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Selective Integration in the Material-point Method

Lars Andersen∗, Søren M. Andersen and Lars Damkilde
Department of Civil Engineering

Aalborg University, Aalborg, Denmark
e–mail: la@civil.aau.dk

Summary The paper deals with stress integration in the material-point method. In order to avoid
parasitic shear in bending, a formulation is proposed, based on selective integration in the background
grid that is used to solve the governing equations. The suggested integration scheme is compared to a
traditional material-point-method computation in which the stresses are evaluated at the material points.
The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour.

Introduction
The material-point method (MPM) was proposed by Sulsky and coworkers [1, 2] as an alternative
to the finite-element method (FEM) for analysis of problems in solid mechanics. The MPM can
be described as a variation of the FEM, in which the material and any state variables are tracked
at a finite set of material points that are allowed to move through a background grid of finite
elements or cells. In contrast to a Lagrangian finite-element scheme, this allows the simulation of
solids undergoing extreme deformation and displacements without mesh entanglement. Further,
since the material follows the material points, mass diffusion occurring in Eulerian descriptions
is avoided. Finally, the MPM automatically accounts for the exchange of momentum between
adjacent bodies by solving the governing equations of motion a the nodes of the background grid.
Hence, apparently the MPM is useful for the analysis of problems in solid mechanics in which
huge displacements and interaction between colliding bodies must be accounted for. However, in
a standard MPM formulation, the stresses are evaluated at the material points. This may lead to
grid-crossing errors as well as parasitic shear, in particular when linear interpolation functions
are employed within the background grid.
Grid-crossing errors occur when a material point moves from one cell to another in a time step.
This changes the sign of the stress contribution from that material point to the interior force at
the adjacent grid nodes. As described by Bardenhagen et al. [3] this problem may be solved to
some extent by smearing out the mass associated with a material point, leading to the so-called
generalised-interpolation material-point (GIMP) method. Alternatively, higher-order interpolation
may be applied as proposed by Andersen and Andersen [5].
Parasitic shear was reported by Cook et al. [4] in relation to linear quadrilateral elements applied
to the analysis of bending. Thus, for first-order shape functions, the shear strains and stresses
are only defined correctly at the centre of the element. Hence, full integration with two Gauss
points in each direction may cause shear locking in bending. A similar effect occurs in the MPM
since the material points are generally not placed at the centre of the computational cells. As
described in this paper, it may therefore be advantageous to apply an integration scheme in the
MPM corresponding to selective integration in the FEM.

Stress integration in the material-point method
The material-point method builds on the weak formulation. For the solid domain, Ω,∫

Ω
ρw ⋅adV =−

∫
Ω

∇w : ρσσσ sdV +
∫

∂Ωτ

w ⋅ τττdS+
∫

Ω
ρbdV, (1)
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where w = w(x, t) is the virtual field, a = a(x, t) the material acceleration, ρ = ρ(x, t) the mass
density, σσσ s = σσσ s(x, t) the specific stress, b= b(x, t) the external body force field, and τττ = τττ(x, t)
signifies the surface traction on ∂Ωτ where mechanical boundary conditions are prescribed. Here,
σσσ s = σσσ/ρ and τττ = σσσ ⋅n with n denoting the unit outward normal to the boundary of the domain.
The density field ρ(x, t) =

∑Np
p=1Mpδ (x− xp) is employed, where Mp is the mass of material

point number p, p = 1, . . . ,Np, and xp = xp(t) is its position. Further, linear interpolation within
the computational background grid, discretization of time and lumping the mass at the grid nodes
provide the following system of equations for node number i and time step k:

mki aki = τττki +bki −
Np∑
p=1
Mpσσσ s,kp ⋅Gkip, mki =

Np∑
p=1
MpΦi(xkp) (2)

where, for example, mki is the mass associated with node number i at time step k. The interpolation
function belonging to node i is denoted Φi(x), and Gkip = ∇Φi(x)∣x=xkp . The first two terms on the
left of Eq. (2) are identified as the external force on the body, whereas the final term represents the
internal forces. In each time step, the velocities at the material points and nodes are updated as

Vk+1p = Vkp+Δt
Nn∑
i=1
akiΦi(Xkp), mk+1i vk+1i =

Np∑
p=1
MpVk+1p Φip(xkp). (3)

Subsequently, the strain increments at the material points are determined by

Δεεεkp =
Δt
2

Nn∑
i=1

{
Gkipvk+1i +(Gkipvk+1i )T

}
, (4)

and the stresses are updated by a constitutive law. Two schemes are now compared: (1) a com-
putation based on a standard MPM approach with the strain increments provided by Eq. (4), and
(2) an alternative scheme with Gkip replaced by Gkic = ∇Φi(x)∣x=xc for the determination of the
shear strain increments, whereas Eq. (4) without modification for the computation of the normal
strains. In the second approach, xc denotes the coordinates of the point at the centre of the cell in
which the material point resides. Hence, scheme no. 2 corresponds to selective integration.

Analysis of a cantilever beam

A cantilever beam is analysed by the MPM method, employing the explicit scheme described in
the previous section. The length is L = 8 m in the x-direction, the height is H = 2 m in the y-
direction and the beam has a mass density of ρ = 10 kg/m3. The mesh size is 0.5 m and 2× 2
material points are employed within each cell. Over a period of 0.5 s the beam is subjected to
an increasing body force in terms of gravity with the final acceleration 10 m/s2 in the negative
y-direction. After this, the external force is kept constant.

Firstly, the analysis is carried out for an elastic material with Young’s modulus E = 10 MPa and
Poisson’s ratio ν = 0. Figure 1 shows the the normal and shear stresses, σxx and σxy after t = 1 s
for Schemes 1 and 2, i.e. with standard MPM stress evaluation or ‘selective integration’. Parasitic
shear is clearly identified for σxy and, to some extent, the equivalent Mises stress σe. On the other
hand, selective integration provides a smooth shear stress variation without reducing the accuracy
of the normal stresses. However, the development of the mechanical energy is almost the same and
only small differences are present in the displacement obtained with Schemes 1 and 2.

126



Standard material-point integration

Normal stress, σxx (∙=−7997 Pa ; ∘= 7988 Pa)

Shear stress, σxy (∙=−1463 Pa ; ∘= 35 Pa)

Mises stress, σe (∘= 24 Pa ; ∙= 8280 Pa)
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Selective integration

Normal stress, σxx (∙=−8174 Pa ; ∘= 8166 Pa)

Shear stress, σxy (∙=−978 Pa ; ∘= 11 Pa)
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Figure 1: Stresses in the elastic beam at the end of the simulation.

The second analysis concerns a von Mises material with the yield criterion f = σe−σ0≤ 0, where
σ0 is the yield stress (σ0= 4 kPa in this analysis). Otherwise, the parameters are the same as before.
The results are illustrated in Fig. 2, and again parasitic shear occurs in the case of standard MPM
integration of the stresses. Nonetheless, no significant change can be seen in the extent and shape
of the plastified zone. This is likely a result of the fact thatσxx≫ σxy in the present case.

Concluding remarks

Selective integration in the material-point method provides a better approximation of the shear
stress distribution in a beam subjected to bending than standard MPM analysis with shear stress
evaluation at the material points. Nonetheless, for beams with a length-to-height ratio of more
than 4, standard MPM integration does not degenerate the solution for plastic problems since the
axial normal stresses are dominating in bending. However, for other classes of problems in which
shear stresses dominate, selective integration may be necessary in order to have a physically sound
transition from elastic into plastic response.
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Standard material-point integration

Normal stress, σxx (∙=−12151 Pa ; ∘= 12051 Pa)

Shear stress, σxy (∙=−1916 Pa ; ∘= 715 Pa)

Mises stress, σe (∘= 22 Pa ; ∙= 3965 Pa)
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Selective integration

Normal stress, σxx (∙=−13192 Pa ; ∘= 13094 Pa)
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Figure 2: Stresses in the elastic-plastic beam at the end of the simulation.
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