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Lower Bound Limit State Analysis using the Interior-Point Method
with Spatial Varying Barrier Function
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Department of Civil Engineering
Aalborg University, Aalborg, Denmark
e-mail: cf@civil.aau.dk

Summary A method of conducting lower bound Limit State analysis is to apply the interior-point method.
The aim of the paper is to refine the method by reducing the number of optimization variables consider-
ably by eliminating the equilibrium equations a priori. Another new idea is to adapt a spatially varying
barrier function. Significant gains are made regarding computational speed and robustness of the algorithm.

Introduction

Limit State analysis has been used in design for decades e.g. the yield line theory for concrete
slabs, [1]. The Limit State analysis 1s very well suited for manual methods especially the upper-
bound methods and is therefore used in practical engineering design calculation. Analysis of elas-
tic structures was around 1960 revolutionized by the introduction of computers and the Finite
Element concept. Soon after the first attempts to solve Limit State problems by computers were
implemented, see [2]. However, the methods did not penetrate into practice in the same impressive
way as the linear Finite Element analysis did. The field of Computerized Limit State analysis did
grow and extended the applications from frame and slabs also to include geotechnical problems,
see e.g. [3] and reinforced plates, see e.g. [4]. In the last decade the main developments have
been in the optimization procedure, where the interior point method in various formulations has
increased the performance considerably, see e.g. [5].

The lower-bound formulation results in a non-linear convex optimization problem. The variables
consist of the stress state in the elements and a load parameter. The object function will in this con-
text be the load carrying capacity. The restrictions are linear equilibrium equations and non-linear
convex yield criteria. The most effective solution methods are based on variants of Karmarkar’s
interior point method. In order to have a more efficient implementation two remedies can be used.
The first is to eliminate the equality constrains a priori. This gives a considerably reduction in the
number of variables. The method has in previous studies shown its capability, see [6]. The second
is to deal with the non-linear yield criteria directly and in this respect avoiding the large number of
linear inequalities, see e.g. [7]. Recently, both aspect as been implemented with success in [8]. In
the present work the method is improved in terms of computational efficiency and improvements
on the optimization algorithm. In the interior-point method a barrier function is used to ensure that
the optimization variables stays feasible during the iterative solution process. It is suggested to
use a spatial varying barrier function for which the barrier is different for each stress point. More
details and further improvements on the optimization algorithm is to appear in [9]. In the paper the
method is illustrated by a single example used by other researchers. However, the method is fully
general and can be used for all types of limit state problems. The method is illustrated on a plane
strain problem, but it is fully general.

Computational aspects

A lower bound solution is a stress state where equilibrium is satisfied and the yield criteria are not
violated. The problem is discretized by the traditional Finite Element concept with stress-based
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elements, and in this context only plane strain problems are considered. A triangular element with
9 stress parameters first formulated by Sloan is used, see [3], with the formulation from [10]
adapted. The lower bound optimization problem can be formulated as:

maximize «Q
subject to HG, = aR + Ry (1)

where H is the global flexibility matrix, 3, are stress parameters for the whole system, R are
global nodal forces scalable by the load parameter, o, and Rg are constant global nodal forces
independent of the load parameter. f; are non-linear yield criteria evaluated in the jth stress point
with stress parameters, 3, of p in total.

In order to reduce the problem size and improve the numerical stability the equilibrium equations
can be eliminated a priori. The elimination is a standard Gauss elimination which reduces the
number of independent stress parameters from 3, to 3, the so-called free stress parameters. The
relation between the stress variables can be written:

B, =BB+c (2)
where B is a matrix and c is a vector of constant elements relating the free stress variables,
B = [By q T to the entire set of stress variables, 3, which are obtained during the Gauss

elimination process. Note that the load multiplier for the sake of convenience has been included in
the set of stress variables.

The optimization problem, can be solved by the interior-point method. A barrier function, 1}, is
added to the objective function in (1), see e.g. [11]. Furthermore, non-negative Slack variables,
s, are added to transform the non-linear inequality constrains into equality constrains. The La-
grangian of the augmented optimization problem can then be formulated:

P
L(B,s,A) =b B+ pjlogs; — AT (£(B) +s) 3)

j=1
where b= [0 1]7 and f is the vector of the yield criteria, evaluated in all material points, 0 is

a vector of zeros and A is a vector of non-negative Lagrange multipliers.

The idea behind the barrier function is to prevent the gradient search process to end too close to
the boundary. A new idea in the present work is to use a barrier function which differs between the
stress points, thus hopefully increasing the convergence rate of the algorithm. The barrier functions
are chosen as either of the following:

pj=cs® . pj = c[max(s; — Smaaz, 0.1)8]" 4)

where c is a scaling factor, § is a constant controlling the speed by which the barrier is reduced,
and k is the iteration number. The constant c is chosen such that the initial barrier parameter is just
below one, in this work ¢ = 0.95 and § = 0.7 is chosen. $,,,4. 1s the largest slack variable.
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The Kuhn-Tucker conditions states that the gradient of the Lagrangian must vanish at the optimum.
By differentiation of (3), a non-linear equation system is to be solved for variables 3, s and A. This
can be done by Newton’s method, where increments on the variables are found iteratively. During
the iterations, the barrier function, (4), is reduced and the iterations are started from an initial
feasible point, i.e. 3 = 0, s = e and A = e. Here, e is a vector of ones. Line search is conducted
in order for the increments to be feasible, i.e. non-negative values of s and A and the stress state, (3,
must be within the yield criteria. After calculating the increments, they are multiplied by a factor
below one, in this work 0.8 is used. The iterations are stopped when the duality gab between the
slack variables, s, and the lagrange multipliers, A, becomes sufficiently small.

Numerical example

As a test example the slotted block in plane strain, shown in Figure 1 is considered.
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Figure 1: Slotted block problem (a) and element discretization, N = 4 (b).

The example has been treated by Andersen and Christiansen [12] and by Krabbenhoft and Damk-
ilde [7]. The square block has two notches as shown in Figure 1.(a). The material is governed by
the von Mises yield criterion in plane strain, with a yield stress fo = /3. In Figure 2 is shown
the result of the optimization process in terms of the convergence of the load multiplier « as a
function of the iteration number. Results are shown for both N = 4, as shown in Figure 1.(b), and
for N = 12. The optimization process has been conducted with both the conventional constant
barrier function and the new spatial varying barrier function in (4). It can be observed, that the
load multiplier converges in all cases towards a value that does not differ much, suggesting that
the N = 12 discretization is adequate in the present case. However this might not be a general
conclusion for other structures. An interesting conclusion is, that the convergence is faster when
using the spatial varying barrier function, suggesting that it is favorable.

Concluding remarks

In this paper the interior-point method is used to conduct Limit State analysis with the lower
bound method for structural problems in plane strain. Focus is on improvements on the optimiza-
tion algorithm in two different aspects. First, the equality constrains are eliminated prior to the
optimization, reducing the number of optimization variables and constrains. Secondly, a spatially
varying barrier function is suggested in order to speed up the convergence of the algorithm. Both
suggestions improve the convergence of the optimization algorithm.
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Figure 2: Convergence of load multiplier, computed for N = 4 and N = 12 as shown in Figure 1.b. Both a
constant and a spatial varying barrier function is considered.
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