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Abstract. Arctic coasts experience some of the highest rates of erosion in the world, particularly due to permafrost degradation 

resulting from the recent exacerbation of climate change. Therefore, not only have coastal defense and energy facilities been 

threatened, but maintenance costs for the infrastructure of cold regions have also risen. To monitor the coastal erosion pattern 10 

of the circum-Arctic, earlier studies often employ spaceborne or airborne optical multi-spectral images to depict shoreline 

changes, which are limited by frequent clouds and haze in Arctic regions and, thus, hamper the time-series analysis. Instead, 

this study aims to explore the synthetic aperture radar (SAR) images, especially the recently developed microsatellite SAR 

data, which provide unprecedented high-resolution at a sub-meter scale, to measure the summertime spatio-temporal dynamics 

of an ice-rich permafrost coast along the Beaufort Sea, Alaska. The results reveal a maximum shoreline change envelope (SCE) 15 

of 64.89 m during the three-month study period. To examine the differences between the estimations and the observations 

derived from the conventional Sentinel-1 data, the proposed multi-stage statistical-driven scheme is used. A statistically 

significant positive relationship between two depicted SCEs with the presence of heteroscedasticity is confirmed. In detail, the 

agreement between two SCEs increases with the magnitude of the SCE, indicating that the microsatellite SAR can depict more 

trivial changes in coastline positions. Founded on the results and detailed discussion on the uniqueness and limitations of 20 

current SAR sensors, the promising opportunity to utilize the blooming microsatellite SAR datasets for coastal monitoring is 

highlighted. 

1 Introduction 

Permafrost, also known as perennially frozen ground, is the subsurface material composed of soil, ice, sediment, or even 

bedrock with a variable thickness that remains at or below 0 ° C for at least two consecutive years. Due to unique 25 

biogeochemical processing and low decomposition rates, permafrost holds a huge amount of carbon stock. Previous studies 

estimated that around 1300-1700 Pg of organic carbon (OC) is stored in the Arctic permafrost, accounting for almost half of 

terrestrial carbon storage globally (Streletskiy et al., 2015). However, due to the recent deterioration of climate change, 

permafrost stability has been sabotaged, especially considering that the Arctic warming speed is twice the global average 

because of the Arctic amplification effect (Stocker et al., 2013).  30 
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Therefore, among global shorelines, Arctic coasts demonstrate the most severe erosion (Jorgenson and Brown, 2005) and, thus, 

release large amounts of sequestrated OC into the Arctic Ocean. According to Wegner et al. (2015), coastal erosion results in 

around 4.9-14.0 Tg/year OC flux, i.e., nearly half of the riverine amount. In fact, a study reports that erosion rates on Arctic 

Alaskan coasts have doubled since the middle of the twentieth century (Frederick et al., 2016). Even worse, as simulated by 

Guo and Wang (2016), 72% of the permafrost in Alaska will thaw under the representative concentration pathway (RCP)4.5, 35 

which could lead to significant impacts on both terrestrial and marine landscapes. 

Consequently, to quantify Arctic coastal erosion, which is an imminent threat to coastal environments and infrastructure (Gibbs 

and Richmond, 2015), many studies utilize spaceborne or airborne multi-spectral images to depict shoreline changes (Bristol 

et al., 2021; Jones et al., 2018). Nevertheless, since these remote sensing sensors are passive, their data availability is hindered 

by cloud cover and haze in Arctic regions, which hampers the time-series analysis. Thus, as recent studies indicate, 40 

understanding Arctic coasts' spatiotemporal dynamics remains limited (Frederick et al., 2016; Jones et al., 2018). It impedes 

modeling the thermodynamic mechanism and geomorphic feedback on OC losses and jeopardizes the forecasting and 

adaptation of climate change on local ecosystems and communities.  

Fortunately, spaceborne synthetic aperture radar (SAR) provides an alternative data source. While SAR data are cloud-free 

and weather-independent, they are rarely employed for Arctic shoreline monitoring until recently (Bartsch et al., 2020; Philipp 45 

et al., 2022). Also, most studies utilize SAR images having a relatively coarse spatial resolution of around 20 m that are 

acquired with either the classic stripmap or advanced ScanSAR mode, which cannot depict the high spatial heterogeneity of 

Arctic coastal dynamics. In contrast, the rapid growth of microsatellite-based SAR sensors in recent years that have achieved 

sub-meter resolution with their spotlight mode grant a unprecedented opportunity. Nonetheless, to the best of the author’s 

knowledge, there is no work that makes use of these novel SAR microsatellite constellations to monitor the Arctic coasts. 50 

Thence, the overall objective of this study is to explore the latest very high-resolution microsatellite-based SAR data for 

depicting the erosional dynamics of Arctic permafrost coasts, exemplified by an Alaskan coast. It hereby utilizes the shoreline 

extraction method proposed in Tsai (2024). To investigate the reliability and details of the shoreline changes derived from 

microsatellite SAR, observations estimated with the relatively coarse resolution conventional SAR data are compared via the 

proposed robust statistical-based scheme. Lastly, the uniqueness and limitations of microsatellite SAR data relative to 55 

conventional SAR sensors are also discussed. 

2 Study area and materials 

2.1 Study area 

The Alaskan permafrost coast exhibits the highest erosive rate among the Arctic and the world, especially along the Beaufort 

Sea coast (Frederick et al., 2016). This is due to the wide distribution of ice-rich permafrost and the lack of barrier islands 60 

(Ravens et al., 2012). Due to the deterioration and retreat of the shoreline, many Alaskan coastal villages and infrastructure 

have been threatened or relocated (Nicolsky et al., 2017). Regarding the oceanic condition, the Beaufort Sea coast features low 
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wave energy and a centimeter-scale micro-tidal setting (Gibbs and Richmond, 2015); thence, the tidal effect, i.e., the offsets 

of shoreline positions resulting from the variations of tidal heights (Tsai and Tseng, 2023), is neglectable.  

Specifically, this study focuses on a coast segment extending approximately 3.4 km near McLeod Point, located 7 km east of 65 

Drew Point (Fig. 1). It is one of the most erosive coasts along the north slope of Alaska (Gibbs and Richmond, 2015). Even 

worse, a significant acceleration in rates over decades has been reported in recent studies (Jones et al., 2018; Tsai, 2024). The 

landscape at the site is characterized by ice wedges, thermokarst lakes, and drained thaw lake basins (DTLBs), stemming from 

the thermo-mechanical erosion of ice-rich permafrost (Frohn et al., 2005). Because of the exacerbated coastal erosion and low-

lying bluffs, frequent inundation causes brown-looked salt-killed tundra and overwash of sediments inland (Gibbs and 70 

Richmond, 2015). Similar to other Alaskan permafrost coasts, the erosion at this coastal segment takes place mainly in the sea 

ice-free summertime season owing to the storm and wave-leading thermo-abrasion and the resultant block failure (Jones et al., 

2009).  

 

Figure 1: The geographical location of the study coast (red line) near McLeod Point, Alaska. The employed Sentinel-1 and Umbra 75 
images are demonstrated in (a) and (b), respectively. The coverage of Umbra SAR images is represented as the orange polygon in 

(a). 

2.2 Spaceborne SAR datasets 

2.2.1 Microsatellite-based SAR images 

The number of available SAR sensors has been dramatically increasing in recent decades because of national space agencies 80 

and the private sector (Morgan et al., 2020). Specifically, in the aspect of hardware, these SAR imagery companies, such as 

ICEYE, Capella Space, Umbra Lab, Synspective, iQPS, XpressSAR, and PredaSAR, focus on developing near or sub-100 kg 

https://doi.org/10.5194/egusphere-2024-1099
Preprint. Discussion started: 16 May 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

SAR microsatellites constellations that are less expensive. These SAR sensors predominantly operate in the X band because 

high-frequency signals have many merits: (1) it provides a finer spatial resolution in the azimuth direction, as the beamwidth 

of a specific aperture length is proportional to the wavelength, (2) it provides a finer spatial resolution in the range direction, 85 

as high-frequency spectrum is less congested than the commonly used low-frequency spectrum, and thus allows a wider 

bandwidth to generate a shorter pulse. As a result, these microsatellite-based SAR sensors provide very high resolution (≤ 1 

m) images and, thus, enable more detailed ground surface change detection.  

In this study, the Umbra SAR constellation developed by an Earth observation startup, Umbra Lab, is employed. Its first 

microsatellite is launched in 2021, and currently there are eight satellites with Initial Operational Capability (IOC) on a near-90 

polar orbit with a nominal orbital height of 560 km. More importantly, Umbra SAR sensors make use of an exceptionally wide 

bandwidth of up to 1,200 MHz. Thus, an ultra-high resolution from 1 m to 0.25 m is achievable in their spotlight acquisition 

mode. Regarding the polarization, Umbra provides a single polarization among two co-polarizations (HH and VV), which 

yields a greater contrast between land and ocean and, therefore, facilitates shoreline detection (Angelliaume et al., 2018). To 

depict the detailed intra-seasonal dynamics of the study coast, the present study exploits seven Umbra images with a nominal 95 

resolution of 0.5 m. These images are acquired bi-weekly during the landfast sea ice-free summertime (June to October) when 

most erosion occurs. The VV polarization is selected to align with the Sentinel-1 images. The metadata of the used Umbra 

images is summarized in Table 1. 

2.2.2 Sentinel-1 images 

To examine the results extracted from high-resolution Umbra images, conventional Sentinel-1 data maintained by the European 100 

Space Agency (ESA) are used. The Sentinel-1 constellation currently consists of Sentinel-1A and -1B, launched in 2014 and 

2016, respectively. However, the operation of the latter has been terminated since December 2021 due to a power anomaly. 

Compared to the 70 kg-weighted Umbra microsatellite that transmits approximately 500 watts, the 2.3 ton-weighted Sentinel-

1 has a peak power of up to 4.3 kW (Anghel et al., 2019). Consequently, Sentinel-1 guarantees a better signal-to-noise ratio 

(SNR) and a wider swath width. In this study, nine Sentinel-1 images acquired with the interferometric wide (IW) swath mode 105 

with a nominal resolution of 20 × 5 m are employed. They are acquired approximately during the same summertime period as 

the Umbra data, with detailed dates summarized in Table 1. 

Table 1. The metadata of the employed SAR datasets. 

SAR sensor Umbra Sentinel-1 

Platform type Microsatellite Large satellite 

Wavelength X-band C-band 

Acquisition mode Spotlight Interferometric Wide (IW) 

Product type 
Geo-ellipsoid Corrected 

(GEC) 

Ground Range Detected 

(GRD) 
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Multi-look factor 

(range × azimuth) 
1 × 1 5 × 1 

Polarization VV VV 

Average incidence angle 30.8° 37.7° 

Average ground resolution 

(range × azimuth) (m) 
0.65 × 0.65 20.4 × 22.5 

Acquisition date 

2023/6/25 2023/6/25 

2023/7/26 2023/7/7 

2023/8/9 2023/7/19 

2023/8/21 2023/7/31 

2023/9/6 2023/8/12 

2023/9/20 2023/8/24 

2023/10/4 2023/9/5 

 2023/9/17 

 2023/9/29 

3 Methodology 

3.1 SAR image pre-processing and co-registration 110 

Since different SAR sensors have diverse specifications and product types, their pre-processing workflows vary. For Sentinel-

1 GRD data, firstly, the state vectors are corrected with the precise orbit files with a three-dimensional root-mean-square (RMS) 

of less than five centimeters, and then the thermal noises are removed. Next, the stored amplitude is radiometrically calibrated 

to gamma nought, which shows the least incidence angle- and topography-dependency. Because no precise digital elevation 

model (DEM) is available (considering the rapid change of landscape), the terrain-flattened normalization is not performed. 115 

Lastly, an average ellipsoidal height-based range-Doppler correction is conducted to geocode and orthorectify slant-range SAR 

images. On the other hand, because Umbra GEC data are already geocoded and ellipsoid-based terrain corrected, no further 

steps are performed. 

Based on both SAR sensors’ geocoded amplitude images, the next step is to co-registrate each stack at a sub-pixel accuracy. 

Practically, it is fulfilled with a two-stage cross-correlation using a large/small window size and a small/large oversampling 120 

factor, respectively. This step is straightforward for Sentinel-1 images that have stringent orbital precision and a narrow orbital 

tube (RMS of less than 100 m in radius) (Geudtner et al., 2016), guaranteeing precise geocoding. In contrast, Umbra satellites 

have poorer orbital repeatability and result in unsatisfying geocoding accuracy; thus, they must be co-registrated with a 

reference image with reliable geometrical precision, e.g., Sentinel-1. However, because 20 m-resolution Sentinel-1 images are 
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much coarser than the 0.5 m-resolution Umbra images, they cannot be used as the reference (although in this study, co-125 

registrated Sentinel-1 images are resampled to the exact resolution of Umbra images to facilitate shoreline mapping at a sub-

pixel scale). Therefore, an additional VV-polarized spotlight TerraSAR-X image acquired on 2023/10/6 is used, which has a 

reliable geometric accuracy and high spatial resolution. To co-registrate the stack of Umbra images, this TerraSAR-X image 

is first radiometrically calibrated and geocoded. Considering the varying offsets and geometric distortions between Umbra 

images, a polynomial warping function is used for the co-registration. Eventually, via visual inspections, there is no visible 130 

offset among co-registrated Umbra images. 

3.2 SAR-based feature extraction and shoreline mapping 

Because SAR images suffer from random interference-caused speckle, it is necessary to further enhance the contrast of 

backscattered intensity between the ocean surface and land. Therefore, the SAR-derived feature extraction and shoreline 

mapping approach proposed in Tsai (2024) is followed. Firstly, the intensity is logarithmically converted to decibel units, i.e., 135 

decibel images, which compress the wide value range and, thus, highlight the overall boundary of ocean/land. Next, the second-

order Grey Level Co-occurrence Matrix (GLCM) variance is extracted from the co-occurrence of pixel values with a moving 

window of 5×5 and a pixel displacement of 1 in all directions. It not only explains approximately 95% of the absolute loadings 

among all GLCM features to the first principal component analysis (PCA) component exhibiting the most significant contrast 

between ocean/land but also mitigates the influences of speckle and yields less noisy shorelines (Tsai, 2024). Then, based on 140 

the co-registrated GLCM variance, time-series shorelines are mapped with the morphological active contours without edges 

(MorphACWE) algorithm (Marquez-Neila et al., 2013). This method iteratively evolves an elastic curve to depict the ocean 

and land boundary, eventually yielding a smooth and continuous shoreline. Consequently, multi-temporal shorelines can be 

extracted from stacked Umbra and Sentinel-1 images. 

Whilst the approach mentioned above can be applied to conventional SAR datasets as demonstrated in Tsai (2024), it is 145 

unsuitable for microsatellite SAR images for two reasons: (1) high-resolution SAR images bear severer speckle. This is because 

compared with the conventional coarse-resolution SAR images, the number of scatterers in each resolution cell is much fewer 

in high-resolution SAR images; therefore, the speckle pattern does not obey the Goodman statistical model. In consequence, 

a larger variation of backscattered phase (and the resultant intensity) between pixels over a homogenous surface (e.g., beaches 

or the ocean surface) is evident and, thus, conventional fully developed speckle-targeted filters (e.g., Lee filter) cannot achieve 150 

an ideal performance (Xu et al., 2018). (2) microsatellite SAR images have a higher (i.e., poorer) system-caused background 

noise, i.e., the noise-equivalent sigma zero (NESZ). It is due to the fact that although most microsatellite SAR operate in 

relatively low orbital attitudes, they have much lighter weights and thus, inevitably use a shorter antenna and deliver a weaker 

transmit power (Patyuchenko et al., 2009). 

To mitigate the influences of severer speckle and poorer NESZ of microsatellite SAR images, the mapped shorelines are further 155 

generalized with the polynomial approximation with exponential kernel (PAEK) algorithm (Bodansky et al., 2002). This 

method guarantees the smoothing of vectors while maintaining local geometric consistency. Hence, it is commonly used for 
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post-processing optical image-derived shorelines (Ferrer-Valero, 2018; Sayre et al., 2019). Yet, it is rarely used for SAR-based 

shoreline mapping studies.  

3.3 Coastal erosion assessment and cross-SAR sensor comparison 160 

Founded on the multi-temporal shorelines retrieved from both Umbra and Sentinel-1 images, coastal erosion dynamics can be 

quantified. This study employs the Digital Shoreline Analysis System (DSAS) developed by the United States Geological 

Survey (USGS) (Himmelstoss et al., 2018), which provides a standard workflow for depicting shoreline changes recommended 

by the Federal Emergency Management Agency (FEMA). In detail, by automatically casting equally spaced transects, DSAS 

can estimate each coastal segment’s spatio-temporal variation with different statistical indices, e.g., shoreline change envelope 165 

(SCE) (i.e., the greatest distance among all shorelines) and linear regression rate (LRR). In the present study, transects are cast 

at a three-meter interval and SCE is utilized rather than LRR because (1) the number of analyzed images is fewer than ten 

(Table 1); therefore, the uncertainties in LRR would be enlarged and (2) the objective of this study is to depict the maximum 

shoreline retreating distance among the study summertime instead of monitoring the long-term average change rate. 

Consequently, two different SCEs derived from Umbra and Sentinel-1 images can be estimated along the study coast, which 170 

are expected to show discrepancies in both patterns and magnitudes. Theoretically, the SCE derived from Umbra images is 

more accurate, as the spatial resolution of Umbra images is more than tenfold higher than the Sentinel-1 images. Therefore, 

examining the agreement and uniqueness of the two SCEs is necessary. To achieve this goal, this study proposes a statistically 

reliable and multi-stage scheme to compare these two SCEs, elaborated as follows.  

Firstly, statistical metrics are computed, including median absolute deviation (MAD), mean absolute error (MAE), and root-175 

mean-square error (RMSE). These metrics provide quantitative measurements of two SCEs’ similarity with different pros and 

cons, such as sensitivity to outliers. Therefore, the overall difference between the two results can be revealed. Next, assuming 

that both SCEs share a linear relationship, a linear regression analysis is used to fit the observations. The R-squared value is 

computed and the overall F-test is conducted to assess the fitness (i.e., explained variances) of the linear regression model. 

Furthermore, Pearson’s correlation analysis is calculated, which also assumes a linear relationship. Yet, to examine the 180 

bivariate normal distribution required by Pearson’s correlation, Kolmogorov-Smirnov (K-S) and Shapiro-Wilk tests are 

performed on both SCEs to verify their normality. 

However, considering that both SCEs may be non-normal and share a non-linear relationship, non-parametric correlation tests 

are also performed, i.e., Spearman’s and Kendall’s rank tests. These tests do not make assumptions about the data distribution 

and, thus, can handle skewed data and are less sensitive to outliers. Next, apart from the overall correlations, it is critical to 185 

investigate whether the correlation between two SCEs varies with the magnitude of Umbra- or Sentinel-1-based SCE. Namely, 

the fourth step is to examine the homoscedasticity (i.e., the variances of differences between two SCEs), which is fulfilled by 

performing the Breusch-Pagan and White tests.  

In addition to detecting the presence of heteroscedasticity, the trend and magnitude of the heteroscedasticity are explored via 

segmented correlation analysis and conditional quantile regression. The former requires analyzers to manually split the data 190 
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into several subsets based on the value of Umbra-derived SCE and then conduct the correlation analysis with each subset. To 

avoid uncertainties caused by manual interventions, this study uses quantile values for data segmentation. In contrast, the latter 

automatically splits the data into several subsets based on the quantiles of the Sentinel-1-derived SCE and then performs 

regression with each subset. Based on the trend of coefficients revealed in both analyses, the pattern of heteroscedasticity can 

be revealed. Noteworthily, all statistical tests in these five steps are conducted at a 95% confidence level. 195 

4 Results and discussion 

4.1 Summertime erosional SCE estimated with SAR datasets 

Fig. 2 illustrates the SCEs of all 1137 transects depicted with Sentinel-1 and high-resolution Umbra images during a three-

month summer period (from June to September 2023, as listed in Table 1). A similar maximum SCE retreating distance is 

estimated from both Sentinel-1 (66.04 m) and Umbra (64.89 m) images. Geographically, these highly erosive transects are 200 

sparsely distributed on the western part of the study coast. In contrast, transects exhibiting minimum SCE dominantly lie on 

the east end of the study coast, with a value of 4.94 (Sentinel-1) and 9.56 m (Umbra), respectively. When it comes to the 

median values, the two SCEs differ considerably (24.49 and 34.88 m for Senintel-1 and Umbra, respectively). These 

descriptive statistics agree with the visual interpretation of both SCE patterns. Namely, they are generally comparable, while 

differences in details are noticeable. This finding is expected, as two SAR datasets have significantly different spatial 205 

resolutions. Indeed, more coastal and geomorphological details can be identified with the sub-meter scale Umbra images than 

with 20 m-resolution Sentinel-1 images, as exemplified by the discernible ice-wedge polygons and widely scattered 

thermokarst lakes in Fig. 2(a). 
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Figure 2: Estimated SCE based on (a) high-resolution Umbra and (b) Sentinel-1 images during June to September 2023 210 

4.2 Statistical-based comparison of cross-SAR sensor-derived SCEs 

The proposed statistical-based scheme is applied to examine the differences between two estimated SCEs robustly. In step one, 

three different statistical metrics are computed. The MAD, MAE, and RMSE are 9.22, 10.36, and 12.50 m, respectively. Firstly, 

the order of their magnitudes is reasonable, as MAD represents the median of the absolute difference, MAE represents the 

average absolute difference, and RMSE denotes the square of the difference. Considering the speckle of both SAR images 215 

inevitably introduce noises in the extracted SCEs, i.e., outliers, the largest value of square error compared to average and 

median errors are expected. Secondly, it is observed that the values of these metrics are all less than a pixel of Sentinel-1 

images (approximately 20 m), implying (1) the utilized shoreline mapping approach can guarantee a sub-pixel precision and 

(2) the overall consistency between two extracted SCEs is affirmed. 

Next, in step two, a linear regression model is used to fit both SCEs, as plotted in Fig. 3. An R-squared value of 0.55 suggests 220 

a moderate agreement between the two estimations. Also, an overall F-test yielding an F-statistic of 1347.57 with a p-value 

considerably less than 0.001 indicates the linear model is statistically significant, i.e., the Umbra-derived SCE can significantly 

explain the variations of Sentinel-1-derived SCE. However, by inspecting the regression line shown in Fig. 3 and the intercept 

of the regression model (-1.62 m), it is identified that the Sentinel-1-derived SCE is overall slightly smaller than the Umbra-

based SCE, suggesting the former’s potential underestimations.  225 

Apart from the regression model, the linear relationship-assumed Pearson’s correlation analysis is also performed. A resultant 

coefficient of 0.74 and a p-value much smaller than 0.001 reveal a significant strong positive linear relationship between the 

two SCEs. Noteworthily, since both SCEs do not follow a normal distribution (as both variables’ K-S and Shapiro-Wilk tests’ 

p-values are less than 0.05), Pearson’s correlation could be underpowered (i.e., poor Type I error rate control), although the 

large sample size (1137 transects) might alleviate this problem according to the central limit theorem (Bishara and Hittner, 230 

2017, 2012). 
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Figure 3: Distribution of the Umbra- and Sentinel-1-derived SCEs and the established linear regression line with the confidence 

interval at a 95% confidence level. 

Therefore, in step three, nonparametric correlation measures, i.e., Spearman’s and Kendall’s rank tests, which can handle non-235 

normality and non-linearity, are employed. The resultant correlation coefficients of the former and latter are 0.70 and 0.51, 

respectively, with both p-values significantly smaller than 0.001. Firstly, the relatively lower value of Kendall’s Tau than 

Spearman’s is expected, as it is more conservative in estimating the correlation. Secondly, both correlation coefficients affirm 

the statistical significance of the moderate to strong positive monotonic relationship (i.e., not necessarily linear) between both 

SCEs. Lastly, since Spearman’s rank correlation (0.70) is not considerably greater than Pearson’s (0.74), the relationship 240 

between two SCEs is presumably not non-linear but generally linear. 

Next, in step four, to explore whether the correlation (or residuals) between two SCEs is influenced by the values of Umbra-

derived SCE, the homoscedasticity between two SCEs is examined with Breusch-Pagan and White tests. Resultantly, both 

tests yield a p-value considerably smaller than 0.001 and thus reject the null hypothesis that the variance of the residuals is a 

constant across different independent variable values, i.e., the Umbra-based SCE. Therefore, the presence of heteroscedasticity 245 

is confirmed. Notably, it would not alter the values of the previously estimated linear regression model’s R-squared value and 

three correlation coefficients, as they quantify the proportion of explained variance and the overall relationship between two 

SCEs, regardless of the distribution of residuals. However, the standard errors and the resulting p-values of the parametric 

Pearson’s correlation (nonparametric correlation measures are robust to heteroscedasticity) and regression model’s overall F-

test might be inflated or deflated, potentially resulting in a misinterpretation of the significance of the relationship and the 250 

model's predictive capability. 

Finally, step five analyzes the trend and magnitude of the varying correlation between two SCEs after confirming the presence 

of heteroscedasticity. Firstly, a segmented correlation analysis is performed. It is achieved by dividing the entire data based on 

the quantiles of the Umbra-derived SCE and calculating the Spearman’s correlation of each subset, which results are illustrated 

in Fig. 4. Clearly, correlation coefficients considerably change with the values of the Umbra-based SCE. By exploring the 255 

trends of different numbers of quantiles, it is revealed that the correlation becomes stronger and more significant with 

increasing Umbra-based SCE values, except for the subset with the smallest quantile. For instance, in the three-quantile 

scenario, Spearman’s correlation coefficients for the middle and high quantile subsets are 0.16 and 0.66, respectively. In the 

four- (-0.10, 0.31, and 0.61) and five-quantile (-0.01, 0.21, 0.37, and 0.46) scenarios, a similar increasing trend of correlations 

with the Umbra-based SCE is also observed. Furthermore, statistical significance also increases with the Umbra-based SCE, 260 

exemplified by the p-values of the five-quantile scenario that remarkably decrease from larger than 0.05 and 0.01 to smaller 

than 0.001. 
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Figure 4: Results of the segmented correlation analysis conducted with different numbers of quantiles of Umbra-based SCE. 265 
Correlations with significance at α < 0.05, 0.01, and 0.001 are denoted with *, **, and ***. 

Subsequently, conditional quantile regression is conducted by dividing the data according to the quantiles of the Sentinel-1-

derived SCE and performing regression for each subset. Founded on the results plotted in Fig. 5, first, it is observed that the 

slopes of all regression lines (i.e., coefficients of the Umbra-derived SCE) are positive and statistically significant (p-values 

considerably smaller than 0.001), indicating the consistent and robust positive linear relationship between two SCEs in every 270 

quantile subset. Second, since the regression lines of these subsets are not perfectly parallel, the relationship between two SCEs 

varies with the values, confirming the presence of heteroscedasticity. Particularly, their slopes generally exhibit a gradually 

increasing trend from the lowest to highest quantiles (0.59, 0.70, 0.86, 0.89, and 0.81 for the 10 th, 30th, 50th, 70th, and 90th 

quantiles, respectively), suggesting that the positive relationship between two SCEs is strengthened at large values. These 

findings are consistent with the varying magnitudes of positive Spearman’s correlation coefficients revealed in the previous 275 

segmented correlation analysis. 
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Figure 5: Results of the conditional quantile regression conducted with different numbers of quantiles of Sentinel-1-based SCE. The 

lines with gradient red colors represent the linear regression line of each quantile subset. 

In general, and more importantly, these observations lead to the conclusion that the agreement between two SCEs increases 280 

with the magnitude of the SCE. That is, when the SCE becomes larger, the difference between two SCEs is more minor. This 

study believes it can be explained in two-fold aspects: (1) a significant shoreline movement can be identified by both coarse- 

and high-resolution SAR images (leading to a small discrepancy between two SCEs), while a trivial movement is challenging 

to be accurately depicted by Sentinel-1 but only by Umbra images. Therefore, when the actual SCE is small, the Sentinel-1-

derived SCE would underestimate the value, causing a greater bias than the more accurate Umbra-derived SCE and resulting 285 

in a larger discrepancy between the two SCEs. This assumption can be supported by the underestimation found in the 

established linear regression model in step two. (2) Shoreline movements more significant than a few pixels can be more easily 

differentiated from SAR speckle-caused fluctuations on shoreline positions, which are also at a few-pixel scale (Tsai et al., 

2023). It can be exemplified by the weak correlations of subsets having Umbra-based SCEs of approximately 30 m (i.e., about 

1.5 pixels of the Sentinel-1 images) shown in Fig. 4. Practically, these two conditions can occur simultaneously. Additionally, 290 

the microsatellite SAR image co-registration step may also contribute to some uncertainties. 

Noticeably, an abruptly high correlation is observed in the smallest quantile subset in the segmented correlation analysis (Fig. 

4), which seems to violate the previous conclusion. Actually, this exception is associated with the spatial auto-correlation 

because, geographically, these transects having small Umbra-based SCE values are predominantly located at the eastmost part 

of the study coast (Fig. 2(a)), as described in Sect. 4.1. This spatial cluster of transects, i.e., outliers, unsurprisingly has a higher 295 

internal consistency. This presumption agrees with the increasing trend of slopes in the conditional quantile regression (Fig. 

5), which presents no exceptionally steep slope (i.e., high correlation) in the subset with the smallest Sentinel-1-based SCE 

values, for these transects are much more widely distributed (Fig. 2(b)), i.e., no distinct spatial auto-correlation exists. 
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4.3 Contributions and limitations of this study 

This study utilizes the latest microsatellite SAR images to depict the rapid summertime erosion over an ice-rich permafrost 300 

coast in Alaska. It proposes a robust statistical-based scheme to compare the results with conventional coarse-resolution SAR 

image-derived observations. This novel dataset and approach provide an unprecedented opportunity to monitor the Arctic 

coasts' heterogeneous spatio-temporal changes. Notwithstanding, this study acknowledges the following constraints and offers 

potential solutions. 

Firstly, the co-registration accuracy of microsatellite SAR images requires a nuanced tuning, e.g., a high-order polynomial 305 

warping function, and thus, demands manual inspections, which hinder automatic processing. In fact, based on the author’s 

investigations, it is found that all microsatellite SAR sensors currently available suffer the same issues, i.e., visible spatial 

offsets between images. This limitation is primarily due to the poor orbital stability of microsatellites compared to conventional 

large satellites (Morgan et al., 2020). For instance, in order to reduce transmission power and enhance resolution, 

microsatellites principally operate on lower orbits than large satellites, which can be exemplified by the fact that all five 310 

currently available microsatellite SAR sensors, including ICEYE, Capella Space, Umbra Lab, Synspective StriX-1, iQPS QPS-

SAR, all operate on orbits at nominal altitudes ranging between 525 and 580 km, while Sentinel-1 orbit at a 693 km altitude. 

Therefore, they are more susceptive to atmospheric drag (Urata et al., 2018), directly resulting in a much shorter lifetime. More 

importantly, the disturbances of the atmosphere would disturb the platform altitude control and antenna pointing capability, 

especially considering the small size and light weight of microsatellites. Fortunately, many studies aim to overcome this issue 315 

by improving designs of altitude and orbit control systems (AOCS) and propulsion systems, which are expected to be soon 

applied to SAR microsatellites. 

Secondly, because the Umbra images used in the present study are geocoded GeoTIFFs, no pre-processing or correction can 

be performed in the original slant-range geometry. Whilst this product format guarantees the simplicity to handle and visualize 

SAR data, in the meantime, it inevitably limits the flexibility in processing (e.g., different options for radiometric calibration, 320 

terrain-flattening, speckle-filtering, and range-Doppler correction) and thus introduces potential biases. However, so far, most 

microsatellite SAR companies provide images in this manner (i.e., level 1 amplitude products), e.g., Capella Space provides 

GEC and geocoded terrain-corrected (GEO) products. In fact, all five currently available microsatellite SAR sensors also offer 

the information stored in the conventional single look-complex (SLC) products (i.e., amplitude and phase at full native 

resolution). Nonetheless, they are principally provided in the format of sensor-independent complex data (SICD), that is, a 325 

standard developed by the U.S. National Geospatial-Intelligence Agency (NGA) (except ICEYE and Synspective offer 

alternative options with the common HDF5 and CEOS formats, respectively). Although the SICD format processed using the 

polar format algorithm (PFA) is commonly used by defense applications, it is rarely adopted by the earth observation remote 

sensing community, which prefers the standard 0-Doppler slant-range-azimuth geometry to annotate the focused data. 

Consequently, conventional SAR-processing software does not support the SICD images. Fortunately, due to the rapid 330 

blooming and growing needs of microsatellite SAR data, recently many commercial software (such as GAMMA v20211201, 
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Socet GXP v4.4, and ENVI SARscape v5.6) have developed the corresponding data readers to digest SICD format (although 

not all guarantee the further processing capability). Unfortunately, most open-source software, including the popular Sentinel 

Application Platform (SNAP), does not support this format yet (except the SarPy Python library released by NGA). 

Lastly, apart from exploiting the ultra-fine spatial resolution of microsatellite SAR data, the benefits of their high temporal 335 

resolution for Arctic coast monitoring should also be investigated. Since this study aims to depict the shoreline retreating 

during the summer, Umbra images are acquired bi-weekly. Nevertheless, more frequent temporal sampling is required if 

researchers or stakeholders aim to observe short-term spatio-temporal dynamics. Thankfully, as Umbra Lab currently has eight 

satellites in operation, a daily revisit is guaranteed. Moreover, considering the high latitude of Arctic coasts and the nature of 

near-polar orbits, the revisit time is further reduced. In fact, this much shorter repeat cycle compared to the modern large SAR 340 

satellites’ bi-week revisit is available for all five microsatellite SAR constellations mentioned before, as they operate on a 

much lower orbit height. Practically, a sub-daily image acquisition greatly facilitates tracking block failure events (i.e., 

segments of bluffs detaching from the coast and collapsing) caused by thermo-abrasion, which is the predominant failure 

mechanism in the ice-rich Alaskan coasts (Ravens et al., 2012), because the entire block toppling and disintegrating processes 

often take less than a week. To monitor this short-term change, conventional studies usually rely on field observations, such 345 

as Unmanned aerial vehicle (UAV)-based imagery (Thomas et al., 2020) or time-lapse camera-based imagery (Barnhart et al., 

2014; Jones et al., 2009). Thankfully, employing the microsatellite images and the approach demonstrated in this study 

guarantees a feasible alternative for high-frequency Arctic coast monitoring. 

5 Conclusions 

The present study employs the latest microsatellite SAR data to depict the summertime coastal erosion on an ice-rich Arctic 350 

coast. On the basis of the proposed multi-stage statistical-driven workflow, microsatellite SAR-derived results are robustly 

compared with the observations derived from the conventional coarse-resolution SAR data. A statistically significant positive 

relationship between the two results with the presence of heteroscedasticity is confirmed. Specifically, the agreement between 

the two results increases with the magnitude of retreating distance, suggesting that the microsatellite SAR can depict more 

detailed changes in the coastal landscape. Although currently, microsatellite SAR exhibits technical immatureness, such as 355 

poor orbital stability and software-handled capacity, grounded on the unprecedented results and analysis achieved in this study, 

their valuable benefits and promising uniqueness for depicting coastal spatio-temporal dynamics are clearly highlighted. 
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