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Abstract
Interval Type-2 Fuzzy Logic Control (IT2FLC) possesses a high control ability in a way that it can optimally handle the
presence of uncertainty in a system dynamic. However, the design of such a control scheme is a challenging task due to its
complex structure and nonlinear behavior. A Manta Ray Foraging Optimization (MRFO) is a promising algorithm that can
be applied to optimize the control design. However, MRFO still suffers the local optima problem due to unbalance
exploration-exploitation of the MRFO agents and hence limiting the performance of the desired control. In this paper,
Standard, Quasi, Super, and Quasi-Reflected opposition strategies are integrated into the MRFO structure. Each strategy
enhances the exploration-exploitation capability and offers different approaches of varying agent’s step size relative to the
algorithm’s iteration. The proposed opposition-based MRFO (OMRFO) algorithms are applied to optimize the IT2FLC
control design for a laboratory-scaled inverted pendulum system. Moreover, as the algorithms are also promising strategies
to other problems, they are applied to solve 50D of 30 IEEE CEC14 benchmark functions representing problems with
different features. Performance analysis of the algorithms is statistically conducted using Wilcoxon sign rank and Friedman
tests. The result shows that the performance of MRFO and Quasi-Reflected-OMRFO are equal, while all other OMRFO
variants show a significant improvement and better rank over the MRFO. The Super and Quasi OMRFO-IT2FLC schemes
acquired the best responses for the cart and pendulum, respectively.
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Introduction

Metaheuristic algorithm is an advanced type of heuristic algorithm.1 Specifically, it is a repetitive procedure of gradient-free
and sub-ordinated heuristic, which is a combination of a simple local search strategy and a nature-inspired search
mechanism. Metaheuristic algorithm becomes a more demanding tool to solve many engineering and other optimization-
related problems due to the reliability and optimal accuracy of its solution. The most common strategy of metaheuristic
algorithm is inspired from the biological concept of many living organisms and creatures. Table 1 shows some of the well-
known biological-inspired metaheuristic optimization algorithms developed by researchers worldwide. These algorithms
are different than each other in a way they are formulated to explore an optimal solution in a pre-defined search space.
Genetic Algorithm (GA) is formulated based on the strategy of evolution of a genetic population such as mutation and
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crossovers,2 Particle Swarm Optimization (PSO) is based on the social interaction of a group of birds,3 Bacterial Foraging
Algorithm (BFA) is based on the foraging strategy of a group of bacteria in a human intestine,4 and Chimp Optimization
Algorithm (ChOA) is based on a group hunting strategy of a Chimpanzee population.5,6 Although they have a unique
formula as compared to others, they also share the same criteria in their strategy. First, they are commonly found as a group-
based searching strategy. There is communication between the agents to share and exchange individual information within
their population. Another common criterion of these algorithms imposed in their concept is an elitism strategy. A currently
best-found agent guides the movement of all other agents in the next iterations. The biological feature of the elite agent
changes in every iteration and it makes the motion of the search agents more dynamic. Exploration and exploitation are also
common criteria of these algorithms that are imposed in their strategy. They complement each other in which an agent
moves faster or slower if it is located at a far away or a closer location to the currently best-found solution. The exploration
and exploitation are commonly found at the beginning and end of the searching process, respectively. These common
criteria are also some of the general reasons of the effectiveness of metaheuristic algorithm in producing a promising
solution for various global optimization problems, and hence, gaining popularity as the main tool in solving many complex
and real-world problems.7,8 The research in this field is growing significantly. This is evidenced by the rising of various
improved strategies to tackle a stagnant problem and unbalance exploration-exploitation. These include an incorporation of
a fuzzy technique into Chimp,9 Grasshopper,10 Whale,11 and Slime Mould12 optimization algorithms for solving clas-
sification and recognition problems.

In recent years, a relatively new metaheuristic algorithm inspired from a cartilaginous fish called a Manta Ray Foraging
Optimization (MRFO) has been introduced.21 Manta ray is a large marine creature found mostly in the Indian Ocean, and
tropical, sub-tropical, and warm oceans. Its body has a flat surface from head-to-tail and contains a pair of cephalic lobes
located on their large mouth. It feeds on plankton which is a living microorganism in the ocean. Manta ray channels the
plankton into its mouth by using its cephalic lobe and filters the plankton from the water using its gill. A matured manta ray
requires up to 5 kg of plankton per day. The plankton location depends on the flow of the ocean tides and varies over the
seasons. Amazingly, due to its foraging strategy, manta rays always find enough food even though the plankton locations are
scattered in the ocean.

The first foraging strategy of manta rays is known as Chain foraging. Manta rays hunt in a group of up to 50 members.22

They hunt in a line-up position; one behind another, forming a uniform line. Naturally, a small male manta ray hops on and
swims on top of the female in order to match the rhythm of the female’s pectoral fins movement.23 If there is any plankton
missed by any manta ray in the front, the manta ray that follows behind will scoop up the plankton. This collaboration
strategy draws a larger number of planktons into their mouth, and thus, improves their food bounty. Second, a manta ray
employs the Cyclone foraging in its strategy. Once it has found an area that is full of plankton, all of the manta ray members
in the group move closer toward each other. Next, they start to link-up to each other using their tails and heads to create a
spiraling vertex in the form of a cyclone. In this approach, manta rays move toward the water surface while doing the spiral
movement. This strategy is very important to trap and force plankton to become more concentrated in a closed area for ease
of feeding. The third foraging strategy of manta rays is Somersault foraging. It is one of the uttermost magnificent settings in
nature. Somersault is a series of backward movements and circling around the plankton area in order to draw the plankton
toward them. Somersault features random, continual, local, and repetitive movements, which help the manta rays to
maximize their feeding. The strategy of the MRFO algorithm mimics the Chain, Cyclone, and Somersault foraging
strategies of the manta ray fish.21

Table 1. Metaheuristic optimization algorithm.

No. Algorithm Ref.

1 Genetic Algorithms (GA) 2

2 Particle Swarm Optimization (PSO) 3

3 Bacterial Foraging Algorithm (BFA) 4

4 Chimp Optimization Algorithm (ChOA) 5,6

5 Seagull Optimization Algorithm (SOA) 13

6 Whale Optimization Algorithm (WOA) 14,15

7 Ant Lion Optimizer (ALO) 16

8 Lion Optimization Algorithm (LOA) 17

9 Social Mimic Optimization Algorithm (SMO) 18

10 Snap-drift Cuckoo Search (SCS) 19,20
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Literature states that the MRFO algorithm has a competitive performance over other well-known optimization problems
in solving global optimization problems.24,25 These include unimodal, multi-modal, hybrid, and composite problems that
have various fitness landscapes.21 This is due to the unique randomness strategy, a combination of linear and spiral motions
with an elitism concept in its Chain, Cyclone, and Somersault foraging. The promising performance of MRFO has attracted
many researchers around the world to adopt the algorithm in solving various real-world problems.26–28 However, the
algorithm still has limitations and suffers from stagnation problems; hence, unable to give the best accuracy solution. The
search agents of MRFO insufficiently explore and exploit the whole feasible region. In both Chain and Spiral foraging
strategies, agents move toward the region that consists of the current fittest agent and the front agent. There is a high
possibility that the agents miss a better solution located on the mirrored sides or any opposite region in the feasible search
space. Due to the heuristic nature of the algorithm, the current best-found solution is still not a guarantee that the solution
leads other agents to the global optimal solution in the feasible region. This obviously occurs in a multi-modal fitness
landscape in which there exist both local and global optimal solutions at various points in the region. A good strategy to
encounter the problem is by improving the exploration and exploitation of search agents from the beginning until the end of
the search operation. This is done through the incorporation of the opposition concept into the MRFO algorithm.

The term “opposite” is defined as “being the other of two complementary or mutual exclusive thing” and the term
“oppositional” is defined as “placement opposite to or in contrast with other.”29,30 Through the opposition concept, a novel
algorithm that is known as the Opposition-Based Learning (OBL) is introduced. The main idea of OBL is the concurrent
evaluation of a solution candidate and its analogous opposite candidate in the feasible search area.31 This mechanism
enhances the exploration and exploitation strategies in such a way that a single agent can be used to evaluate two different
locations in the search area. The two locations are the current and mirrored locations of the agent where the center point of
the search area is taken as the mirror line. The OBL scheme alone, however, is useless. It is just an opposition-learning
scheme which provides a solution to determine a mirrored-location of an agent and is commonly used with an optimization
algorithm. The OBL complements the drawback of exploration and exploitation strategies imposed in the algorithm.
Several opposition variants have been introduced in literatures to improve the original OBL. They are different than each
other in a way that the opposite location of a current agent is determined. Different types of random features are incorporated
into the OBL. The well-known OBL variants include Super, Quasi, and Quasi-Reflected Oppositions. Many researchers
utilized OBL as a complementary strategy in soft computing technique. It is proven as a good learning scheme to enhance
the accuracy performance of metaheuristic algorithms like GA,32 PSO,33 and DE.34,35 There are also works on incor-
porating OBL to speed up convergence rate as well as to improve accuracy of the parent algorithm.36,37 The authors
incorporated greedy and weighted-opposition methods into Chimp optimization algorithm. The algorithm was tested on
various real-world problems and showed superior performance over the original algorithm and other state-of-the-art
algorithms. OBL also has been applied successfully in other applications including opposition-based reinforcement
learning38,39 and opposition-based neural network.40

The hybrid strategy between the OBL concept and MRFO algorithm is a good potential solution to solve a complex
fuzzy control problem in engineering and robotics. An inverted pendulum system is a robotic system that has a typical
control problem and is commonly used in control engineering.41 The inverted pendulum system consists of an inverted pole
or pendulum hinged at a center body of a cart. The cart moves horizontally on a guided track while the pendulum rod freely
rotates in a 360° direction around its axis. The inverted pendulum system is a nonlinear and highly unstable system.42,43 At
rest, the pendulum rod is pointing vertically downward due to the attraction of gravitational force on the pendulum mass.
However, when in operation mode, the pendulum rod should be kept in a vertically upright position while the cart moves to
a predetermined distance along its horizontal axis. Example applications of the pendulum system are a two-wheeled human
transporter system and a two-wheeled mobile wheelchair. Launching a space shuttle rocket into the air is another so-
phisticated example application of the inverted pendulum system. Controlling the highly unstable inverted pendulum
systemwith a complex structure of Interval Type-2 Fuzzy Logic Control (IT2FLC) is more challenging. The IT2FLCmodel
is an advanced version of a fuzzy model and other closed-loop control strategies.44 Its universe of discourse comprises of
lower and upper boundaries.45–47 It added more complexity into the fuzzy model but has a more promising performance to
handle the uncertainty of a controlled robotic system. The nonlinear relationship between the fuzzy input–output and a
complex fuzzy model structure makes the design of the fuzzy control a highly challenging work. This includes determining
fuzzy variables such as if-then rules, universe of discourses, firing angle, and fuzzy input–output gains. Through solely
expert knowledge, the performance of a designed fuzzy control might not be at an optimal level. An OBL-based MRFO is a
good strategy of optimization algorithm with a balanced exploration and exploitation and is a potential solution to solve the
aforementioned complex control problem.

This paper presents Opposition-based Manta Ray Foraging Optimization (OMRFO) algorithms for global optimization
and to solve IT2FLC design for an inverted pendulum system. Opposition-based learning (OBL) schemes are incorporated
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into the MRFO algorithm to enhance exploration and exploitation capabilities of the algorithm. Four variants of OMRFO
are presented in the work, which comprises of Standard (St-) opposition, Quasi (Q-) opposition, Quasi-Reflected (QR-)
opposition, and Super (S-) opposition. The objective of the paper is twofold. First, it shows the superiority of the proposed
OMRFO over its parent algorithm in solving global optimization problems. This is shown in the performance test of the
proposed algorithms in solving 30 black-box global optimization problems of CEC14 benchmark functions. The second
objective is to show the superiority of the proposed algorithms in solving a complex structure of the IT2FLC model for a
highly unstable inverted pendulum system. It is a real-life control problem in engineering, robotics, and control areas. The
proposed algorithms optimize the structure of the IT2FLC, which includes its fuzzy if then-rules, universe of discourse, and
input-output gains. The organization of this paper is as follows. The remaining sections of the paper explain the concept,
structure of the IT2FLC, and its block diagram used for optimization and control for the inverted pendulum system; the
details of the OBL, MRFO and the proposed OMRFO algorithms; the experimental setup, result and discussion for both
benchmark functions; and finally the application to optimize the IT2FLC model. The paper ends with a conclusion of the
work presented in the paper.

OMRFO-IT2FLC for an inverted pendulum system

An inverted pendulum system

The free-body diagram of an inverted pendulum system used in the work is shown in Figure 1. Its mechanical and electrical
parameters are shown in Table 2. The inverted pendulum system consists of a cart that moves forward and backward in a
translational motion on a guiding rail and a pole that is pivoted on the moving cart.33 At rest, the loose end of the pole is
pointing downward. This is due to the gravitational force that is imposed on the pendulum body. As the cart moves
horizontally back and forth along the guided rail, the pivoted pendulum also moves linearly following the cart motion while
at the same time rotates about 360° around its axis. The rotating axis of the pendulum is perpendicular to the side plane of
the cart body and guiding rail of the cart. During operating mode, the cart is set to move to a certain distance while the
pendulum should be kept in a vertically upright position at all times. A DCmotor actuator is connected to the cart through a
ball screw and drives the cart linearly along its axis. An encoder sensor is attached at the DC motor shaft to measure the
actual linear position of the cart. A second encoder sensor is attached on the pivoted pendulum to measure the rotational
position of the pendulum. The DC motor input is a continuous voltage signal from a controller. The outputs of the system
are the rotational and linear positions of the pendulum and cart, respectively. The configuration defines the system as a
single-input multi-output system.48–50

The mathematical model of the inverted pendulum system is derived using the Newtonian second law based on the
schematic shown in Figure 1.51,52 Dynamic equations of the system can be simplified as (1) and (2).

ðM þ mÞ€xþ ml€θ þ Fr _x ¼ FVV (1)

m€xþ ml€θ ¼ mgθ (2)

Figure 1. Free-body diagram of an inverted pendulum system.
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Interval type-2 fuzzy logic control

The type-2 fuzzy logic (T2FL) model is an extension of a conventional fuzzy logic model or also known as type-1 fuzzy
logic (T1FL) model. The major difference between type-1 and type-2 fuzzy logic models is shown by the fuzzy set ~A .
Unlike the T2FL, the fuzzy set of T1FL has only a single membership. Another difference of T2FL over the T1FL is the
defuzzification process.53,54 It requires a Type Reducer which converts the inference output of type-2 to type-1 fuzzy sets
before the final or crisp output can be calculated using a defuzzifier.55–57

The general process of the T2FL model consists of a fuzzifier, an inference mechanism, a type reducer, and a
defuzzifier. The process begins by fuzzifying the input crisp value of IT2FLC, which is converting the input value
into type-2 fuzzy set using a fuzzifier. The general representation of type-2 fuzzy set is depicted in Figure 2. It
consists of lower uA and upper uA membership functions which determine the minimum and maximum boundaries of
the fuzzy set, respectively. Both upper and lower boundaries define the primary (μAðxÞ) and secondary uAðxÞ
membership functions. The area between the boundaries is an uncertainty region and is considered as Foot of
Uncertainties (FOU). The configuration enables the type-2 fuzzy set encounter uncertainty more efficiently than the
type-1 fuzzy set.58

The interval type-2 fuzzy set is defined as (3).

~A ¼
�ð

x2X

ð
uJx4½0, 1�

1

x, u
¼
ð
x2X

�ð
u2Jx4½0, 1�

1

u

���
x (3)

Figure 2. Interval type-2 fuzzy set.

Table 2. Parameter values of the inverted pendulum system.

Parameter Value

Mass of cart, M 0.1 kg
Mass of pendulum, m 0.05 kg
Friction or cart, b 0.1Nm�1s�1

Length of pendulum, l 0.3 m
Motor torque constant, Km 4:9NcmA�1

Motor back emf constant, Kb 0:0507 V rad�1s�1

Motor armature resistant, R 0:3V
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where x is the primary variable, u is a secondary variable, and Jx is a domain for each variable called the primary
membership of x, which is defined as (4).

Jx ¼
�
ðx, uÞ : u2

�
uAðxÞ, uA ðxÞ

��
(4)

where uAðxÞ and uAðxÞ are the lower and upper membership functions, respectively, which are defined as (5) and (6).

uAðxÞ ¼ FOU
	
A


"x2X (5)

uA ðxÞ ¼ FOU
�
A
�
"x2X (6)

where FOU is the union of the primary membership of fuzzy set ~A and is defined as (7).

δ
�
~A
�
¼ ["x2X Jx ¼ fðx, uÞ : u2 Jx4½0, 1�g (7)

The inference mechanism interprets the fuzzy value based on a set of predefined fuzzy rules. In the work, a de-
composition approach is utilized for both fuzzifier and inference mechanism.48 They are decomposed into upper and lower
parts which comprise of upper and lower membership functions, respectively. Three fuzzy sets are defined as Negative
Small (NS), Zero (Z), and Positive Small (PS) to form fuzzy rules which consist of antecedent and consequence parts. The
fuzzy rules are made from IF-THEN statements, which is generally represented as (8).

IF ’x is and y isB’, then ’z is c’ (8)

where ‘x is A and y is B’ is the antecedent and ‘z is C’ is the consequence. Considering an error and a derivative of the error
as the input to the T2FL, nine fuzzy rules are generated.

A type reducer is then utilized to convert outputs of the inference mechanism engine to a type-1 fuzzy output. The type-
reducer can be mathematically expressed as (9).

Y ¼
 XN

n¼1
Yn

�
f n þ f

n
�!, XN

n¼1

�
f n þ f

n
�!

(9)

where Y is the crisp output, Yn is the nth output of fuzzy set, and f n and f n are the lower and upper membership functions.
The final process of the T2FL is to defuzzify the type-1 fuzzy output to a crisp value. This is accomplished by computing

the center-of-area (centroid) of the FOU using a geometrical approach. It represents the area under the upper and lower
membership functions and is computed using (10).

y ¼ ðcUAU � cLALÞ=ðAU � ALÞ (10)

where AU and AL are the area under the upper and lower output membership functions, respectively, while cU and cL are the
centroid of the upper and lower output membership function, respectively. Both centroids are calculated using the T1FL
centroid computation method. As the outcome, if both sets are equal, then there is no FOU and the system reduces to an
equivalent T1FL system. In this case, the crisp output is simply equivalent to cU which is also identical to cL.

OMRFO-based interval type-2 fuzzy logic control

The closed-loop block diagram of the OMRFO-based IT2FLC scheme for controlling the inverted pendulum system is
illustrated in Figure 3. The outputs of inverted pendulum system are an inverted pendulum’s angle, θ, and a cart’s
position, x, while the input is an electrical voltage, v, signal from the controller. In the work, the desired pendulum’s
angle was set as 0°. This is to ensure the pendulum is pointing at a vertically upright position during the control mode
operation. Considering the maximum range of the cart rail is [-15, 15] cm, the desired cart’s position was set to 10 cm.
The cart is forced to move 10 cm away from its original position, which is located at 0 cm. It has to maintain the
position for a certain period of time while balancing the inverted pole in an upright position. The actual response of the
cart is compared with the desired value.
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The difference between the actual and desired response is considered as the error of the cart’s position and is defined
as (11).

ecartðtÞ ¼ xactðtÞ � xdesðtÞ (11)

where xactðtÞ and xdesðtÞ are the actual and desired responses of the cart, respectively.
The actual response of the pendulum is fed back and considered as the error of the pendulum’s angle, which is

defined as (12).

ependðtÞ ¼ θactðtÞ (12)

where θactðtÞ is the actual response of the pendulum.
The errors of the pendulum’s angle and the cart’s position are set as the first input of the first IT2FLC (IT2FLC-1) and the

second IT2FLC (IT2FLC-2), respectively. The derivative of the errors of the pendulum’s angle and the cart’s position are set
as the second input of the IT2FLC-1 and IT2FLC-2, respectively. Each of these two controllers produces a required value of
a voltage signal, which is then combined and fed into the inverted pendulum.

From Figure 4, the mapping of input for the controllers for both error (rad) and derivative of error (rad/sec) is shown. The
x-axis range between [�5,5] means that the algorithms were ran to optimize the parameters in that range while y-axis shows
that the peak of the signal is between [0,1]. Furthermore, N , Z and P are the negative, zero, and positive ranges of the output
signal, while σ and Δμ are the parameters referred as standard deviation and mean, respectively, which are to be optimized in
the study. The following constraints then were applied, μ1 < μ2 < μ3 and σL < σU , where μ1, μ2, and μ3 are defined as mean for
membership functions 1, 2, and 3, respectively, while σL and σU are defined as standard deviation for the lower and upper
membership functions, respectively.

In the work, the proposed OMRFO variants were utilized to optimize both IT2FLCs’ performance. The optimized
parameters of the controllers include the location and width of all upper and lower fuzzy membership functions on the
universe of discourse and fuzzy rules. Each controller comprises of four variables used to vary the location and width
of the membership functions on both fuzzy inputs and nine fuzzy rules. Considering both controllers, the total
optimized parameters involved in the work were 26 parameters. The optimization process was initiated by feeding both
errors from the cart and pendulum responses into the OMRFO. The summation of these two errors is called the cost
function of the OMRFO and the root mean square (RMS) was adopted to complete the formula. Two constants w1 and
w2 are defined in the cost function to control the weightage of each error. A complete cost function, fcost of the OMRFO
is shown in

Figure 3. Block diagram of the OMRFO-based interval type-2 fuzzy logic control.
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fcos tðtÞ ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

	
epend2ðtÞ


r
þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðecart2ðtÞÞ

r
(13)

where w1 is the weightage of the pendulum’s error and w2 the weightage of the cart’s error. In the work, both constants were
defined as 0.5. The controllers will reach the optimal performance if the cost function is at the minimum value.

Opposition-based manta ray foraging optimization

Manta ray foraging optimization

The MRFO algorithm mimics the behavior of a group of Manta Ray population in the ocean in finding an area with high
concentration of plankton. Searching agents in MRFO swim in a predefined feasible region to search for an optimal
solution. The optimal solution is also known as the best solution in MRFO, which is equivalent to an area with the highest
concentration of plankton in the ocean. All Manta Rays are considered as searching agents while an individual Manta Ray
that finds an area with the highest concentration of plankton is considered as the fittest agent in the algorithm. There are three
foraging strategies adopted in the algorithm, which are known as Chain, Cyclone, and Somersault foraging.

The Manta Ray foraging strategy is considered as a group-based strategy where there can be up to a maximum of
50 members during the foraging process. The first foraging process of theManta Rays is called Chain foraging. As the name
implies, the Manta Rays line up and form a chain by linking an individual Manta Ray to another individual Manta Ray. In
this form, they swim and scoop all the planktons that come their way. Figure 5 depicts the formation of the Chain foraging of
Manta Rays in a feasible region. It shows that the fittest agent, xbest serves as a guide to their formation while all other agents
move based on the locations of the fittest agent, xbest and its front agent, xi�1. As an example, the xdi ðkÞmoves forward based
on the information of the fittest agent, xbest and its front agent xdi�1ðkÞ. The resultant location of the ith agent is xdi ðk þ 1Þ:
Apart from that, xbest and xdi�1ðkÞ help the algorithm to determine the moving step size of the ith Manta Ray. Noted from the
figure, the red-diamond is the fittest solution found so far xdbestðkÞ, while green-diamonds are the searching agents and
yellow-diamonds are the resultant position of the searching agents after undergoing the Chain foraging strategy.

xdi ðk þ 1Þ ¼
(
xdi ðkÞ þ r1

	
xdbestðkÞ � xdi ðkÞ


þ α
	
xdbestðkÞ � xdi ðkÞ



, i ¼ 1

xdi ðkÞ þ r1
	
xdi�1ðkÞ � xdi ðkÞ


þ α
	
xdbestðkÞ � xdi ðkÞ



, i ¼ 2, 3, ::, n

(14)

α ¼ 2r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlogðr1Þj

p
(15)

where xdi ðk þ 1Þ is the position of the ith agent in ðk þ 1Þth iteration of dth dimensional space, xdi ðkÞ is the location of the ith
agent in ðkÞth iteration of dth dimensional space, r1 is the random number between (0,1), xdbestðkÞ is the fittest agent found so
far, and α is the coefficient of chain foraging.

The Cyclone strategy is the second process of the Manta Rays foraging and it is illustrated in Figure 6. The red-diamond
is the fittest agent found so far xdbestðkÞ, green-diamonds are the searching agents, and the yellow-diamonds are the next
position of the searching agents after undergoing Cyclone foraging. Unlike the Chain strategy, the Cyclone strategy moves
an individual Manta Ray through a combination of straight line and spiral forms. As shown in the figure, the ith agent, xdi ðkÞ

Figure 4. The mapping of input for the controllers for both error (rad) and derivative of error (rad/sec).
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moves in a straight-line form based on the information extracted from xdi�1ðkÞ. On top of that, it also moves in a spiral form
following the information received from xbest.

These two motions are mathematically expressed as (16) and (17).21

xdi ðk þ 1Þ ¼
(
xdbestðkÞ þ r2

	
xdbestðkÞ � xdi ðkÞ


þ β
	
xdbestðkÞ � xdi ðkÞ



, i ¼ 1

xdbestðkÞ þ r2
	
xdi�1ðkÞ � xdi ðkÞ


þ β
	
xdbestðkÞ � xdi ðkÞ



, i ¼ 2, 3, ::, n

(16)

β ¼ 2er3
K�iþ1

K sinð2πr3Þ (17)

where r2 and r3 are the random numbers between (0,1), β is the coefficient of the Cyclone, and K is the maximum iteration.
The position update equations show that the newly generated position is an updated location of xbest. Thus, the strategy

demonstrates a good exploitation process within a confined region near to the xbest agent. Implementing the strategy alone
tends to trap all searching agents to a local optimal location. Instead of updating the xbest agent location, the equations update
a randomly generated solution based on the information from xdi ðkÞ and xdi�1ðkÞ agents. It is a good strategy for exploring an
optimal solution in a diverse or large search space. Therefore, the problem is avoided by modifying the position update
equations as shown in (18) and (19).21

xdrand ¼ Lbd þ r
	
Ubd � Lbd



(18)

xdi ðk þ 1Þ ¼
(
xdrand þ r2

	
xdrand � xdi ðkÞ


þ β
	
xdrand � xdi ðkÞ



, i ¼ 1

xdrand þ r2
	
xdi�1 � xdi ðkÞ


þ β
	
xdrand � xdi ðkÞ



, i ¼ 2, 3, :::, n

(19)

Figure 5. Illustration of chain foraging.

Figure 6. Illustration of cyclone foraging.
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where xrand is the random position of the agent, andUbd and Lbd are the upper and lower boundaries of the dth dimension in
the feasible region.

The third process of the Manta Ray foraging is Somersault foraging and it is depicted in Figure 7. Somersault foraging is
the process where all searching agents move towards the other side of the fittest agent, xbest at the same distance between the
agent and xbest. Taking xbest as the pivoting location, all other searching agents are forced to move around xbest. Therefore,
the Somersault is considered as a good exploitation strategy in finding an optimal solution. The red-diamond is the fittest
solution found so far xdbestðkÞ, green-diamonds are the searching agents, and yellow-diamonds are the next position of the
searching agents after undergoing Somersault foraging.

The mathematical expression of Somersault foraging is shown as (20).

xdi ðk þ 1Þ ¼ xdi ðkÞ þ S
	
r1:x

d
best � r2:x

d
i ðkÞ



, i ¼ 1, 2, :::,N (20)

where S is the coefficient of Somersault foraging and is defined as 2, and r1 and r2 are random numbers between (0,1).
Noted that S is defined as 2 where it results in the next position, xdi ðk þ 1Þ of the ith agent which mirrors its current location,
xdi ðkÞ at the pivoting point.

Oppositional-based learning

The general idea of OBL is to check for a possible optimal solution on the opposite side of the current location of an agent.
Taking the boundaries of a feasible search space as both upper and lower bounds, the middle point of the search space can be
determined. An opposite location of an agent is defined as a location of the agent mirrored at the middle point of the lower
and upper bounds of the search space. An illustration of the idea is shown in Figure 8.

Consider a and b as the lower and upper bounds of the feasible search space, respectively, and c is the middle point
between the boundaries. A searching agent is represented as bx while its opposite location is stated as bxO. The middle point
between the boundaries is determined using the equation shown in (21).59

c ¼ ðaþ bÞ=2 (21)

Applying (21), the resultant location of the agent is a mirrored location,bxO with a fixed distance similar to the distance of
the agent, bx and the middle point, c. The mirrored location, bxO is known as a Standard Opposition. The mirrored location of
the searching agent is varied by placing the agent closer to the middle point, c or further away from the mirrored locationbxO.

Figure 7. Illustration of somersault foraging.

Figure 8. Mapping of opposite individuals based on three types of OBL.
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The resultant locations that are closer to the middle point, c are known as Quasi-Opposition, bxqo and Quasi-reflected
Opposition, bxqr. The bxqo is a mirrored location of the agent between c and bxO while bxqr is a mirrored location of the agent
between c and bx. In all cases, the distance of Quasi Opposition schemes is always less than the distance of the standard

opposition scheme, bdðc,bxqoÞ,bdðc,bxqrÞ <bdðbxo, cÞ: The further away mirrored location that is placed between bxO and b is
known as a Super-Opposition, bxso. In all cases, the distance of the Super Opposition scheme is always greater than the

distance of the standard opposition scheme, bdðc,bxsoÞ> dðbxo, cÞ: Table 3 shows variants of opposition schemes and their
corresponding mathematical equations.

Opposition-based manta ray foraging optimization

The OMRFO algorithm is an incorporation of opposition schemes into the original MRFO. The strategy complements
several drawbacks of the MRFO algorithm in locating an optimal solution, and thus, offers several advantages which can be
described as follows.

First, an integration of the opposition schemes into the standard MRFO improves an exploration strategy in locating an
optimal solution. One of the stochastic natures of a group-based optimization algorithm is placing all searching agents into a
feasible search space using a random feature. It allows an algorithm to distribute the searching agents thoroughly within a
predefined searching boundary. However, the agents are not well and evenly distributed. Some of the small regions within
the searching boundaries contain more agents than the other small regions. As the searching operation continues and
iteration increases, the exploration of the agents does not thoroughly cover the whole search space. Some small regions
might not be touched by the agents, and thus, leaving those regions unexplored. The following illustration elaborates the
idea. For the case of MRFO, at the kth iteration of the dth dimensional problem, a group of searching Manta Rays, pop
consists of m agents, which can be represented as (26).

popðkÞ ¼ �bxdi ðkÞ,bxdi ðkÞ,bxdi ðkÞ, :::,bxdmðkÞ� (26)

where i ¼ 1, 2, 3…m, d ¼ 1, 2, 3…D, bxdi ðkÞ represents the location of ith agent in kth iteration on dth dimensional search
space. The m and D are the total number of searching agents and dimension of search space, respectively. The locations of
all searching agents are initiated onto the search space randomly with respect to two predefined lower and upper boundaries
of the feasible search region using .

bxdi ð0Þ ¼ ðb� aÞ*randð0, 1� þ a (27)

where a and b are the upper and lower boundaries, respectively, while rand (0,1] is a random value between [0,1].
An illustration of the initialization of agents’ position based on (26) and (27) is shown in Figure 9. The blue-dots are the

initial locations of searching agents while the grey area within the dotted line is a feasible search region. The middle line
between the a and b boundaries of the feasible region is denoted as c. Noted from the figure that the number of agents on the
left side is more than the number of agents on the right side. The situation will result in two possible drawbacks. First, in case
an optimal solution is located on the right-side region with fewer agents, a slower convergence rate might be achieved and
more computation is needed to achieve the optimal solution. This is because more iterations are required to search for the
optimal location. Second, in the region with less agents, there is a higher possibility for the agents to miss certain areas in the
feasible search during the search operation with a limited number of iterations. If the optimal solution is located in the
unexplored region, the agents will get trapped into other local optimal points, and thus, resulting in a less accurate solution.
By generating opposite individuals in every iteration throughout the search operation, the problem can be solved. Figure 9
shows 25 agents that are initialized into the feasible region. The blue-dots are the original searching agents that are located

Table 3. Opposition-based learnings and their mathematical representations.59,60

Types of oppositions Mathematical representations

fStðbxÞ Standard opposition, St-O bxo ¼ aþ b� bx (22)
fQðbxÞ Quasi-opposition, Q-O bxqo ¼ rand½c,bxO� (23)
fQRðbxÞ Quasi-reflected opposition, QR-O bxqr ¼ rand½c,bx� (24)
fSOðbxÞ Super-opposition, SO-O bxqo ¼ rand½bx, b� (25)
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in the feasible region, the red-dots are their corresponding opposite locations, while the grey area within the dark-dotted line
is the feasible region in which a and b are its lower and upper boundaries, and c is the center of the feasible region. xdi ↔
xdi, opp , x

d
iþ1 ↔ xdiþ1opp and x

d
iþ2 ↔ xdiþ2opp are examples of agents and their corresponding opposite locations in the region.

The illustration shows how the agents are distributed after undergoing the Standard opposition scheme, St-. The scheme
generates the opposite location and mirrors the agents at the center line, c of the search space. It is noted from the figure that
the agents’ distribution in the feasible search space is more thorough and balance. Therefore, incorporating the opposition
scheme throughout the search operation offers an opposition learning feature to the MRFO.

Second, the advantage of incorporating the opposition scheme into MRFO is that it improves the stochastic feature of the
algorithm. Based on Q-, QR-, and S-opposition schemes, an additional random feature is incorporated into the formulas.
The mirrored location of the newly generated agents does not follow the same distance of the agents to the reflection point.
However, the distance of the resulting location is defined within a certain range with respect to a random number, and thus,
improving the exploration capability. The third advantage of the opposition scheme is an adaptive strategy is incorporated to
determine the resulting opposite location of the agents. The agent’s fitness cost is adopted into the formula to generate the
opposite location of the agent. The adaptive feature allows the algorithm to generate a more dynamic mirrored distance for
each agent and increase the dynamic behavior of the agents throughout the search operation. In the case where the agent has
a smaller cost, the algorithm generates a smaller mirrored distance for the agent and vice versa. In the beginning of the
search operation, the fitness costs of all agents are large enough and it generates a large mirrored distance and a good
exploration. Towards the end of the iterations, the fitness cost approaches minimum value, and thus, leads to a better
exploitation.

In the work, four variants of the opposition schemes, that is, St-,Q-,QR- and S-, are incorporated into MRFO. These four
variants produce four variants of OMRFO. Each variant is implemented by applying the opposition schemes shown as (22),
(23), (24), and (25), respectively. Details of the step-by-step pseudocode of the proposed OMRFO variants are shown in
Figure 10. The number of agents in OMRFO is doubled via the opposition equations (22)–(25) where a total of 50 agents are
utilized to find a solution similar to the number of agents in MRFO. In order to maintain the same number of agents during
the search and for a fair comparison, the agents are sorted based on their fitness cost, and consequently, the first half of the
agents’ population are retained while the rest are eliminated. In the sorting process, agents with the lowest and highest
fitness costs are defined as the first and the last, respectively. In other words, the sorting process retains all the fittest agents in
the population. This is also to avoid the increasing complexity of the algorithm which may lead to the increase of
computation cost.

Experimental setup, result and discussion

Benchmark functions

Experimental setup and evaluation criteria. This section discusses the experimental test setup and performance of the
proposed OMRFO algorithm and its variants tested on a set of global optimization problems. The performance test consists
of 30 benchmark functions adopted from the Congress of Evolutionary Computation 2014 (CEC14).61 They are considered
as good test suites to test a newly developed algorithm due to their wide range of fitness landscapes which represent the most
likely real-world problems. It covers a wide range from basic to advanced features like unimodal and multimodal, shifted
and rotated, separable, non-separable and composition of several basic functions. There are also hybrid functions which

Figure 9. Initial and opposite locations of agents on a 2-dimensional search space.
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combine several advanced features that lead to a more complex fitness landscape. Details of the CEC14 benchmark
functions such as mathematical expression, graphical 2-D and 3-D representations can be referred to the
CEC14 competition manual.61 Following the CEC14 manual, the experimental setup for the performance test of the
developed OMRFO and original MRFO on CEC14 functions is shown in Table 4. The test was conducted on 50-Dimension
problems. A total of 51 runs were consecutively executed for each function. This is to allow for a statistical analysis to be
conducted on the acquired result. Since the algorithms are heuristic in nature and the generated result is different from one to
another, the statistical analysis leads to a more precise interpretation and conclusion. A stopping condition was set in terms
of the number of function evaluation, NFEmax. Its value depends on the pre-defined dimension,D of the functions. This is to
allow a fair comparison to be performed since the complexity of algorithms is different from one another. OMRFO
generally comprises more NFE in one iteration than the MRFO and its searching operation will be forced to a stop once it’s
NFE has reached the maximum.

The generated result was statistically analyzed via the Wilcoxon sign rank as well as Friedman Tests. The Wilcoxon
signed-rank test is a nonparametric statistical hypothesis test to correlate two complementary samples or related
samples.62–67 It is also used to test a paired difference of N repeated measurements on two different samples by assessing
their population mean ranks.68 The Friedman test, on the other hand, is a nonparametric statistical tool that is used to
measure performance difference across multiple or more than two algorithms.69–73 It compares the mean rank of all
algorithms under study. Algorithms with the lowest and highest mean ranks are considered the best and worst performing
algorithms, respectively. In both tests, a percentage of confidence interval was defined as 95 %. It indicates that if the test
gives a two-tailed probability, p less than 0.05 or 5 % level of significance, the performance of one algorithm over another
algorithm has a significant improvement. In the work, 51 independent runs were conducted, and thus, the repeated
measurements, N, were defined as 51.

Parameter setting. All algorithms under the study generated 51 independent data of achieved accuracy in locating theoretical
optimal solution on each function. Based on the generated data, Mean and Standard Deviation (SD) values were calculated
to represent the algorithms accuracy and consistency performances, respectively. For the algorithm execution, the common
parameters used in both MRFO and OMRFOs are based on the previous work of MRFO.74–76 The proposed OMRFOs
required no extra parameters to generate the opposite agents. It is noted that the proposed algorithms maintained a similar
number of user-defined parameters although there were changes in its structure. Table 5 shows the parameters and their
corresponding values used in the algorithms for the performance test on benchmark functions.

Figure 10. Pseudocode of the proposed OMRFO variants.
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Performance comparison on result and discussion. The mean and SD results of the algorithms on 50D problems of CEC14 are
shown in Table 6. Based on the mean value, MRFO achieved the best performance among the algorithms for functions f11
and f28 while St-OMRFO achieved the best performance among the algorithms for seven functions, f1, f4, f6, f8, f17, f20, and
f26. Q-OMRFO did not achieve any best performance for 50D problems. QR-OMRFO achieved the best performance
among the algorithms for nine functions, f2, f3, f9, f10, f18, f19, f21, f22, and f27. S-OMRFO achieved the best performance
among the algorithms for functions f29 and f30. St- and QR-OMRFOs shared the best performance for 10 functions, f5, f7,
f12–f16, and f23–f25. The results show that QR-OMRFO achieved the unshared best performance with nine scores, followed
by St-OMRFO with seven scores. Taking into account both shared and unshared best performances, QR-OMRFO led the
number with 19 scores, followed by St-OMRFO with 17 scores. MRFO and St-OMRFO shared the third place with two
scores, followed by Q-OMRFO which achieved 0 score. On the contrary, MRFO attained the unshared worst performance
among the algorithms for 17 functions which include f1–f4, f6–f10, f15, f17, f18, f20–f22, f26, and f30. St-OMRFO did not attain
any worst performance for 50D problems. Q-OMRFO attained the unshared worst performance among the algorithms for
two functions, f19 and f28. QR-OMRFO attained the unshared worst performance for functions f29 and S-OMRFO attained
the least unshared worst performance for function f11 and f27. S-OMRFO shared the worst performance with Q-OMRFO and
MRFO for functions f5, f7, f12–f15, and f23–f25. Taking into account both shared and unshared worst performances, MRFO
led the number followed by Q-, S-, QR-, and St-OMRFOs which attained scores of 25, 9, 11, 1, and 0 functions, re-
spectively. These data show that the proposed OMRFOs outperformed MRFO on the accuracy performance for 50D of
CEC14 problems.

On the other hand, based on the SD value, MRFO attained the unshared worst performance among other algorithms for
18 functions which include f1–f4, f7, f8, f12–f14, f16–f22, f27, and f28. Q-OMRFO attained the unshared worst performance
among the algorithms for 6 functions, f5, f6, f9, f15, f27, and f29. S-OMRFO attained the unshared worst performance among
the algorithms for three functions, f10, f11, and f28. St- and QR-OMRFOs did not attain any unshared worst performance for
50D problems. All algorithms shared the worst performance for functions f23–f25. The worst performance for function f26
was shared by Q- and S-OMRFOs. Considering both shared and unshared, the results show that MRFO led the worst
performance on the consistency achievement followed by Q- and S-OMRFOs with the scores 17, 11, and 9, respectively.
QR- and St-OMRFOs shared the fourth position on the worst performance with three scores. On the contrary, MRFO
achieved the unshared best performance among the algorithms for two functions which include f27 and f28. St-OMRFO
achieved the unshared best performance among the algorithms for 11 functions, f1, f4, f10–f12, f14, and f18–f22. Q- and
S-OMRFOs did not achieve any unshared best performance for 50D problems. QR-OMRFO achieved the unshared best
performance among the algorithms for 11 functions, f3–f8, f13, f15–f17, and f30. All algorithms shared the best performance
for functions f23–f25. QR-OMRFO shared the best performance with St- and S-OMRFOs for functions f26 and f29, re-
spectively. Taking into account both shared and unshared best performances, QR-OMRFO led the number followed by St-
OMRFO, MRFO, and S- and Q-OMRFOs which attained 17, 15, 5, 4, and 3 scores, respectively. Considering both worst

Table 4. Experimental setup for the performance test on CEC14 functions.

Parameter Value

Dimension 50
Number of run 51
Max. no. of function eval., 10000*D
Search range [�100, 100]
Initialization Uniform random within the search range
Termination Maximum number of function evaluation

Table 5. Parameter setting for the performance test on CEC14 functions.

MRFO St-OMRFO Q-OMRFO QR-OMRFO S-OMRFO

m ¼ 50 m ¼ 50
kmax ¼ 1000

NFEmax ¼ 10000 ×D
S ¼ 2
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and best achievements, the results indicate that the proposed OMRFOs outperformed MRFO on the consistency per-
formance for 50D of CEC14 problems.

The last row of Table 6 shows the summary of the performance test on 50D of the 30 functions. It shows that St-, Q-, QR-
, and S-OMRFOs outperformedMRFO for 27, 14, 27, 16 functions, respectively, and have worse performances thanMRFO
for 3, 4, 3, 3 functions, respectively. St- and QR-OMRFOs have no equal performances with MRFO while Q- and
S-OMRFOs have equal performances with MRFO for 12 and 11 functions, respectively. The results of both the Wilcoxon
and Friedman Tests based on the data presented in Table 6 are shown in Table 7. It shows that all the two-tailed, p values of
theWilcoxon sign rank test are less than 0.05. This indicates that the improvement made by the proposed OMRFOs over the
MRFO algorithm is significant. On the other hand, the Friedman test shows that St-OMRFO achieved the smallest mean,
which is the best rank followed by QR-, S-, Q-OMRFOs, andMRFOwith the mean rank as 1.67, 1.70, 3.62, 3.77, and 4.25,
respectively.

Application to optimize fuzzy control for an inverted pendulum system

Experimental setup and parameter setting. The proposed OMRFOs were applied to optimize the fuzzy model to control the
cart’s position and pendulum’s angle of an inverted pendulum system. The parameters used for the work such as maximum
number of function evaluation, NFEmax, maximum iteration, Itermax, and searching agents,mwere defined as 50,000, 1000,
and 50, respectively. A total of 25 independent runs were conducted to generate 25 different data on the fitness cost
attainment of expression shown in (13). The performance analysis was statistically conducted via Friedman and Wilcoxon
sign rank tests. Their evaluation criteria are similar as those stated in the benchmark functions.

Performance comparison on result and discussion. The generated data and their corresponding mean and SD values are shown
in Table 8. The best fitness cost among the five algorithms is highlighted in bold font. The result shows that MRFO, St-, Q-,
QR-, and S-OMRFOs achieved 1, 3, 5, 4, and 12 best runs, respectively, out of the 25 runs. Comparing the fitness cost of all
25 runs on a single algorithm, the result shows that MRFO, St-, Q-, QR-, and S-OMRFOs achieved the best cost on the 25th,
18th, 21st, 7th, and 10th runs, respectively. Among the algorithms, S-OMRFO led the best accuracy performance followed by
QR-, Q-, and St-OMRFOs and MRFO which attained the best fitness cost of 2.116, 2.280, 2.289, 2.289, and 2.293,
respectively. The Mean result shows that S-OMRFO achieved the best value, followed by Q-, St-, and QR-OMRFOs and
MRFO which scored 2.292, 2.319, 2.322, 2.323, and 2.333, respectively. On the other hand, the SD result indicates a
consistent performance of the algorithms in generating a solution. It shows that St- and S-OMRFOs attained the best and the
worst consistent performance, respectively. MRFO and QR-OMRFO attained an equal score on the consistency per-
formance. Figure 11 shows the convergence curves of the contested algorithms for the first 100 iterations. The convergence
curves are generated based on the average value of fitness cost of the 25 runs. The plots are in-line with the Mean result
shown in Table 8. All plots show a fast convergence from the beginning until the 15th iteration. They converge slowly
towards the optimal solution until the end of operation.

The result presented in Table 8 was further analyzed via the Friedman and Wilcoxon sign rank tests with a 95%
confidence interval setup. The results of both tests are shown in Table 9. It shows that all two-tailed, p resulted from the
Wilcoxon sign test comparingMRFOwith St-, Q- and S-OMRFO have values less than 0.05 or 5% interval. It indicates that
the improvement made by the proposed OMRFOs over the MRFO is significant. The most and the least significant
differences in the accuracy improvement over the MRFO are shown by S-OMRFO and St-OMRFOs, respectively.
However, the table shows the two-tailed, p value as a result from comparing MRFO with QR-OMRFO, is 0.083 or greater
than 0.05. It indicates that the improvement made by QR-OMRFO is not significant. In other words, both algorithms have
equal accuracy performance. On the other hand, the Friedman test shows the rank acquired by the algorithms. S-OMRFO
attained the best rank, followed by Q-, St-, and QR-OMRFOs and MRFO with the scores 2.20, 2.64, 3.08, 3.08, and 4.00,
respectively. St- and QR-OMRFOs shared the third rank with the score 3.08. Hence, from these evidences, utilization of
opposition-based learning mechanism into MRFO have significantly improved the original MRFO accuracy performance
in searching an optimal solution of a nonlinear fuzzy logic model to control an inverted pendulum system.

Figure 12 shows the output response of the cart’s position given a step input function as a test signal. The cart is required
to move to the final position at 10 cm from its initial position, 0 cm at the center of the horizontal axis. In general, it shows
that all the optimized fuzzy controllers had successfully controlled the cart to move to the desired 10 cm position. However,
there is a little offset from the desired 10 cm position shown by the graphs, indicating that the cart did not settle at exactly the
10 cm position. The response is clearly observed from the zoomed-in picture. All the graphs show that the cart initially
moved beyond the desired position. It then moved back and forth near the 10 cm location before it finally settled at the final
location.
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Table 6. Results of the Friedman and Wilcoxon tests on 50D of CEC14.

Function

MRFO St-OMRFO Q-OMRFO QR-OMRFO SO-MRFO

Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

1 1.90E + 07 3.42E + 06 5.45E + 06 3.54E + 06 5.46E + 06
(6.83E + 06) (1.36E + 06) (1.67E + 06) (1.94E + 06) (2.38E + 06)

2 4.42E + 06 3.51E + 03 7.48E + 03 2.69E + 03 7.35E + 03
(4.25E + 06) (6.11E + 03) (7.49E + 03) (6.03E + 03) (7.40E + 03)

3 9.69E + 04 2.53E + 04 4.08E + 04 2.32E + 04 3.85E + 04
(1.79E + 04) (6.79E + 03) (9.48E + 03) (5.76E + 03) (8.04E + 03)

4 6.49E + 02 3.22E + 02 5.40E + 02 3.29E + 02 5.41E + 02
(6.64E + 01) (3.17E + 01) (3.53E + 01) (3.91E + 01) (4.36E + 01)

5 5.21E + 02 3.54E + 02 5.21E + 02 3.54E + 02 5.21E + 02
(3.62E-02) (4.03E-02) (4.52E-02) (3.03E-02) (3.40E-02)

6 6.43E + 02 4.24E + 02 6.31E + 02 4.26E + 02 6.33E + 02
(5.14E + 00) (5.09E + 00) (5.82E + 00) (4.94E + 00) (5.65E + 00)

7 7.01E + 02 5.10E + 02 7.00E + 02 5.10E + 02 7.00E + 02
(1.36E-01) (1.07E-02) (1.37E-02) (9.30E-03) (1.19E-02)

8 1.05E + 03 6.04E + 02 1.01E + 03 6.10E + 02 1.02E + 03
(2.85E + 01) (2.42E + 01) (3.34E + 01) (2.17E + 01) (2.99E + 01)

9 1.23E + 03 6.41E + 02 1.12E + 03 6.35E + 02 1.19E + 03
(5.20E + 01) (4.77E + 01) (5.66E + 01) (4.06E + 01) (4.81E + 01)

10 5.69E + 03 4.66E + 03 5.45E + 03 4.08E + 03 5.29E + 03
(8.31E + 02) (7.76E + 02) (9.27E + 02) (9.29E + 02) (1.11E + 03)

11 8.29E + 03 9.07E + 03 1.38E + 04 9.20E + 03 1.20E + 04
(1.34E + 03) (1.15E + 03) (1.33E + 03) (1.66E + 03) (1.92E + 03)

12 1.20E + 03 7.29E + 02 1.20E + 03 7.29E + 02 1.20E + 03
(8.43E-01) (2.91E-01) (3.42E-01) (3.20E-01) (3.75E-01)

13 1.30E + 03 7.94E + 02 1.30E + 03 7.94E + 02 1.30E + 03
(1.10E-01) (7.90E-02) (1.02E-01) (7.55E-02) (9.74E-02)

14 1.40E + 03 9.90E + 02 1.40E + 03 9.90E + 02 1.40E + 03
(1.87E-01) (8.78E-02) (1.04E-01) (9.71E-02) (1.15E-01)

15 1.56E + 03 1.06E + 03 1.54E + 03 1.06E + 03 1.54E + 03
(1.13E + 01) (9.94E + 00) (1.32E + 01) (7.53E + 00) (1.00E + 01)

16 1.62E + 03 1.03E + 03 1.62E + 03 1.03E + 03 1.62E + 03
(5.90E-01) (3.07E-01) (3.87E-01) (2.95E-01) (3.72E-01)

17 2.70E + 06 5.01E + 05 6.30E + 05 5.09E + 05 6.73E + 05
(1.43E + 06) (2.81E + 05) (3.76E + 05) (2.76E + 05) (3.70E + 05)

18 3.39E + 03 2.15E + 03 2.99E + 03 2.09E + 03 3.16E + 03
(1.31E + 03) (8.90E + 02) (1.03E + 03) (9.68E + 02) (1.12E + 03)

19 1.95E + 03 1.31E + 03 1.96E + 03 1.30E + 03 1.95E + 03
(2.86E + 01) (2.34E + 01) (2.65E + 01) (2.62E + 01) (2.96E + 01)

20 3.84E + 04 8.18E + 03 1.30E + 04 8.68E + 03 1.41E + 04
(1.51E + 04) (3.15E + 03) (4.28E + 03) (3.50E + 03) (4.75E + 03)

21 1.10E + 06 2.84E + 05 3.96E + 05 2.49E + 05 3.93E + 05
(7.26E + 05) (1.56E + 05) (1.96E + 05) (1.78E + 05) (2.23E + 05)

22 3.40E + 03 2.04E + 03 3.20E + 03 2.03E + 03 3.20E + 03
(3.17E + 02) (2.43E + 02) (2.77E + 02) (3.04E + 02) (3.47E + 02)

23 2.50E + 03 1.74E + 03 2.50E + 03 1.74E + 03 2.50E + 03
(0.00E + 00) (0.00E + 00) (0.00E + 00) (0.00E + 00) 0.00E + 00

24 2.60E + 03 1.93E + 03 2.60E + 03 1.93E + 03 2.60E + 03
(0.00E + 00) (0.00E + 00) (0.00E + 00) (0.00E + 00) (0.00E + 00)

25 2.70E + 03 1.43E + 03 2.70E + 03 1.43E + 03 2.70E + 03
(0.00E + 00) (0.00E + 00) (0.00E + 00) (0.00E + 00) (0.00E + 00)

26 2.77E + 03 1.66E + 03 2.76E + 03 1.67E + 03 2.76E + 03
(4.59E + 01) (3.60E + 01) (4.85E + 01) (3.60E + 01) (4.85E + 01)

(continued)
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The time-domain analysis of the fuzzy logic controller performance on controlling the cart’s position is shown in
Table 10. It comprises of an analysis on the rise time, tr settling time, ts steady state-error, eSS and percentage overshoot,
%OS. Noted that Q-OMRFO achieved the fastest rise time followed by MRFO, S-, QR-, and St-OMRFOs with the scores
0.981, 0.983, 0.991, 0.995, and 0.999 s, respectively. A faster response is commonly associated with a higher overshoot.
This is evidenced from the result that MRFO has the highest percentage overshoot at 7.2 %, followed by Q-, St-, QR-,
and S-OMRFOs with the scores 4.3 %, 3.6 %, 2.8 %, and 0.4 %, respectively. The percentage overshoot achieved by
the S-OMRFO is significantly less compared to all other algorithms. A higher percentage overshoot is commonly
associated with a slower settling time. This is evidenced from the result that Q-OMRFO attained the worst and slowest
settling time at 2.154 s while S-OMRFO attained the fastest settling time at 1.295 s. QR- and St-OMRFOs and MRFO
attained the second, third, and fourth places, respectively, on the settling time performance. Noted that on the steady-
state error attainment, S-OMRFO and MRFO attained the smallest and largest errors. Based on the MRFO-IT2FLC
scheme, the cart drifted away about 0.32 cm from the desired 10 cm and it drifted away about 0.004 cm based on the
S-OMRFO-IT2FLC control scheme. St- and QR-OMRFO shared the same steady-state error about 0.01 cm, resulting
in the second place, while Q-OMRFO attained the third place with a steady-state error about 0.038 cm from the desired
location. On the overall performance of the cart response, the result shows that S-OMRFO achieved the best per-
formance among the algorithms. It achieved the best percentage overshoot, settling time, and rise time. On the
contrary, MRFO attained the worst performance among the algorithms. It attained the worst percentage overshoot and
steady-state error. QR-OMRFO attained neither the best nor worst performance, Q-OMRFO attained 1-best and 1-
worst performances, while St-OMRFO attained 1-worst performance giving them the second, third, and fourth places,
respectively.

Figure 13 shows the output response of the pendulum’s angle based on a step input function applied on the cart. The
pendulum is attached on the cart’s body and it has to be in a vertically upright position while in operation. In that particular
condition, the corresponding angle of the pendulum is 0°.

All graphs from the figure generally show that the pendulum finally settled at the desired 0° angle. It indicates the
optimized fuzzy controller had successfully stabilized the pendulum and maintained its vertical upright position. In the first

Table 6. (continued)

Function

MRFO St-OMRFO Q-OMRFO QR-OMRFO SO-MRFO

Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

27 2.90E + 03 2.27E + 03 3.71E + 03 2.26E + 03 3.74E + 03
(1.36E-12) (2.62E + 02) (2.98E + 02) (2.32E + 02) (2.64E + 02)

28 3.00E + 03 3.69E + 03 5.15E + 03 3.92E + 03 5.10E + 03
(1.36E-12) (8.93E + 02) (1.24E + 03) (1.13E + 03) (1.57 + 03)

29 3.14E + 03 3.16E + 03 3.35E + 03 4.27E + 03 3.10E + 03
(1.91E + 02) (4.18E + 02) (5.88E + 02) (0.00E + 00) (0.00E + 00)

30 3.43E + 04 1.17E + 04 1.49E + 04 1.14E + 04 7.56E + 03
(2.72E + 04) (7.22E + 03) (9.19E + 03) (5.69E + 03) (7.24 E + 03)
+ /�/ = 27/3/0 14/4/12 27/3/0 16/3/11

Table 7. Results of the Friedman and Wilcoxon tests on 50D of CEC14.

Algorithm

Friedman test Wilcoxon signed rank test

Mean rank ρ χ2 MRFO – St-OMRFO MRFO – Q-OMRFO

MRFO 4.25 0.00 78.098 Rþ R� ρ Rþ R� ρ
3 27 0.000 5 17 0.012

St-MRFO 1.67 MRFO–QROMRFO MRFO – S-OMRFO
Q-OMRFO 3.77 Rþ R� ρ Rþ R� ρ
QR-MRFO 1.70 3 27 0.000 3 18 0.010
S-OMRFO 3.62
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12 s, the pendulum experienced a series of significant swings. This is due to its reaction on the initial cart’s movement
towards the desired 10 cm location when a step input is applied. The swing continuously occurred as the cart moved
iteratively in back and forth directions in order to achieve its desired 0° location. The swing significantly reduced over time
before finally settling down to the final location showing that the controller had worked sufficiently well. The graphs show

Table 8. Attainment of fitness cost, mean, and standard deviation.

Runs MRFO St-OMRFO Q-OMRFO QROMRFO S-OMRFO

1 2.341E + 00 2.340E + 00 2.328E + 00 2.324E + 00 2.315E + 00
2 2.340E + 00 2.327E + 00 2.326E + 00 2.317E + 00 2.265E + 00
3 2.345E + 00 2.324E + 00 2.338E + 00 2.322E + 00 2.308E + 00
4 2.334E + 00 2.308E + 00 2.307E + 00 2.334E + 00 2.116E + 00
5 2.308E + 00 2.310E + 00 2.319E + 00 2.331E + 00 2.283E + 00
6 2.317E + 00 2.333E + 00 2.308E + 00 2.306E + 00 2.308E + 00
7 2.356E + 00 2.301E + 00 2.340E + 00 2.277E + 00 2.303E + 00
8 2.338E + 00 2.322E + 00 2.330E + 00 2.343E + 00 2.327E + 00
9 2.335E + 00 2.333E + 00 2.332E + 00 2.325E + 00 2.309E + 00
10 2.316E + 00 2.333E + 00 2.312E + 00 2.324E + 00 2.108E + 00
11 2.323E + 00 2.312E + 00 2.311E + 00 2.324E + 00 2.186E + 00
12 2.342E + 00 2.315E + 00 2.318E + 00 2.289E + 00 2.313E + 00
13 2.345E + 00 2.317E + 00 2.312E + 00 2.314E + 00 2.317E + 00
14 2.339E + 00 2.337E + 00 2.319E + 00 2.325E + 00 2.340E + 00
15 2.331E + 00 2.313E + 00 2.319E + 00 2.316E + 00 2.307E + 00
16 2.340E + 00 2.331E + 00 2.304E + 00 2.333E + 00 2.320E + 00
17 2.364E + 00 2.323E + 00 2.333E + 00 2.364E + 00 2.315E + 00
18 2.350E + 00 2.289E + 00 2.311E + 00 2.316E + 00 2.365E + 00
19 2.323E + 00 2.313E + 00 2.297E + 00 2.335E + 00 2.313E + 00
20 2.322E + 00 2.315E + 00 2.371E + 00 2.305E + 00 2.330E + 00
21 2.368E + 00 2.352E + 00 2.280E + 00 2.315E + 00 2.292E + 00
22 2.313E + 00 2.353E + 00 2.316E + 00 2.340E + 00 2.313E + 00
23 2.321E + 00 2.313E + 00 2.342E + 00 2.337E + 00 2.355E + 00
24 2.330E + 00 2.327E + 00 2.312E + 00 2.326E + 00 2.244E + 00
25 2.293E + 00 2.315E + 00 2.301E + 00 2.332E + 00 2.357E + 00
Mean 2.333 2.322 2.319 2.323 2.292
STD 0.017 0.014 0.018 0.017 0.064

Figure 11. Convergence curves produced by the contested algorithms.
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that the pendulum oscillation pattern in general is almost the same. However, from the zoomed-in picture, the pendulum
responses vary from one to another.

The time-domain analysis of the pendulum’s response is shown in Table 11. It has an extra time-domain performance
specification compared to the cart where its components include rise time, tr, settling time, ts, steady state-error, eSS ,
maximum overshoot, OSmax, and maximum undershoot, USmax. Noted from the table that the smallest or the best overshoot
was achieved by St-OMRFO with the score of 2.146° while the worst overshoot was attained by QR-OMRFO with the
score of 2.500°. The second-best overshoot was attained by Q-OMRFO, followed by S-OMRFO andMRFOwith the scores
2.303°, 2.352°, and 2.384°, respectively. Q -OMRFO achieved the best undershoot performance followed by St-OMRFO,
MRFO, and S- and QR-OMRFO with the scores �1.872°, �1.888°, �2.223°, �2.252°, and �2.584°, respectively. The
overshoot and undershoot are commonly in pairs as evidenced from the result that the worst performance for both
components is attained by QR-OMRFO. In terms of settling time, the result shows that Q-OMRFO and QR-OMRFO achieved
the fastest and slowest settling time, respectively, with the scores of 4.619 and 14.770 s. The smallest undershoot performance
achieved by Q-OMRFO contributed to its achievement in settling time as these two components are related to each other. This is
also evidenced from the worst performance in both settling time and undershoot components shown byQR-OMRFO. In terms of
rise time, the table shows that St-OMRFO achieved the fastest time with the score of 0.249 s. As evidenced from the result, the
best rise time performance is due to its largest overshoot attainment. MRFO and QR-OMRFO shared the second fastest rise time
performancewith the score of 0.252 s. Q- and S-OMRFO attained the third and last performances, respectively, with the scores of
0.254 and 0.261 s. For the steady-state error performance, all algorithms achieved almost zero error. Q-OMRFO led the
performance with the smallest error, followed by MRFO, St-, S-, and QR-OMRFOs.

Table 9. Results of the Friedman and Wilcoxon tests on inverted pendulum.

Algorithm

Friedman test Wilcoxon signed rank test

Mean rank ρ χ2

MRFO–St-MRFO MRFO – Q-OMRFO

Rþ R� ρ Rþ R� ρ

MRFO 4.00 0.001 17.82 256 69 0.012 271 54 0.004
St-OMRFO 3.08 MRFO – QR-OMRFO MRFO – QR-OMRFO
Q-OMRFO 2.64 Rþ R� ρ Rþ R� ρ
QR-MRFO 3.08 227 98 0.083 279 46 0.002
S-OMRFO 2.20

Figure 12. Response of cart’s position.
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For the overall performance on the application of the proposed algorithms to solve the real-world problem, it shows that
Q-OMRFO achieved the best performance among other algorithms for the undershoot, settling time, and steady state-error, while
St-OMRFO achieved the best performance for overshoot and rise time components. On the contrary, QR-OMRFO attained the
worst performance among the algorithms for the overshoot, undershoot, settling time, and steady-state error, while S-OMRFO
attained the worst performance for the rise time component. MRFO achieved neither best nor worst performances on the five
components for the pendulum response. Based on these performances, the best algorithm for optimizing the pendulum’s response
was achieved by Q-OMRFO, followed by St-OMRFO, MRFO, and S- and QR-OMRFOs.

Conclusion

The Opposition-based Manta Ray Foraging Optimization (OMRFO) algorithm has been presented in this paper. MRFO
comprises a combination of random and deterministic spiral models in its Chain, Cyclone, and Somersault phases. The

Figure 13. Response of pendulum’s angle.

Table 10. Time-domain performance of the cart’s response.

Algorithm MRFO St-OMRFO Q-OMRFO QR-OMRFO S-OMRFO

Settling time, ts (sec) 2.033 1.842 2.154 1.405 1.295
Rise time, tr (sec) 0.983 0.999 0.981 0.995 0.991
Percent overshoot, %OS 7.200 3.600 4.300 2.800 0.400
Steady state error, eSS 0.320 0.010 0.038 0.010 0.004

Table 11. Time-domain performance of the pendulum’s response.

Algorithm MRFO St-OMRFO Q-OMRFO QR-OMRFO S-OMRFO

Settling time, ts (sec) 6.066 7.542 4.619 14.770 11.720
Rise time, tr (sec) 0.252 0.249 0.254 0.252 0.261
Max. overshoot, 2.384 2.146 2.303 2.500 2.352
Max. undershoot, �2.223 �1.888 �1.872 �2.584 �2.252
Steady-state error, eSS 3.72E-9 4.40E-6 3.16E-10 1.30E-3 3.92E-5
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algorithm suffers insufficient exploration of search space which has led to a premature convergence and low accuracy
performance. As a solution to the problem, an Opposition-based Learning (OBL) mechanism was incorporated into the
original structure of the MRFO. The opposition scheme expanded the search area of every single Manta Ray agent. It
offered the agents to explore the opposite region of its current location, which is unable to be reached by the conventional
strategy of MRFO. Four variants of the opposition schemes had been adopted, which led to Standard-opposition (St-),
Quasi-opposition (Q-), Quasi-Reflected Opposition (QR-), and Super-Opposition (S-) OMRFOs. The schemes utilized
different strategies in the way they determined the opposite location of each agent. The accuracy performance of the
proposed algorithms had been tested on 30 unconstrained problems adopted from the IEEE Evolutionary Computation,
CEC14 test suite. A 50-dimension had been tested on each problem to comprehensively investigate the effectiveness of the
proposed OMRFOs over MRFO for different problems. The algorithms also had been applied to solve a complex real-world
problem in intelligent control system engineering. It was utilized to optimize parameters of 26 dimensions nonlinear fuzzy
logic model to control the cart and pendulum positions of an inverted pendulum system. A total of 25 independent tests had
been conducted on the inverted pendulum problem to acquire a set of data to perform a statistical analysis on the accuracy
achievement. The result of the performance test of the proposed OMRFO algorithms on the 50-dimension of the
CEC14 benchmark functions showed that all the proposed OMRFOs outperformed MRFO. This is evidenced from the
statistical analysis on the Friedman test showing all proposed algorithms have acquired better rank. St-OMRFO achieved
the best rank for the 50-dimension problems of the CEC14. The proposed OMRFOs also significantly improved the
accuracy performance in searching for a theoretical optimum solution of the benchmark problems. This is evidenced from
the statistical analysis on the Wilcoxon sign rank test showing the two-tailed result with 95% confidence that is lower than
5%. The statistical analysis on the result of the inverted pendulum system showed that S-OMRFO achieved the best mean
accuracy. The result of the Friedman test showed that the final rank from the best to the worst orders is S-, Q-, St-, and QR-
OMRFOs and MRFO. It is also evidenced from the Wilcoxon sign rank test on the result of the inverted pendulum that the
two-tailed value for S-, St-, and Q-OMRFOs is less than 0.05, indicating the improvement overMRFO is significant. All the
algorithms had satisfactorily controlled both cart and pendulum positions of the inverted pendulum system. The cart rapidly
settled to its desired final location in less than 1 s. The pendulum oscillation due to its reaction to move the cart to the 10 cm
location had been quickly attenuated and removed. Last but not least, as the proposed algorithms are not problem-specific
algorithms, they might be considered as potential tools for solving other complex and nonlinear behavior of real-world
problems.
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67. Jurecková J. Regression rank-scores tests against heavy tailed alternatives. Bernoulli 1999; 5(4): 3318695.
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