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Highlights 

 An i* extension for Teleo-Reactive (TR) systems named TRiStar. 

 A novel approach to modeling software requirements of TR systems using 

TRiStar. 

 An empirical proof of the higher efficiency of TRiStar vs i* for TR systems. 

 An empirical proof of the higher effectiveness of TRiStar vs i* for TR systems. 
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Abstract. The Teleo-Reactive approach facilitates reactive system development without losing sight 

of the system goals. 

Objective: To introduce TRiStar as an extension of i* notation to specify Teleo-Reactive systems. To 

evaluate whether the notational extension is an improvement in terms of effectiveness and efficiency 

over the original language when it is used to specify Teleo-Reactive systems. 

Method: A family of experiments was carried out with final-year engineering students and 

experienced software development professionals in which the participants were asked to fill in a form 

designed to evaluate the efficiency and effectiveness of each of the languages.  

Results: Both the statistical results of the experiments, analyzed separately, and the meta-analysis of 

the experiments as a whole, allow us to conclude that TRiStar notation is more effective and efficient 

than i* as a requirements specification language for modeling Teleo-Reactive systems. 

Conclusion: The extensions made on i* have led to TRiStar definition, a more effective and efficient 

goal-oriented notation than the original i* language. 

Keywords:  

Teleo-Reactive; i*; TRiStar; Requirements Engineering; Understandability 
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1 Introduction 

The Teleo-Reactive paradigm (TR) [1] is a goal-oriented approach for modeling systems in 

which actions, outputs and states are computed as a response to a stimulus received from the 

system’s surroundings and from the system itself. Teleo means "to reach a goal". "Reactive" 

means "highly sensible to perceptions". As a consequence, the TR approach offers engineers a 

formal high-level goal-oriented way to develop reactive systems, allowing developers to define 

behaviour without losing sight of the goals and state changes ocurring in the environment. 

 

A TR specification can be defined as a set of prioritized condition/action rules. The conditions 

are defined by inputs from sensors or from a model of the world created by the system. The 

actions change the world in some way from a physical or logical point of view (the model of the 

world). The condition of the rule with the highest priority represents the main goal of the 

system-to-be. At the same time, actions can be TR specifications, thus allowing the creation of 

hierarchical decompositions of the goals. The subgoals are therefore those objectives to be 

reached in each of the sub-specifications and are needed to fullfil the main goal. For more 

details on this topic, see Morales et al. [2], which gives a systematic review of works published 

between 1994 and 2011, as well as the extensions provided by Keith Clark with TeleoR [3]. 

 

Although the TR paradigm has proved useful when it comes to specifying reactive sytems 

[4][5], it is nonetheless true that developing TR systems is a hard and error-prone task. The 

main challenges involved have been identified in [6] and can be summarized as follows: 

1. Rule priorities: a small change in priorities or order in the rules may lead to a very different 

system behaviour. 

2. Regression property: a sound TR specification must guarantee that acomplishing a subgoal 

takes the system closer to reaching a higher priority goal, which in turn takes the system 

closer to the main goal. The demonstation of this property for a given system is not a trivial 

issue. 

3. Modularity and encapsulation: in spite of the fact that the paradigm considers the use of 

subgoals (allowing a certain degree of encapsulation) the textual representation makes the 

understandability of the behaviour of the system particularly difficult at a single glance. 

4. Reuse: as a result of the above, the creation of reusable components has not been a key issue 

in the evolution of the TR paradigm. The most remarkable exception can be found in [7], in 

which the authors propose a model-driven approach to obtain architectural components 

starting from a TR specification. 
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With the aim of overcoming these difficulties, it would be useful to find a Software Engineering 

approach to specify the requirements of TR systems. Morales et al. [6] argue that the most 

suitable Requirements Engineering technique for modeling TR systems is the Goal-Oriented 

approach, as both systems share the same foundations (goals). In the study cited, two techniques 

are proposed that use goal-oriented requirements languages to demonstrate that i* [8] gives 

better results in terms of understandability. Starting from these results and going deeper into the 

study of the technique based on i*, we detected a sort of weaknesses that, if fixed, would 

improve the understandability, efficiency and effectiveness of i* as a specification language for 

TR systems. For this reason, and following the path used in other approaches, such as [9], we 

propose here an i* extension that overcomes the limitations mentioned above. This extension, 

named TRiStar, was first presented in [10]. In the present paper we delve deeper into the 

definition of TRiStar and analyze the results by means of a family of experiments carried out to 

compare the efficiency and effectiveness of the original notation using i* with the TRiStar 

extension. It is important to clarify that TRiStar extends the i* notation but does not limit it in 

any way. Thus, all the expressiveness of the original language is available to deal with topics 

from the early stages of requirements engineering, such as uncertainty, conflicts among multiple 

agents or alternative ways of achieving the same goal. All these topics may be very useful when 

specifying complex TR systems in which several agents collaborate or compete with each other 

to achieve the goals in an application (see [3] for examples of such systems).  

 

The Oxford English Dictionary defines the word “understandable” as “that can be understood; 

intelligible” [11]. The understandability of a given notation is therefore something inherently 

subjective and linked to the modeler’s capacity to understand such notation. In this vein, many 

studies, besides measuring what can be called "subjective understandability", have looked for 

other more objective ways of evaluating understandability by means of performance-based 

measures. For instance, Genero et al. [12] define the concepts used throughout this document as 

follows: 

 Understandability Time (UT): The time needed to understand a TR diagram (expressed in 

minutes). 

 Understandability Effectiveness (UEffec): The number of correct answers reflects how well 

the participants performed the required understandability tasks. 

 Understandability Efficiency (UEffic): The number of correct answers divided by UT 

relates the understanding performance of the participants to their effort (in terms of time 

spent). 

In this paper we introduce a family of experiments in which the above concepts have been 

evaluated for each of the notations introduced: i* and TRiStar. The rest of the paper is organized 

as follows: Section 2 gives an overview of related works on the development of TR systems and 
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goal-oriented requirements engineering techniques needed to understand the contents of this 

paper. Section 3 gives a brief introduction to i* and its use for defining TR systems. Section 4 

describes in detail the TRiStar extension, starting from the limitations detected in i* notation. 

Section 5 details the family of experiments carried out, while Section 6 describes possible 

threats to the validity of the experiments. Finally, Section 7 summarizes our conclusions and 

some worthwhile future lines of research. 

2 Related work 

The TR paradigm has obtained many important results in distinct fields of research, perhaps 

with the most valuable outcomes in the Robotics and Artificial Intelligence domain. In [2] a 

detailed summary of the existing literature on the TR paradigm is given, including several 

contributions to TR formalism, platforms for TR program simulation and validation purposes, 

as well as methodologic and engineering concerns for creating TR programs or generating 

executable code. 

Among the existing Requirements Engineering approaches [13][14], Goal Oriented 

Requirements Engineering (GORE) has been shown to be particularly helpful in many stages of 

the system development process [15]. In addition, Yu and Mylopoulos state in [16] that “some 

researchers have considered goals to be an important construct in a number of different areas 

of RE.”. Those areas include, among others, requirements acquisition, clarifying requirements or 

driving design, which are very useful in the latter stages of requirements specification in TR 

systems. Morales et al. [6] state that GORE is the most straightforward choice for developing 

TR systems, as both paradigms share the same fundamental concept: 'goal'. The choice of the 

GORE paradigm to specify TR systems is not only based on this coincidence. The search for a 

graphical notation to help stakeholders to understand the specification of a TR system and avoid 

wrong interpretations was motivated by the desire to increase the abstraction level. TR systems 

need a notation which allows the concept of ‘goal’ to be represented in the most natural possible 

way and at the same time specifies the rules with the appropriate level of detail. GORE offers 

both these advantages. Other approaches, such as the rule-based approach [17], are not suitable 

as they stay at the same abstraction level as that of the TR program. In addition, the mapping 

between TRiStar and TR programs means that the corresponding code can be obtained directly, 

which obviously makes the work of the developers easier. The study in [6] compares the most 

common GORE languages (i* [8] with KAOS [18]) and concludes that i* is the best GORE 

language to specify TR systems. In spite of the advantages of using i*, the notation has some 

weaknesses when it comes to specifying TR systems, and this is why we decided to create an 

extension that would overcome these limitations. 
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There are many examples in the literature of extensions to well known languages with the aim 

of adapting them to specific domains. In this context, CSRML [9] (Collaborative Systems 

Requirements Modeling Language) is a representative extension for i*, targeting collaborative 

systems to create the well-known Computer Supported Cooperative Work (CSCW). These 

systems allow users to do collaborative tasks, communication and coordination, besides other 

tasks, on common software applications. However, the specification of such systems using 

traditional Requirements Engineering techniques is rather complicated, while an i* extension 

provides the expressiveness needed to specify CSCW more simply. 

In [19], the authors make a comparative analysis of the original i* language with its two most 

widespread variants: Goal-oriented Requirement Language (GRL) [20] and the language used in 

the TROPOS methodology [21]. It also analyzes the following three i* extensions: 

 The REDEPEND tool [22], which extends i* and allows new types of Means-End 

relationships using satisfaction arguments, Contribution relationships, and other minor 

differences. It provides systems engineers with i* modeling and analysis functions, 

coupled with additional functionality and the reliability of Microsoft Visio. It provides a 

graphical palette from which systems engineers can drag-and-drop i* concepts to 

develop Strategic Dependency and Rationale models. 

 The Formal TROPOS Language. Formal Tropos adds to i* temporal specification 

primitives [23]. It allows specifying cardinality constraints in the dependencies among 

intentional elements and also allows a new dependency type (prior-to) to be defined to 

specify temporal order between intentional elements.  

 In [24] the authors propose new types of dependencies among actors and intentional 

elements: responsibility dependencies between an agent and a goal or a task; authority 

dependencies between two agents; audit dependencies between an agent and a goal or a 

task; and capability dependencies of an agent with respect to a goal or task. 

On the other hand, controlled experiments to determine the understandability of a given notation 

or language is a widely accepted practice. Jamison and Teng [25] carried out an experiment to 

determine the perceived ease of use of several types of textual and graphical database 

representations. They concluded that graphical notations were more easily and efficiently 

accessed and the participants declared that graphical representations were much easier to 

understand.  

Lee and Choi [26] compared a set of conceptual data-modeling languages to determine which 

gave more accurate and understandable models in the shortest time. The best results were 

obtained by the Extended Entity-Relationship Model (ERM) and the Object Modeling 

Technique. Bajaj [27] studied the influence of the number of metamodel concepts on the 

readability of schemes created using such metamodels. They carried out an experiment using 

many variants of the original ERM, each one with a different number of concepts in order to 
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evaluate efficiency, effectiveness and learnability (defined as an improvement in efficiency and 

effectiveness over time). The results led the authors to conclude that the variants with most 

concepts allowed higher precision in the domain conceptualization and at the same time were 

easier to learn, although the time needed to process the schemes was increased significantly. 

Many other approaches are based on ERM: in [12] a set of objective metrics were defined on 

ER diagrams and an experiment was performed to determine whether these metrics had any 

correlation with the "subjective understandability", efficiency and effectiveness of ER diagrams. 

Three of the proposed metrics (number of entity attributes, number of 1:1 relationships, and 

number of 1:N relationships) were significantly correlated with scheme understandability: the 

more attributes and relationships a diagram had, the less understandable it turned out to be.  

A family of experiments was carried out in [28] to compare the understandability of i* and 

CSRML when specifying Collaborative Systems in which the users could perform 

collaborative, communication and coordination tasks. Similarly to the system used in the 

present study, they used two replicas in which the subjects answered a set of questions related to 

the understandability of the two notations. The statistical analysis showed that the specifications 

made by CSRML scored higher than i*, especially in collaboration aspects. The study 

concluded that in terms of understandability CSRML outdid i* as a specification language for 

collaborative systems. 

More recently, a controlled experiment was performed in [6] to determine the understandability 

of i* versus KAOS as a language for specifying TR systems. The results showed that both 

languages obtained similar scores in terms of understandability, although i* notation stood out 

slightly. The statistical analysis of the results led to the conclusion that i* notation was more 

understandable than KAOS as a specification language for TR systems. 

Following the strategy defined in [6], the aim of the present study is to statistically validate 

whether or not the notational extensions are an improvement of the original i* notation by 

means of a family of experiments 

3 Previous background: i* for TR system requirements specifications 

The i* framework guides the stakeholders through the different phases of the software 

development process, namely from the early requirements analysis up to the detailed design. As 

already mentioned, i* can also be employed to specify the requirements of TR systems.  

The work by Morales et al. [6] introduces the language and gives a detailed description of the 

technique developed for specifying TR systems. Table 1 briefly summarizes the mapping from 

i* concepts to TR concepts, which constitutes the kernel of the technique described in the work. 

Table 1. Mapping concepts between i* and TR 

i* TR 
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Main Agent System-to-be 

Agent Sensor 

Goal Goal 

Task Action 

Resource Percept 

Resource Dependency Condition 

 

Figure 1 shows the application of this approach by using a simplified version of the i* 

specification of one of the examples used in the family of experiments described in Section 5.2. 

The example consists of a drone that always goes back to its origin, no matter where it has taken 

off from.  

 

Figure 1. Drone application specification using i* 

The details of the application of the tecnique described in [6] to the i* specification shown in 

Figure 1 are given below. The resulting TR program is shown in Code 1: 

 Every i* goal in Figure 1 becomes a TR goal (in bold text in Code 1, as for instance, Land 

or MaintainHeightOK).  

 Every i* agent becomes a sensor or device, such as GPS or altimeter. 

 Every i* resource that has a dependency relationship with an agent becomes a condition 

monitored by the homologous sensor, such as ground with the altimeter. i* goals or tasks 

that lack dependency relationships, such as go_down, are mapped to TR rules whose 

condition is always true (True → goal/action). 

 Every i* task, such as followGPS, becomes an action. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 9 

 i* tasks and goals linked by a task-decomposition link to an i* goal become rules of the 

same TR goal. For example, the Land goal is decomposed into the tasks go_down and nil. 

Therefore, two rules are created for the TR goal named Land: one whose action is go_down 

and another whose action is nil, as shown in Code 1. 

 The relative position of the items in the i* specification states the priority of the rules in the 

TR program. For example, Land is drawn farther to the right than followGPS (see Figure 1). 

As can be seen in Code 1, the rule whose action is Land is over the rule whose action is 

followGPS because it has higher priority. 

Code 1. TR program for Figure 1 

 

3.1 Shortcomings of i* for TR systems 

As shown in the previous section, it is possible to specify the requirements of a TR system using 

i*. Although the validity of the proposed mapping between i* and TR programs has been 

established in previous works [6] [10], in this last paper the authors pointed out some limitations 

found in applying such a technique and briefly presented an extension to i* named TRiStar, 

which aims to overcome them. We firstly summarize these limitations by an illustrative 

example, while the following section describes the enhancements provided by TRiStar for 

specifying TR systems employing i*. 

 S1. Setting the priority by using the order in which tasks or goals refining a goal are 

positioned in the diagram constrains the likely position of subtasks or subgoals in it. 

Occasionally, this may result in messy diagrams hard to interpret. In addition, it is difficult 

to automatically process a diagram in which the relative position of two items has an 

important meaning. The example shown in Figure 2, a variation of Figure 1, will help us to 

explain this shortcoming. Task go_down must be placed far away from the Land goal 

DronAtOrigin: 

 overOrigin  Land 

 NOT(height > hMax) AND NOT(height < hMin)  followGPS 

 height > hMax OR height < hMin  MaintainHeightOK 

MaintainHeightOK: 

 height < hMin  go_up 

 height > hMax  ReduceHeight 

ReduceHeight: 

 True  go_down 

Land: 

 ground  nil 

 True  go_down 
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because it needs to be on the left of go_up, as the priority of go_down when refining 

MaintainHeightOK is lower than that of go_up. 

 

Figure 2. Ambiguous i* specification 

 S2. If the same task is involved in two or more goals, it may then depend on different 

resources when refining one of the goals. This may cause ambiguity when obtaining the 

conditions of the associated TR rule. Considering the i* specification of the drone 

shown in Figure 2, it can be seen that it is is very similar to that of Figure 1. In this case 

we introduced a goal named ReduceHeight to avoid the ambiguity around the  go_down 

task. If this artificial goal is not used (note that there is no goal IncreaseHeight, as there 

is no possible ambiguity with the go_up task), it is not possible to say whether go_down 

depends on height > hMax when refining MaintainHeightOK or when refining Land, or 

in both cases. Code 2 shows a TR program that fits this specification. Note the 

condition of the lowest rule in the subgoal Land; a drone programmed with Code 2 

would crash when it flew over its origin. When overOrigin became true, the subgoal 

Land would take control, but as none of the conditions of the rules in Land are actually 

true, the drone would do nothing and thus would fall to the ground. 
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Code 2. A TR program fitting the specification in Figure 2 

 

We got around this problem in the i* version shown in Figure 1 by using the additional 

subgoal ReduceHeight. The resource height > hMax depends on this new subgoal, which is 

decomposed into only one task, freeing this task (go_down) from dependencies. With this 

alternative specification a correct TR program can be generated, but the extra item needed  

reduces the diagram’s readability. 

 S3. The conditions of TR rules are usually composed of logical combinations of percepts 

given by the sensors. In i* there is no way to graphically represent a Boolean combination 

of some of the percepts provided by sensors. Retaking the example shown in Figure 1, in i* 

there is no symbol to represent a dependency on height > hMax OR height < hMin, for 

instance. We got around this limitation by adding resources that are labeled with the 

Boolean expression we wanted to represent inside the boundary of the system. These 

expressions may become difficult to read in systems with a certain degree of complexity.  

4 TRiStar Enhancements 

To overcome the limitations identified in the previous section, an extension to i* is proposed. 

The following three main new features compose this extension, named TRiStar: 

 E1: Prioritized decomposition links. 

 E2: Dependent decomposition links. 

 E3: Logical resources. 

In this section these new features are described in depth. 

 E1: Prioritized decomposition links. To avoid relying on the relative position of the 

diagram elements when information about their priority is needed (shortcoming S1), a new 

decomposition link has been defined. This new type of decomposition link provides the 

priority of the rule whose subgoal or task is at the end of the link by changing its own 

DronAtOrigin: 

 overOrigin  Land 

 NOT(height > hMax) AND NOT(height < hMin)  

followGPS 

 height > hMax OR height < hMin  MaintainHeightOK 

MaintainHeightOK: 

 height < hMin  go_up 

 height > hMax  go_down 

Land: 

 ground  nil 

 height > hMax  go_down 
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representation. The standard i* decomposition link has a short perpendicular line at the end 

that is closer to the goal being decomposed. The new decomposition links have as many of 

these short lines as needed to show the priority of the subgoal or subtask. One line means 

the lowest priority. The more lines a decomposition link has, the higher priority its related 

subgoal or subtask has. Now, the position of these lines on the diagram does not have any 

intended meaning. Figure 3 shows a diagram in which these new decomposition links can 

be seen. Note that although the highest_priority_subgoal is in the middle of the subgoals, it 

has the highest priority as its decomposition link has three short perpendicular lines. In the 

TR program corresponding to this specification, the rule containing 

highest_priority_subgoal would be the uppermost rule in Goal, then 

medium_priority_subgoal would be next, and finally lowest_priority_subgoal. 

 

Figure 3. Prioritized decomposition links 

In order to avoid scalability problems when a goal is refined into many tasks or subgoals, 

the short perpendicular lines can be substituted by a circle with the priority specified in its 

interior, with ‘1’ being the lowest priority. Although this notation facilitates the insertion of 

new subtasks or subgoals and avoids the excessive cluttering that can be generated by the 

addition of many perpendicular lines, we recommend the use of short lines to maintain the 

similarity with the original i* notation.  

 E2. Dependent decomposition links have been introduced to avoid linking dependencies 

directly to subgoals or tasks (limitation S2). It is worth remembering that the condition of a 

rule in a TR program cannot be generated from a dependency on a task or subgoal alone, 

but the relationship between the task and the goal it refines is also needed. This relationship 

is obviously represented by the decomposition link that connects them and explains why a 

dependency link between the decomposition link and the resource has been introduced. For 

example, as Figure 4 shows, the decomposition link between Goal and Subgoal depends on 
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resource1, which is in Sensor1’s boundary. Similarly, the decomposition link between Goal 

and Task depends on resource2, which is in Sensor2’s boundary.  

 

Figure 4. Dependent decomposition links 

Note that the new prioritized decomposition link has been used in the example. As the link 

between Goal and Subgoal has a higher priority than the other, the first rule in the TR 

program is the one whose condition is resource2. Code 3 shows the TR program generated 

from this specification.  

Code 3. TR program for Figure 4 

 

 

 

 

 

 E3. To overcome limitation S3, we introduced a specialization of i* resources to represent 

the logical combinations of percepts. These specialized resources are related to all the 

percepts they involve by using directed dependency links. In addition, the logical resource 

is given a name, which acts as an alias for such combinations of percepts. A table is 

provided to link every name with its logical expression. Figure 5 shows an example of this 

new kind of resource. 

 

Figure 5. Use of logical resources 

The decomposition between Goal and Subgoal depends on a logical resource which is the result 

of an OR operation between resource1 and resource2. As the logical resource uses the percepts 

Goal: 

 resource1  Subgoal 

 resource2  task 
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resource1 and resource2 as operands, dependency links are established from the logical 

resource to its two operands. The expression represented by LogicalResource can be seen in the 

table just under System’s boundary. Code 4 shows the TR program that corresponds to this 

specification: 

Code 4. TR program for Figure 5 

 

 

 

 

Lastly, although it cannot be considered an extension to i*, the dependencies between a percept 

and the sensor that generates it are represented by inserting the resource inside the agent’s 

boundary, as already shown in Figure 4 and Figure 5. In this way, only a dependency link is 

needed to represent the condition of a rule, unlike plain i* specifications, which require two 

such links. 

 

The mapping from a TRiStar specification to a TR program is very similar to that of i*. In fact, 

Table 1 still remains valid. There are however some differences: 

1. The main TRiStar agent is transformed into the TR system-to-be. The main TRiStar agent is 

the one that has the goal that the final system wants to achieve in its boundary. 

2. TRiStar goals become TR goals. 

3. TRiStar tasks are specified as TR atomic actions.  

4. TRiStar resources (except logical resources) become percepts generated by sensors. 

5. A logical resource will be translated into the expressions found in the table associated to its 

alias. 

6. Considering that a TR rule is defined as condition → goal/action, every TRiStar resource 

having a decomposition link as a dependee is transformed into a TR rule whose condition is 

that resource and its action is the task or goal that is at the end of the decomposition link. A 

decomposition link not depending on any resource is transformed into a rule of the form 

True → goal/action. 

7. Since a TR goal is defined as a set of prioritized TR rules, a TRiStar goal being refined into 

goals and tasks through task-decomposition links is transformed into a TR goal formed by 

as many rules as TRiStar tasks or goals refine the original i* goal. 

8. Rule priority, given by the order of the rules in TR programs, is specified in TriStar 

diagrams by using prioritized decomposition links. So, the tasks or goals placed at the end 

of the highest priority decomposition link will be translated into the action of the highest 

priority rule in the TR program. The resource on which the highest priority decomposition 

link depends will be transformed into the condition of that rule.  

Goal: 

 resource1 OR resource2  Subgoal 

 True  task 
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Figure 6 shows the specification of the same drone as that in Figure 1 but using TRiStar. 

 

Figure 6. Drone specification using TRiStar. 

All the proposed extensions have been employed in this example: 

 Prioritized decomposition links allow positioning go_down near both MaintainHeightOK 

and Land, which helps keep the diagram organized and uncluttered, with no crossing lines. 

 Dependent decomposition links enable the artificially created subgoal ReduceHeight to be 

removed. The resource height > hMax depends on the link between MaintainHeightOK and 

go_down and not on the link from Land, so that the ambiguity of the rule condition is 

eliminated. 

 Two logical resources have been introduced: HeightOK and HeightKO, whose expressions 

can be found in the table in Figure 6. The aliases make it easier to understand the conditions 

that apply to the rules involved. 
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Code 5 shows the TR program obtained by applying the mapping rules described in Section 4 to 

the TRiStar specification depicted in Figure 6: 

 Every TRiStar goal in Figure 6 becomes a TR goal (in bold text in Code 5, as for instance, 

Land or MaintainHeightOK).  

 Every TRiStar agent becomes a sensor or device, such as GPS or altimeter. The resources 

within their boundary are mapped to the percepts provided by each of them. See ground 

inside Altimeter’s boundary, for example. 

 A decomposition link depending on a resource, logical or not, becomes a rule whose 

condition is the percept represented by the resource and its action is the goal or task at the 

end of the decomposition link. See for example in Figure 6 the link between DronAtOrigin 

and Land, which depends on atOrigin. It is mapped to the first rule in goal DronAtOrigin as 

can be seen in Code 5. 

 Logical resources are mapped to the conditions corresponding to their aliases in the table. 

For instance, HeightKO is mapped to height > hMax OR height < hMin. 

 Decomposition links that lack dependency relationships, such as that between Land and 

go_down, are mapped to TR rules whose condition is always true (True → goal/action). 

 Just as in the i* case, every TRiStar task, such as followGPS, becomes an action. 

 TRiStar tasks and goals linked by a task-decomposition link to a TRiStar goal become rules 

of the same TR goal. For example, the goal Land is decomposed into the tasks go_down and 

nil. Then, a TR goal named Land appears with two rules: one whose action is go_down and 

another whose action is nil, as shown in Code 5. 

 The number of short perpendicular lines in the decomposition links states the priority of the 

rules in the TR program. For example, the decomposition link from DronAtOrigin to Land 

DronAtOrigin: 

 atOrigin  Land 

 NOT(height > hMax) AND NOT(height < hMin)  followGPS 

 height > hMax OR height < hMin  MaintainHeightOK 

MaintainHeightOK: 

 height < hMin  go_up 

 height > hMax  go_down 

Land: 

 ground  nil 

 True  go_down 

Code 5. TR Program for Figure 6 
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has three of these perpendicular lines, while the decomposition link between DronAtOrigin 

and followGPS has only two (see Figure 6). As can be seen in Code 5, the rule whose action 

is Land appears before the rule whose action is followGPS. 

5 The family of experiments  

In order to assess the understandability of both the newly created TRiStar extension and i* 

when modeling the software requirements of TR systems, a family of experiments (see Figure 

7) performed to compare both of them based on the guidelines described by Kitchenham et al. 

[29]. In this section we will describe the context, the design and how the experiments were 

conducted. All the three members of the family were designed in a similar way, so that only one 

description is given.  

 

Figure 7. Chronology of the family of experiments 

5.1 Experimental Context 

The main goal of this family of experiments was to study the requirements specifications of TR 

systems using both i* and TRiStar and evaluate their effectiveness and efficiency from the 

perspective of requirements engineering researchers, using undergraduate B. Sc. students and 

experimented software developers as subjects. To achieve this goal, the null hypotheses shown 

in Table 2 were defined using the Goal Question Metric template [30]. 

Table 2. Main features of the family of experiments 

Null-

Hypotheses 

HUEffee0A: i* has the same average score for understandability effectiveness as TRiStar 

when specifying TR requirements. HUEffec1A: ¬HUEffec0A 

HUEffec0B: The understandability effectiveness average score is the same regardless of the 

domain used in the experiment. HUEffec1B: ¬HUEffec0B 

HUEffec0AB: i* has the same understandability effectiveness average score as TRiStar when 

specifying TR systems requirements, regardless of the domain used in the experiment 

and viceversa. HUEffec1AB: ¬HUEffec0AB 

HUEffic0A: i* has the same average score for understandability efficiency as TRiStar when 

specifying TR requirements. HUEffic1A: ¬HUEffic0A 

HUEffic0B: The understandability efficiency average score is the same regardless of the 

domain used in the experiment. HUEffic1B: ¬HUEffic0B 

HUEffic0AB: i* has the same understandability efficiency average score as TRiStar when 

specifying TR systems requirements, regardless of the domain used in the experiment 
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and viceversa. HUEffic1AB: ¬HUEffic0AB 

Dependent 

variables 

Understandability effectiveness of requirements modeling languages, measured by 

UEffec 

Understandability efficiency of requirements modeling languages, measured by UEffic 

Independent 

variables 
The system the models specify and the language used to specify these models 

Location 
ETSII at UPCT (Cartagena, 

Spain) 

ETSIT at UPCT (Cartagena, 

Spain) 

SAES Facilities 

(Cartagena, Spain) 

Date February 2015 February 2015 February 2015 

Subjects 

31 undergraduates of the 

B.Sc.  in Industrial 

Electronics and Automation 

Engineering (16 Group 1; 15 

Group 2) 

25 undergraduates of the B.Sc. 

in Telecommunication Systems 

Engineering (13 Group 1; 12 

Group 2) 

13 experienced 

software development 

professionals (6 Group 

1; 7 Group 2) 

 

As Table 2 shows, the subjects in the experiments were engineering students and software 

development professionals. All were familiar with requirements engineering but none had 

previously used either i* or any other GORE language  and none had any previous experience 

of TR systems. 

The Sociedad Anónima de Electrónica Submarina (SAES) collaborated in this study and 

allowed almost all their software engineers to be subjects for the second replication. SAES is a 

Spanish company specializing in underwater acoustics and develops undersea security and 

environmental protection systems. The company has more than 25 years of experience in 

developing advanced technology in the fields of Sonar, Acoustic Signal Processing, Underwater 

Signature Measurement and Management, Simulation and Training. Highly skilled and 

experienced engineers and scientists in various disciplines make SAES an innovative and 

competitive company in both national and international markets. 

5.2 Experimental Design 

All the experiments in this family were aimed at evaluating the understandability of the 

requirements specification of two different TR systems specified by both i* and TRiStar. The 

first system consisted of a drone which was able of deliver a package to a destination and go 

back to its origin, always keeping at a safe height.  GPS informs the drone when it is flying over 

its origin, over the destination and gives it directions to reach both places. Weight is monitored 

so that the drone knows whether it is loaded or not and an altimeter is in charge of updating 

height information. The actions the drone is able to carry out are limited to going up, going 

down, following GPS directions and releasing the load. 

The second system was a variation of one of the systems used in [6], which was a soccer robot 

which plays in defensive positions. When the robot considers the danger is over, it goes back to 
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its own goal. The robot can find the ball and knows who is controlling the ball: i.e. himself, an 

opponent or a teammate. The robot can identify other members of its own team, in fact, its main 

goal is to keep the ball in his team’s possession. To do this, the robot can turn, move forward, 

dribble and kick the ball. 

The subjects in all the tests were divided into two groups, Group 1 and Group 2, each group 

using one of the languages. Table 3 summarizes these decisions: 

Table 3. Experimental design 

 

System 

Drone Football player 

Language 

 

TRiStar Group 1 Group 2 

i* Group 2 Group 1 

 

Dividing the subjects into 4 different groups starting from the combination of the two 

independent variables makes up a 2x2 factorial design with confounded interaction [31] and 

thanks to this combination system-language among the groups, the learning effect is cancelled. 

Every subject answered a brief questionnaire on both models. The questionnaire (see Appendix) 

consisted of some TR program fragments from the presented models using the appropriate 

mapping. In every fragment there was an element missing and the subject was asked to fill in 

the blanks. They were also asked to record the time they need to answer the questions. With this 

information, effectivenes (UEffec) was calculated as the number of correct answers divided by 

the total number of questions. Efficiency (UEffic) was calculated as UEffec divided by the 

number of minutes required to fill in the questionnaire. In the final question the subjects were 

also asked which language they thought was most understandable in specifying TR systems. 

Since all the participants had previous experience in requirements engineering but not in GORE 

or TR systems some filtering criteria were laid down to eliminate any subjects whose previous 

experience would give them an advantage that could adulterate the results. Those that matched 

any of the following criteria were discarded: 

 Those more than 5 years older than the group’s average age. 

 Previous experience in GORE languages. 

 NO previous experience in requirements engineering 

 Previous experience in TR systems. 

Finally, each subject was interviewed on his opinion of the questions and the answers were 

recorded for subsequent analysis.  
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5.3 Test Procedure 

The tests were carried out in three different sessions: one for the original test and two more for 

the replicas. The first session took place in the Industrial Engineering School of the University 

of Cartagena and the second in the Telecommunications Engineering Faculty of the same 

university. The third session took place in the SAES facility in Cartagena. 

The same procedure was used for all three sessions. An instructor initially briefed the subjects 

on TR systems, i* and TRiStar, and how to represent TR systems requirements in both 

notations. The examples used in the experiment, the drone and the football player, were also 

described. The time needed for the complete briefing was about 20 minutes. Before giving the 

models to the subjects, the following information was obtained: 

 For subjects in groups G1 and G2: 

 Gender (Male/Female) 

 Age 

 Qualifications 

 Average score 

 Have you had any previous experience of working with goal-oriented requirements 

engineering?  

 Have you had any previous experience of working with any other requirements 

engineering technique? 

 Have you had any previous experience of working with teleo-reactive systems? 

 For subjects in group G3: 

 Gender (Male/Female) 

 Age 

 Years of experience in software development 

 Have you had any previous experience of working with goal-oriented requirements 

engineering?  

 Have you had any previous experience of working with any other requirements 

engineering technique? 

 Have you had any previous experience of working with teleo-reactive systems? 

The subjects were asked to record their exact start and end times from an online clock projected 

on a screen.  
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5.4 Analysis of the Results  

Error! Reference source not found. shows the participants’ subjective preference in the form 

of the combined answers for the three experiments to the question “In your opinion, which 

language is more understandable?”. 

 

Figure 8. Subjective Understandability. 

As can be seen in Figure 8, the answers show that TRiStar is more understandable than i*. 45 

subjects declared that they found TRiStar more understandable, vs less than 15 who preferred i* 

or the 10 people who did not give a clear answer (Don’t Know). As regards the effictiveness 

and efficiency aspects; the factorial design of the experiments in this family makes them 

particularly appropriate for a two way ANOVA test in order to analyze the results. The three 

main assumptions for this test are the following: 

 Independence of observations. 

 The distribution of the residuals must be normal. 

 Homocedasticity: homogeneity of variances. 

In the following subsections the original experiment and its replications will be analyzed to 

check firstly whether these assumptions are achieved or not. In those cases in which the 

assumptions are achieved, the results of the ANOVA tests will be presented and anlyzed. The 

way in which the data was obtained guarantees the independence of the observations, so that 

only normal distribution and homocedasticity need be proven. The results were analyzed by 

IBM SPS Statistics v. 22. 
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5.4.1 Original Experiment (E1) 

The answers of 5 participants in this test were discarded from the sample either because they 

did not comply with one of the criteria in Section 5.2 or they had not completed the 

questionnaires. The total number of remaining subjects in the sample was 31. According to the 

central limit theory [32], the normality of the sample may be assumed. 

 

UEffec: as can be seen in column “Sig.” in Table 4, Levene’s test [33] for homogeneity of 

variances provides a p-value of 0.493, allowing us to assume the homocedasticity of the 

sample. This test was designed to fit the two-way ANOVA test to be performed: language + 

system + language * system, each of these elements corresponding to one of the three null 

hypotheses to be evaluated (HUEffec0A, HUEffec0B and HUEffec0AB). 

Table 4. Levene’s test for UEffec in E1 

F df1 df2 Sig. 

0,814 3 58 0,493 

 

The results provided by the ANOVA test are shown in Table 5. 

Table 5. ANOVA results for UEffec in E1 

Source 
Type III Sum of 

squares 
df Mean Square F Sig. 

Model 33.907
a
 4 8.477 415.250 0.000 

Language 0.085 1 0.085 4.154 0.047 

System 0.016 1 0.016 0.797 0.376 

Language * system 0.012 1 0.012 0.573 0.453 

Error 0.980 58 0.020   

Total 34.887 62    

a. R Squared= 0.972 (Adjusted R Squared = 0.970) 

 

As the p-value obtained for language is 0.047 (see column “Sig.”) and therefore less than α = 

0.05 HUEffee0A can be rejected and it can be concluded that there is a statistically significant 

difference between the UEffec results obtained from i* and those obtained from TRiStar. On the 

other hand, as the p-values for system and language*system are much bigger than α, neither 
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HUEffee0B nor HUEffee0AB can be rejected. We can thus be sure that language influences UEffec, but 

neither the system nor the combination of language and system does so. 

To calculate the confidence interval of the mean differences between i* and TRiStar: [-0.15986, 

-0.00168], as all the values in the interval are less than 0, we can say with a 95% confidence 

level that the effectiveness of TRiStar is higher than that of i* when modeling TR systems. 

 

Table 6 shows the homocedasticity of the sample for UEffic as it provides a p-value of 0.869. 

Table 6. Levene’s test for UEffic in E1 

F df1 df2 Sig. 

0.238 3 58 0.869 

 

Table 7 shows the results of the ANOVA test. As with UEffec, HUEffie0A may be rejected but 

HUEffie0B or HUEffie0AB may not, given the p-values obtained for language (0.029), system (0.309) 

and language*system (0.091). Then, as in the case of effectiveness, we can conclude that the 

language used does affect the efficiency, but the system or the combination of language and 

system does not. 

Table 7. ANOVA results for UEffic in E1. 

Source 
Type III Sum of 

squares 
df Mean Square F Sig. 

Model 1.388
a
 4 0.347 47.809 0.000 

Language 0.036 1 0.036 5.008 0.029 

System 0.008 1 0.008 1.052 0.309 

Language * 

system 
0.021 1 0.021 2.953 0.091 

Error 0.421 58 0.007   

Total 1.809 62    

a. R Squared = 0.767 (Adjusted R Squared = 0.751) 

 
Once we know that language does affect UEffic, we will obtain the confidence interval of the 

mean differences between i* and TRiStar in order to determine which language obtains the best 

results. The calculated interval is [-0.09175, -0.00373] and we can conclude at a 95% 

confidence level that TRiStar is more efficient than i* when specifying TR systems 

requirements. 
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5.4.2 First Replication (R1) 

For the first replication of the experiment, after discarding 6 students that did not comply with 

the criteria in Section 5.2, we had a sample of 25 subjects, whose normality had to be shown as 

the sample size was less than 30. As the ANOVA test is robust before moderated normality 

deviations, a graphical proof of the distribution was enough. Figure 9 contains a box graph 

showing the normality of the UEffec distribution: 

 

 
Figure 9. Normal distribution of UEffec in R1 

As in the case of E1, a Levene’s test was performed to check the homocedasticity of the 

samples. This test is also designed to ensure the homogeneity of variances for language, system 

and the combination of both (language * system). The results are shown in Table 8 in which a 

p-value of 0.922 can be seen to prove the homogeneity of the error variances.  

 
Table 8. Levene’s test for UEffec in R1 

F df1 df2 Sig. 

0,16 3 46 0.922 

 

After checking the assumptions, the ANOVA test was performed and the results are shown in 

Table 9. In this case, the p-values displayed in column “Sig.” for language (0.017), system 

(0.437) and language*system (0.101) support the same conclusions as in E1: only language 

affects the effectiveness of the specification.  

Table 9. ANOVA results for UEffec in R1. 

Source Type III Sum of df Mean Square F Sig. 
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squares 

Model 29.151ª 4 7.288 254.738 0.000 

Language 0.177 1 0.177 6.188 0.017 

System 0.018 1 0.018 0.616 0.437 

Language * system 0.080 1 0.080 2.801 0.101 

Error 1.316 46 0.029   

Total 30.467 50    

a. R Squared = 0.957 (Adjusted R Squared = 0.953) 

 

To show that TRiStar provided a better UEffec value, the confidence interval of the mean 

differences between i* and TRiStar was calculated: [-0.2152, -0.02]. As all the values in the 

interval were lower than 0, TRiStar obtained the best language effectiveness values. In other 

words, TRiStar is more effective when specifying TR systems requirements.  

Figure 10 shows the normality of the UEffic samples: 

 
Figure 10. Normal distribution of UEffic in R1 

Homocedasticity was proven again using Levene’s test (see Table 10). The small p-value 

(0.086) obtained was still higher than 0.05 and therefore the null hypothesis of the homogeneity 

of variances could be assumed. 

Table 10. Levene test for UEffic in R1 

F df1 df2 Sig. 

2.336 3 46 0.086 
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Table 11 summarizes the results of the ANOVA test to analyze UEffic in this experiment: 

 

 

 

Table 11. ANOVA results for UEffic in R1. 

Source 
Type III Sum 

of squares
 

df 
Mean 

Square 
F Sig. 

Model 0.789
a
 4 0.197 230.751 0.000 

Language 0.084 1 0.084 98.500 5.17 x 10
-13

 

System 0.000 1 0.000 0.198 0.658 

Language * 

system 
0.002 1 0.002 1.933 0.171 

Error 0.039 46 0.001   

Total 0.829 50    

a. R Squared = 0.953 (Adjusted R Squared = 0.948) 

 

The p-value for language is 5.17 x 10
-13

 so that HUEffie0A can be rejected. The p-values for system 

(0.658) and language*system (0.171) do not allow us to reject HUEffie0B or HUEffie0AB thus 

reaching the same conclusion as in E1: language affects the efficiency of the specifications but 

system or the combination of both do not. 

As in the previous cases, the confidence interval of the mean differences was calculated, giving 

[-0.09878, -0.06522]. As the whole interval was formed by negative values, we could conclude 

that TRiStar was more efficient than i* in specifying TR systems. 

5.4.3 Second Replication (R2) 

The small sample of the second replication (13 subjects) forced us to check the normality of the 

distribution. This was not possible for effictiveness because the sample hugely deviated from 

normality, so we could not use an ANOVA test. As the use of non-parametric tests is 

recommended for this type of sample, we chose the Kruskal-Wallis test to check the equality of 

the distributions among the categories of the samples. As this test only allows one factor to be 

checked at a time, two tests were necessary: one for language and one for system. 

Kruskal-Wallis does not need the normality assumption but it does need the homocedasticity 

condition. To prove this, we performed a Levene’s test for language that provided a p-value of 
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0.079 and another for system, giving a p-value of 0.359. These results are summarized in Table 

12. 

The Kruskal-Wallis test provided a p-value for language of 0.046 with a significance level of 

0.05, which indicated that language did affect the UEffec distribution. We obtained a p-value of 

0.217 for system, which prevented us from concluding that UEffec was affected by the system. 

Therefore, if only language affects the UEffec distribution and taking into account the 

distribution shown in Figure 11, we can state that TRiStar is more effective at specifying TR 

systems. 

Table 12. Results for UEffec in R2. 

 Levene’s Test Kruskal-Wallis 

Language 0.079 0.046 

System 0.359 0.217 

 

 

Figure 11. Distribution of UEffec in R2 

Figure 12 shows the normality of the UEffec distribution. Homocedasticity was checked by 

Levene’s test and the result is shown in Table 13. As its p-value is 0.214, the homogeneity of 

variances can be assumed. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 28 

 
Figure 12. Normal distribution of UEffic in R2 

 

Table 13. Levene’s test for UEffic in R2 

F df1 df2 Sig. 

1.616 3 22 0.214 

 

After checking all the conditions, the two-way ANOVA test was performed. The results are 

shown in Table 14: 
Table 14. ANOVA results for UEffic in R2. 

Source 
Type III Sum of 

squares 
df Mean Square F Sig. 

Model 1.398
a
 4 0.349 39.589 0.000 

Language 0.072 1 0.072 8.181 0.009 

System 0.000 1 0.000 0.013 0.909 

Language * system 0.000 1 0.000 0.017 0.899 

Error 0.194 22 0.009   

Total 1.592 26    

a. R Squared = 0.878 (Adjusted R Squared = 0.856) 

 

Language obtained a p-value of 0.009 so we could reject HUEffic0A. System and language*system 

obtained p-values well over 0.05, preventing us from rejecting HUEffie0B or HUEffie0AB. From these 
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results ir can be concluded that, as in the previous cases, language does affect efficiency when 

specifying TR systems but the selected system or the combination of language and system do 

not. 

In order to determine the language which obtains the best results in terms of UEffic, the 

confidence interval at 95% of the mean differences was calculated and the result was [-0.17945, 

-0.03132]. As all the values in the interval were less than 0, we could assume that TRiStar is 

more efficient at specifying TR systems. 

5.5 Meta-analysis  

After analyzing the isolated results of every experiment in the family, we performed a global 

analysis of all the experiments. First, we performed a similar study to those performed for every 

isolated experiment but using all the data from the original experiment and the two replications. 

This meant performing a two-way ANOVA test both for UEffec and UEffic, keeping the null 

hypotheses given in Table 2. 

The sample size (31 + 25 + 13 = 69) was big enough to satisfy the normality assumption. A 

similar Levene’s test to those described in the previous section (language + system + language * 

system) was applied to the data to prove homocedasticity.  Table 15 shows the results of the test 

for UEffec and Table 16 for UEffic. 

Table 15. Levene’s test for global UEffec 

F df1 df2 Sig. 

0.088 3 134 0.966 

 

Table 16. Levene’s test for global UEffic 

F df1 df2 Sig. 

0.838 3 134 0.475 

 

In both cases homogeneity of variances could be assumed, as the calculated p-values were well 

over 0.05. 

After checking the assumptions, a two-way ANOVA test for all the samples used was 

performed. Table 17 summarizes the results for UEffec and Table 18 for UEffic: 

Table 17. ANOVA results for global UEffec. 

Source 
Type III Sum of 

squares 
df Mean Square F Sig. 
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Model 90.900
a
 4 22.725 991.645 0.000 

Language 0.296 1 0.296 12.896 4.61 x 10
-4

 

Domain 0.047 1 0.047 2.044 0.155 

Language * 

Domain 
0.003 1 0.003 0.151 0.699 

Error 3.071 134 0.023   

Total 93.971 138    

a. R Squared = 0.967 (Adjusted R Squared = 0.966) 

 

With these results HUEffce0A could be rejected, thanks to the calculated p-value of 4.61 x 10
-4

 for 

language. However, HUEffee0B and HUEffee0AB could not be rejected as the obtained p-values for 

system and language*system were much higher than 0.05. The calculated confidence interval 

was [-0.14303, -0.04102], which proved that there was enough statistical evidence to affirm that 

TRiStar is more effective than i* when specifying the requirements of TR systems. 

Table 18. ANOVA results for global UEffic. 

Source 
Type III Sum of 

squares 
df Mean Square F Sig. 

Model 3.350
a
 4 0.838 127.574 0.000 

Language 0.175 1 0.175 26.617 8.73 x 10
-7

 

Domain 0.004 1 0.004 0.656 0.419 

Language * 

Domain 
0.019 1 0.019 2.834 0.095 

Error 0.880 134 0.007   

Total 4.230 138    

a. R Squared = 0.792 (Adjusted R Squared = 0.786) 

 

The results for efficiency were similar to those for effectiveness: HUEffie0A could be rejected but 

HUEffie0B and HUEffce0AB must be accepted. The p-value for language was 8.73 x 10
-7

 but those of 

systems and language*system were well over 0.05. The confidence interval for the mean 

differences between i* and TRiStar was [-0.09844, -0.04359]. Therefore, taking into account the 

aggregate results for the family of experiments, we had enough statistical evidence to state that 

TRiStar is more efficient than i* when specifying requirements for TR systems. 

We used BioStat’s Comprehensive Meta-Analysis [34] for the meta-analysis. We first obtained 

the Global Effect Size of the family of experiments and then used it to decide the specific meta-
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analysis method to use. The Global Effect Sizes for UEffec and UEffic are shown in Table 19 

and Table 20, respectively. 

Table 19. Global Effect Size for UEffec. 

  i* TRiStar    

Study System Mean SD N Mean SD N Hedges' g Std. Err. Effect Size 

E1 Drone 0.7653 0.10895 15 0.8075 0.14201 16 -0.3232 0.3524 Small 

E1 Football 0.7575 0.13685 16 0.8767 0.13162 15 -0.8640 0.3668 Medium 

R1 Drone 0.64 0.16657 12 0.8392 0.17168 13 -1.1381 0.4192 Large 

R1 Football 0.7577 0.15996 13 0.7967 0.17839 12 -0.2231 0.3884 Small 

R2 Drone 0.8586 0.1224 7 0.945 0.06025 6 -0.8109 0.5414 Medium 

R2 Football 0.93 0.07668 6 0.98 0.05292 7 -0.7176 0.5363 Medium 

Global Effect Size       -0.6411 0.1697 Medium 

 

 

Table 20. Global Effect Size for UEffic. 

  i* TRiStar    

Study System Mean SD N Mean SD N Hedges' g Std. Err. Effect Size 

E1 Drone 0.13 0.08341 15 0.1413 0.07429 16 -0.1396 0.3504 Small 

E1 Football 0.115 0.07607 16 0.2007 0.10491 15 -0.9157 0.3688 Medium 

R1 Drone 0.0817 0.01642 12 0.1523 0.03898 13 -2.2488 0.5010 Large 

R1 Football 0.0738 0.02256 13 0.1675 0.03306 12 -3.2273 0.5984 Large 

R2 Drone 0.1729 0.06473 7 0.2833 0.10053 6 -1.2382 0.5716 Large 

R2 Football 0.1733 0.06055 6 0.2743 0.12921 7 -0.9052 0.5471 Medium 

Global Effect Size       -1.1389 0.1867 Large 

 

With these values and following Dieste’s directions [35] Weighted Mean Difference (WMD) 

method was chosen, as it gets the best score in reliability and statistical power for both UEffec 

and UEffic. FiguresFigure 13 and Figure 14 summarize the WMD results for both variables. 

 

Figure 13. UEffec WMD meta-analysis 
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Figure 14. UEffic WMD meta-analysis 

Calculated p-values (0.00016 for UEffec and < 1 x 10
-5

 for UEffic) allow us to reject the null 

hypothesis and say that both effectiveness and efficiency of TRiStar and i* are different. In 

addition, the cell in the “Overall” row and “Std. diff. in means” column of both tables show the 

WMD values for effectiveness (-0.66455) and efficiency (-1.18097). As both values are less 

than 0 we can state that TRiStar provides better effectiveness and efficiency when specifying 

TR systems requirements. 

5.6 Observational Findings 

This section deals with the conclusions extracted from the observations made during the 

experiments. Most questions asked by the participants were related to the representation of 

priority in i*. They could all remember how priority was represented in TRiStar but some had 

forgotten how thus was done in i*, although both techniques had been explained at the same 

time. This suggests that the participants found the prioritized decomposition links in TRiStar 

more intuitive and when they saw an i* diagram with no prioritized decomposition links they 

could not figure out a way of representing priority without them.  

The results obtained in the second replication, with a sample of experienced software 

developers, were better for effectiveness and efficiency than those obtained from the students. 

However, the relationship between both languages is similar: effectiveness and efficiency are 

better in TRiStar. The experience of the software developers probably helped them to learn new 

notations. In addition, SAES developers are used to dealing with much more complex problems 

than those given in the experiment. Most of them stated that they preferred using graphical 

notations instead of directly reading TR program rules. 

TRiStar obtained better results in effectiveness but the efficiency results were much better than 

those for i*. This suggests that although i* is still an appropriate language for representing TR 

systems, TRiStar does the job better and faster. 

The question in the questionnaire which obtained most incorrect answers in every experiment 

was one included in the drone example. In fact, none of the subjects who specified the drone 

with i* answered this question correctly. Those who specified the drone with TRiStar had better 

results, but there were still a lot of wrong answers. This question was related to representing 
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rules whose condition is always true. These results suggest that dependent decompostion links 

help to link conditions to rules, even though the representation of unconditioned rules in 

TRiStar could be improved. 

6 Threats to the Validity of the Family of Experiments 

In order to reduce research and publication bias, as recommended in [36], the raw experimental 

data can be consulted in http://xurl.es/RawData. This section deals with some issues that could 

have threatened the validity of the experiment, in line with the recommendations of Wohlin et al 

[37]. 

6.1 Validity of the conclusions 

The statistical indicators obtained from both the individual experiments and the meta-analysis 

are well above a 95% confidence level, which allows us to reject the initial null hypotheses.  

6.2 Internal validity 

 As detailed in the previous section, we showed that all the results of the individual experiments 

satisfied the requirements of the selected statistical methods (ANOVA and Kruskal-Wallis 

tests). The questionnaires were reviewed by several experts in the development of TR systems 

and the use of i* to minimize the risk of incorrect questions.  

None of the experiments lasted more than one hour, including the initial briefing by the 

instructor, to avoid the subjects becoming fatigued. Besides, the students that participated in the 

experiments were given an extra half point towards their final exam, while in the second 

replication, the professionalism of the subjects ensured their motivation. 

6.3 Construct validity  

The method employed to obtain the data from the experiments was a questionnaire similar to 

those used in other studies, e.g. [6] and [28], which reduced the threats to the construct validity. 

Understandability efficiency and effectiveness were also measured in a similar way to the 

above-cited studies: efficiency was obtained by dividing the number of correct answers by the 

total number of answers, while effectiveness was calculated as efficiency divided by the time in 

minutes taken by each participant to complete the questionnaire, as described in ISO/IEC 

25000:2014.  
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6.4 External validity 

According to [38], the differences between final-year students and software professionals when 

performing relatively small judgement tasks are minor. Since the questions in the questionnaire 

for both students and software professionals were not excessively complex, the mixture of 

students and professionals in the experiment did not involve a threat to it. This view is 

supported by the the good results obtained for the efficiency parameter, as well as the few 

questions raised by the participants on the experiments. 

Regarding the nature of the proposed problems, we can affirm that the examples employed in 

the experiments were realistic, since both are part of already existing systems. 

7 Conclusions and Further Work 

In [6] we showed that the understandability of i* notation was better than that of KAOS for 

specifying the requirements of teleo-reactive systems. From these results we developed TRiStar, 

an extension designed to overcome some shortcomings we identified in i*, which is briefly 

introduced in [10] and fully described in the present paper. With the aim of validating the 

proposal, we conducted a family of experiments to compare the efficiency and effectiveness of 

the understandability of i* versus TRiStar for specifying the requirements of teleo-reactive 

systems.  

Subjectively, the vast majority of the participants stated that they found the TRiStar 

specifications more understandable than those of i*. Regarding efficiency and effectiveness, the 

statistical results are conclusive; on one hand, the results of the analysis of the original 

experiment and the two replicas, and on the other, the results of the meta-analysis of the 

aggregate data considered as a single experiment, provide enough statistical certainty to reach 

the following conclusion: both the efficiency and effectiveness of TRiStar are higher than that 

of i* diagrams for specifying the requirements of teleo-reactive systems.  

In future research work we plan to extend TRiStar in order to cope with the new extensions 

proposed by Prof. Keith Clark in TeleoR [3]. We would also like to complete the requirements 

specification process for teleo-reactive systems by defining a method of guiding the process, 

starting from natural language specifications.  

In the sequel to this research, we intend to make a study of the advantages of TRiStar for the 

requirements specification of TR systems as compared with a direct approach to TR programs. 

Starting from a textual description of a reactive system, the results obtained with TRiStar will 

be compared to those obtained by writing the TR programs directly. Among other objectives, 

this study will focus on detecting coupling problems among agents, detecting cohesion 

problems among goals, implementation effectiveness and early error detection. 
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Lastly, we would also like to develop a graphical tool to help developers depict TRiStar 

diagrams. This tool would include functionalities such as subgoal expand/collapse, which would 

be helpful in improving the scalability of the models. This tool will also allow the generation of 

the TR program which corresponds to the specified diagram. 
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Appendix 1: Experimental Material - An Example of an Understanding Task (Test for group 2) 

Gender (Male/Female) 

Age 

Qualification 

Average score 

Have you had any previous experience of working with goal-oriented requirements engineering?  

Have you had any previous experience of working with any other requirements engineering technique? 

Have you had any previous experience of working with teleo-reactive systems? 

 [FILL IN AT THE END] In your opinion, which notation has better understandability? 
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STARTING TIME: 

 

Fill in the blanks so that the obtained TR program agrees with the one that would be obtained 

from the previous specification. 

 

1.- DealShipment: 

 __________  Land 

 __________  DispatchShipment 

 __________  MaintainHeightOK 

 

2.- Land: 

 Ground  ______ 

 ___________  go_down 

 

3.- Choose the correct (a) or (b): 

(a).- DispatchShipment: 

 Loaded  DeliverShipment 

 NOT(Loaded)  followGPSToOrigin 

(b).- DispatchShipment: 

 NOT(Loaded)  followGPSToOrigin 

 Loaded  DeliverShipment 

 

4.- DeliverShipment: 

 _______  release 

 true  followGPSToDestination 

 

5.- MaintainHeightOK: 

 height > hMax -> _______ 

 ________________ -> go_up 

 

ENDING TIME: 
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STARTING TIME: 

 

Fill in the blanks so that the obtained TR program agrees with the one that would be obtained from the 

previous specification. 

 

1.- RobotNextToBall: 

 BallAhead  ___________ 

 True  rotate 

 

2.- OwnGoalSafe: 

 _______________________________________  RobotAtOwnGoal 

 True  _________________________ 

 

3.- RobotAtOwnGoal: 

 ____________________  nil 

 OwnGoalAhead  __________________  

 True  rotate 

 

4.- BallPassedToFriend: 

 FriendAhead  kick 

 _________________  rotate 

 

5.- Choose the correct (a) or (b):  

(a).- BallUnderTeamControl: 

 BallUnderControl  BallPassedToFriend 

 OppControlsBall  BallRecovered 

(b).- BallUnderTeamControl: 

 OppControlsBall  BallRecovered 

 BallUnderControl  BallPassedToFriend 

 

ENDING TIME: 
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