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Incremental Data Driven Modelling for Plug and Play Process Control

Torben Knudsen

Abstract— This paper studies the data driven update of a
model for a system where the number of inputs or outputs
increased. Often existing control systems are equipped with an
additional sensor or actuator to improve performance. If a good
model for the present system is available it is advantageous to
only estimate the additional part while keeping the present
model, compared to estimating the whole model from scratch.
The capabilities with convex methods are investigated. It is
shown that model updating for static sensor/actuators can be
done consistently for the deterministic part. The stochastic
part is far more complicated and here convex methods gives
a approximate solution. The total solution is demonstrated by
simulation to improve state prediction and control performance.

I. INTRODUCTION

To start with an example: Consider temperature control in
e.g. a livestock stable. According to Skov A/S (a Danish
company supplying climate control systems for stables),
sometimes the climate in typically smaller parts of a stable
are not acceptable after the commissioning of a standard
control system. This can be due to special constructions in
the specific stable. A remedy will often be to install an extra
temperature sensor, air heater or ventilation device. However
this requires new time consuming manual tuning. In the
research project “Plug and Play Process Control” (P3C ) [1]
the main idea is to develop general methods for automating
this task. A subtask will then be to update the model with
the additional device.

Assuming model based control design there will be a
model for the present system. Estimating the model from
scratch has disadvantages. For example there would be a
risk of getting an inferior model for the present system
compared to the already available one. Also if a new model is
estimated from scratch by standard methods, e.g. pem from
the matlab toolbox ident, the state space basis will change.
This is undesirable as for example a present state feedback
controller then can not be used. Consequently, the aim is
to only estimate the parameters necessary to augments the
present model with the new device.

To avoid problems with poor models due to local minima
and problems with long execution time the choice is to see
what results can be obtained using robust convex methods
as e.g. least squares (LS) methods.

Incremental modelling in the sense that the system is fixed
but the model is improved in a incrementally fashion is
discussed in the literature [2], [3]. However, the problem
here is different because the system is not fixed but increases
in the number of inputs or outputs. This case is not found
in the literature. Another related but different problem is
in fault tolerant control where sensors or actuators fails i.e.
disappears.
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The paper starts with presenting the model setup and
notation. Then the LS methods for a additional input is
developed. This is followed by LS methods for an additional
output. This includes a development of a convex method
to estimate an approximate stochastic model. A simulation
example is then given followed by a conclusion.

The main contribution is the data driven incremental
modelling by LS/convex methods especially the complicated
stochastic part. This is to the authors knowledge all new.
A preliminary version is included in an application paper
[4]. However this preliminary version does not include con-
sistency proofs and estimation for the stochastic part neither
does it include the analysis presented in this paper explaining
the complications regarding the Kalman gain update.

II. MODEL SETUP

As this is intended for multiple input multiple output
(MIMO) systems a state space (SS) model seems the best
choice. In this parametrization the additional parameters will
appear as new rows or columns augmented to the present
matrix parameters. The present parameters is left unchanged
except for the Kalman gain if a additional output is added.

For the analysis two forms of the SS model are needed.
First in basic form (1) where xp is assumed to be “phys-
ical” states in the sense that wp only includes unmeasured
inputs/disturbances and vp only includes the measurement
noise. In this case it is reasonable to assume that the
measurement noise vp will be uncorrelated with the process
noise wp i.e. Rwv = 0. Both noise processes are assumed
white. Subscript p is for present model.

xp(t+ 1) = Apxp(t) +Bpup(t) + wp(t) , (1a)
yp(t) = Cpxp(t) +Dpup(t) + vp(t) , (1b)

Cov
(
wp
vp

)
=
(
Rw Rwv
Rvw Rv

)
(1c)

up ∈ Rm , xp, wp ∈ Rn , yp, vp ∈ Rl (1d)

The other version needed is the innovation model (IM) (2).

x̂p(t+ 1) = Apx̂p(t) +Bpup(t) +Kpep(t) , (2a)

x̂p(t) , E(xp(t)|Y t−1
p ) , (2b)

Y tp , yp(t), yp(t− 1), . . . , (2c)
yp(t) = Cpx̂p(t) +Dpup(t) + ep(t) , (2d)

Cov(ep) = Re , E(ep(t)ep(s)T) = 0 , t 6= s (2e)
ŷp(t) = Cpx̂p(t) +Dpup(t) (2f)

ep ∈ Rl (2g)

In this work (stochastic) stationarity is assumed. This gives
the following basic properties which are used in the below
development. The state prediction error is uncorrelated with



previous measurement but the state prediction error is non
white.

x̃p(t) , xp(t)− x̂p(t)⇒ x̃p(t), Y t−1
p uncorrelated (3)

The output prediction error is uncorrelated with previous
measurement and it is white noise.

ỹp(t) , yp(t)− ŷp(t) = ep(t)⇒ (4)
ỹp(t), Y t−1

p uncorr.⇒ ỹp(t), ỹp(t− 1), . . . uncorr. (5)

It is assumed that the present model is known in its inno-
vation form. Further the measurements available is assumed
to be output only not states. The experimental conditions can
be open loop (OL) or closed loop (CL) both with sufficient
excitation.

III. ADDITIONAL INPUT
In the standard SS model, input is not assumed to be noise

corrupted. This means that the new input part just has to be
added to the otherwise unchanged IM (6). Notice especially
that Kp is unchanged. The SS IM can be divided as (6a)–
(6b) where subscript p and a means present and additional
respectively.

xp(t+ 1) = Apxp(t) + (Bp Ba)
(
up(t)
ua(t)

)
+Kpep(t)

(6a)

yp(t) = Cpxp(t) + (Dp Da)
(
up(t)
ua(t)

)
+ ep(t) ,

Rp = Cov(ep)
(6b)

up ∈ Rm , ua ∈ R , xp ∈ Rn , yp, ep ∈ Rl (6c)

Then it is only necessary to estimate Ba, Da. Notice that the
predicted output are linear in these parameters as the Kalman
filter predictor can be written as (7).

x̂p(t+ 1) = (Ap −KpCp)x̂p(t) +Kpyp(t)

+ [(Bp Ba)−Kp (Dp Da)]
(
up(t)
ua(t)

)
(7a)

ŷp(t) = Cpx̂p(t) + (Dp Da)
(
up(t)
ua(t)

)
(7b)

This means the output can be separated in a part from the
present system and a linear combination of parts assuming
that each new parameter θi (8) is one while the rest are zero.

(θ1 . . . θn)T , Ba , (θn+1 . . . θn+l)
T

, Da (8)

Define ŷ0 as the predicted output from the present system
i.e. where all additional parameters i.e Ba, Da are zero and ŷi
as the predicted output where the present parameters Bp, Dp

are zero and all additional parameters (8) are zero except
number i which is one. Then the predicted output is a linear
combination of these signals (9). Consequently, the measured
output is given by (10) where ep is the innovation.

ŷp(t) = ŷ0(t) +
n+l∑
i=1

θiŷi(t)⇒ (9)

yp(t) = ŷ0(t) +
n+l∑
i=1

θiŷi(t) + ep(t) (10)

If signals for the whole measurement sequence are stacked
into vectors and some more notation is introduced the
following results can be obtained.

Theorem 1: (LS estimator for additional input) Assume a
innovation model for the present system is known and the
separation of the output predictor in (9) is used then the
prediction error method reduces to a LS estimate (11).

Θ̂ = (XTX)−1XTZ , (11)

X ,
(
Ŷ1 · · · Ŷn+l

)
, Z , Yp − Ŷ0 ,

Yp ,

 yp(1)
...

yp(N)

 , Ŷi ,

 ŷi(1)
...

ŷi(N)

 ,

Θ , (θ1 . . . θn+l)
T

(12)

Proof: Using the vector notation (12) the stacked
output can be written as (13) which follows from (10). The
definition of Ep is similar to (12). Further (13) can be turned
into the multiple linear regression form (14) where it is well
known [5, App. II.1] that the estimator minimizing the sum
of squared prediction errors is given by (11).

Yp = Ŷ0 + Ŷ1θ1 + · · ·+ θn+lŶn+l + Ep ⇒ (13)

Z = Yp − Ŷ0 = XΘ + Ep (14)

Theorem 2: (Consistent LS estimator for additional input)
The LS estimator in theorem 1 is consistent in open as well
as closed loop operation provided there is at least one time
delay from output to input in the latter case.

Proof: Using the model equation (14) the estimator
can be related to the parameters as seen in (15a). The limit
value w.p.1 for N → ∞ is (15b). The step from (15a) to
(15b) follows from ergodicity which again follows from the
stationarity assumption.

Θ̂ = (XTX)−1XTZ

= (XTX)−1XT(XΘ + Ep)
= Θ + (XTX)−1XTEp

= Θ +
(

1
Nl

XTX

)−1 1
Nl

XTEp (15a)

→ Θ +
[
E
(

1
Nl

XTX

)]−1

E
(

1
Nl

XTEp

)
(15b)

for N →∞ (wp1)

The part E
(

1
NlX

TX
)

is invertible due to sufficient excitation
(see also [5, App. II.2]). If the rows in X and the rows in Ep
are uncorrelated the last term in (15) will go to zero. This
term is a n+ l vector with element i given by (16).

1
Nl

XTEp =
1
Nl

(
Ŷ1 · · · Ŷn+l

)T
Ep =

1
Nl

 Ŷ T
1 Ep

...
Ŷ T
n+lEp

 ,

1
Nl

Ŷ T
i Ep =

1
Nl

N∑
t=1

l∑
j=1

ŷij(t)ep,j(t) ,

i = 1, . . . , n+ l

(16)

Now, ŷij(t) is predictor part i output channel j at time
t which is generated from inputs and outputs until and



including time t − 1 plus u(t) for D 6= 0 and these are
uncorrelated with the innovation ep,j(t) even in closed loop
as at least one time delay from output to input is assumed.
Therefore the last vector E

(
1
NlX

TEp
)

goes to zero w.p.1
and consequently so does the last term in (15)

IV. ADDITIONAL OUTPUT

In contrast to additional input additional output is cor-
rupted with measurement noise. The necessary augmentation
to the model is then (17).

ya(t) = Caxp(t) +Daup(t) + va(t) , (17a)

Cov

(
wp
vp
va

)
=

(
Rw Rwv Rwa
Rvw Rv Rva
Raw Rav Ra

)
(17b)

Notice the important detail that ya is related to the physical
state xp not the predicted state x̂p. As already mentioned this
also means that it is reasonable to assume the measurement
noise for the additional output va to be uncorrelated with the
other noise sources i.e. Ra• = RT

•a = 0.

A. LS Estimates of the Deterministic Part
If the state xp is measured all parameters including the

covariances (17b) can be estimated by the LS method based
on (1a), (1b) and (17a).

As xp is not assumed measured the prediction x̂p must be
used. This gives the regression equations below.

ya(t) = Caxp(t) +Daup(t) + va(t) ,
= Cax̂p(t) +Daup(t) + Ca(xp(t)− x̂p(t)) + va(t)

(18)

The following results can now be obtained.
Theorem 3: (LS estimator for additional output, determin-

istic part) Assume a known innovation model for the present
system then a LS estimator for the deterministic part is (19).

θ̂ =

(
N∑
t=1

φ(t)φ(t)T
)−1 N∑

t=1

φ(t)ya(t) , (19)

φ(t) =
(
x̂p(t)
up(t)

)
, θ = (Ca Da)T (20)

Proof: The additional output can be written as (22)
where it is well known that (19) minimizes the sum of
squares (23).

r(t) , Cax̃p(t) + va(t) , (21)
ya(t) = φ(t)Tθ + r(t)⇒ (22)

θ̂ = arg min
θ

N∑
t=1

(ya(t)− φ(t)Tθ)2 (23)

Remark 3.1: Notice that (19) is not a PEM estimator as
φ(t)Tθ is not the optimal predictor as it does not use ya and
accordingly the residuals is non white.

Theorem 4: (Consistent LS estimator for additional out-
put, deterministic part) The LS estimator in theorem 3 is
consistent under the same assumption as in theorem 2.

Proof: This proof is omitted to save space as it build
on similar principles as the proof for the additional input
theorem 2.

B. Estimates of the Stochastic Part

The stochastic part can be specified in two ways. It can be
based on the physical model then the parameter to estimate is
the covariance (17b) for all noise involved. Or the innovation
model can be used then a new K and Re parameter including
the additional output must be estimated.

It is crucial to understand that these two representations
are only equivalent regarding the stochastic for the output.
From the physical model the covariance for both state xp
and output can be calculated and the innovation model can be
found. From the innovation model only the output covariance
can be calculated and there is no general transformation back
to the physical model. Consequently, having only the inno-
vation model for the present system, stochastic specifications
for the physical state are lacking.

1) Know Present ”Physical” Noise Model: Consider first
the case with know “physical” noise model i.e. the covariance
(1c) known. Assume also the additional measurement noise
to be uncorrelated which the present noise then only Ra is
missing in the stochastic specification (17b). This variance
can be estimated by (26) as x̃p and va are uncorrelated. The
state prediction error covariance Rx̃p

is found by the Kalman
filter Riccati equation for the present system and R̂r is the
estimated variance for the residuals r from the LS step.

r(t) = Cax̃p(t) + va(t)⇒ (24)
Rr = CaRx̃pC

T
a +Ra (25)

R̂a = R̂r − CaRx̃p
CT
a (26)

2) Only Present Innovation Model Known: When only the
innovation model is known a first idea could be to improve
the state estimate by including the additional output. This
is however not possible. The reason is that the innovation
model uses the one step predictor for the physical state as
the state and consequently the state prediction error is zero.
Therefore no additional outputs will be able to improve this
state prediction and the Kalman gains from such additional
outputs will be zero. As the output equation would be (18)
the output noise will be r(t) (21) which is non white due to
x̃p(t). The best estimate for the variance on the output noise
would then be R̂r.

Using such a updated model it is possible to control the
additional output which was not controlled before. However,
it is not possible to improve control of present state or output
as there is no “connection” in the updated model between
the additional output and the present state or output.

All this of cause does not mean that additional output can
not improve the prediction of the physical state xp. It rather
means that the improvement is not in x̂p but rather in x̃p
as formulated in (28). Here superscript a indicates that the
predictor is also based on the additional output.

x̂ap(t) , E(xp(t)|Y t−1
p , Y t−1

a )⇒ (27)

x̂ap(t) = E(xp(t)|Y t−1
p , Y t−1

a )

= E(x̂p(t) + x̃p(t)|Y t−1
p , Y t−1

a )

= E(x̂p(t)|Y t−1
p , Y t−1

a ) + E(x̃p(t)|Y t−1
p , Y t−1

a )

= x̂p(t) + E(x̃p(t)|Y t−1
p , Y t−1

a )

= x̂p(t) + ̂̃xap(t)

(28)



Now, the IM is just one representation of the stochastic
properties of the output. It has some good properties e.g.
few parameters but it is unsuitable for incremental modelling
of the stochastic part. A idea is then to try and find a
representation which is better.

When the physical state is unknown only the stochastic
properties of the output is given by the known IM. A SS
model does only specify the second order stochastic proper-
ties therefore an alternative representation of the stochastic
must give the same auto covariance function for the output.
The method is then to calculate the output auto covariance
from the IM and then to find another representation that gives
the same output auto covariance. As this other representation
is not at all unique it must be further specified. Here a
physical system like (1) is assumed with a state which every-
thing else depends on. Some of the inputs are measured the
other inputs are included as process noise. With this setting
it is natural to assume that all the measured outputs are a
function of the physical state plus some measurement noise
which is uncorrelated with the process noise. Consequently a
representation with Rwv = 0 is selected. Normally this is still
not unique and then a representation with minimal maximal
singular value for the state covariance Rx(0) is selected.

Below the output auto covariance for the SS model (1)
is calculated. Only the stationary properties are needed.
Therefore the deterministic/mean part is left out and the mean
state is assumed to be zero. Also the p index is left out. The
following state relation can be the starting point.

x(t+ k) = Ax(t+ k − 1) + w(t+ k − 1)

= Akx(t) +
t+k−1∑
s=t

At+k−1−sw(s)
⇒ (29)

Rx(k) , E(x(t+ k)x(t)T) = AkRx(0) , k ≥ 0 , (30)

Rx(k) = (Rx(−k))T = Rx(0)(A|k|)T , k < 0 (31)

If the system is stable Rx(0) is the solution to the linear
Lyapunov equation:

Rx(0) = ARx(0)AT +Rw (32)

The cross covariance from output to state is:

Ryx(k) , E(y(t+ k)x(t)T)
= E([Cx(t+ k) + v(t+ k)]x(t)T)

= CRx(k) +
{

0 , k ≥ 0
Rvw(A|k|−1)T , k < 0

(33)

All this finally gives the auto covariance for the output:

Ry(k) , E(y(t+ k)y(t)T)
= E(y(t+ k)[Cx(t) + v(t)]T)

= Ryx(k)CT +


CA|k|−1Rwv , k ≥ 1
Rv , k = 0
0 , k ≤ −1

= CRx(k)CT +


CA|k|−1Rwv , k ≥ 1
Rv , k = 0
Rvw(A|k|−1)TCT , k ≤ −1

(34)

Based on the above the output auto covariance for any
SS model can be calculated as long as all the parameters are

known. To calculate it for a known IM model for the present
system the IM model (2) parameters Kp and Re must be
transformed into the standard form (1) as follows.(

Rw Rwv
Rvw Rv

)
= Cov

(
wp
vp

)
= Cov

(
Kpep
ep

)
=
(
KpReK

T
p KpRe

ReK
T
p Re

) (35)

With these parameters Ry(k) , k = 0, . . . , n are calculated.
To find the alternative representation with Rwv = 0 the

above relations (30), (32) and (34) are used again. First some
definitions are needed.

Γji ,


CAi

CAi+1

...
CAj

 (36)

Ry
j
i ,


Ry(i)

Ry(i+ 1)
...

Ry(j)

 (37)

Then Rx(0)CT can be found from (34) by (38) because Γn1
has full column rank when the system is observable.

Γn1Rx(0)CT = Ry
n
1 ⇔ Rx(0)CT = Γn1

†Ry
n
1 (38)

Rv is now found by the above and (34).

Ry(0) = CRx(0)CT +Rv ⇔ (39)
Rv = Ry(0)− CRx(0)CT

= Ry(0)− CΓn1
†Ry

n
1

(40)

Now only Rw is missing. It is given by the Lyapunov
equation (32) if Rx(0) is given. Rx(0) must therefore be
found. The necessary conditions for Rx(0) are the following,
symmetric, positive definite, given positive definite Rw and
given right Ry(k).

Rx(0) = Rx(0)T (41a)
Rx(0) � 0 (41b)

Rx(0)−ARx(0)AT � 0 (41c)

Rx(0)CT = Γn1
†Ry

n
1 (41d)

The necessary conditions (41) sometimes gives a unique
solution for Rx(0). This is the case if CT in (41d) has full
column rank i.e. if l ≥ n and C has full rank then Rx(0) is
uniquely given by (41d). However, in general (41) does not
give a unique solution. From simulation experiments it seems
to be and advantage to chose a “small” Rx(0). This can be
done by LMI using the Schur compliment. The maximal
singular value of Rx(0) is minimized by (42).

min
Rx(0)

γ s.t.
(

γI Rx(0)
Rx(0)T γI

)
� 0 (42)

Collecting the above a Rx(0) can be found from the LMI
consisting of the LMI optimization problem (42), the LMI
constraints (41b), (41c) and the linear constraint (41d).

Having obtained a representation with Rw, Rv and Rwv =
0 which is consistent with the output auto covariance the



model can be updated with the method in section IV-B.1. It
is however uncertain how close this representation is to the
one generating xp and ya. Notice that the system must be
stable to achieve the assumed (stochastic) stationarity.

The rationale behind using LMI methods for the solution
is that they boil down to a convex optimization problem
and there exists robust numerical methods for it exactly as
for LS methods. This then still avoids non convex iterative
optimization methods.

V. SIMULATION EXAMPLE
As there are no problems in estimating parameters for an

additional input the methods for additional output will be
exemplified.

The method above has been tested by simulation on a num-
ber of random systems of various order and number of input
and outputs. This proved that the method in general works,
as it improves the state estimate or leaves it unchanged. Also
the parameter estimates seems to be consistent in both open
and closed loop at least for the deterministic part.

To show an example where there is a expected effect
of a additional output measurement a system has been
constructed. The deterministic part is a zero order hold
sampled version of the 2 order continuous time system (43).

ẋ(t) = Ax(t) +Bu(t) , (43a)
y(t) = Cx(t) +Du(t) , (43b)[

A B
C D

]
=

 −0.1 −0.01
1 0

0.01
0

1 0 0

 (43c)

Using the notation from (1) this gives the discrete time
system (44) where the stochastic part also is chosen.[

Ap Bp
Cp Dp

]
=

 0.9002 −0.0095
0.95 0.9952

0.0095
0.004833

1 0 0

 (44a)

Rw =
(

0.0100 0.0050
0.0050 0.0100

)
, Rv = 0.1 , Rwv = 0 (44b)

Kp =
(

0.5414
0.4392

)
, Re = 0.0250 (44c)

This system is constructed such that the second state is
difficult to observe. The condition number for the observabil-
ity matrix is 191. This improves to 3.65 when introducing
the additional output (45) because the second state now is
included in the output.

[ Ca Da ] =
[

1 1 0.1
]

(45a)
Ra = 0.1 , Ra• = R•a = 0 (45b)

Using sufficient excitation on the input, simulation of 1000
samples from the system are shown in figure 1.

The result of using the above estimation methods is seen
in (46). Recall that the “physical” noise model (44b) is not
assumed known. Only the corresponding IM (44a), (44c) is
known. The parameters estimated solely from data Ĉa, D̂a

and partly from data R̂a does not match exactly the system
values which is due to uncertainty as there is only 1000
samples. The parameters derived solely from the present
model R̂w, R̂v are different for the process noise compared

0 200 400 600 800 1000
−1

0

1

Input and present output

0 200 400 600 800 1000

−5

0

5

Input and additional output

0 200 400 600 800 1000

−5

0

5

Input and states

Fig. 1. Time plot for the simulation example. The input is blue and the
first and second state in the bottom plot are green and red respectively.

to the system value because the method is not unique with 2
states and 1 output. Only R̂v is correct because the method
gives a unique solution (40) for this parameter. Recall that
the zero correlations between a measurement noise and other
measurements and states noise are part of the assumptions,
they are not estimated.[

Ĉa D̂a

]
=
[

0.800 1.028 0.276
]

(46a)

R̂w =
(

0.0101 −0.0036
−0.0036 0.0013

)
, R̂v = 0.100 , R̂wv = 0

(46b)

R̂a = 0.715 , R̂a• = R̂•a = 0 (46c)

K̂a =
(

0.5359 0.0051
0.5563 0.0919

)
R̂ea =

(
0.0249 0.0128
0.0128 0.7952

)
(46d)

The present model (44a) augmented with the estimated
parameters (46) can now be turned into a updated IM.
The estimated stochastic part is not in general consistent
but a better approximation compared to zero gains in the
Kalman filter part relating the additional output to the state
predictions. This is also seen in the residual plots in figure
2. Especially the residual for the additional output is clearly
non white. However, the maximum correlation for non zero
lags is 0.5 which is quit small.

The above shows that the method is not perfect which
is in accordance with the theoretical observations in section
IV-B.2. The crucial question is then: can it give any improve-
ment. This can be measured in terms of state prediction and
control performance based on the present system and the
system updated with the estimated model for the additional
output.

For state prediction the results are seen in table I. For
reference the table also includes the results from the ideal
situation where both outputs are used and all the correct
parameters (44), (45) are assumed known.

The improvement for the first state is minor because it
is already well observe from the present output. For the
second state the prediction error is reduced to approximately
1/3 for the estimated model compared to 1/5 for the ideal
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Fig. 2. Residual plot for additional output in the new model.

TABLE I
IMPROVEMENT IN STATE PREDICTION RMS ERRORS WHEN INCLUDING

THE ADDITIONAL OUTPUT.

x̃1 x̃2 ỹp ỹa

rms values
Present Model 0.117 1.029 0.150 2.833∗

rms values normalized with above row
Present model 1.000 1.000 1.000 1.000
Updated model 0.986 0.377 0.991 0.180

Ideal updated model 0.956 0.208 0.974 0.147

model. Clearly the estimation method improves the state
estimate when including an additional output. Rms on output
prediction errors are also included. The present output is well
predicted in all cases with a minor improvement using the
additional output. The predicted additional output comes a bit
odd into this comparison as the present model can not predict
this output. Instead the value in the table marked with a * is
the variance corresponding to the best prediction without a
model. The result then shows that the improvement from the
estimated model is close to the improvement obtained with
the ideal model.

To evaluate the method in a control setting the state
feedback controller design (47) has been chosen sufficiently
fast to show differences in the quality for the state estimate.

Fo = min
F

lim
N→∞

N∑
t=1

x(t)TQxx(t) + u(t)TQuu(t) ,

u(t) = −Fx(t) , Qx =
(

0 0
0 1

)
, Qu = 0.01

(47)

u(t) = −Fox̂(t) = −Fo E(x(t)|Y t−1) ,
Fo = (30.8739 7.4953)

(48)

The result of using the three different state estimators in (48)
are seen in table II. Notice that there is one time delay in
the controller (48). According to the separation theorem [6,
Theo. 5.1] the performance function has a part due to control
and a part due to state prediction errors. As the control gain
is fixed the differences in performance are due to the state
predictors. In table II it is clearly seen that the updated model
improves performance significantly and it is almost as good
as the ideal model.

TABLE II
IMPROVEMENT IN STATE PREDICTION RMS ERRORS WHEN INCLUDING

THE ADDITIONAL OUTPUT.

xTQxx uTQuu Total
Average values

Present Model 1.188 0.002 1.190
Average values normalized with above row

Present model 1.000 1.000 1.000
Updated model 0.396 1.691 0.398

Ideal updated model 0.366 1.499 0.368

VI. CONCLUSION
Consider the situation where a additional sensor or actua-

tor is needed in an existing system to improve estimation or
control and where a model of the present system is known.
Assume data driven system identification methods must be
used to update the present model. It can be advantageous
for control or estimation to keep the present state space and
model and only estimate the necessary additional parameters.

In this work it is investigated what can be achieved with
reliable, robust and convex numerical methods. The methods
used are least squares and linear matrix inequalities.

The basic principle is to use the state prediction from the
know present innovation model. The known state predictor
can then be used in a regression type model to estimate the
deterministic part of the model.

In case of a additional output there is also a stochastic
part to be estimated. The Kalman gain has to be updated
and the measurement noise for the additional output must be
incorporated.

Using only the innovation form of the present model this
is not possible. The solution develop is based on a transfor-
mation of the innovation model to a “physical” model in the
sense that process and measurement noise are uncorrelated.
This solution is to the authors knowledge new. Moreover, the
problem of incremental modelling and the methods in this
paper seems new.

The estimated parameters for the new device are consistent
even in closed loop mode except for the stochastic part in the
case with additional output. Here the estimate will in general
be biased.

However, a simulation experiment shows that the devel-
oped methods successfully improve the state prediction and
control performance for a system where one state initially
has a low observability.
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