed by the presence of P starvation
335	conditions (Xie et al., 2020). The phytase was inhibited by high level of phosphate (Yao et al., 2018) and
336	higher abundance of phy (3-phytase) was observed in P-deficient soils compared to P-rich soils (Siles et
337	al., 2022). The $ugpQ$ gene also usually accumulated in P starvation conditions as the operon of
338	glycerophosphodiester-utilizing system (Luo et al., 2009). Therefore, in the control and straw retention
339	treatments with lower P concentrations, higher abundances of phoD, phy, phoR, and ugpQ genes were
340	observed in comparison with the mineral fertilization treatments (Fig. 2). Mineral fertilization reduced
341	the abundance of genes about P mineralization (e.g., phoA, phoD, phy, ugpQ), P-starvation regulation
342	(e.g., phoR), P-uptake and transport (e.g., phnCDE) significantly (Fig. 2). Consistent with our findings,

343	prior research has indicated that a notable decline in the <i>phoD</i> gene abundance with mineral fertilization
344	alone or combined with maize straw compared with the control (Ikoyi et al., 2018). Long-term P
345	application resulted in a reduction in the abundances of <i>phoR</i> gene according to Dai et al. (2020).
346	Additionally, observed changes in soil pH significantly impacted microbial abundances and communities
347	(Neal et al., 2017; Wan et al., 2021). According to Chen et al. (2017), soil pH was identified as the primary
348	factor exerting an influence on the microbial community compositions harboring the <i>phoD</i> gene, with a
349	positive correlation observed between the soil pH and the abundance of the <i>phoD</i> gene. Studies have
350	provided evidence that a decrease in soil pH could inhibit bacterial/fungal growth (Li et al., 2020), modify
351	the microbial community compositions (Rousk et al., 2010), and decrease the relative abundances of
352	Actinobacteria and Proteobacteria for phoD gene (Luo et al., 2017), which in turn decreases P
353	mineralization capacity.
354	According to the Spearman's Rank correlations in this study, the <i>phoD</i> , <i>phoA</i> , <i>phy</i> , <i>ugpQ</i> , and <i>phoR</i> genes
355	abundances were correlated negatively with the contents of orthophosphate, orthophosphate monoesters,
356	orthophosphate diesters, and positively with soil pH (p < 0.05) (Fig. S8 A). Thus, the decline in the
357	abundance of the P-cycling related genes can be attributed to increasing soil P contents and low soil pH
358	under mineral fertilization.
359	In bulk soil, straw retention showed no significant impact on soil properties, P species and transformation
360	genes. Straw decomposition was affected by the composition of straw (e.g., the C/N, C/P, lignin, cellulose

361	of straw) and soil characteristics (e.g., soil aeration, pH and nutrient contents). The high C/N, lignin, and
362	cellulose in wheat and maize straw might slow down straw decomposition (Talbot and Treseder, 2012).
363	The C/N in wheat and maize straw (52-73:1) were significantly higher than suitable microorganisms C:N
364	(25-30:1) for straw decomposition (Cai et al., 2018), and microorganisms needed to consume soil original
365	N when decomposing straw. Therefore, the straw retention without N addition could limit the
366	decomposition rate of straw. Thus, the straw retention for 13 years did not show any significant impact
367	on soil C, N, P nutrients. Yet it is noteworthy that although the decomposition rate of straw was slow, it
368	started to have slight effects on the accumulation of soil microorganisms C and P in bulk soils and was
369	expected to have a more obvious effect in the longer term. The slow decomposition of straw provided
370	the nutrients and promoted crop root exudation, consequently fostering the growth of soil microbial and
371	augmenting soil MBC (Wang et al., 2021). The slight increase in MBC derived the increase of MBP
372	(Spohn and Kuzyakov, 2013). When N and P fertilizers were added, straw retention incorporated with
373	mineral fertilization could enhance microbial activity, improve soil microbial C/N and C/P, promote straw
374	decomposition and increase organic C contents (Li et al., 2018). The input of N and P fertilizers brought
375	the significant increase in soil N and P contents (Zhang et al., 2018). In this study, straw retention
376	incorporated with mineral fertilization had remarkable influences on soil characteristics and nutrients,
377	which was significantly different from sole straw retention. There was no discernible disparity in soil pH
378	between straw retention incorporated with mineral fertilization and single mineral fertilization, indicating

379	that straw retention did not alleviate soil acidification caused by mineral fertilization.
380	4.2 Response of soil properties, P species and transformation genes in WECs
381	The higher concentrations of SOC, TN, TP, AP and P species in WECs compared with bulk soil (Fig. 1)
382	indicated that nutrients within WECs are enriched, which was because of their high specific surface area
383	(Jiang et al., 2014). The influences of mineral fertilization and straw retention on soil properties and P
384	species in WECs were stronger compared with those in bulk soils, suggesting that the physicochemical
385	properties of soil microparticles were more sensitive than bulk soil in response to soil environmental
386	disturbance. Soil colloids are the most active constituent, representing the micro particulate phase of soils,
387	and play a fundamental role in the cycling of P (Fresne et al., 2022). Previous studies demonstrated that
388	colloids were the important vectors governing P mobility and bioavailability (Rick and Arai, 2011).
389	According to de Jonge et al. (2004), colloidal P can make a substantial contribution to the transportable
390	P, amounting to as much as 75% in arable soils. More inorganic and organic P accumulated in the WECs
391	compared with bulk soils (Tables 4 and 5), which could improve the potential bioavailability and mobility
392	of P (Krause et al., 2020). Notably, although the practice of straw retention did not result in any significant
393	changes on nutrient contents in bulk soils, it brought significant increases in TN and SOC contents (Fig.
394	1 A and B) and slight increases in the concentrations of TP and each P species for WECs. This indicated
395	that straw retention promoted the accumulation of nutrients on WECs, which exerted a considerable
396	influence on the supply and cycling of P.

397	Straw retention caused the greater change of P cycling genes between WECs and bulk soils compared
398	with mineral fertilization (Fig. 4 B) and led to a significant increase of <i>phoD</i> gene in WECs compared
399	with bulk soils. Research conducted by Fierer et al. (2012) and Ling et al. (2014) suggested that higher
400	concentrations of total N, P and organic C could favor the growth of microorganisms. For bacterial taxa
401	containing <i>phoD</i> gene, the abundance of <i>Proteobacteria</i> (Fig. 5 A) increased significantly in WECs
402	compared with those in bulk soils under sole straw retention. This indicated that straw retention might
403	increase the <i>phoD</i> gene abundance by influencing <i>phoD</i> -harbouring <i>Proteobacteria</i> , and then increase P
404	mineralizing capacity in WECs. Several studies have highlighted that Proteobacteria has been
405	recognized as a crucial group of microorganisms involved in the mineralization of P (Zhang et al., 2023)
406	and the increase in <i>phoD</i> -harbouring <i>Proteobacteria</i> could improve potential P mineralization (Xie et al.,
407	2020). The Proteobacteria belongs to copiotrophic microorganisms groups, and accumulates in rich
408	nutrient soils (Wang et al., 2022). In our research, the notable increases in SOC, TN and each P specie in
409	WECs were likely to provide favorable conditions of copiotrophic bacteria (e.g., Proteobacteria) under
410	straw retention. Generally, the WECs (clay particles, ${<}2~\mu\text{m})$ including natural organic matter (e.g.,
411	humus) and inorganic colloids (silicate, and Al/Fe oxides) (Zhang et al., 2021) were considered to be the
412	best natural microorganism adsorbents (Zhao et al., 2014; Madumathi, 2017). Previously conducted
413	research has indicated that most bacteria (65%) associated with <2 μm soil particulates (Oliver et al.,
414	2007). The population of the bacteria (Pseudomonas putida) attached to the clay particle in Red soil

415	(Ultisol) was significantly higher compared to the populations found on silt and sand particles (Wu et al.,
416	2012). Furthermore, the increased SOC could improve the surface area and activity of WECs (Zhao et
417	al., 2014), thus increasing microorganism adhesion (Van Gestel et al., 1996). SOC was a key component
418	of P binding in colloids (Sun et al., 2023). Thus, we considered that the P cycling microorganisms in soil
419	colloids might be influenced mainly by the increased nutrients contents.
420	In this study, although mineral fertilization also caused the enhancements of SOC contents in WECs, it
421	brought dramatical increase of P contents and decrease of pH by 1.76-1.89 units, which restricted the
422	abundance of P cycling genes in both WECs and bulk soils as discussed before. Therefore, the difference
423	of P-cycling genes between WECs and bulk soil under mineral fertilization was less significant than
424	those under straw retention. Additionally, the consistent change trends of the gcd gene and gcd-
425	harbouring Acidobacteria indicated that the decrease in gcd gene abundance in WECs might be driven
426	by the gcd-harboring Acidobacteria under mineral fertilization. (Khan et al., 2007), the gcd gene coding
427	the membrane-bound quinoprotein glucose dehydrogenase (PQQGDH) was involved in the regulation
428	of the process of making inaccessible mineral P soluble, such as some rock phosphate, hydroxyapatite,
429	and Ca phosphates. Wu et al. (2021) have shown that the increase in gcd-harbouring Acidobacteria
430	improved P solubilization. The Acidobacteria was acidophilic and oligotrophic bacteria. Most of their
431	members lived in low nutrient or high acidity environments. The abundance of Acidobacteria was often
432	negatively correlated with soil nutrient contents and pH (Jones et al., 2009; Rousk et al., 2010). As

433	mentioned above, soil pH decreased significantly (Table 1) and this might lead to the increase of
434	Acidobacteria in bulk soils after mineral fertilization. The WECs had strong soil buffering capacity by
435	the exchangeable ion, organic C and clay particles (Curtin and Trolove, 2013; Dvorackova et al., 2022),
436	and could alleviate the pH change, which did not support the growth of Acidobacteria. The pH buffering
437	capacity and greater nutrient contents in WECs might limit the expression of Acidobacteria compared
438	with bulk soils under mineral fertilization, thus causing the significant decrease in gcd gene abundance
439	in WECs compared with the bulk soil.
440	5. Conclusions
441	This study provides systematic insights into P speciation and P transformation microorganisms at the soil
442	microparticle scale (WECs) compared with bulk soil under straw retention and mineral fertilization.
443	Straw retention caused more obvious impact on the accumulation of organic C and total N of WECs and
444	the greater change of P cycling genes between WECs and bulk soils even than mineral fertilization. The
445	significant increase in the abundance of gene encoding for alkaline phosphatase (phoD) and phoD-
446	harbouring Proteobacteria for WECs compared with bulk soils indicated the improved P mineralization
447	capacity of WECs under straw retention. This information provided strong evidences that straw retention
448	could potentially affect the turnover, mobility and availability of P mainly by changing the
449	physicochemical and biochemical processes involved in the P transformation of soil colloids.

450 Acknowledgements

- 451 The study was funded by the National Natural Science Foundation of China (No. 42377323) and the
- 452 Foundation of Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University (No.
- 453 N2021-002).

454 **Declaration of competing interest**

455 The authors declare no competing interests.

456 Supplementary material

457 Supplementary material associated with this paper are available on the online version.

458

459 **References**

460	Audette, Y., O'Halloran, I.P., Evans, L.J., Voroney, R.P., 2016. Preliminary validation of a sequential
461	fractionation method to study phosphorus chemistry in a calcareous soil. Chemosphere 152,
462	369-375.
463	Bai, S.S., Tan, J.F., Zhang, Z.Y., Wei, M., Zhang, H.M., Jiang, X.Q., 2023. Phosphorus speciation
464	and colloidal phosphorus responses to short-term cessation of fertilization in a lime concretion
465	black soil. Pedosphere 33, 948-959.
466	Beauchemin, S., Hesterberg, D., Chou, J., Beauchemin, M., Simard, R.R., Sayers, D.E., 2003.
467	Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption
468	near-edge structure spectroscopy and chemical fractionation. J. Environ. Qual. 32, 1809-1819.
469	Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., Schulz, S., 2016.
470	Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus
471	recycling systems. Environ. Microbiol. 18, 1988-2000.
472	Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Measurement of microbial biomass
473	phosphorus in soil. Soil Biology and Biochemistry 14, 319-329.
474	Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND.
475	Nature Methods 12, 59-60.
476	Cade-Menun, B., Liu, C.W., 2014. Solution Phosphorus-31 Nuclear Magnetic Resonance
477	Spectroscopy of Soils from 2005 to 2013: A Review of Sample Preparation and Experimental

478	Parameters. Soil Science Society of America Journal 78, 19-37.
479	Cade-Menun, B.J., Carter, M.R., James, D.C., Liu, C.W., 2010. Phosphorus forms and chemistry in
480	the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic
481	resonance study. Journal of Environmental Quality 39, 1647-1656.
482	Cai, A., Liang, G., Zhang, X., Zhang, W., Li, L., Rui, Y., Xu, M., Luo, Y., 2018. Long-term straw
483	decomposition in agro-ecosystems described by a unified three-exponentiation equation with
484	thermal time. Sci. Total Environ. 636, 699-708.
485	Cao, D., Lan, Y., Sun, Q., Yang, X., Chen, W., Meng, J., Wang, D., Li, N., 2021. Maize straw and
486	its biochar affect phosphorus distribution in soil aggregates and are beneficial for improving
487	phosphorus availability along the soil profile. European Journal of Soil Science 72, 2165-2179.
488	Cao, N., Zhi, M., Zhao, W., Pang, J., Hu, W., Zhou, Z., Meng, Y., 2022. Straw retention combined
489	with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related
490	enzymes and the abundance of phoC and phoD genes. Soil and Tillage Research 220, 105390.
491	Chai, R., Xu, Y., Cheng, Q., Wang, Q., Ma, C., Ye, X., Zhang, L., Gao, H., 2021. Nutrient resource
492	quantity of main crop straw and utilization potential under straw returning in Anhui province.
493	Scientia Agricultura Sinica 54, 95-109.
494	Chen, L., Li, F., Li, W., Ning, Q., Li, J.W., Zhang, J.B., Ma, D.H., Zhang, C.Z., 2020. Organic
495	amendment mitigates the negative impacts of mineral fertilization on bacterial communities in
496	shajiang black soil. Applied Soil Ecology 150, 103457.
497	Chen, X.D., Jiang, N., Chen, Z.H., Tian, J.H., Sun, N., Xu, M.G., Chen, L.J., 2017. Response of soil
498	phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic
499	materials. Applied Soil Ecology 119, 197-204.
500	Cheng, Z.B., Chen, Y., Gale, W.J., Zhang, F.H., 2019. Inorganic Phosphorus Distribution in Soil
501	Aggregates Under Different Cropping Patterns in Northwest China. Journal of Soil Science
502	and Plant Nutrition 19, 157-165.
503	Curtin, D., Trolove, S., 2013. Predicting pH buffering capacity of New Zealand soils from organic
504	matter content and mineral characteristics. Soil Research 51, 494-502.
505	Dai, Z.M., Liu, G.F., Chen, H.H., Chen, C.R., Wang, J.K., Ai, S.Y., Wei, D., Li, D.M., Ma, B., Tang,
506	C.X., Brookes, P.C., Xu, J.M., 2020. Long-term nutrient inputs shift soil microbial functional
507	profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal 14, 757-770.
508	Damon, P.M., Bowden, B., Rose, T., Rengel, Z., 2014. Crop residue contributions to phosphorus
509	pools in agricultural soils: A review. Soil Biol. Biochem. 74, 127-137.
510	de Jonge, L.W., Moldrup, P., Rubaek, G.H., Schelde, K., Djurhuus, J., 2004. Particle leaching and
511	particle-facilitated transport of phosphorus at field scale. Vadose Zone Journal 3, 462-470.
512	Deng, X., Xu, T.L., Dong, W.W., Zhang, Q., Liang, Y.J., 2021. Distribution of Organic Phosphorus
513	in Soil Aggregates from Apple-Pear Orchard of China. Eurasian Soil Science 54, 72-79.

514	Doolette, A.L., Smernik, R.J., Dougherty, W.J., 2009. Spiking improved solution phosphorus-31
515	nuclear magnetic resonance identification of soil phosphorus compounds. Soil Science Society
516	of America Journal 73, 919-927.
517	Dvorackova, H., Dvoracek, J., Hueso Gonzalez, P., Vlcek, V., 2022. Effect of different soil
518	amendments on soil buffering capacity. Plos One 17, e0263456.
519	Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., Knight, R., 2012.
520	Comparative metagenomic, phylogenetic and physiological analyses of soil microbial
521	communities across nitrogen gradients. ISME Journal 6, 1007-1017.
522	Fresne, M., Jordan, P., Daly, K., Fenton, O., Mellander, PE., 2022. The role of colloids and other
523	fractions in the below-ground delivery of phosphorus from agricultural hillslopes to streams.
524	Catena 208, 105735.
525	Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T.,
526	Vitousek, P.M., Zhang, F.S., 2010. Significant acidification in major chinese croplands. Science
527	327, 1008-1010.
528	Guo, Z.C., Li, W., Ul Islam, M., Wang, Y.K., Zhang, Z.B., Peng, X.H., 2022. Nitrogen fertilization
529	degrades soil aggregation by increasing ammonium ions and decreasing biological binding
530	agents on a Vertisol after 12 years. Pedosphere 32, 629-636.
531	Hsieh, YJ., Wanner, B.L., 2010. Global regulation by the seven-component Pi signaling system.
532	Curr. Opin. Microbiol. 13, 198-203.
533	Hua, Z.S., Han, Y.J., Chen, L.X., Liu, J., Hu, M., Li, S.J., Kuang, J.L., Chain, P.S.G., Huang, LN.,
534	Shu, W.S., 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage
535	revealed by metagenomics and metatranscriptomics. The ISME Journal 9, 1280-1294.
536	Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, HJ., Tappu,
537	R., 2016. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale
538	Microbiome Sequencing Data. PLoS Computational Biology 12, e1004957.
539	Hyatt, D., Chen, GL., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal:
540	prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics
541	11, 119.
542	Ikoyi, I., Fowler, A., Schmalenberger, A., 2018. One-time phosphate fertilizer application to
543	grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci.
544	Total Environ. 630, 849-858.
545	Jiang, B.F., Gu, Y.C., 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous
546	soils. Fertil. Res. 20, 159-165.
547	Jiang, C.L., Séquaris, JM., Wacha, A., Bóta, A., Vereecken, H., Klumpp, E., 2014. Effect of metal
548	oxide on surface area and pore size of water-dispersible colloids from three German silt loam
549	topsoils. Geoderma 235-236, 260-270.

550	Jiang, X.Q., Amelung, W., Cade-Menun, B.J., Bol, R., Willbold, S., Cao, Z.H., Klumpp, E., 2017.
551	Soil organic phosphorus transformations during 2000 years of paddy-rice and non-paddy
552	management in the Yangtze River Delta, China. Scientific Reports 7, 1-12.
553	Jiang, X.Q., Bol, R., Willbold, S., Vereecken, H., Klumpp, E., 2015. Speciation and distribution of
554	P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences
555	12, 6443-6452.
556	Jiang, X.Q., Wulf, A., Bol, R., Klumpp, E., 2023. Phosphorus content in water extractable soil
557	colloids over a 2000 years chronosequence of paddy-rice management in the Yangtze River
558	Delta, China. Geoderma 430, 116296.
559	Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. A
560	comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library
561	analyses. ISME Journal 3, 442-453.
562	Ju, W., Fang, L., Shen, G., Delgado-Baquerizo, M., Chen, J., Zhou, G., Ma, D., Bing, H., Liu, L.,
563	Liu, J., Jin, X., Guo, L., Tan, W., Blagodatskaya, E., 2023. New perspectives on microbiome
564	and nutrient sequestration in soil aggregates during long-term grazing exclusion. Global
565	Change Biology, e17027.
566	Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids
567	Research 28, 27-30.
568	Khan, M.S., Zaidi, A., Wani, P.A., 2007. Role of phosphate-solubilizing microorganisms in
569	sustainable agriculture — A review. Agronomy for Sustainable Development 27, 29-43.
570	Krause, L., Klumpp, E., Nofz, I., Missong, A., Amelung, W., Siebers, N., 2020. Colloidal iron and
571	organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma 374,
572	114421.
573	Li, C.Y., Hao, Y.h., Xue, Y.L., Wang, Y., Dang, T.H., 2020. Effects of long-term fertilization on soil
574	microbial biomass carbon, nitrogen, and phosphorus in the farmland of the Loess Plateau,
575	China. Journal of Agro-Environment Science 39, 1783-1791.
576	Li, D., Liu, CM., Luo, R., Sadakane, K., Lam, TW., 2015. MEGAHIT: an ultra-fast single-node
577	solution for large and complex metagenomics assembly via succinct de Bruijn graph.
578	Bioinformatics 31, 1674-1676.
579	Li, LJ., Zhu-Barker, X., Ye, R., Doane, T.A., Horwath, W.R., 2018. Soil microbial biomass size
580	and soil carbon influence the priming effect from carbon inputs depending on nitrogen
581	availability. Soil Biol. Biochem. 119, 41-49.
582	Ling, N., Sun, Y., Ma, J., Guo, J., Zhu, P., Peng, C., Yu, G., Ran, W., Guo, S., Shen, Q., 2014.
583	Response of the bacterial diversity and soil enzyme activity in particle-size fractions of
584	Mollisol after different fertilization in a long-term experiment. Biol. Fertility Soils 50, 901-911.
585	Luo, G., Ling, N., Nannipieri, P., Chen, H., Raza, W., Wang, M., Guo, S., Shen, Q., 2017. Long-

586	term fertilisation regimes affect the composition of the alkaline phosphomonoesterase
587	encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertility
588	Soils 53, 375-388.
589	Luo, H., Benner, R., Long, R.A., Hu, J., 2009. Subcellular localization of marine bacterial alkaline
590	phosphatases. Proc. Natl. Acad. Sci. 106, 21219-21223.
591	Ma, L., Guo, Z.B., Wang, D.Z., Zhao, B.Z., 2019. Effect of long-term application of phosphorus
592	fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black
593	soil. Acta Pedologica Sinica 56, 1459-1470.
594	Madumathi, G., 2017. Transport of E. coli in presence of naturally occuring colloids in saturated
595	porous media. Water Conservation Science and Engineering 2, 153-164.
596	Missong, A., Holzmann, S., Bol, R., Nischwitz, V., Puhlmann, H., v. Wilpert, K., Siemens, J.,
597	Klumpp, E., 2018. Leaching of natural colloids from forest topsoils and their relevance for
598	phosphorus mobility. Science of The Total Environment 634, 305-315.
599	Montavo, D., Degryse, F., McLaughlin, M.J., 2015. Natural colloidal P and its contribution to plant
600	P uptake. Environmental Science & Technology 49, 3427-3434.
601	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate
602	in natural waters. Anal. Chim. Acta 27, 31-36.
603	Neal, A.L., Rossmann, M., Brearley, C., Akkari, E., Guyomar, C., Clark, I.M., Allen, E., Hirsch,
604	P.R., 2017. Land-use influences phosphatase gene microdiversity in soils. Environmental
605	Microbiology 19, 2740-2753.
606	Oliver, D.M., Clegg, C.D., Heathwaite, A.L., Haygarth, P.M., 2007. Preferential attachment of
607	escherichia coli to different particle size fractions of an agricultural grassland soil. Water, Air,
608	and Soil Pollution 185, 369-375.
609	Olsen, S.R., Sommers, L.E., 1982. Determination of available phosphorus. Agronomy, 403-430.
610	Ranatunga, T.D., Reddy, S.S., Taylor, R.W., 2013. Phosphorus distribution in soil aggregate size
611	fractions in a poultry litter applied soil and potential environmental impacts. Geoderma 192,
612	446-452.
613	Richardson, A.E., Simpson, R.J., 2011. Soil microorganisms mediating phosphorus availability
614	update on microbial phosphorus. Plant Physiol. 156, 989 - 996.
615	Rick, A.R., Arai, Y., 2011. Role of natural nanoparticles in phosphorus transport processes in ultisols.
616	Soil Science Society of America Journal 75, 335-347.
617	Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer,
618	N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The
619	ISME Journal 4, 1340-1351.
620	Sequaris, J.M., Lewandowski, H., 2003. Physicochemical characterization of potential colloids from

621 agricultural topsoils. Colloids and Surfaces A: Physicochemical and Engineering Aspects 217,

622	93-99.
623	Siles, J.A., Starke, R., Martinovic, T., Fernandes, M.L.P., Orgiazzi, A., Bastida, F., 2022.
624	Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups
625	based on metagenome and genome mining. Soil Biology and Biochemistry 174, 108826.
626	Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for
627	carbon. Soil Biology and Biochemistry 61, 69-75.
628	Staff, S.S., 2010. Keys to Soil Taxonomy, USDA-Natural Resources Conservation Service,
629	Washington, DC.
630	Sun, X.L., Matthias May, S., Amelung, W., Tang, N., Brill, D., Arenas-Díaz, F., Contreras, D.,
631	Fuentes, B., Bol, R., Klumpp, E., 2023. Water-dispersible colloids distribution along an alluvial
632	fan transect in hyper-arid Atacama Desert. Geoderma 438, 116650.
633	Tabatabai, M.A., Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase
634	activity. Soil Biol. Biochem. 1, 301-307.
635	Talbot, J.M., Treseder, K.K., 2012. Interactions among lignin, cellulose, and nitrogen drive litter
636	chemistry-decay relationships. Ecology 93, 345-354.
637	Tong, Z.Y., Quan, G.L., Wan, L.Q., He, F., Li, X.L., 2019. The effect of fertilizers on biomass and
638	biodiversity on a semi-arid grassland of northern China. Sustainability 11, 2854.
639	Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff,
640	E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I., 2018. Microaggregates in
641	soils. Journal of Plant Nutrition and Soil Science 181, 104-136.
642	Turner, B.L., 2008. Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA
643	extraction procedure for quantitative analysis by solution ³¹ P NMR spectroscopy. European
644	Journal of Soil Science 59, 453-466.
645	Van Gestel, M., Merckx, R., Vlassak, K., 1996. Spatial distribution of microbial biomass in
646	microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to
647	soil drying. Soil Biol. Biochem. 28, 503-510.
648	Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil
649	microbial biomass C. Soil Biology and Biochemistry 19, 703-707.
650	Vershinina, O.A., Znamenskaya, L.V., 2002. The pho regulons of bacteria. Microbiology 71, 497-
651	511.
652	Wan, W.J., Hao, X.L., Xing, Y.H., Liu, S., Zhang, X.Y., Li, X., Chen, W.L., Huang, Q.Y., 2021.
653	Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus
654	mineralization. Land Degradation & Development 32, 766-776.
655	Wang, M.M., Wu, Y.C., Zhao, J.Y., Liu, Y., Chen, Z., Tang, Z.Y., Tian, W., Xi, Y.G., Zhang, J.B.,
656	2022. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-

657 harboring bacterial community in rice-winter wheat rotation system. Science of The Total

658	Environment 821, 153406.
659	Wang, Q.J., Cao, X., Jiang, H., Guo, Z.H., 2021. Straw application and soil microbial biomass
660	carbon change: a meta-analysis. Clean – Soil, Air, Water 49, 2000386.
661	Wu, H., Jiang, D., Cai, P., Rong, X., Dai, K., Liang, W., Huang, Q., 2012. Adsorption of
662	Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic
663	matter. J. Soils Sed. 12, 143-149.
664	Wu, L., Zhang, W.J., Wei, W.J., He, Z.L., Kuzyakov, Y., Bol, R., Hu, R.G., 2019. Soil organic matter
665	priming and carbon balance after straw addition is regulated by long-term fertilization. Soil
666	Biology and Biochemistry 135, 383-391.
667	Wu, X., Peng, J., Liu, P., Bei, Q., Rensing, C., Li, Y., Yuan, H., Liesack, W., Zhang, F., Cui, Z., 2021.
668	Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven
669	by organic material amendments. Sci. Total Environ. 785, 147329.
670	Xie, Y.Y., Wang, F.H., Wang, K., Yue, H.Z., Lan, X.F., 2020. Responses of bacterial phoD gene
671	abundance and diversity to crop rotation and feedbacks to phosphorus uptake in wheat. Applied
672	Soil Ecology 154, 103604.
673	Xu, Y., Chen, X., Wang, Q.Y., Luo, L.C., Zhang, C.C., Li, J.C., Ye, X.X., Gao, H.J., Chai, R.S.,
674	2022. Effects of long-term wheat and maize straw incorporation on phosphorus fractions in
675	lime concretion black soil. Journal of Agro-Environment Science 41, 1768-1777.
676	Yao, Q.M., Li, Z., Song, Y., Wright, S.J., Guo, X., Tringe, S.G., Tfaily, M.M., Paša-Tolić, L., Hazen,
677	T.C., Turner, B.L., Mayes, M.A., Pan, C., 2018. Community proteogenomics reveals the
678	systemic impact of phosphorus availability on microbial functions in tropical soil. Nature
679	Ecology & Evolution 2, 499-509.
680	Zhang, L., Liu, H.H., Sun, J.Q., Li, J.C., Song, Y.H., 2018. Seedling characteristics and grain yield
681	of maize grown under straw retention affected by sowing irrigation and splitting nitrogen use.
682	Field Crops Research 225, 22-31.
683	Zhang, Q., Bol, R., Amelung, W., Missong, A., Siemens, J., Mulder, I., Willbold, S., Müller, C.,
684	Westphal Muniz, A., Klumpp, E., 2021. Water dispersible colloids and related nutrient
685	availability in Amazonian Terra Preta soils. Geoderma 397, 115103.
686	Zhang, Y., Gao, W., Ma, L., Luan, H., Tang, J., Li, R., Li, M., Huang, S., Wang, L., 2023. Long-
687	term partial substitution of chemical fertilizer by organic amendments influences soil microbial
688	functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse
689	vegetable production. Agric., Ecosyst. Environ. 341, 108193.
690	Zhao, Q.L., Xin, C.Y., Wang, Y., Wang, J., Liu, Q.H., Li, J.L., Ma, J.Q., 2018. Characteristics of
691	inorganic phosphorus in lime concretion black soil under continuous straw-return and
692	fertilization in a rice-wheat rotation area. Acta Prataculturae Sinica 27, 58-68.

693 Zhao, W., Walker, S.L., Huang, Q., Cai, P., 2014. Adhesion of bacterial pathogens to soil colloidal

- 694 particles: Influences of cell type, natural organic matter, and solution chemistry. Water Res. 53,
- 695 35-46.

696

treatments

A: Soil organic carbon (SOC), B: Total nitrogen (N), C: Total phosphorus (P), D: Available phosphorus (P), E: acid phosphatase activity (ACP), F: alkaline phosphatase activity (ALP). Significant differences between treatments in bulk soil are indicated by lowercase letters (p<0.05). Significant differences between treatments in WECs (< 2 μ m) are indicated by capital letters (p<0.05). Significant differences between bulk soil and WECs are as follows, * p < 0.05 and ** p < 0.01 (Independent-samples T test).

Fig. 2 Relative abundance of representative genes responsible for microbial (1) inorganic P solubilization, (2) organic Pmineralization, (3) P-starvation regulation, and (4) P-uptake and transport in bulk soil

The six treatments were: (1) the control treatment, without straw retention and mineral fertilizer (W0M0F0), (2) single application of mineral fertilizer (W0M0F1), (3) maize straw retention combined with mineral fertilizer (W1M0F1), (4) wheat straw retention combined with mineral fertilizer (W1M0F1), (5) both wheat and maize straw retention with no fertilizer (W1M1F0), and (6) both wheat and maize straw retention combined with mineral fertilizer (W1M1F1) respectively. The relative abundances of genes were calculated related to the annotated reads. Significant differences between treatments in bulk soil are indicated by lowercase letters (p<0.05). The relative abundance of glp transporter systems was calculated as the average abundances of gene glpA, glpB, glpC, and glpK; the phn transporter systems was calculated as the average abundances of gene pstS, pstC, pstA, and pstB; The ugp transporter systems was calculated as the average abundances of gene ugpB, ugpA, ugpE, and ugpC.

Fig. 3 Principal component analysis (PCA) of P-transformation gene composition in bulk soil (A) and water-extractable colloids (WECs, B)

Fig. 4 Relative abundance of representative genes responsible for microbial (1) inorganic P solubilization, (2) organic Pmineralization, (3) P-starvation regulation, and (4) P-uptake and transport in bulk soils and water-extractable colloids (WECs) among the W0M0F0, W0M0F1, and W1M1F0 treatments

The relative abundances of genes were calculated related to the annotated reads. Significant differences between treatments in bulk soil are indicated by lowercase letters (p<0.05). Significant differences between treatments in WECs (< 2μ m) are indicated by capital letters (p<0.05). Significant differences between bulk soil and WECs are as follows, * p < 0.05 and ** p < 0.01 (Independent-samples T test). The relative abundance of glp transporter systems was calculated as the average abundances of gene glpA, glpB, glpC, and glpK; the phn transporter systems was calculated as the average abundances of gene phnC, phnD, and phnE; the pst transporter systems was calculated as the average abundances of gene ugpB, ugpA, ugpE, and ugpC.

Fig. 5 Taxonomic assignments of phoD gene for the W1M1F0 treatment (A) and gcd gene for the W0M0F1 treatment (B) at the phylum level in bulk soil and water-extractable colloids (WECs)

The blue and red solid arrows represent the significant positive and negative relationships between different variables. The dashed arrows represent nonsignificant relationships. The numbers near the blue and red arrows are the path coefficients. *, P < 0.05; **, P < 0.01.

Table 1 Soil properties of bulk soil among six treatments										
Soil properties W0M0F0 W0M0F1 W0M1F1 W1M0F1 W1M1F0 W1M1F										
рН	6.90±0.07a	5.10±0.14b	5.06±0.09b	5.14±0.08b	6.79±0.08a	5.01±0.31b				
Gravimetric moisture (%)	0.14±0.01a	0.15±0.01a	0.14±0.01a	0.15±0.01a	0.15±0.02a	0.15±0.01a				
Soil organic C (g/kg)	9.47±0.29c	13.20±0.56ab	12.13±0.74b	13.70±0.56ab	9.47±0.81c	14.20±0.96a				
Total N (g/kg)	1.07±0.06c	1.53±0.06ab	1.43±0.06b	1.67±0.15a	1.07±0.06c	1.57±0.06ab				
Total P (g/kg)	0.38±0.01b	0.57±0.02a	0.56±0.04a	0.55±0.03a	0.37±0.01b	0.56±0.01a				
Available P (mg/kg)	4.43±1.34b	32.77±3.26a	32.54±3.18a	36.40±1.35a	5.18±1.04b	32.49±4.12a				
Microbial biomass P (mg/kg)	6.80±0.44a	nd	nd	nd	9.01±4.35a	nd				
Dissolved organic C (mg/kg)	54.21±2.56b	133.43±2.80a	142.03±8.13a	134.11±3.97a	57.01±9.61b	140.01±9.51a				
Microbial biomass C (mg/kg)	316.39±59.52a	357.95±24.32a	343.28±90.16a	307.96±27.45a	336.23±52.37a	387.89±21.52a				
Acid phosphatase activity ($\mu g/(g \cdot h)$)	582.80±103.58c	815.06±128.42abc	756.92±142.48bc	1032.05±149.59ab	506.63±46.11c	1102.26±133.11a				
Alkaline phosphatase activity (µg/(g·h))	304.01±43.97a	144.08±21.39b	120.64±88.90b	138.34±12.14b	310.30±46.22a	143.76±44.88b				

The six treatments were: (1) the control treatment, without straw retention and mineral fertilizer (W0M0F0), (2) single application of mineral fertilizer (W0M0F1), (3) maize straw retention combined with mineral fertilization (W0M1F1), (4) wheat straw retention combined with mineral fertilizer (W1M0F1), (5) both wheat and maize straw retention combined with mineral fertilizer (W1M0F1), (5) both wheat and maize straw retention combined with mineral fertilizer (W1M1F1) respectively. Values are means \pm standard error. The "nd" indicates that the microbial biomass P were not detected. Significant differences between treatments are indicated by the different lowercase letters (p<0.05).

Table 2 Concentrations (mg/kg) of inorganic P fractions in bulk soil

Samples	Ca ₂ -P	Ca ₈ -P	Al-P	Fe-P	O-P	Ca ₁₀ -P	Total inorganic P
W0M0F0	3.39±0.17b	1.27±0.22b	25.14±1.29b	27.46±3.86b	37.31±3.02c	119.95±4.70a	214.53±2.93c
W0M0F1	20.39±2.83a	5.58±0.64a	90.23±8.03a	71.54±5.20a	44.91±2.18abc	119.04±3.11a	351.69±14.93a
W0M1F1	18.80±0.45a	4.46±1.04a	84.88±13.86a	72.13±4.98a	46.34±4.35abc	116.85±6.13a	343.46±22.74a
W1M0F1	19.87±5.24a	5.19±0.65a	94.11±15.81a	81.92±8.76a	48.11±3.08ab	112.32±12.05a	361.52±23.06a
W1M1F0	3.19±0.56b	1.20±0.31b	22.76±0.90b	25.99±2.70b	41.13±2.52bc	111.17±8.09a	205.44±2.78c
W1M1F1	20.69±3.57a	5.65±0.81a	83.91±3.61a	79.95±5.52a	54.36±5.84a	110.18±14.65a	354.74±21.09a

The six treatments were: (1) the control treatment, without straw retention and mineral fertilizer (W0M0F0), (2) single application of mineral fertilizer (W0M0F1), (3) maize straw retention combined with mineral fertilizer (W1M0F1), (4) wheat straw retention combined with mineral fertilizer (W1M0F1), (5) both wheat and maize straw retention with no fertilizer (W1M1F0), and (6) both wheat and maize straw retention combined with mineral fertilizer (W1M1F1) respectively. Inorganic P fractions includes calcium-bound P (Ca-P), aluminum-bound P (Al-P), iron-bound P (Fe-P), and occluded phosphate (O-P), Ca-P can be divided into dicalcium phosphate (Ca₂-P), octacalcium phosphate (Ca₈-P) and apatite (Ca₁₀-P). Values in each column followed by the different lowercase letters indicate significant differences (P < 0.05).

Table 3 Phosphorus K-edge XANES fitting results (%) showing the relative percent of each P species in water-

extractable colloids (WECs)									
Samples	DCP	Al-P	Fe-P	IHP					
W0M0F0	29.25±2.36a	20.46±0.93b	23.69±2.51b	26.60±1.09a					
W0M0F1	7.31±0.93b	31.35±0.53a	44.55±1.42a	16.79±0.49b					
W1M1F0	23.91±4.14a	20.14±1.98b	28.58±2.28b	27.37±0.70a					

The six treatments were: (1) the control treatment, without straw retention and mineral fertilizer (W0M0F0), (2) single application of mineral fertilizer (W0M0F1), (3) maize straw retention combined with mineral fertilization (W0M1F1), (4) wheat straw retention combined with mineral fertilizer (W1M0F1), (5) both wheat and maize straw retention with no fertilizer (W1M1F0), and (6) both wheat and maize straw retention combined with mineral fertilizer (W1M1F1) respectively. DCP, dibasic calcium phosphate dihydrate (DCP, CaHPO₄·2H₂O); Al-P, aluminum phosphate (AlPO₄); Fe-P, iron phosphate dihydrate (FePO₄·2H₂O); and IHP, inositol hexakisphosphate, Values in each column followed by the different lowercase letters indicate significant differences (P < 0.05).

	N-OU M- EDTA	Inorganic P		Organic P					
Samples	NaOII-Na2EDIA	Orth	Deve		Orthophosphat	Orthophosphate diesters			
	extracted r	Ofth	Fylo	Monoesters	Myo-IHP	Scyllo-IHP	Other mono	Diesters	Glyc+nucl
W0M0F0	120.47±11.00b	62.26±0.23c	5.60±0.02a	41.40±1.17b	7.16±0.47a	1.56±0.45a	32.68±2.08a	11.21±0.92b	10.59±0.92a
W0M0F1	309.62±30.41a	221.21±4.47ab	7.73±1.41a	61.94±1.25ab	13.27±0.27a	4.42±0.09a	44.24±0.89a	18.76±4.31ab	16.57±1.23a
W0M1F1	320.30±32.89a	225.11±12.29ab	5.67±1.90a	68.27±10.58a	11.26±0.61a	4.50±0.25a	52.51±11.44a	21.26±3.61a	19.09±0.55a
W1M0F1	340.18±40.35a	244.85±7.47a	7.35±0.22a	68.40±8.30a	12.14±6.55a	3.70±1.84a	52.56±3.59a	19.59±0.60ab	18.39±2.29a
W1M1F0	126.11±14.31b	60.78±0.62c	6.39±1.35a	44.67±0.83b	7.90±0.08a	2.43±0.02a	34.33±0.94a	14.28±1.14ab	11.54±0.74a
W1M1F1	286.84±29.14a	208.68±5.37b	5.20±1.34a	54.18±4.51ab	9.41±1.72a	4.17±0.11a	40.6±6.33a	18.78±0.48ab	17.72±1.02a
The six treat	ments were: (1) the c	control treatment, w	ithout straw ret	ention and miner	al fertilizer (W	0M0F0), (2) s	ingle application	of mineral fertiliz	er (W0M0F1),
(3) maize st	raw retention combin	ed with mineral fe	rtilization (W0	M1F1), (4) whea	t straw retentio	on combined v	ith mineral fertil	izer (W1M0F1),	(5) both wheat
and maize s	traw retention with n	o fertilizer (W1M1	F0), and (6) bo	oth wheat and ma	uze straw reten	ntion combined	d with mineral fer	rtilizer (W1M1F	 respectively.
Calculation	by including diester d	legradation product	s (i.e. Glyc+nu	cl: α/β- glycerop	hosphate, and 1	nononucleotic	les) with orthopho	osphate diesters (Diesters) rather
than orthoph	osphate monoesters (Monoesters). Phos	phorus compou	nds include ortho	phosphate (Ort	h), pyrophospl	nate (Pyro), myo i	nositol hexakispł	nosphate (Myo-
IHP), scylloinositol hexakisphosphate (Scyllo-IHP), other monoesters not specifically identified (Other mono), α/β- glycer-ophosphate (Glyc), and									
mononucleo	nononucleotides (nucl). Values in each column followed by the different lowercase letters indicate significant differences ($P < 0.05$).								

Table 4 Concentrations (mg/kg) of P species in bulk soil evaluated in the solution ³¹P NMR analysis

Table 5 Concentrations (mg/kg) of P species in water-extractable colloids (WECs) evaluated in the solution ³¹P

	NMR analysis									
	N-OUN- EDTA	Inorganic P	Inorganic P							
Samples	NaOH-Na2EDIA			0	rthophosphat	e monoesters	Orthopho			
	extracted P	Orth	Pyro	Monoesters	Myo-IHP	Scyllo-IHP	Other mono	Diesters	Glyc+nucl	DNA
W0M0F0	258.36±19.99b	96.97±12.00b	14.02±1.05a	110.24±6.77b	17.28±0.58a	4.32±0.15a	88.63±6.04b	37.14±6.29a	28.58±4.63a	0.97±0.12b
W0M0F1	777.38±76.78a	545.53±2.71a	21.82±0.11a	158.19±6.93a	13.63±3.79a	5.46±0.03a	139.10±3.17a	51.84±4.11a	30.01±4.01a	5.46±0.03a
W1M1F0	280.02±28.65b	111.96±9.46b	16.40±5.33a	110.56±10.38b	17.78±1.65a	4.48±0.38a	88.31±9.10b	41.09±4.42a	29.96±3.78a	1.12±0.09b
The six tre	atments were: (1)	the control treat	tment, without	straw retention	and mineral f	ertilizer (W0	M0F0), (2) sin	gle application	of mineral fertilize	er (W0M0F1),
(3) maize	straw retention con	mbined with m	ineral fertilizat	ion (W0M1F1),	(4) wheat st	raw retention	combined wit	h mineral fertil	izer (W1M0F1), ((5) both wheat
and maize	straw retention w	ith no fertilizer	(W1M1F0), a	nd (6) both whe	at and maize	straw retenti	ion combined	with mineral fer	rtilizer (W1M1F1) respectively.
Calculatio	n by including dies	ster degradation	products (i.e.	Glyc+nucl: α/β	- glycerophos	phate, and m	ononucleotides	s) with orthopho	osphate diesters (E	Diesters) rather
than orthophosphate monoesters (Monoesters). Phosphorus compounds include orthophosphate (Orth), pyrophosphate (Pyro), myo inositol hexakisphosphate (Myo-										
IHP), scy	IHP), scylloinositol hexakisphosphate (Scyllo-IHP), other monoesters not specifically identified (Other mono), α/β - glycer-ophosphate (Glyc), and									
mononucl	mononucleotides (nucl). Values in each column followed by the different lowercase letters indicate significant differences ($P < 0.05$).									