

Academic year: 2013/2014

Trabajo Fin de Grado
/

Final Bachelor Thesis

Implementing an Embedded Linux

System in Xilinx Zynq

Author:

Ginés Hidalgo Martínez

Spanish tutor:

Francisco Javier Toledo Moreo

Austrian tutor:

Franz Fidler

 Page 2 of 180

ABSTRACT:

The final achievement of this project is to develop and implement a custom and

Embedded Linux Operating System (OS) integrated with a specific PL peripheral. This OS will be

developed on ZedBoard (Zynq Evaluation & Development Board) development kit, Xilinx's

Zynq-7000 All Programmable System on Chip which contains a dual core ARM Cortex-A9 and a

7 Series FPGA Artix-7.

Therefore, how to create, configure, build and implement an Embedded Linux OS on

ZedBoard will be explained in detail during this Final Bachelor Thesis. The entire development

process has been structured in several chapters according to the logic order which should be

followed to perform it. An overview of the chapters is showed below:

Chapter 1: overall vision of the goals of this project and why perform it.

Chapter 2: short introduction to Embedded Systems, to ZedBoard, to Xilinx Design

Environment, and to some GNU tools.

Chapter 3: configuration and implementation of a “Basic” and Custom Embedded Linux

OS. Note the importance which BuildRoot will have in this process.

Chapter 4: configuration and implementation of a complete Ubuntu Linux OS. Note

that this Ubuntu version can be used as any generic PC.

Chapter 5: summary of the achieved objectives and the respective conclutions.

Chapter 6: the bibliography which has been used to perform this thesis.

Appendix 1: the whole process (i.e. step by step) of developing and implementing the

two different operating systems on ZedBoard.

Appendix 2: the tools and programs which have been required before start this thesis.

 Page 3 of 180

RESUMEN DEL PROYECTO:

El objetivo final de este proyecto es el desarrollo y la implementación de un Sistema

Operativo (SO) Linux Embebido personalizado. Este SO será desarrollado sobre el kit de

desarrollo ZedBoard (Zynq Evaluation & Development Board), el cual consiste en un s istema

Xilinx's Zynq-7000 All Programmable System on Chip, que se puede dividir en un procesador

ARM Cortex-A9 de doble núcleo, y en una 7 Series FPGA Artix-7.

Por lo tanto, cómo crear, configurar, construir e implementar este SO Linux Embebido

personalizado sobre la ZedBoard, será profundamente explicado durante todo este Trabajo de

Fin de Grado. El proceso de desarrollo ha sido estructurado en 6 capítulos y 2 apéndices,

acorde con el orden lógico y temporal que debería ser seguido para implementar este

proyecto. A continuación, se muestra un resumen de cada capítulo:

Capítulo 1: visión general de todos los objetivos de este proyecto y por qué son

interesantes.

Capítulo 2: breve introducción a los sistemas embebidos, a la placa ZedBoard, al

entorno de desarrollo Xilinx Design Environment y a algunas herramientas GNU.

Capítulo 3: configuración e implementación de un básico y personalizado SO Linux

Embebido. Destacar la importancia que BuildRoot tendrá en este proceso.

Capítulo 4: configuración e implementación de un completo SO Ubuntu Linux. Destacar

que esta versión de Ubuntu puede perfectamente ser utilizada para las mismas tareas que

cualquier ordenador convencional.

Capítulo 5: resumen de todos los logros alcanzados y respectivas conclusiones.

Capítulo 6: bibliografía utilizada durante este proyecto.

Apéndice 1: proceso íntegro (paso a paso) sobre cómo desarrollar e implementar los

dos SO que han sido mencionados previamente sobre la ZedBoard.

Apéndice 2: programas que deben ser instalados antes de empezar este proyecto.

 Page 4 of 180

“Only those who dare to fail greatly can ever achieve greatly.”

Robert Francis Kennedy

 Page 5 of 180

Thanks

I would like to specially thank to my UPCT advisor Francisco Javier Toledo Moreo for

bringing me the opportunity of working in this project, helping me becoming a more

competent person.

I would like also to thank in the same way to my advisor in Austria, Franz Fidler, for

also helping me with this project in my Erasmus term.

In addition, I would like to thank to my colleague Sebastián Cánovas Carrasco for

sharing his knowledge and helping each other.

Finally, thanks to all the people that loves me and cares about me for their

unconditional support in every important moment of my life.

Table of Contents

 Page 6 of 180

Table of Contents

Table of Contents ...6

Table of Figures..9

Table of Commands ...16

Chapter 1: Introduction ..18

1.1. Overview and Targets ..18

1.2. Why Develop and Implement an Embedded Linux Operating System.............19

1.2.1. Community Support and Possibility of Taking Part into It20

1.2.2. Devices Coverage ...20

1.2.3. Eases the New Features Testing ..20

1.2.4. Full Control ..20

1.2.5. Low Cost..20

1.2.6. Platform Re-usage ..20

1.2.7. Quality ..21

1.2.8. RTOS (Real Time Operating System) Possibility...21

1.3. Why on ZedBoard ..21

1.3.1. Different Memories Types ..21

1.3.2. Dual Core ARM Cortex-A9 ...21

1.3.3. Great Variety of Peripherals..22

1.3.4. SoC Architecture ..22

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC ...23

2.1. Embedded Systems ..23

2.2. Xilinx Zynq-7000 All Programmable SoC Architecture24

2.3. ZedBoard Platform ..25

2.3.1. ZedBoard Features ...25

2.3.2. ZedBoard Hardware Block Diagram ...27

2.3.3. Zynq Bank Pin Assignments...27

2.4. Required Software ...28

2.4.1. ISE Design Suite (Xilinx Design Environment)..28

2.4.2. GNU Tools ...29

Chapter 3: Custom Embedded Linux OS on ZedBoard ..31

3.1. Overview ...31

3.2. Creating a Project and Adding Embedded Sources ..33

Table of Contents

 Page 7 of 180

3.2.1. PS PLL Clocks..35

3.2.2. DDR3 Memory ...36

3.3. Design Constraints ...38

3.4. Top HDL Module and Hardware Platform Building ..39

3.5. Stage 0 or BootROM ..41

3.6. Boot Image, “boot.bin” ..42

3.6.1. First Stage Boot Loader (FSBL)...43

3.6.2. Programmable Logic Hardware BitStream file ..45

3.6.3. Second Stage Boot Loader, U-Boot ..46

3.6.4. Generating “boot.bin” file...54

3.7. Device Tree Binary, “devicetree.dtb” ..55

3.7.1. Device Tree Source (DTS File) ..55

3.7.2. Device Tree Binary (DTB File) ..58

3.8. Linux Kernel File, “uImage” ..60

3.9. Root File System Image, “uramdisk.image.gz” ..64

3.10. Booting the Custom Embedded Linux OS...66

Chapter 4: Ubuntu Linux OS on ZedBoard ...68

4.1. Overview ...68

4.2. Preparing the SD Card ..70

4.3. Downloading and Loading the Project ..71

4.4. Generating the BitStream File and Exporting to SDK73

4.5. Stage 0 or BootROM ..73

4.6. Boot Image, “boot.bin” ..73

4.7. Device Tree Binary, “devicetree.dtb” ..76

4.8. Linux Kernel File, “uImage” ..77

4.9. Root File System Image ..78

4.10. Booting the Custom Embedded Linux OS...79

Chapter 5: Summary and Conclusions ...80

5.1. Development and Implementation of a custom Linux OS on ZedBoard80

5.2. Differences between a Custom Linux OS and an Ubuntu Linux OS82

Chapter 6: Bibliography ..84

Appendix 1: Guide – Linux on ZedBoard step by step ..86

1. Overview ..86

Table of Contents

 Page 8 of 180

2. Custom Embedded Linux OS on ZedBoard ..87

2.1. Overview ..87

2.2. Creating a New Project and Adding Embedded Sources...............................88

2.3. Design Constraints ..98

2.4. Top HDL and Hardware Platform Building... 100

2.5. Stage 0 or BootROM.. 104

2.6. Boot Image, “boot.bin” ... 105

2.7. Device Tree Binary, “devicetree.dtb”.. 116

2.8. Linux Kernel File, “uImage” .. 124

2.9. Root File System Image ... 126

2.10. BuildRoot ... 126

3. Ubuntu Linux OS on ZedBoard ... 138

3.1. Overview .. 138

3.2. Preparing the SD Card ... 139

3.3. Downloading and Loading the Project .. 144

3.4. Generating the BitStream File and Exporting to SDK.................................. 145

3.5. Stage 0 or BootROM.. 147

3.6. Boot Image, “boot.bin” ... 147

3.7. Device Tree Binary, “devicetree.dtb”.. 156

3.8. Linux Kernel File, “uImage” .. 157

3.9. Root File System Image ... 159

3.10. Booting Ubuntu on ZedBoard... 160

Appendix 2: Prerequisites... 163

A2.1. VMware Player.. 163

A2.1. Installing VMware Player ... 163

A2.2. Configuring VMware Player ... 167

A2.3. Required Git Repositories .. 169

A2.4. Copying the Virtual Machine ... 174

A2.5. Required Git Repositories for the Custom Embedded Linux OS 178

A2.6. Required Git Repositories for the Ubuntu Linux OS 179

A2.2. Tera Term.. 180

Table of Figures

 Page 9 of 180

Table of Figures

Figure 1: Two Showed Options to Develop and Implement a Linux OS19

Figure 2: Zynq-7000 Diagram ..25

Figure 3: ZedBoard Block Diagram ..27

Figure 4: Zynq Z7020 CLG484 Bank Assignments ...27

Figure 5: Files Contained in the SD Card ..32

Figure 6: Typical Linux Boot Sequence Overview ...32

Figure 7: Peripheral and MIO Order on ZedBoard ..34

Figure 8: Flash Memory Selection ...35

Figure 9: Clock Wizard in XPS after Importing the Configuration File36

Figure 10: Delays in ZedBoard Hardware User Guide - 8 of Hardware User Guide.....37

Figure 11: PS7 DDR Configuration after Importing the Configuration File37

Figure 12: Sources Window in PlanAhead after Importing the *.ucf File39

Figure 13: Sources Window with the Top HDL Module Generated39

Figure 14: Design Flow Schema...40

Figure 15: ZedBoard Configuration Modes to Run Linux ..41

Figure 16: ZedBoard SD Card Boot Mode Jumper Setting ...42

Figure 17: Boot Image Container...42

Figure 18: New Project Window to Create the FSBL in SDK 1/244

Figure 19: New Project Window to Create the FSBL in SDK 2/244

Figure 20: SDK Project Explorer Window after Building the FSBL File45

Figure 21: SDK Project Explorer Window with the PL Hardware BitStream46

Figure 22: U-Boot Commands 1/2 ...47

Figure 23: U-Boot Commands 2/2 ...48

Figure 24: U-Boot Command Console Running on ZedBoard48

Figure 25: U-Boot Directory in Linux with the “u-boot.elf” File50

Figure 26: Adding a Board Support Package in Xilinx SDK 1/250

Figure 27: Creating the U-Boot Board Support Package ...51

Figure 28: U-Boot Configuration Window in BuildRoot ..52

Figure 29: Changing the Memory Address Load Location on ZedBoard.....................53

Figure 30: Zynq Boot Image Generation Window in SDK..54

Figure 31: The “devicetree.dtb” file ..55

Table of Figures

 Page 10 of 180

Figure 32: Adding a Board Support Package in Xilinx SDK 2/256

Figure 33: DTS File in SDK ...57

Figure 34: Linux-xlnx Folder with the Default DTS Files ..58

Figure 35: Creating the “devicetree.dtb” File in BuildRoot59

Figure 36: The “uImage” File...60

Figure 37: “config” Configuration Editor..62

Figure 38: “menuconfig” Configuration Editor ...62

Figure 39: “xconfig” Configuration Editor ..62

Figure 40: “uImage” Location Folder ...63

Figure 41: Configuring the Linux Kernel in BuildRoot ...63

Figure 42: The “uramdisk.image.gz” File ...64

Figure 43: SD Card Required Files..66

Figure 44: GNUChess Displaying ...66

Figure 45: Shutting Down the Operating System ...66

Figure 46: File System Files ...67

Figure 47: Typical Linux Boot Sequence Overview ...69

Figure 48: SD Card Prepared for Linaro-Ubuntu ...71

Figure 49: Bus Interfaces Panel ...71

Figure 50: Zynq PS MIO Configurations ...72

Figure 51: Clock Configuration ..72

Figure 52: ZedBoard Configuration Modes ..73

Figure 53: Setting the FSBL for Ubuntu..74

Figure 54: FSBL and BitStream Files Copied into UbuntuLinuxInZedBoard74

Figure 55: Zynq Boot Image Generation Window in SDK..76

Figure 56: Device Tree Binary File in the “UbuntuLinuxInZedBoard” Folder77

Figure 57: “uImage” Location Folder ...77

Figure 58: “uImage” in the “UbuntuLinuxInZedBoard” folder78

Figure 59: “BOOT” Partition of the SD Card ...78

Figure 60: Linaro-Ubuntu 12.09 File System Files...79

Figure 61: Linaro-Ubuntu 12.09 Appearance ...79

Figure 62: Files Required in the SD Card ..87

Figure 63: PlanAhead 14.7 Program ..88

Figure 64: Project Name Window ...88

Table of Figures

 Page 11 of 180

Figure 65: Project Type Window ...89

Figure 66: Board/Part Selection ..89

Figure 67: PlanAhead 14.7 Program ..90

Figure 68: Add Sources Window ½ ..90

Figure 69: Create Embedded Source Window..91

Figure 70: Embedded Source Added ...91

Figure 71: PlanAhead Launch XPS ...92

Figure 72: Xilinx License Bug ...92

Figure 73: Wizard Request in XPS..92

Figure 74: PS7-Adding Request in XPS ...93

Figure 75: PlanAhead 14.7 Program ..93

Figure 76: XPS after Adding the PS7 ..93

Figure 77: Import PS Configuration Window 1/2 ...94

Figure 78: Import PS Configuration Window 2/2 ...94

Figure 79: MIO Configuration ...95

Figure 80: Clock Wizard ..96

Figure 81: DDR Configuration ...97

Figure 82: PlanAhead after Adding “system.xmp” ...98

Figure 83: Add Sources Window 2/2 ...98

Figure 84: Add Constraints Window ..99

Figure 85: Sources Window after Adding the Constraints File99

Figure 86: PlanAhead after Adding the Constraints File ... 100

Figure 87: Project Settings .. 100

Figure 88: Create Top HDL Option ... 101

Figure 89: Sources Window after Adding the Top HDL ... 101

Figure 90: PlanAhead after Adding the Top HDL .. 102

Figure 91: PlanAhead after Generating the BitStream File 102

Figure 92: Export Hardware for SDK Option .. 103

Figure 93: Export Hardware Settings ... 103

Figure 94: Project Settings after Adding the Top HDL... 103

Figure 95: Project Exported to SDK ... 104

Figure 96: ZedBoard Configuration Modes .. 105

Figure 97: ZedBoard SD Card Boot Mode Jumper Setting 105

Table of Figures

 Page 12 of 180

Figure 98: Path Selection in SDK ... 106

Figure 99: Creating an Application Project Option ... 106

Figure 100: New Project Settings .. 107

Figure 101: Creating a Zynq FSBL .. 107

Figure 102: SDK after Generating the FSBL .. 108

Figure 103: “lscript.ld” File ... 108

Figure 104: “boot.bin” Folder after FSBL ... 109

Figure 105: Linux “Terminal” Window in VMware Player....................................... 110

Figure 106: “boot.bin” Folder after Adding the “u-boot.elf” File 111

Figure 107: Create Zynq Boot Image Selection... 112

Figure 108: Adding the FSBL ... 113

Figure 109: Adding the BitStream File ... 113

Figure 110: Adding the U-Boot File ... 114

Figure 111: Create the Zynq Boot Image ... 114

Figure 112: “boot.bin” Folder ... 115

Figure 113: “LinuxInZedBoard” Folder... 115

Figure 114: Tera Term - New Connection .. 116

Figure 115: Testing the “boot.bin” File .. 116

Figure 116: Downloading the Device Tree Generator... 117

Figure 117: Device Tree Generator Folder ... 118

Figure 118: Adding the Device Tree Repository 1/2 ... 118

Figure 119: Adding the Device Tree Repository 2/2 ... 119

Figure 120: Creating the DBS File 1/3 .. 119

Figure 121: Creating the DBS File 2/3 .. 120

Figure 122: Creating the DBS File 3/3 .. 120

Figure 123: SDK after Creating the DBS File ... 121

Figure 124: File Location of the DTS File .. 121

Figure 125: Linux-xlnx Folder with the Default DTS Files .. 122

Figure 126: DTB File Generated... 124

Figure 127: “LinuxInZedBoard” Folder... 124

Figure 128: “uImage” Location Folder ... 126

Figure 129: Target Architecture Selection.. 127

Figure 130: Target Architecture Variant Selection ... 128

Table of Figures

 Page 13 of 180

Figure 131: Optimization for Size .. 128

Figure 132: Toolchain and Kernel Headers Selection.. 129

Figure 133: C Library Selection .. 129

Figure 134: Binutils Version Selection ... 130

Figure 135: C++ Support Enabled .. 130

Figure 136: System Configuration Selection .. 131

Figure 137: Getty Options Selection .. 131

Figure 138: Baud Rate Selection ... 132

Figure 139: Kernel Setting .. 132

Figure 140: Device Tree Support ... 133

Figure 141: GNU Chess Selection .. 134

Figure 142: File System File Selection .. 134

Figure 143: Boot Loader Settings .. 135

Figure 144: Wrapping the RamDisk File into an uRamDisk File 136

Figure 145: LinuxInZedBoard Folder.. 136

Figure 146: GNUChess Displaying.. 137

Figure 147: Shutting Down the Operating System ... 137

Figure 148: SD Card Conection to the VMware Player.. 139

Figure 149: Opening GParted Parition Editor ... 139

Figure 150: Authentication as Root User ... 140

Figure 151: SD Card Selection ... 140

Figure 152: Unmounting Previous Partitions ... 141

Figure 153: Deleting Previous Partitions.. 141

Figure 154: SD Card Empty ... 142

Figure 155: New Partition Creation ... 142

Figure 156: New 52MB FAT32 Partition... 143

Figure 157: New 3740MB ext4 Partition.. 143

Figure 158: “fpgahdl_xilinx-master.zip” Required Files .. 144

Figure 159: “no-OS-master.zip” Required Files .. 144

Figure 160: Xilinx License Bug ... 144

Figure 161: Updating the Project to the Current Version 145

Figure 162: XPS before Generating the BitStream File ... 145

Figure 163: Export Design Selection .. 146

Table of Figures

 Page 14 of 180

Figure 164: Export Design to SDK .. 146

Figure 165: Workspace Selection .. 147

Figure 166: ZedBoard Configuration Modes .. 147

Figure 167: ZedBoard SD Card Boot Mode Jumper Setting 147

Figure 168: Setting the FSBL for Ubuntu ½ .. 148

Figure 169: Setting the FSBL for Ubuntu 2/2.. 148

Figure 170: FSBL Location ... 149

Figure 171: FSBL File Copied into UbuntuLinuxInZedBoard 149

Figure 172: BitStream File Copied into UbuntuLinuxInZedBoard 149

Figure 173: U-Boot File Copied into UbuntuLinuxInZedBoard................................. 151

Figure 174: Create Zynq Boot Image Selection... 152

Figure 175: Adding the FSBL ... 152

Figure 176: Adding the BitStream File ... 153

Figure 177: Adding the U-Boot File ... 153

Figure 178: Create the Zynq Boot Image ... 154

Figure 179: “boot.bin” Folder ... 154

Figure 180: Tera Term - New Connection .. 155

Figure 181: Testing the “boot.bin” File .. 155

Figure 182: Device Tree Binary File in the “UbuntuLinuxInZedBoard” Folder 157

Figure 183: “uImage” Location Folder ... 158

Figure 184: “uImage” in the “UbuntuLinuxInZedBoard” folder............................... 159

Figure 185: Required Files in the SD Card .. 161

Figure 186: Required Files Copied in the SD Card... 161

Figure 187: Linaro-Ubuntu 12.09 Appearance ... 162

Figure 188: New Virtual Machine Selection ... 163

Figure 189: New Virtual Machine Wizard Window .. 164

Figure 190: New Virtual Machine – User Name Selection....................................... 164

Figure 191: New Virtual Machine – VM Name Selection .. 165

Figure 192: New Virtual Machine - Hard Disk Selection ... 165

Figure 193: New Virtual Machine – Settings Displayed .. 166

Figure 194: New Virtual Machine – Customize Hardware Selection........................ 166

Figure 195: Virtual Machine Running .. 167

Figure 196: Opening the “Terminal” Program.. 167

Table of Figures

 Page 15 of 180

Figure 197: Adding an User... 168

Figure 198: Sourcery CodeBench Wizard ... 171

Figure 199: Sourcery CodeBench - Choosing Install Set .. 171

Figure 200: Getting Started Guide... 172

Figure 201: Final Aspect of the “.bash_profile” File ... 173

Figure 202: CentOS VM Installation Directory ... 174

Figure 203: CentOS Folder Copied and Renamed ... 175

Figure 204: Opening a VM in VMware Player .. 175

Figure 205: VM Opening Selection .. 176

Figure 206: VMware Player after Opening the VM .. 176

Figure 207: VM Settings in VMware Player.. 177

Figure 208: VMware Ready for Be Used .. 177

Figure 209: BuildRoot Installation ... 178

Figure 210: Tera Term – Serial Port Setup ... 180

Table of Commands

 Page 16 of 180

Table of Commands

Command Window 1: Building the DTB File 1/2 ..58

Command Window 2: Building the DTB File 2/2 ..59

Command Window 3: Setting the Linux Kernel File for ZedBoard.............................61

Command Window 4: Default SD Card Boot Configuration on Embedded Linux OS ..75

Command Window 5: Default SD Card Boot Configuration on Linaro-Ubuntu75

Command Window 6: Building U-Boot.. 110

Command Window 7: Downloading the Device Tree Generator 117

Command Window 8: Building the DTB File from the DTS File 1/2 123

Command Window 9: Building the DTB File from the DTS File 2/2 123

Command Window 10: Building the DTB File 2/2 .. 125

Command Window 11: Setting BuildRoot for ZedBoard .. 127

Command Window 12: Building the Required Files for ZedBoard 135

Command Window 13: Wrapping the RamDisk File into an uRamDisk File 136

Command Window 14: Default SD Card Boot Configuration on Embedded Linux ... 150

Command Window 15: New SD Card Boot Configuration 150

Command Window 16: Building U-Boot .. 151

Command Window 17: Building the DTB File from the Default DTS File 156

Command Window 18: Building the “uImage” File .. 157

Command Window 19: Linaro-Ubuntu 12.09 Release .. 159

Command Window 20: Linaro-Ubuntu 11.12 Release .. 159

Command Window 21: Linaro-Ubuntu 12.03 Release .. 160

Command Window 22: Linaro-Ubuntu 12.11 Release .. 160

Command Window 23: Giving Root Privileges ... 168

Command Window 24: Edit the “sudoers” File .. 168

Command Window 25: Updating Sourcery CodeBench.. 169

Command Window 26: Installing “ncurses-devel” ... 169

Command Window 27: Setting the Name and E-mail .. 169

Command Window 28: Setting the Editor ... 169

Command Window 29: Setting the Diff Tool ... 170

Command Window 30: Installing the 32-Bit System Library 170

Command Window 31: Launching the CodeSourcery Cross Toolchain Installer....... 170

Table of Commands

 Page 17 of 180

Command Window 32: Editing the “.bash_profile” ... 172

Command Window 33: Loading the “.bash_profile” .. 173

Command Window 34: Downloading the U-Boot Git Repository 173

Command Window 35: Downloading BuildRoot .. 178

Command Window 36: Logging as Root User .. 178

Command Window 37: Installing the Required Programs 179

Command Window 38: Downloading the Linux-xlnx Git Repository 179

Command Window 39: Downloading the Ubuntu Linux Git Repository 179

Command Window 40: Downloading GParted Partition Editor 180

Chapter 1: Introduction

 Page 18 of 180

Chapter 1: Introduction

1.1. Overview and Targets

The final achievement of this project is to develop and implement a custom and

Embedded Linux Operating System (OS). This OS will be developed on ZedBoard (Zynq

Evaluation & Development Board) development kit. Therefore, how to create, configure, build

and implement an Embedded Linux OS on ZedBoard will be explained in detail during this Final

Bachelor Thesis.

Nevertheless, and before starting, it is necessary to know more about the board. The

ZedBoard use a Zynq-7000 SoC architecture, which includes the ARM Cortex-A9 processing

system (PS) and the 7 series programmable logic (PL). The individual components which

comprise the PS such as I/O peripherals, clocking, interrupt, AXI interfaces and memory

controllers are also detailed briefly. Note the relevant efficient PL-to-PS interfacing including

processing interrupts generated from a PL peripheral. Consequently, the ZedBoard is the

perfect platform to develop and implement the Embedded Linux OS.

Xilinx and its whole family of programs will be the main tool for achieving this goal.

The Xilinx program PlanAhead includes all necessary tools (map, place and route, synthesis,

implementation and BitStream generation tools) to build and design any typical process flow

for FPGA. In addition to these functionalities, it allows multiple run attempts with different RTL

(Register Transfer Level) source versions, constraints or different strategies for synthesis

and/or implementation.

Nevertheless, these tools are not enough; some GNU tools are also required to get this

achievement. There are different GNU Linux versions on the Internet which can be

downloaded and implemented on ZedBoard for free. Furthermore, there are a wide variety of

tutorials and documentation of each one.

Therefore, it will be explained in detailed two different options and set of techniques

to implement the Linux Operating System on ZedBoard:

 Developing a not-graphical-user-interface custom Embedded Linux OS which

will be designed exclusively for the specific purposes (e.g. for the specific and

required PL peripheral).

 Implementing a complex HDMI graphical user-interface GNU pre-designed

Embedded Linux OS in which specific PL peripheral can be easily added.

They have different but interesting and important advantages, as it will be showed in

the following chapters. Because of this, both of them will be developed and implemented on

ZedBoard before thinking which one will be finally chosen to implement the PL peripheral.

Finally, note that “Chapter 3: Custom Embedded Linux OS on ZedBoard” and “Chapter

4: Ubuntu Linux OS on ZedBoard” are closely related to “Appendix 1: Guide – Linux on

ZedBoard step by step”. These chapters are complementary to this appendix and vice versa;

they will deal with the development and implementation of the Linux OS. Nevertheless, they

will do it in a different form.

Chapter 1: Introduction

 Page 19 of 180

 The third and fourth chapters will be focus on the idea, on the concepts, on

answering the questions “what must be do”, “why must be do” and “which

ways are there available” to develop and implement the Linux OS.

 The appendix will be focused on the exactly steps to achieve the target, on

answering “how must be exactly done to develop and implement it”.

Therefore, these chapters are strongly recommended before performing this appendix

and this appendix is strongly recommended after reading these chapters in order to better

understand the ideas exposed in the whole thesis.

Figure 1: Two Showed Options to Develop and Implement a Linux OS

1.2. Why Develop and Implement an Embedded Linux Operating

System

There are a countless number of reasons to develop and implement an embedded

Linux system. The most relevant will be explained during this section and are summarize

below.

 Community support and possibility of taking part into it.

 Devices coverage.

 Eases the new features testing.

 Full control.

 Low cost.

 Platform reusage.

 Quality.

 RTOS (Real Time Operating System) possibility.

After knowing the major advantages of embedded Linux systems, it will be perfectly

clear the usefulness of knowing how to develop and implement a system of this kind.

Chapter 1: Introduction

 Page 20 of 180

1.2.1. Community Support and Possibility of Taking Part into It

Linux is an open-source code; therefore, there are a great number of developers and

user communities sharing their knowledge and code. This results in a high-quality support in

which anyone can directly contact with many developers who are working or have been

working in the same topic.

In addition, these communities are usually internet communities, allowing 24-hour

availability to the user and speeding up the problems resolution.

Finally, there is also the opportunity of taking part into the different communities, for

example to bug report; to add new code, versions or patches; etc.

1.2.2. Devices Coverage

Due to the rest of its advantages, there are a great range of systems based on

embedded Linux kernel, such as smartphones, tablets, PDAs, smart TVs, machine control, and

medical instrument, among others.

1.2.3. Eases the New Features Testing

As already mentioned, Linux is an open-source code. Therefore, it is really easy to get a

piece of software and evaluate it. It allows studying several options while making a choice.

Furthermore, new possibilities and solutions can be investigated.

As a result, it is too much easier and cheaper than purchasing or using proprietary-

product trial versions.

1.2.4. Full Control

The developer can have access to the source code for all components, allowing

unlimited changes, modifications, and optimizations without vendor lock-in. Therefore, the

developer has full control over the software.

Nevertheless, that is not the case of proprietary embedded operating systems, where

the opposite is the case.

1.2.5. Low Cost

Being an open-source includes being free of charge. Therefore, this free software can

be duplicated on as many devices as it was necessary with no costs.

It is one of the key advantages, and it can be considered that all other benefits have

been produced as a consequence of this advantage.

1.2.6. Platform Re-usage

Linux already provides many components and code for standard well -know functions,

such as libraries, multimedia, graphics, protocols, etc.

It allows quickly developing complex products, based on easier, already available

components. Therefore, it is not necessary to re-develop the same code by different

developers.

Chapter 1: Introduction

 Page 21 of 180

Being able to re-use the components and code is another of the key advantages of

embedded Linux. It results from the rest of advantages of embedded Linux over proprietary

embedded operating systems.

1.2.7. Quality

The open-source components are widely used, in a great multitude of systems.

Therefore, a large number of users develop different embedded Linux components and share

their knowledge, allowing designing a high quality system with high quality components.

1.2.8. RTOS (Real Time Operating System) Possibility

Another benefit of using an embedded Linux RTOS over a traditional proprietary RTOS

is that the Linux community tends to support new IP and other protocols faster than RTOS

vendors do.

1.3. Why on ZedBoard

There are a wide range of FPGAs, such as Artix, Kintex, Spartan, Virtex, Zynq ZC70X,

etc. Nevertheless, ZedBoard is the chosen board to be used and programmed in this case.

Therefore, the reasons to select ZedBoard instead of any of the previous boards are showed

below and will be briefly explained:

 Different memories types

 Dual core ARM Cortex-A9

 Great variety of peripherals

 SoC architecture

1.3.1. Different Memories Types

ZedBoard includes several kinds of memories, such as a 512MB DDR3 memory, a

256MB flash memory and a SD slot. This gives the flexibility of allowing small-size systems to

be stored in the flash memory, with the advantages that this kind of memory involved; and

allowing huge-size systems to be stored in an external SD Card.

Therefore, a very fast or a heavy embedded Linux can be developed on ZedBoard.

1.3.2. Dual Core ARM Cortex-A9

ARM is present in most of current Smartphones (about 95% in 2010), and a wide range

of smart TVs and laptops (35% and 10% respectively). Therefore, it is the perfect processor for

the board.

In addition, ZedBoard not only includes a simple core ARM, but also includes a dual

core ARM Cortex-A9. Therefore, the processor will not be a bottleneck for the developed

applications on the board in any case.

Chapter 1: Introduction

 Page 22 of 180

1.3.3. Great Variety of Peripherals

The ZedBoard provides a wide range of interfaces to connect the most common

peripherals and devices, such as monitors, keyboards, speakers, internet connection, etc. The

most important interfaces which the ZedBoard provides are the followings:

 Audio line-in, line-out, headphone and microphone.

 Ethernet.

 HDMI and VGA.

 OLED display.

 SD Card.

 USB.

Therefore, the embedded Linux version will be able to use a monitor, a mouse and a

keyboard; and will be able also to have internet connection.

1.3.4. SoC Architecture

The ZedBoard is an evaluation and development board based on the Xilinx Zynq-7000

All Programmable SoC (System-on-a-chip). This board allows creating a Linux, Android,

Windows or other OS/RTOS-based design.

Therefore, the ZedBoard is not only a FPGA, but it is a Programmable SoC device. But,

what is the difference between a FPGA and a programmable SoC device? The main difference

is that the SoC combines the processing system (PS) with the programmable logic (PL); as a

result, it has a higher speed and a less size than a traditional FPGA.

In particular, the ZedBoard combines a dual Corex-A9 Processing System (PS) with

85,000 Series-7 Programmable Logic (PL) cells.

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 23 of 180

Chapter 2: ZedBoard Platform and Xilinx Zynq-

7000 SoC

2.1. Embedded Systems

It will be developed and implemented an Embedded Linux Operating System;

therefore, before explaining the operation and features of the ZedBoard, it is necessary to

introduce and discuss embedded systems.

Embedded systems are computer-based systems designed for specific functions

function, usually within a larger mechanical or electrical system, often with real-time

computing constraints. They are embedded as part of a complete device often including

hardware and mechanical parts. These systems are used rather than general-purpose systems,

such as a laptop or a PC, which are designed to be flexible and to cover a wide range of end-

user needs.

One of the early first embedded systems was developed by IBM for the Gemini Project,

which was found on an on-board computer integrated with other spacecraft systems. Since

this embedded system, up to now, there has been a significant development and evolution of

these devices. They are not always small parts within a larger device which is used like a more

general purpose device; many of them consist on standalone devices. Some examples are

show below:

 Standalone embedded systems:

o Smartphones.

o Smart TVs.

o Mp3.

o Digital clocks.

 Embedded system integrated in more general purpose devices:

o In cars: airbag control unit, closing velocity sensor, fuel injection

control, ABS, etc.

o In factories: temperature control unit, radiation control unit, etc.

Embedded systems rove from not user-interface at all to complex graphical user-

interfaces depending on the purpose to which are made for. Nevertheless, they usually have at

least a basic interface for the developer or for its maintenance, such as a Serial Communication

Interface port to communicate with another device. Therefore, in this thesis, two embedded

Linux OS will be implemented.

 A not-graphical-user-interface basic Linux OS, in which the commands will be

introduced through a command window terminal using a Serial

Communication Interface port.

 An Ubuntu Desktop Linux OS, provided with a complex HDMI graphical user-

interface, such as any Ubuntu version installed in a generic PC.

Otherwise, one of the major problems of embedded systems are system overloads or

bottlenecks. They cause the increment of the data latency, delay interrupt handling, and lower

data throughput, among others. The Parallel Processing, which FPGA can achieve, is efficient

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 24 of 180

for critical system performance but a central controller and memory management is needed.

Therefore, one traditional solution is building a discrete hybrid system, using a microcontroller

together with a FPGA, which provides the best of both of them. Nevertheless, there are some

disadvantages, among others:

 Limited bandwidth between the two integrated circuits.

 Increasing power consumption.

 Increasing size and complexity.

Therefore, it is required a better solution to this problem. The current technology

needs the union between the Processing System (PS) and the Programmable Logic (PL) in a

single device. In this context, the Zynq-7000 All Programmable System on Chip (SoC) appears.

A System on a Chip or System on Chip (SoC) is an integrated circuit (IC) which

integrates all components of a computer or other electronic system into a single chip, such as

digital signal, analog signal, mixed-signal, radio-frequency functions, etc.

The contrast with a microcontroller is one of degree. Microcontrollers typically have a

few RAM and they are often really single-chip-systems, whereas the term SoC is used for more

powerful processors, capable of running heavy software such as a desktop version of Windows

or Linux, using external memory chips (flash and/or RAM) and disposing of several external

peripherals.

2.2. Xilinx Zynq-7000 All Programmable SoC Architecture

Based on the Xilinx All Programmable SoC (AP SoC) architecture, the Zynq-7000 All

Programmable System on Chip (SoC) System on Chip is not a simple FPGA; it is a 28nm

programmable-logic fabric 7 Series family FPGA coupled with a dual ARM Cortex-A9 MP Core

processor in a single chip, allowing a wide range of specific interface functions, such as gigabit

transceivers, high performance I/Os, high throughput AXI (Advanced eXtensively Interface),

thousands PS to PL connections, among others. The ARM Cortex-A9 MPCore CPUs are the

heart of the PS which also includes on-chip memory, external memory interfaces and a rich set

of I/O peripherals.

This two-chip combo All Programmable SoC causes a lower cost, complexity, size and

power consumption of the system. At the same time, the system performance is increased.

Therefore, this tight integration between the ARM-based PS and the on-chip PL creates

unlimited possibilities for designers to add virtually any peripheral or create custom

accelerators which can extend the system performance.

The range of devices in the Zynq-7000 AP SoC family enables designers to target cost-

sensitive as well as high-performance applications from a single platform using industry-

standard tools. Additionally, each device in the Zynq-7000 family contains the same PS, the PL

and I/O resources vary between them.

The PS and the PL are on separate power domains, allowing the possibility of

powering down the PL if required. Additionally, the processors in the PS always boot first. It is

also interesting to note that the PL can be configured as part of the boot process or later at

some point in the future. In addition, it can be completely reconfigured or used with partial,

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 25 of 180

dynamic reconfiguration (PR). Moreover, PR allows configuration of a portion of the PL. The

functional blocks of the Zynq-7000 AP SoC are showed below.

Figure 2: Zynq-7000 Diagram

2.3. ZedBoard Platform

2.3.1. ZedBoard Features

ZedBoard (Zynq Evaluation & Development Board) is a single-board computer based

on Xilinx's Zynq device family. It uses a Xilinx Zynq Z-7020 Zynq device (dual core ARM Cortex-

A9 cores ~800MHz paired with a Xilinx Artix 7 FPGA).

ZedBoard is intended to be a community development platform evaluation and

development board based on the above-mentioned Xilinx Zynq-7000 All Programmable System

on Chip. Combining the dual Cortex-A9 Processing System with an 85000 7-Series

Programmable Logic cells, the board contains interfaces and supporting functions to enable a

wide range of applications. The ZedBoard features are summarized below:

 Processor: Zynq-7000 AP SoC XC7Z020-CLG484-1.

o Up to 667MHz operation.

o NEON Processing/FPU Engines.

o Dual core.

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 26 of 180

 Memories:

o 512MB DDR3 memory.

o 256Mb Quad SPI Flash.

o 4GB SD Card.

 Communication:

o Onboard USB-JTAG programming.

o 10/100/1000 Ethernet.

o USB OTG 2.0 and USB-UART bridge.

 Clocking:

o 33.33333MHz clock source for PS.

o 100MHz oscillator for PL.

 Display:

o HDMI output supporting 1080p60 with 16-bit resolution color.

o VGA output with 12-bit resolution color.

o 128x32 OLED display.

 Audio:

o AudiLine-in.

o Line-out.

o Headphone.

o Microphone.

 General Purpose I/O:

o 9 user LEDs (1 PS, 8 PL).

o 7 push buttons (2 PS, 5 PL).

o 8 switches (PL).

 Configuration and Debug:

o Onboard USB-JTAG interface.

o Xilinx Platform Cable JTAG connector.

 Connectivity:

o USB-JTAG Programming.

o 5 Digilent Pmod headers.

o FMC (Low Pin Count) connector.

o USB OTG 2.0 (Device/Host/OTG).

o TwReset Buttons (1 PS, 1 PL).

o ARM Debug Access Port (DAP).

o Xilinx XADC Header.

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 27 of 180

2.3.2. ZedBoard Hardware Block Diagram

The next figure shows the ZedBoard Hardware block diagram:

Figure 3: ZedBoard Block Diagram

2.3.3. Zynq Bank Pin Assignments

The following figure shows the Zynq bank pin assignments on ZedBoard:

Figure 4: Zynq Z7020 CLG484 Bank Assignments

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 28 of 180

2.4. Required Software

Up to this moment, the thesis targets and the required hardware to achieve them have

been known. Nevertheless, it is also necessary briefly explain the desired tools to implement

and develop this software.

2.4.1. ISE Design Suite (Xilinx Design Environment)

Xilinx Design Environment will be the main tool to achieve this goal. Xilinx is an

American technology company, primarily a supplier of programmable logic devices. It is known

for inventing the field programmable gate array (FPGA) and as the first semiconductor

company with a fabless manufacturing model (contracts out their production rather than

owning its own factory). It was found in Silicon Valley in 1984.

Xilinx is the world’s leading provider of All Programmable FPGAs, SoCs and 3D ICs.

These industry-leading devices are coupled with a next-generation design environment and IP

to serve a broad range of customer needs, from programmable logic to programmable systems

integration. Actually, the Zynq-700 AP SoC is a Xilinx product.

Therefore, the ISE Design Suite designed by Xilinx is the desired and ideal development

environment for any Zynq-700 AP SoC device, such as ZedBoard. ISE Design Suite is a proven

and mature development environment for All Programmable devices. ISE includes the

PlanAhead Design and Analysis tools for the ZedBoard. Its embedded processing component

includes PlanAhead, Xilinx Platform Studio (XPS) and the Software Development Kit (SDK).

The Zynq Processing System (PS) may be used without anything programmed in the

Programmable Logic (PL). However, in order to use any soft IP in the PL, or to route PS

dedicated peripherals to device pins for the PL, programming of the PL is required. A Zynq PS-

only project can be completed in XPS and SDK standalone.

Nevertheless, once any piece of PL logic with the PS is required, a greater range and

power tool like PlanAhead is required. PlanAhead provides a central cockpit for design entry in

RTL, synthesis, verification and BitStream generation. PlanAhead offers integration with XPS

for embedded processor design (including access to the Xilinx IP catalog), and SDK to complete

the embedded processor software design. It includes all necessary tools (map, place and route,

synthesis, implementation and BitStream generation tools) to build and design any typical

process flow for FPGA. In addition to these functionalities, it allows multiple run attempts with

different RTL (Register Transfer Level) source versions, constraints or different strategies for

synthesis and/or implementation.

Once the hardware project has been created with PlanAhead, using the XPS help, it will

be exported to SDK in order to develop the required software.

In conclusion, the Xilinx programs which will be used during this thesis are:

o PlanAhead.

o Xilinx Platform Studio (XPS).

o Software Development Kit (SDK).

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 29 of 180

2.4.2. GNU Tools

ISE Design Suite will be enough if a Standalone system is developed and implemented.

Nevertheless, in this case, it will be developed an embedded Linux OS; therefore, these tools

are not enough. Some GNU tools are also required to get this achievement and to build the

specific Linux required files. There are different GNU Linux versions on the Internet which can

be downloaded and implemented on ZedBoard with no cost. Furthermore, there are also

available tools which support the Linux-OS development by selecting the necessary packages

to configure it and create the desired Root File System Image.

The main used tools are showed below and briefly explained during this section.

 U-Boot.

 Linux kernel.

 BuildRoot.

2.4.2.1. U-Boot

Das U-boot is a GNU Universal Boot Loader which is frequently used in embedded

Linux devices. It was developed by Magnus Damm like a bootloader for PC, in 1999 for the

Wolfgang Denk Company. The current name “Das U-Boot” adds a German definite article, to

create a bilingual pun on the German word for “submarine”.

Das U-Boot is the richest, most flexible and most actively developed open-source Boot

Loader available for Embedded Linux OS. It is available for a number of different computer

architectures, not only the ARM architecture of the ZedBoard, but also others such as 68k,

AVR32, Blackfin, MicroBlaze, MIPS, Nios, PPC, and x86, among others. The development of U-

Boot is closely related to Linux: some parts of the source code originate in the Linux source

tree, and there are some header files in common.

Xilinx provides an official Xilinx U-Boot repository, u-boot-xlnx, which includes U-Boot

to run on Xilinx boards. It is based on the source code from the DENX Software Engineering Git

tree repository.

The most common U-Boot starting process is shown below:

 U-boot is loaded with the desired parameters.

 Environment variables which contain U-boot parameters are loaded.

 U-boot loads the embedded-Linux-OS kernel.

2.4.2.2. Linux Kernel

It is required a Linux Kernel repository which is able to build the required Linux files,

such as the Device Tree Binary file, the Linux Kernel file and the Root File System Image. The

Linux Kernel is an open-source Unix-like operating system kernel used by a variety of operating

systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a

prominent example of free and open source software.

The Linux kernel was initially conceived and created in 1991 by the Finnish computer

science student Linus Torvalds; and rapidly accumulated a countless number of developers and

users who adapted code from other free software projects. Therefore, it is developed by

contributors worldwide, allowing being constantly updated to the current technology.

Chapter 2: ZedBoard Platform and Xilinx Zynq-7000 SoC

 Page 30 of 180

In this case, linux-xlnx will be used in the third chapter to implement the “basic” Linux

OS, which is the official Linux kernel from Xilinx. It is a Linux Kernel repository which provides

the Linux Kernel for the whole Xilinx devices family, like Zynq.

In addition, another Linux kernel repository will be used in the fourth chapter to

implement the kernel and device tree binary for the Ubuntu Linux OS, the Linux kernel

repository of Analog Devices Inc., which includes HDMI interface configuration, among other

peripheral configurations.

2.4.2.3. BuildRoot

Building a custom Embedded Linux OS involves creating a kernel image with its

required libraries, the packets to support the hardware devices and software applications, the

dependencies among packages, the required Boot Loader with its required libraries, choose

which packages versions and tools are compatibles, build the root file system and the software

applications, and an extremely large etcetera of other required tasks. Therefore, building all

without help will waste a lot of time.

For all these reasons, a simple, efficient and easy-to-use tool to generate embedded

Linux OS through cross-compilation tool is desired. It will simplify and automate the process of

building a complete Linux system for an embedded system.

In order to achieve this, BuildRoot will be the preferred tool. It is a bunch of Makefiles

and patches designed to build a complete embedded Linux distribution, automating the

embedded system building process. Its key features and functions are summarized below.

 It can build all the required components for the embedded system, cross-

compiling toolchain, root filesystem generation, kernel image compilation,

Device Tree Blob compilation, and boot-loader (U-Boot) compilation.

 It allows configuration using configuration interfaces, such as the “xconfig”

configuration interface.

 It offers a great variety of supplementary software, such as packages,

applications and libraries, which can be added to the Embedded Linux.

 It supports multiple filesystem types for the root filesystem image.

 It supports numerous processors and their variants, such as ARM.

 It includes default configurations for several boards, such as ZedBoard.

 It can generate an uClibc cross-compilation toolchain.

 It is a simple structure relying on Makefile language.

 It can configure any combination of these options, independently of each

other (e.g. it can be used to build only the Linux Kernel whether it was the only

required file).

 If it requires changing the Linux kernel version, it will only require change the

download git repository in the configuration file, while the rest of the

configuration will remain unchanged. This allows re-using the configuration

between different Linux versions.

Therefore, BuildRoot is the ideal tool to build the “Basic” Linux OS, which will be realize

in the third chapter.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 31 of 180

Chapter 3: Custom Embedded Linux OS on

ZedBoard

3.1. Overview

The aim is to build a custom Embedded Linux OS on ZedBoard. Xilinx and its whole

family of programs will be the main tool for achieving this goal, as already mentioned.

As already mentioned in chapter 2, the chosen Linux OS which will be developed is

Linux-xlnx, and the main tool which will be used to configure and build it is BuildRoot. It is well

worth remembering that the Linux OS is available in its git repository with a complete and

detailed documentation: https://github.com/Xilinx/linux-xlnx; the same as BuildRoot is also

available in its own git repository: http://git.buildroot.net/buildroot.

BuildRoot will be the main GNU tool used to download, configure and build this Linux

OS. Note that this tool can be used to configure and implement most Linux versions available

on the Internet in almost any board or FPGA. This is why is very interesting to know how this

tool works. It is also possible to develop the OS without BuildRoot, but it would require much

more time because of the different advantages of BuildRoot:

 BuildRoot allows not only configure the Linux Kernel and Root File System

Image, but also it is able to configure and build also the U-Boot file and the

Device Tree Binary.

 It also offers a greater variety of supplementary configurations or programs

which can be added to the Embedded Linux.

 If it requires changing the Linux version (Linux-xlnx), it will only require change

the download git repository. In addition, the rest of the configuration will

remain unchanged. This allows using the same configuration between different

Linux versions.

These are some of the main reasons why this tool will be used to develop Linux.

If the documentation of the Linux-xlnx is read, it can be seen that four files are

required in the SD Card to start this Linux OS on ZedBoard:

1. The Boot Image (“boot.bin”), which is a binary composite image, consisted on

different files. The most simple Linux systems require only three components

within the boot image:

a. The FSBL (First Stage Boot Loader).

b. The Programmable Logic Hardware BitStream (optional).

c. The U-Boot (Second Stage Boot Loader).

2. The Device Tree Binary File (“devicetree.dtb”), which is obtained from the

Device Tree Source File and loaded into the DDR memory by U-Boot. The

kernel has to know every detail about the hardware it is working on. For this

purpose, it uses the data structure known as Device Tree Blob or Device Tree

Binary to describe the hardware.

3. The Linux Kernel File (“uImage”), which is also loaded into the DDR memory by

U-Boot. It initializes the system hardware and mounts the root file system.

https://github.com/Xilinx/linux-xlnx
http://git.buildroot.net/buildroot

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 32 of 180

4. The Root File System Image (“uramdisk.image.gz”), which is also loaded into

the DDR memory by U-Boot. It contains the Operating System itself.

The next figures summarize these steps. On one hand, the first image shows the

required files in the SD Card. On the other hand, the second one shows the typical Linux Boot

sequence.

Figure 5: Files Contained in the SD Card

Figure 6: Typical Linux Boot Sequence Overview

All these files will be explained in further detail in this chapter. Despite of the Linux

Boot Sequence, the order in which these files will be made is different. This is because

BuildRoot will build the U-Boot file, the Device Tree Binary file, the Linux Kernel file and the

Root File System Image at the same time. Nevertheless, the whole “boot.bin container” cannot

be built until the U-Boot file will be made. Moreover, the BitStream is the first required file

which is created.

Nevertheless, before performing this task, a new project must be created and

configured for ZedBoard in PlanAhead, in order to be able to create a specific FSBL and

BitStream files for the specific hardware, the ZedBoard.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 33 of 180

Therefore, the programs and steps to create, configure, build and implement a “Basic”

Embedded Linux Operating System with BuildRoot on ZedBoard are summarized below.

1. PlanAhead:

a. Creating a PlanAhead Project.

b. Adding an embedded source.

2. Xilinx Platform Studio (XPS):

a. Configuring the Hardware Platform (e.g. peripherals, clocks, DDR3

memory, etc).

3. PlanAhead:

a. Design Constraints.

b. Top HDL Module.

c. Hardware Platform Building.

4. Software Development Kit (SDK):

a. Creating the FSBL (First Stage Boot Loader).

5. BuildRoot:

a. Configuring the OS.

b. Building the custom OS.

c. Obtaining the U-Boot file, the Device Tree Binary file, the Kernel Image

and the Root File System Image.

6. Software Development Kit (SDK):

a. Creating the boot image (“boot.bin”) from the FSBL, the BitStream file

and the U-Boot file.

7. SD Card:

a. Copying the four files in the SD Card.

8. Tera Term:

a. Running Linux on ZedBoard.

Finally, remember that this chapter is closely related to “Appendix 1: Guide – Linux on

ZedBoard step by step”; they both are complementary to each other. This section will be focus

on the idea, on the concepts, on answering the questions “what must be do”, “why must be

do” and “which ways are there available” to develop and implement the Linux OS.

Nevertheless, the appendix will be focused on the exactly steps to achieve the target, on

answering “how must be exactly done to develop and implement it”.

Therefore, this appendix is strongly recommended after reading this chapter in order

to better understand the ideas exposed in this chapter.

3.2. Creating a Project and Adding Embedded Sources

The first required action will be to create a Register Transfer Level (RTL) project to

manage the entire System on Chip design flow, where the specific target device, the ZedBoard,

must be also selected (Zynq-7000 Family, Package clg484, Speed grade -1 and Temp grade C).

A RTL is a design abstraction which models a synchronous digital circuit in terms of the flow of

digital signals (data) between hardware registers, and the logical operations performed on

those signals.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 34 of 180

Hereafter, an Embedded Source, the ARM processing system, has to be added and

configured. After adding an Embedded Source in PlanAhead, the Xilinx Platform Studio (XPS)

will be automatically launched to configure it. The configuration of the peripherals could be

made one by one or could be imported from a configuration file available on ZedBoard.org

webpage. It will be easier and faster to import it.

After that, many peripherals are enabled in the Processing System with some MIO pins

assigned to them in coordination with the ZedBoard layout. For example, UART1 is enabled

and UART0 is disabled because UART1 is connected to the USB-UART bridge chip on this board.

Another important detail to highlight is that the peripherals are not listed in

alphabetical order, despite the MIOs numbers are listed in number order. The peripherals are

listed from top to bottom in order of priority based on either their importance in the system

(like the Flash memory) or how limited they are in their possible MIO mappings. The least

flexible is at the top (the Flash memory), while the most flexible (GPIO) is at the bottom.

Figure 7: Peripheral and MIO Order on ZedBoard

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 35 of 180

The boot device is one of the most important parts. Zynq-7000 allows selecting just

one: QSPI, NOR or NAND. SD Card is also a boot option and is show up lower in the list. Only

one of the three flash memory types can be selected because the three interfaces are mutually

exclusive. For example, if the Quad SPI Flash is selected, NOR and NAND peripherals are grayed

out because of that.

Figure 8: Flash Memory Selection

3.2.1. PS PLL Clocks

As already mentioned in the previous chapter, the Zynq-7000 AP SoC’s PS subsystem

uses a dedicated 33.3333MHz clock source, IC18, Fox 767-33.333333-12, with series

termination. The PS infrastructure can generate up to four PLL-based clocks for the PL system.

An on-board 100MHz oscillator, IC17, Fox 767-100-136, supplies the PL subsystem clock input

on bank 13, pin Y9.

In addition, each PLL must be set to operate in a specific frequency range, as given by

the datasheet. This range is from 780MHz to 1600MHz for the ZedBoard (-1 device). Three

clocks can be chosen as “Clock Source” for the rest of clocks:

 The ARM PLL.

 The DDR PLL.

 The I/O PLL.

The CPU (ARM) and the DDR frequencies must be multiples of 33.3333MHz. On one

hand, the ARM PLL is 666,6667MHz which is 33.333MHz · 20. On the other hand, the CPU PLL

is 533,3333MHz which is 33.333MHz · 16.

Therefore, every component which uses these PLLs must be an integer divider of

these frequencies. If the frequency selected for a clock is different to this multiplication or

division, the program will adjust its clock frequency as close as possible to the requested value.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 36 of 180

For instance, the required frequency of the QSPI peripheral interface is 200MHz, if the

ARM PLL was be chosen as clock source, the more similar value of frequency would be

190.476MHz (1333.333MHz/7). Nevertheless, if the IO PLL clock is chosen, the exactly

frequency would be achieved (33.3333MHz · 6).

On the other hand, despite the PL Fabric Clock “FCLK_CLK1” is set to 150MHz, the

actual frequency is 142.857132MHz. That is because 150MHz cannot be exactly achieved with

the available dividers and multipliers. The more similar value of frequency is 142.857132MHz

(1333.333MHz·3/28).

Finally, note that any value from 30 to 60MHz is accepted as “Input Frecuency”.

However, 33.3333MHz is the standard value of the Fox clock which provides the best

performance:

Figure 9: Clock Wizard in XPS after Importing the Configuration File

3.2.2. DDR3 Memory

ZedBoard includes two 32-bit DDR3 memories, totaling 512MB. The PS incorporates

both the DDR controller and the associated Physical Layer Interface, including its own set of

dedicated I/Os. The DDR3 memory interface speeds up to 533MHz.

The PS7 DDR Configuration screen allows for configuration of the DDR Controller, the

Memory Part, and the board details used for DDR interface.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 37 of 180

It contains also entries to allow delay information to be specified for each of the lines.

These parameters are specific to every PCB design, the PCB lengths are contained on ZedBoard

PCB trace length reports provided on the ZedBoard Hardware User Guide available in the

zedboard.org webpage. Filling the lengths shown in the next figure will cause XPS to adjust

delay parameters to achieve the best operation.

Figure 10: Delays in ZedBoard Hardware User Guide - 8 of Hardware User Guide

This information is used by Xilinx for knowing the delay of each component and be

able to notify if there is an excessive delay which could cause latches or other errors. Once the

above-mentioned configuration file of the peripherals is imported and the PCB lengths fill in,

the result is the following figure.

Figure 11: PS7 DDR Configuration after Importing the Configuration File

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 38 of 180

Finally XPS can be closed. After that, the top-level project design file “system.xmp” and

the Microprocessors Hardware Specification file (*.mhs) are added to the PlanAhead project.

This file is the hardware netlist of the processor subsystem which fully defines the embedded

system hardware. Expanding the Embedded Design Sources in the Sources view displays the

different target files.

Moreover, other files are created, for instance “ps7_init.c”, “ps7_init.h”, “ps7_init.tcl”

and “ps7_init.html”, which contain:

 On one hand, “ps7_init.html” has the documentation of register level details, use

as a reference alternative to browsing through initialization source code. For

example, the initialization data for:

o Processing System.

o PLLs.

o Clocks.

o DDR memory.

o MIO.

 On the other hand, the other files contain the source files containing PS

configuration setup. For instance:

o List of the peripherals selected in the design.

o List of IP blocks presented in the design.

o The address map for processors Cortex-A9 0 and Cortex-A9 1.

o The Multiplexed Input Output (MIO) configuration.

o The Zynq-7000 Peripheral configuration.

It will be created also the XML file, which contains the processor and peripheral

instantiation and addresses for FSBL and BSP generation.

3.3. Design Constraints

Xilinx knows the PS pin location mapping and the timing, based on the configuration

file which has being imported in the XPS. Nevertheless, the PL needs a User Constraint File

(UCF) to define the pin locations and PS timing, with the exception of circuitry driven from the

PS fabric clock.

The ZedBoard *.ucf file can be downloaded on the ZedBoard official webpage and

imported such as the above-mentioned PS7 configuration file.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 39 of 180

Figure 12: Sources Window in PlanAhead after Importing the *.ucf File

3.4. Top HDL Module and Hardware Platform Building

Now, the hardware platform is completely configured. The configuration includes clock

and DDR controller settings, it also enables and maps a UART peripheral. The hardware

platform has to be built and exported to the Software Development Kit (SDK) for being able to

develop any application. Building includes the top level wrapper generation, the synthesis, the

implementation and the BitStream generation.

The top level wrapper (or Top HDL in PlanAhead) is a top level module for the design.

PlanAhead generates a “system_stub.vhd” top-level module for the design where

“system.xmp” (the embedded system) is now a sub-system of “system_stub”.

Figure 13: Sources Window with the Top HDL Module Generated

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 40 of 180

The next processes which are needed are the synthesis, implementation, verification,

and BitStream generation. An elaborated, detailed schema of this whole process is showed in

the next figure.

Figure 14: Design Flow Schema

The BitStream generation finishes the hardware design. Any software project

associated with the hardware design has to be created within SDK (e.g. the First Stage Boot

Loader or the Boot file which will be copy into the SD Card). Therefore, the project must be

exported to SDK. After launching SDK, PlanAhead can be closed, it will not further required.

In addition to the BitStream file, PlanAhead also exports the Hardware Platform

Specification for the design, “system.xml” to SDK, which is opened by default when SDK is

launched. This file contains the hardware platform description for FSBL and BSP generation.

Four more files are exported to SDK, the already mentioned files “ps7_init.c”, “ps7_init.h”,

“ps7_init.tcl” and “ps7_init.html”. These settings are used by SDK when adding and mapping

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 41 of 180

the low level drivers for the peripherals selected and for initializing the processing system so

that the applications can be run on top of the processing system.

Once the basic ZedBoard project is built, any program can be developed and

implemented on ZedBoard (using an Operating System or with a Standalone configuration).

Therefore, any version of Linux with this hardware configuration can be developed and

implemented continuing from this point.

Finally, note that it is strongly recommended to perform the “Appendix 1” up to this

point before continuing reading this chapter.

3.5. Stage 0 or BootROM

Zynq-7000 AP SoC devices use a multi-stage boot process that supports both non-

secure and secure boot. The PS is the master of the boot and configuration process. This is the

only no-user-configurable stage.

Upon reset, the device mode pins are read to determine the primary boot device to

be used: NOR, NAND, Quad-SPI, SD Card or JTAG; depending on the chosen configuration. The

boot mode pins are the MIO pins from 2 to 8. Therefore, these MIO pins are used as follows:

 Pin 2 of MIO or pin 3 of Boot_Mode: sets the JTAG mode.

 Pins from 3 to 5 of MIO or pins from 0 to 2 of Boot_Mode: select the boot

mode.

 Pin 6 of MIO or pin 4 of Boot_Mode: enables the internal PLL.

 Pins from 7 to 8 of MIO or Pins from 0 to 1 of Vmode: are used to configure

the I/O bank voltages, however these are fixed on ZedBoard and not

configurable.

The ZedBoard provides three jumpers for the MIO configuration (from pin 2 to 6).

These jumpers allow users to change the mode options, including using cascaded JTAG

configuration as well as using the internal PLL.

The Linux OS will be introduced on ZedBoard using the SD Card; hence the MIO

Configuration Modes are the list below, with the required setting highlighted in yellow:

Figure 15: ZedBoard Configuration Modes to Run Linux

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 42 of 180

Looked at a different way, the jumpers must be fixed as the following image:

Figure 16: ZedBoard SD Card Boot Mode Jumper Setting

Therefore, when the board is switched on, it automatically detects the configured boot

mode and it will load the First Stage Boot Loader (FSBL) which will be available in the SD Card.

Then the FSBL will take control and will prepare the system so a larger boot loader will be able

to be loaded (U-Boot).

3.6. Boot Image, “boot.bin”

Once the BootROM is configured, the next step is creating the boot file, which is a

binary composite image, responsible for:

 Board initialization using the PS configuration data provided by XPS.

 Programming the PL of the FPGA with the Hardware BitStream (if it exists, this

step is optional, and it can be performed later).

 Loading the Operating System (OS) Image or a Standalone (SA) Image or the

Second Stage Boot Loader image and starting executing it. In this project the

Second Stage Boot Loader (U-Boot) will be loaded.

It supports multiple partitions, and each partition can be a code image or a BitStream.

In this case, it will be only consisted on 3 files:

 The specific First Stage Boot Loader (FSBL) for ZedBoard.

 The specific Programmable Logic Hardware BitStream file for ZedBoard

(optional).

 The U-Boot file, as Second Stage Boot Loader.

Figure 17: Boot Image Container

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 43 of 180

First, the FSBL, together with the BitStream file, is responsible for initializing the

processor resources so a larger boot loader can be loaded (in this case U-Boot). It can be

generated directly by the SDK project template. Among its features highlight the following:

 Initializing the Zynq PS (PLLs, DDR memory controller, MIO, and UART).

 Configuring the PL with the Programmable Logic Hardware BitStream

(optional).

 Loading the application code from the boot medium to memory.

 Transferring the execution to the application code (U-Boot).

Second, the Second Stage Boot Loader file loads the kernel and passes the device tree

to Linux. U-Boot will be used as Second Stage Boot Loader. It is an open source software

project U- which performs important boot functions:

 Initializes the platform hardware needed to load kernel.

 Loads Linux kernel from boot medium to main memory (DDR3).

 Starts the Linux kernel with specified boot parameters.

It is mostly used to load and boot a kernel image, but it also allows developers to

change the kernel image and the root file system stored in flash. Files can be exchanged

between the target and the development workstation.

3.6.1. First Stage Boot Loader (FSBL)

Once the BootROM is configured, the next step is creating the FSBL. Remember that

the FSBL, together with the BitStream file, is responsible to initialize the processor resources so

a larger boot loader can be loaded (in this case U-Boot). It can be generated directly by the SDK

project template. Among its features highlight the following:

 Initializing the Zynq PS (PLLs, DDR memory controller, MIO, and UART).

 Loading the application code from the boot medium to memory.

 Transferring the execution to the application code (U-Boot).

 Configuring the PL with the Programmable Logic Hardware BitStream together

with the BitStream file (optional).

Finally, it is important to know that the First Stage Boot Loader file, as the BitStream

file, is always related to the hardware architecture and configuration, regardless of whether

an OS is used. Therefore, they will not depend on the Linux OS version to implement on

ZedBoard. Also for this reason, the OS Platform is selected as “standalone”. Nevertheless, this

file will not be the same file for the Ubuntu Linux OS version which will be developed in

“Chapter 4: Ubuntu Linux OS on ZedBoard”, because this file also depends on the hardware

configuration, which will be different in the next chapter (e.g. it will be included a HDMI

monitor, a USB mouse, and a USB keyboard, among others).

The Xilinx tool Software Development Kit (SDK) is used to create the FSBL. After open

SDK in the same path directory of the created project of the last subchapter, a new Application

Project must be selected to build the FSBL and choose the “Zynq FSBL” mode.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 44 of 180

Figure 18: New Project Window to Create the FSBL in SDK 1/2

Figure 19: New Project Window to Create the FSBL in SDK 2/2

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 45 of 180

It is not necessary a better explanation for the FSBL that the provided by Xilinx in the

latest figure.

“First Stage Bootloader (FSBL) for Zynq. The FSBL configures the FPGA with HW bit

stream (if it exists) and loads the Operating System (OS) Image or Standalone (SA) Image or

2nd Stage Boot Loader image from the non-volatile memory (NAND/NOR/QSPI) to RAM (DDR)

and starts executing it. It supports multiple partitions, and each partition can be a code image

or a bit stream.”

In addition, a few comments about these last 2 figures are required in order to achieve

a better understanding of the FSBL.

First, the “standalone” mode has been chosen for the “OS Platform” instead of the

other available option, “linux”. It may seem contradictory, given that it is sought to build a

Linux OS. Nevertheless, as already remarked, the FSBL don”t depend on the Operating System

which will be used, but only of the hardware target where it is implemented on.

For this purpose, it is required to configure the “Target Hardware”, where will be

selected the hardware platform configured in the previous subchapter, together with the first

processor of the ZedBoard, because of its greater speed over the second processor.

Once the file is successfully built, it can be directly copied of its path directory which is

showed in the image below. Note that this file can be directly opened with SDK, allowing a

better understanding of it.

Figure 20: SDK Project Explorer Window after Building the FSBL File

3.6.2. Programmable Logic Hardware BitStream file

The Programmable Logic Hardware BitStream file has been mentioned and created

during this chapter, but it has not been necessary up to now. It is therefore the ideal moment

to talk about it and about its function.

If its definition of “BitStream” is looked for, the result is the following.

“A BitStream or bit stream is a time series or sequence of bit”.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 46 of 180

Therefore, the PL Hardware BitStream file is a sequence of bits which contains the

Hardware and PL configuration for a specific board, such as the ZedBoard, in a binary language

that the specific board can understand and implement.

As above mentioned, the BitStream file, together with the FSBL file, is responsible for

initializing the processor resources, but the PL Hardware BitStream file is focus in the

Programmable Logic Hardware, while the FSBL file also initializes the PS (PLLs, DDR memory

controller, MIO, and UART).

Remember that this file is optional. If the PL is not required, this file is not necessary at

all. Moreover, the PL Hardware BitStream can also be added manually later.

Finally, note that it can be found in the SDK project or in the PlanAhead project.

Figure 21: SDK Project Explorer Window with the PL Hardware BitStream

3.6.3. Second Stage Boot Loader, U-Boot

Most of the required files to build the boot file have been obtained. However, one

more file is necessary, the Second Stage Boot Loader. This stage loads the Linux Kernel and

passes the device tree to Linux. U-Boot will be used as Second Stage Boot Loader.

The U-Boot Universal Boot-Loader is a GPL cross-platform boot loader pioneered by

project leader Wolfgang Denk but forged by developers and user community. U-Boot provides

out-of-the-box support for hundreds of embedded boards and a wide variety of CPU

architectures including ARM. The development of U-Boot is closely related to Linux, some

parts of the source code originate in the Linux source tree, and they have some header files in

common. In addition, special provision has been made to support the Linux image booting.

U-Boot carries out different kind of functions. On one hand, i t performs important

boot functions, such as…

 Initialize the platform hardware needed to load the Linux Kernel.

 Load the Linux Kernel from boot medium to the main memory (DDR3).

 Start the Linux Kernel with the specified boot parameters.

On the other hand, it also provides some convenient features for the development

environment, like…

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 47 of 180

 Provide network access.

o Ping IP addresses.

o Download binary images via TFTP.

 Allow memory test, copy, and comparison.

o Reads and writes arbitrary memory locations.

o Copies binary images from one location in memory to another.

 Configure and access to the hardware peripheral devices directly (e.g. Quad-

SPI Flash, I2C, and Ethernet).

 Detect the boot mode and run related boot macros.

U-Boot can obtain the Kernel Image from a SD Card, partitioned QSPI Flash, and even

through Ethernet using TFTP (having a functional TFTP server).

By default, if no key is pushed after switch on ZedBoard, U-Boot starts the “autoboot”

procedure, which looks for BootMode pins settings again for the source of the Kernel Image,

the Device Tree Blob and the Root File System Image.

Nevertheless, if the auto-boot is stopped by pushing a key, U-boot provides a console

interface to execute commands, which can be used for the above mentioned purposes.

Figure 22: U-Boot Commands 1/2

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 48 of 180

Figure 23: U-Boot Commands 2/2

Figure 24: U-Boot Command Console Running on ZedBoard

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 49 of 180

For all these reasons, U-Boot is the ideal Second Stage Boot-Loader for the ZedBoard.

There are three different methods to get the desired file “u-boot.elf” and the three provide

exactly the same result and create the same “u-boot.elf” file.

 Download the official Xilinx U-Boot repository, configure it for the ZedBoard

and build the required file.

 Download the U-Boot BSP generator for the Xilinx git repository, add it to

Xilinx SDK and built the required file.

 Configure BuildRoot to automatically download and configure a specific U-

Boot repository and to build the file (recommended).

The three methods will be explained in this chapter in order to better understanding

about U-Boot. Nevertheless, only one of these methods is necessary to develop. Due to its

greater simplicity and convenience, the third method is the recommended one.

From now, a Linux OS will be necessary to continue. Regardless of whether a Linux OS

is available in the computer, the recommended solution is installing the CentOS OS in the

Virtual Machine VMware Player. Anyway, any other Virtual Machine is also suitable.

CentOS (abbreviated from Community Enterprise Operating System) is a Linux

distribution that attempts to provide a free, enterprise class, community-supported computing

platform which aims to be 100% binary compatible with its upstream source, Red Hat

Enterprise Linux (RHEL). This OS is recommended because it supports the AMD architecture.

How must be installed and configured the program is showed in “Appendix 2:

Prerequisites”.

The first method, download the official Xilinx U-Boot repository, is the traditional way

to create the “u-boot.elf” file. After downloading the source code for U-Boot of the official

Xilinx U-Boot repository, it can be opened and configured in the Linux “Terminal” program.

However, before building the U-Boot file, a cross compiler is required, which is a

compiler capable of creating executable code for a platform other than the one on which the

compiler is running. In this case, the Sourcery Codebench will be used. It is a complete

development environment for embedded C/C++ development on ARM, among others.

Sourcery CodeBench includes:

 GNU C and C++ compilers.

 GNU assembler and linker.

 C and C++ runtime libraries.

 GNU debugger.

Once the Cross Compiler is downloaded and configured (see “Appendix 2:

Prerequisites”), U-Boot can be built for one specific platforms using the “Terminal” command

windows of a Linux OS.

In order to configure U-Boot for a specific hardware platform, the command “make

<u-boot target>_config” is required. In this case, to configure U-Boot for the ZedBoard, the

exact command is “make zynq_zed_config”. It configures the U-Boot source tree with the

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 50 of 180

appropriate soft links to select ARM as the target architecture, the ARM v7, the Zynq SoC and

the ZedBoard as the target platform. With the environment variables properly set for the

cross-compiling toolchain, U-Boot will be built for the Zynq ARM architecture after executing

the “make” command which will generate the “u-boot” file. Finally, it should be looked in the

“u-boot-xlnx” folder and renamed as “u-boot.elf”.

Figure 25: U-Boot Directory in Linux with the “u- boot.elf” File

Otherwise, if the second method is chosen, the U-boot BSP generator for Xilinx SDK

must be downloaded and added to Xilinx SDK as a new repository.

Figure 26: Adding a Board Support Package in Xilinx SDK 1/2

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 51 of 180

Note that also the Device Tree Generator can be added, it will be discussed in the

following section. After adding the U-Boot repository, the required .elf file can be created after

creating a new Board Support Package choosing the “uboot” option.

Figure 27: Creating the U-Boot Board Support Package

Finally, the last method, building U-Boot using the BuildRoot tool, is the recommended

method. The reasons to recommend it are already mentioned, BuildRoot allows not only

configure the U-Boot file, but also the Device Tree Binary, the Linux Kernel and the Root File

System Image. Thus, it avoid wasting time in downloading each required git directory for each

one and setting them separately, when all of them can be configured by a single tool.

In terms of U-Boot, it has a whole setting window in BuildRoot, where the options

which were explained in the first method are ready to be configured. It is required…

 The Board’s name.

 The U-Boot version.

 The URL of the custom repository and its version, after selecting the option

“Custom Git repository”.

 The U-Boot binary format (.elf in this case).

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 52 of 180

Figure 28: U-Boot Configuration Window in BuildRoot

Note that U-Boot is not the only possible Second Stage Boot Loader; there are also

others such as Barebox, mxs-bootlets or X-loader. If one of them is selected, its respective

window is displayed. In addition, there is a configuration file for BuildRoot which loads the

default configuration automatically for ZedBoard, and includes this U-Boot configuration. It

can be loaded by simply typing the command “make zedboard_defconfig”.

As already mentioned, the three methods provide the same result, then BuildRoot will

be the best option to build the desired u-boot.

Occasionally the configuration file has to be edited. In this case no edition will be

made because the default configuration is sufficient. Nevertheless, for further use, the file is

going to be briefly explained. U-Boot is configured using configuration variables defined in a

board-specific header file. They have two forms, configuration options and configuration

settings. On one hand, the first ones are selected using macros in the form of CONFIG_XXX. On

the other hand, the second ones are selected using macros in the form of CONFIG_SYS_XXXX.

U-Boot configuration is driven by a header file dedicated for a specific platform which

contains the appropriate configuration and settings for this platform. The source tree includes

a directory where these board-specific configuration header flies reside: “…/u-boot-

xlnx/include/configs” or “…/buildroot/output/build/uboot-xilinx-v14.5/include/configs”,

depending of the method used.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 53 of 180

Numerous of features and modes of operation can be selected by adding definitions to

the board-configuration header file called “zynq_zed.h” available in this folder. On one hand,

“sdboot” is used to deal this ZedBoard system. On the other hand, “mmcinfo” is used to

initialize the SD Card. Therefore, fetches inside the memory can be done. In this case, the

procedure is as follows:

1. “sdboot” reads the Kernel Image uImage from the FAT partition and copies it into

the DDR memory.

2. It reads the Device Tree Binary (.dtb) file and also loads it into memory.

3. Finally, it reads the compressed Root File System Image “uramdisk.image.gz” and

also loads it.

After loading these files, U-Boot begins the execution at the RAM address where

“uImage” is located.

Note that the memory addresses where these files are loaded can be changed in 2

ways. On one hand, it can be changed by modifying this file. On the other hand, by the U-Boot

command window after switching on the board.

For instance, after loading the “uImage” and the Device Tree Binary, if the

“uramdisk.image.gz” is too big, maybe it can be loaded overlapping and overwriting them. One

possible solution can be to assign more memory between this file and the others.

Figure 29: Changing the Memory Address Load Location on ZedBoard

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 54 of 180

3.6.4. Generating “boot.bin” file

All the required files to build the boot file have been obtained. Therefore, the boot

image can be created using the “Bootgen” tool which is integrated into SDK.

Figure 30: Zynq Boot Image Generation Window in SDK

For adding the Boot image partitions, it is important to know that the order of the

images should always be the same: first, the First Stage Boot Loader (“zynq_fsbl.elf”); second,

the Programmable Logic BitStream (“system.bit”); and finally, the software application file, in

this case, the Second Stage Boot Loader U-Boot (“u-boot.elf”). The reason is that the ZedBoard

need to be booted in this order.

The Stage 0 or BootROM is able to boot the processor from several different non-

volatile memory types, but requires a data structure referred to as the Boot Image Format File

(BIF) to obtain instructions about how analyze the different boot components. The BIF file

specifies each component of the boot image, ordered by boot-sequence, and allows optional

attributes to be applied to each image component.

“Bootgen” is a standalone tool to create a bootable image appropriate for ZedBoard.

The program assembles the boot image by merging the BIT and ELF files into a single boot

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 55 of 180

image with the binary output file “boot.bin” format to be loaded into Zynq devices at boot

time. For its part, it is also generated a bootimage.bif file with the format to define which files

are integrated and what order they are added to the binary output file (only used by SDK).

Optionally, it is possible to encrypt and authenticate each partition.

The generated file “boot.bin” will be the first file to introduce on the SD Card which

will be introduced in the SD Slot of the ZedBoard.

3.7. Device Tree Binary, “devicetree.dtb”

The Linux Kernel is a piece of embedded standalone software running on hardware. It

provides a standardized interface for programmers to utilize all hardware resources without

knowing the details. Thus, it has to know every detail about the hardware where it is running

on. The Linux Kernel uses the data structure called “Device Tree Blob” or “Device Tree Binary

(DTB)” to describe the hardware.

The Device Tree Binary is a database which represents the hardware components on a

given board and has been chosen as the default mechanism to pass low-level hardware

information from the Boot Loader to the Kernel. In the same way that U-Boot or other low-

level firmware, being able to master the DTB requires complete knowledge of the underlying

hardware.

This file is build from the Device Tree Source (DTS) file. The DTS file is the DTB file

write in a human-editable format. This file is usually provided as part of the Linux Kernel

source tree, but if some custom hardware is done, it has to be also customized; hence, the DTB

file has to be edited too.

Figure 31: The “devicetree.dtb” file

3.7.1. Device Tree Source (DTS File)

Similar to U-Boot, there are the same three methods to get the DTS file.

 Download the Linux Device Tree Generator from its git repository, add it to

Xilinx SDK and build the custom DTS file for a specific hardware (recommended

for custom hardware configuration).

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 56 of 180

 Download the official Linux Xilinx repository (linux-xlnx), which already

contains the default DTS file for ZedBoard.

 Configure BuildRoot to automatically compile the DTB file from the default

DTS file for ZedBoard (recommended for default hardware configuration).

Emphasize that the DTB and, therefore the DTS, is closely related to the Linux Kernel

file, which is also closely related to the Linux Root File System Image. Therefore, it will be

impossible to build these files independently. This is the season why to build this file in the first

method will be downloaded the linux-xlnx git directory and why in the in BuildRoot

configuration window, the DTB options will be located along with the Linux Kernel options.

In addition, the methodology will be the same in the last 2 methods, in the same way

that in the U-Boot case.

The first method is the longer way to create the DTS. Nevertheless, it is the only

method which is able to create a specific DTS file for any custom hardware. Therefore, it is very

important to know it. The Device Tree Generator is a Xilinx EDK tool that plugs into the

Automatic BSP Generation features of the tool SDK and produces a Device Tree Source file

with the information of the designed hardware which was already configured in PlanAhead.

After downloading it, it must be added to Xilinx SDK as a new repository like U-Boot.

Figure 32: Adding a Board Support Package in Xilinx SDK 2/2

After adding the Device Tree Generator, the required DTS file can be created after

creating a new Board Support Package choosing the “device-tree” option, like U-Boot was

made.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 57 of 180

Therefore, the created DTS file is customized for the specific hardware selected.

Nevertheless, the hardware has a default configuration in this case. Therefore, the following

two methods are also valid. The DTS file can be displayed in the SDK “Project Explorer”

window.

Figure 33: DTS File in SDK

The second method, downloading the linux-xlnx repository, directly provides the DTS

file of almost available boards/architectures. This TDS files can be found in:

.../linux-xlnx/arch/arm/boot/dts/zynq-zed.dts

Likewise, in the third method, BuildRoot will download and configure the specified

Linux repository (linux-xlnx), so the default file will also be available in the same subfolder:

.../buildroot/output/build/linux-xilinx-v14.5/arch/arm/boot/dts/zynq-zed.dts

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 58 of 180

Figure 34: Linux-xlnx Folder with the Default DTS Files

3.7.2. Device Tree Binary (DTB File)

The required DTS file is available. However, it is necessary to convert this human-

readable file in a proper binary machine-readable file for U-Boot and Linux to understand it.

The Device Tree Compiler (dtc) is responsible for carrying out this work. One again, there are

different options to create the DTB file from the DTS file.

 Download the Device Tree Compiler (dtc) for Linux and build the DTB file.

 Use the dtc available in the linux-xlxn folder and create it manually like in the

previous method. It is located under scripts/dtc in the Linux kernel source.

 Do nothing, when the Kernel Image and/or the Root File System Image are

built, the DTB file is automatically created from the pre-indicated DTS source

(recommended).

The linux-xlxn folder has its own dtc compiler; therefore, it is completely unnecessary

to use the first method because the second method is configured and executed in the same

way, since the dtc used in each one is the same. In addition, the third method realizes the

same steps than the second method, but it executes them automatically.

Therefore, the second method will be shown in order to better understanding how

BuildRoot automatically performs this action in the third method.

Once open the Linux “Terminal” command, to convert the DTS file is only required one

command line:

Command Window 1: Building the DTB File 1/2

<linux-xlnx_path>/linux-xlnx/scripts/dtc/dtc -I dts -O dtb -o

<output_file_path>/devicetree.dtb <input_file_path>/<input_file_name>

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 59 of 180

This command line will use the “dtc” file found in “<linux-xlnx_path>/linux-

xlnx/scripts/dtc/”. Its input argument (-I) is a “dts” file and the output argument (-O) will be a

“dtb” file. Moreover, it will take as input the <input_file_name> file which can be located in

the <input_file_path> and will return the “devicetree.dtb” file which will be located in

<output_file_path>. Note that the inverse process can also be performed.

Command Window 2: Building the DTB File 2/2

The last method simply consists on allowing to Linux-xlnx to perform this step

automatically at the same time in which the Kernel Image and Root File System Image are

created. It is only necessary to indicate the source DTS file which will be converted. In the case

of using BuildRoot, there are two options. On one hand, if there is not a specific custom

hardware, indicate as source the pre-configured DTS file, like in the following figure. On the

other hand, if exists a specific DTS file, such as the previous “xilinx.dts”, select “Use a custom

device tree file” and indicated the file path of this file.

Remember that the “make zedboard_defconfig” command loads the default

configuration automatically for ZedBoard, and includes this default Device Tree Binary

configuration.

Figure 35: Creating the “devicetree.dtb” File in BuildRoot

<linux-xlnx_path>/linux-xlnx/scripts/dtc/dtc -I dtb -O dtc -o

<output_file_path>/<output_file_name> <input_file_path>/devicetree.dtb

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 60 of 180

Note that the Device Tree support settings in BuildRoot are in the same window that

the Kernel configuration, because the Linux Kernel needs it to know the machine hardware

configuration. Therefore, the specific Operating System which is going to be implemented

depends on the Device Tree Binary.

3.8. Linux Kernel File, “uImage”

So far, some Linux Kernel features have been mentioned, but “what the Linux Kernel

is” has not been explained. Therefore, it is time to know what the Linux Kernel is and which

responsibilities it has to realize exactly. A kernel is the lowest level of easily replaceable

software that interfaces with the hardware in the device. It is responsible for interfacing all of

the applications which are running in “user mode” down to the physical hardware, and

allowing processes, known as servers, to get information from each other using inter-process

communication (IPC).

Figure 36: The “uImage” File

There are, of course, different ways to build a kernel and architectural considerations

when building one from scratch. In general, most kernels fall into one of three types:

monolithic, microkernel, and hybrid. Specifically, the Linux Kernel is a monolithic kernel.

Monolithic kernels are the opposite of Microkernels because they encompass not only the

CPU, memory, and IPC, but they also include device drivers, file system management, and

system server calls. Monolithic kernels tend to be better at accessing hardware and

multitasking because if a program needs to get information from memory or another process

running it has a more direct line to access it and does not have to wait in a queue.

Nevertheless, this can cause problems because the more things which run in supervisor mode,

the more things which can bring down the system. Therefore, there are advantages and

disadvantages by using these kernels:

 More direct access to hardware for programs.

 Easier for processes to communicate between each other.

 If a device is supported, it should work with no additional installations.

 Processes react faster because there is not a queue for processor time.

 Large install footprint.

 Large memory footprint.

 Less secure because everything runs in supervisor mode.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 61 of 180

Therefore, because the Linux Kernel is monolithic, it has the largest footprint and the

most complexity over the other types of kernels. This was a design feature which was under

quite a bit of debate in the early days of Linux and still carries some of the same design flaws

that monolithic kernels are inherent to have.

In order to avoid these flaws, the kernel modules can be loaded and unloaded at

runtime, meaning the features of the kernel can be added or removed on the fly. This can go

beyond just adding hardware functionality to the kernel, by including modules that run server

processes, but it can also allow the entire kernel (or at least most of it) to be replaced without

needing to reboot the device.

In addition, the Linux Kernel initializes the system hardware and mounts the Root File

System Image. It is highly configurable and allows adding/removing support for:

 Debugging.

 Specific device drivers.

 Types of file systems.

 Boot options.

Once again, there are two different methods to build the Linux Kernel file. On one

hand, it can be build using the linux-xlnx directory. On the other hand, BuildRoot can be

configured and used to build the kernel. It will be showed how the linux-xlnx directory builds

the Kernel file in order to better understanding how BuildRoot performs this task

automatically.

Using the first method, there is a default configuration file available in the linux-xlnx

folder to prepare the Linux Kernel for ZedBoard: “xilinx_zynq_defconfig”. It is located in the

following directory path:

…/linux-xlnx/arch/arm/configs/xilinx_zynq_defconfig

Therefore, the Linux Kernel file has to be configured for ZedBoard before building it:

Command Window 3: Setting the Linux Kernel File for ZedBoard

This command prepares the kernel source tree for the ZedBoard including some

special configuration by setting the environment variables:

 “ARCH=“ sets the arquitecture, ARM in this case.

 “CROSS_COMPILE=“ sets the cross tolchain, arm-xilinx-linux-gnueabi- in this

case, which will use the xilinx_zynq_defconfig configuration file.

As result, a default configuration “.config” file is built in the linux-xlnx folder. In order

to deeply configure and customize the Linux Kernel, different configuration editors can be

used by typing the followings commands.

make ARCH=arm CROSS_COMPILE=arm-linux- xilinx_zynq_defconfig

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 62 of 180

 “make config”: configure the “.config” file using a line-oriented program.

 “make menuconfig”: configure the “.config” file using a menu-based program.

 “make xconfig”: configure the “.config” file using a QT-based front end.

 “make gconfig”: configure the “.config” file using a GTK-based front end.

Figure 37: “config” Configuration Editor

Figure 38: “menuconfig” Configuration Editor

Figure 39: “xconfig” Configuration Editor

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 63 of 180

Note that the four configuration editors performs the same configuration, it does not

matter the chosen editor. Once the Kernel has been customized and prepared, it can be built

with the “make” command and it will appear in the following directory.

.../linux-xilinx/arch/arm/boot/uImage

Figure 40: “uImage” Location Folder

Likewise, in the second method, BuildRoot will download and pre-configure the

specified Linux repository (linux-xlnx), so only the specific configuration has to be done. It can

be done by typing any previous configs commands, such as the “make xconfig”:

Figure 41: Configuring the Linux Kernel in BuildRoot

Remember that the “make zedboard_defconfig” command loads the default

configuration automatically for ZedBoard, and includes this default Linux Kernel configuration.

In addition, the “uImage” file is generated in the same folder than in the previous method.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 64 of 180

Nevertheless, BuildRoot also copies it in the following folder, as had already occurred with the

U-Boot file and the Device Tree Binary file:

.../buildroot/output/images/uImage

Otherwise, note that the “uImage” will be built. Nevertheless, linux-xlnx generates

two more files, “Image” and “zImage”.

 Image is the generic Linux kernel binary image file.

 zImage is a compressed version of the Linux kernel image that is self-

extracting.

 uImage is a zImage file that has a U-Boot wrapper (installed by

the mkimage utility) that includes the OS type and loader information. Since

this file is self-extracting (i.e. needs no external decompressors), the wrapper

will indicate that this kernel is “not compressed” even though it actually is.

Any of them could be used as Linux Kernel file. Nevertheless, for economy of storage,

a compressed image will be more convenient. In addition, “zImage” files are not compatible

with U-Boot, it must be converted into a “uImage” file. Because of this, the “uImage” file will

be chosen.

Finally, a summary of the Linux Kernel build process in BuildRoot is shown below:

1. Selecting the Linux Kernel version.

2. Loading the xilinx_zynq_defconfig configuration file for ZedBoard.

3. Specifying the Kernel Binary Format.

4. Configuring the Linux Kernel by launching the Linux configuration window by

the “make linux-menuconfig” command.

5. Checking/unchecking extra options in the “menuconfig” command.

6. Setting the Kernel Build & Cross Compilation.

7. Choosing the Image Compression (“uImage”).

8. Generating the “uImage” file.

Note that not all of these steps are mandatory, the default settings could be used and

some of them may be skipped. It will depend on the programmer requirements.

3.9. Root File System Image, “uramdisk.image.gz”

Finally, three of the four required files are built. It is only necessary one more file, the

Root File System Image. It is a compressed file which contains all operating system files.

Figure 42: The “uramdisk.image.gz” File

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 65 of 180

It is composed of different folders and files, the same ones that a normal Linux OS

installed in any personal computer or laptop has. Nevertheless, it contains only the necessary

folders which are going to be used for the specific application for which has been designed.

The most important folders which usually will appear in any custom and embedded Linux OS

are explained below:

 “dev” contains the device drivers (to connect peripherals).

 “lib” and “lib32” contain the system libraries for 64 and 32 bits respectively

(similar to “C:\Windows\System” in Windows).

 “mnt” is the mount point for other file systems. Linux only allows one root file

system but other disk can be added by mounting them to a directory in the

root file system. It is similar to mapping a drive under Windows.

 “root” and “home” are the storage folders for super user files and for the rest

of users respectively (similar to “My Documents” in Windows).

 “sys” and “proc” are the virtual file systems location, and expose the kernel

parameters as files (similar to Windows Registry).

 “usr” is the storage folder for user binaries, all Linux System programs are

stored in here (similar to “Program Files” in Windows).

In addition, there is also an important file, “init”. It is the first userspace program

started by the kernel, and is responsible for starting the userspace services and programs.

As it was the Linux Kernel building, the Root File System Image can be configured in

the linux-xlnx folder or using BuildRoot. It will be directly built using BuildRoot because of its

greater simplicity, as has already made earlier.

A summary of the Root File System Image build process is shown below:

1. BuildRoot configuration (“make xconfig” command):

a. Setting the Architecture and CPU.

b. Specifying the Toolchain & Cross Compiler version.

c. Setting the Kernel Headers.

d. Specifying the µClibC library version.

e. Specifying the Binutils version.

f. Specifying the Cross Compiler version.

g. Specifying the repositories of the Linux Sources, such as Busybox,

µClibC, etc.

2. Busybox configuration (“make busybox-menuconfig” command in BuildRoot):

a. Adding utilities and User Space Applications.

3. µClibC configuration (“make uclibc-menuconfig” command):

a. Configuring the Library Settings for the Target.

4. Build and Cross Compilation.

5. “ramdisk.image.gz” file generation.

6. “uramdisk.image.gz” file which is obtained from the “ramdisk.image.gz” file.

Note that not all of these steps are mandatory, the default settings could be used and

some of them may be skipped. It will depend on the programmer requirements.

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 66 of 180

In addition, all these steps will be showed (and briefly explained if it is necessary) in

“Appendix 1: Guide - Linux on ZedBoard step by step”.

3.10. Booting the Custom Embedded Linux OS

Once the Root File System Image is built, the four required files which the SD Card

needs are available. Therefore, the “Basic” Embedded Linux OS can be booted on ZedBoard.

Figure 43: SD Card Required Files

It contains a chess game in order to be able to test if Linux works properly, which can

be launched by typing “gnuchess” and display with the Tera Term program in any computer or

laptop. The user name and password in this case are “root”.

Figure 44: GNUChess Displaying

The “poweroff” command can be typed to shut down the Operating System. Once

Linux is switched off, the ZedBoard can be turned off too.

Figure 45: Shutting Down the Operating System

Chapter 3: Custom Embedded Linux OS on ZedBoard

 Page 67 of 180

Finally, note that Buildroot provides several ways of extra customization if a more

custom configuration is required.

One important configuration method is the filesystem customization. As already

mentioned, the target filesystem is available in the folder showed below. So if the developer

wants to add or delete folders and runs the “make” command afterwards, the target

filesystem image will be rebuilt.

…/buildroot/output/target/

Nevertheless, this directory does not contain the root filesystem which will be used on

ZedBoard. Since BuildRoot does not run as root, it cannot create device files and set the

permissions and ownership of files correctly in this directory to make it usable as a root

filesystem.

For that reason, the contents of this directory cannot be used to mount the root

filesystem and cannot be copied directly to the SD Card. In order to convert these files into a

usable root filesystem, the “make” command must be re -executed to compile the changes in

this skeleton and re-build the filesystem images file in the pre-selected compress format.

Other way is to create a custom target skeleton, starting with the default skeleton

model available in the folder showed below and then customizing it to fit the needs.

…/buildroot/system/skeleton/

Figure 46: File System Files

Finally, note that other extra configurations can be realized by configuring the

downloaded BuildRoot directories:

 Extra µClibc configuration by typing “make uclibc-menuconfig”.

 Extra Linux-xlnx configuration by typing “make linux-menuconfig”.

 Extra BusyBox configuration by typing “make busybox-menuconfig”.

 Extra BareBox configuration by typing “make barebox-menuconfig”.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 68 of 180

Chapter 4: Ubuntu Linux OS on ZedBoard

4.1. Overview

In this section, the aim is to implement a GNU pre-designed OS in which the specific PL

peripheral will be easily added. This option, unlike the “Basic” Linux OS developed previously,

has different but also interesting advantages. In this case, the chosen pre-designed OS is

Linaro-Ubuntu Linux OS, because it has already pre-configured the drivers to connect a HDMI

monitor, a keyboard and a mouse to the ZedBoard.

A Linux kernel is used as the foundation operating system running on the processor

cores, but also is added a fully featured desktop from Ubuntu. The desktop allows the

ZedBoard to function as a personal computer using a USB Keyboard and mouse, along with an

HDMI monitor. With Linaro-Ubuntu installed on ZedBoard, a vast array of applications can be

installed and used, just as if the ZedBoard was a normal PC. This includes the potential to

develop in a native application development environment on the ARM system.

The reason to develop a desktop OS in an embedded system is that is the future of

some technology, such as mobile computing. Some Smartphones are commercially available

with an Ubuntu desktop and an Android environment running side by side on top of a Linux

kernel. This is possible because the Ubuntu desktop and the Java Virtual Machine use a

common Linux kernel.

If the documentation of the Linaro-Ubuntu Linux is read, it can be seen that the same

first three files are required in the SD Card to start this Linux OS on ZedBoard, which will be

saved in a FAT32 SD Card partition, such as with the previous Linux OS. Nevertheless, the Root

File System Image will not be stored in this partition, but it will be saved in an ext4 partition.

1. FAT32 partition:

a. The Boot Image (“boot.bin”), which requires the same three

components:

a. The FSBL (First Stage Boot Loader).

b. The Programmable Logic Hardware BitStream (optional).

c. The U-Boot (Second Stage Boot Loader).

b. The Device Tree Binary File (“devicetree.dtb”), which is again obtained

from the Device Tree Source File and loaded into the DDR memory by

U-Boot.

c. The Linux Kernel File (“uImage”), which is again loaded into the DDR

memory by U-Boot.

2. ext4 partition:

a. The Root File System Image, which is also loaded into the DDR

memory by U-Boot. It contains the Operating System itself.

Nevertheless, it will not be a compress file in this case.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 69 of 180

Again, the next figure can summarize these steps, showing the typical Linux Boot

sequence.

Figure 47: Typical Linux Boot Sequence Overview

All these files will be explained in further detail in this chapter. Remember that the

order in which these files will be made is different to the Linux Boot Sequence (e.g. the

BitStream is the first required file which is created).

Before performing this task, a new project could be created and configured for

ZedBoard in PlanAhead, in order to be able to create a specific FSBL and BitStream files for the

specific hardware, the ZedBoard. In addition, the HDMI monitor, the mouse and the keyboard

have to be configured.

Nevertheless, one of the main advantages of this kind of OS is that pre-configured

projects can be found on Internet. In this way, it is not necessary to waste time in configured

the whole set of peripherals when other people have already configured them. If some extra-

configuration has to be done, it will be performed from this pre-designed project (e.g. add or

drop peripherals).

Again, Xilinx and its whole family of programs will be the main tool for achieving this

goal, together with some GNU tools. Therefore, the programs and steps to create, configure,

build and implement a Linaro-Ubuntu Linux OS on ZedBoard are summarized below.

1. VMware Player:

a. Preparing the SD Card.

2. Xilinx Platform Studio (XPS):

a. Downloading and loading the Project.

b. Generating the BitStream File and exporting to SDK.

3. Software Development Kit (SDK):

a. Creating the FSBL (First Stage Boot Loader).

4. VMware Player:

a. Configuring and obtaining the U-Boot file.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 70 of 180

5. Software Development Kit (SDK):

a. Creating the boot image (“boot.bin”) from the FSBL, the BitStream file

and the U-Boot file.

6. VMware Player:

a. Configuring and obtaining the Device Tree Binary file.

b. Configuring and obtaining the Kernel Image.

7. SD Card:

a. Copying the files in the SD Card.

8. Tera Term:

a. Running Linaro-Ubuntu Linux on ZedBoard.

Note that some steps will be reuse from “Chapter 3: Custom Embedded Linux OS on

ZedBoard”, because of the necessity of almost the same files. Nevertheless, these files will

have different configuration.

Finally, remember that this chapter is closely related to “Appendix 1: Guide – Linux on

ZedBoard step by step”; they both are complementary to each other. This section will be focus

on the idea, on the concepts, on answering the questions “what must be do”, “why must be

do” and “which ways are there available” to develop and implement the Linux OS.

Nevertheless, the appendix will be focused on the exactly steps to achieve the target, on

answering “how must be exactly done to develop and implement it”.

Therefore, this appendix is strongly recommended after reading this chapter in order

to better understand the ideas exposed in this chapter.

4.2. Preparing the SD Card

Again, the ZedBoard will be booted from data contained on the SD Card. Nevertheless,

this Linux OS has a very huge size, being not practical to use a compress “uRamDisk.image.gz”

file because it will require wasting a lot of time in decompress the file every time that the

ZedBoard is switched on. As a solution, the Root File System Image will reside in another

partition of the SD Card, without being compressed.

Therefore, it must be created two partitions on the SD card. The first one will be in

FAT32 format, visible and accessible by either a Windows or Linux OS. This partition will

contain the files used for initial boot of the ZedBoard (i.e. FSBL file, Device Tree file and Linux

Kernel file). The second one will be in ext4 format, readable and writable only by a Linux OS.

On this partition, the Root File System will be placed. In this case, the first FAT32 format

partition will have 52MB and the second one will use the remaining space in ext4 format.

These partitions will be prepared in VMware, because ext4 is only visible for a Linux

OS. The chosen tool is GParted Partition Editor (Gnome Partition Utility). GParted is a GNU

program to create, modify and remove disk partitions.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 71 of 180

The first step is to delete any previous partitions in the SD Card; the second step is to

create a 52MB FAT32 partition called “BOOT”; and finally, to create an ext4 partition with the

remaining space called “rootfs”. Finally, note that if the SD Card is open with Windows, only

the 52MB partition will be displayed, because Windows cannot read the ext4 format.

Figure 48: SD Card Prepared for Linaro-Ubuntu

4.3. Downloading and Loading the Project

Once the required zip files are downloaded (see Appendix 1), the “system.xmp” file

can be opened with XPS. As it was mentioned in the previous chapter, this file contains the

ZedBoard hardware configuration. For instance, the HDMI and USB interfaces (for the

monitor, keyboard and mouse), among others, are pre-configured. They can be showed in the

“Bus Interfaces”, “Ports” or “Addresses” panels. Additionally, if some extra-hardware

configuration would be required (e.g. add or drop peripherals), it can be done thought this file.

Remember that in the previous chapter, only the processing system was added.

Figure 49: Bus Interfaces Panel

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 72 of 180

Again, many peripherals are enabled in the Processing System with some MIO pins

assigned to them in coordination with the ZedBoard layout. Remember that the peripherals

are not listed in alphabetical order, but also they are listed in order of priority; despite the

MIOs numbers are listed in number order.

Figure 50: Zynq PS MIO Configurations

The DDR3 memory has exactly the same configuration as in the previous chapter,

because there is only one DDR memory in ZedBoard, so the configuration cannot change

among different ZedBoard projects. Nevertheless, the PS PLL Clocks have almost the same

configuration; the only difference is that there are new clocks configured.

Figure 51: Clock Configuration

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 73 of 180

4.4. Generating the BitStream File and Exporting to SDK

As in the previous chapter, after finishing the previous configuration, the hardware

platform is completely configured and the project is prepared for the BitStream generation.

Once again, the hardware platform has to be built and exported to SDK for being able to

develop any application. Building includes the top level wrapper generation, the synthesis, the

implementation and the BitStream generation.

The entire build process will create the “system.bit” file, but it will take approximately

from 60 to 120 minutes depending on the PC’s capabilities, because of the major complexity

of the hardware configuration file. Therefore, the hardware design is already finished; any

software project associated with the hardware design can be created within SDK (e.g. the First

Stage Boot Loader).

Remember that the exported files are the Hardware Platform Specification,

“system.xml” (contains the hardware platform description for FSBL and BSP generation); the

BitStream file, “system.bit”; “ps7_init.c”; “ps7_init.h”; “ps7_init.tcl”; and “ps7_init.html”.

4.5. Stage 0 or BootROM

As already occurred with the other Linux OS, it will be introduced on ZedBoard using

the SD Card, hence the MIO Configuration Modes are the same as it was listed for the

previous Linux OS:

Figure 52: ZedBoard Configuration Modes

4.6. Boot Image, “boot.bin”

Once the BootROM is configured, the next step is creating the boot file. Once again, it

will be only consisted on 3 files:

 The specific First Stage Boot Loader (FSBL) for ZedBoard.

 The specific Programmable Logic Hardware BitStream file for ZedBoard

(optional).

 The U-Boot file, as Second Stage Boot Loader.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 74 of 180

It is not necessary to explain again the FSBL and BitStream files, because the only

difference with the previous Linux OS is that they are built from a different hardware

configuration, but the build process and their purpose are the same.

Figure 53: Setting the FSBL for Ubuntu

The FSBL and the BitStream files can be copied in a new folder, for example, called

“UbuntuLinuxInZedboard”.

Figure 54: FSBL and BitStream Files Copied into UbuntuLinuxInZedBoard

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 75 of 180

On the other hand, the U-Boot file is the only file that should be configured differently

to the previous chapter, because it must be configured in order to load the Root File System

Image from the ext4 partition of the SD card, unlike the previous case. Nevertheless, the board

is the same, ZedBoard.

The ZedBoard specific header references a second file where parameters common to

all Zynq boards are defined. This header (“zynq_zed.h”) and the Zynq-parameter file (“zynq-

common.h”) are found in …/u-boot-xlnx/include/configs/.

This second file must be opened in order to edit the SD card boot (“sdboot”)

configuration line which copies the root file system from the SD card to memory. By default, it

is configured to load the “uramdisk.image.gz” file, like in the previous chapter, being defined

to load the Linux Kernel image, the Device Tree Binary file and the compress Root File System

image.

Command Window 4: Default SD Card Boot Configuration on Embedded Linux OS

Nevertheless, loading the Root File System from the ext4 partition is required. Thus,

the previous file is modified and the result is the following:

Command Window 5: Default SD Card Boot Configuration on Linaro-Ubuntu

Finally, all the required files to build the boot file have been obtained. Therefore, the

boot image can be created using the “Bootgen” tool as in the previous chapter and save in

“UbuntuLinuxInZedboard”. Remember the importance of the images order.

"sdboot=echo Copying Linux kernel from SD to RAM...RFS in ext4;" \

"mmcinfo;" \

"fatload mmc 0 0x3000000 ${kernel_image};" \

"fatload mmc 0 0x2A00000 ${devicetree_image};" \

"bootm 0x3000000 - 0x2A00000\0" \

"sdboot=if mmcinfo; then " \

"run uenvboot; " \

"echo Copying Linux from SD to RAM... && " \

"fatload mmc 0 0x3000000 ${kernel_image} && " \

"fatload mmc 0 0x2A00000 ${devicetree_image} && " \

"fatload mmc 0 0x2000000 ${ramdisk_image} && " \

"bootm 0x3000000 0x2000000 0x2A00000; " \

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 76 of 180

Figure 55: Zynq Boot Image Generation Window in SDK

4.7. Device Tree Binary, “devicetree.dtb”

Remember that the Linux Kernel is a piece of embedded standalone software running

on hardware, which has to know every detail about the hardware where it is running on. For

this reason, it uses the Device Tree Binary file. Nevertheless, it is not necessary to explain

again its building process, because the only difference with the previous Linux OS is that they

are built from a different git repository Linux version, but the build process and their purpose

are the same.

Linux-xlnx has been used to build the custom Linux OS. However, another Linux version

will be used in this case. The new Linux version used is from Analog Devices Inc, because it

incorporates the HDMI interface settings. Therefore, this Linux directory directly provides a

DTS file with this configuration. It can be found in:

.../ubuntu/arch/arm/boot/dts/zynq-zed-adv7511.dts

Finally, the DTB file can be obtained by the “make ARCH=arm zynq-zed-adv7511.dtb”

command and copied into “UbuntuLinuxInZedboard”.

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 77 of 180

Figure 56: Device Tree Binary File in the “UbuntuLinuxInZedBoard” Folder

4.8. Linux Kernel File, “uImage”

Remember that the kernel is the lowest level of easily replaceable software that

interfaces with the hardware in the device. It is responsible for interfacing all of the

applications that are running in “user mode” down to the physical hardware, and allowing

processes, known as servers, to get information from each other using inter-process

communication (IPC).

Despite the Linux version used is different, the build process is almost the same. The

only difference is the configuration file. In the previous Linux OS was “xilinx_zynq_defconfig”,

while now is “zync_xcomm_adv7511_defconfig”.

After configuring Linux, the “make ARCH=arm” command generates the “zImage” file.

It has to be converted into a “uImage” file in order to allow to U-Boot to recognize it. This

conversion can be carried out by using the “mkimage” tool, available in the U-Boot directory.

Figure 57: “uImage” Location Folder

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 78 of 180

Figure 58: “uImage” in the “UbuntuLinuxInZedBoard” folder

Finally, the 3 required files for the FAT32 partition of the SD Card are ready.

Figure 59: “BOOT” Partition of the SD Card

4.9. Root File System Image

The FAT32 partition is ready, now it is only necessary to introduce the Root File

System files into the ext4 partition. Remember that it is contains all operating system files.

This section is the one which changes most from the previous Linux OS, because it will

be directly obtained from the Linaro-Ubuntu website and saved into the ext4 partition of the

SD card. There are different Ubuntu versions available to download and directly implement

Chapter 4: Ubuntu Linux OS on ZedBoard

 Page 79 of 180

into this partition. In this case, the selected Linaro-Linux version is the Linaro 12.09 version. It

has to be downloaded, unzipped, and introduced into the ext4 partition.

Remember that the ext4 partition is not readable from Windows, a Linux OS or Linux

Virtual Machine has to be used to read and write in ext4 format.

Figure 60: Linaro-Ubuntu 12.09 File System Files

4.10. Booting the Custom Embedded Linux OS

Once the Root File System Image is built, the Linaro-Ubuntu Linux OS can be booted on

ZedBoard.

Connecting the external peripherals to the ZedBoard is required. At minimum, the

keyboard, the mouse, the HDMI monitor, and the serial connection for the console are

required. If some of these peripherals are not connected, the screen will show a error

message and it will be only possible to use this OS thought the serial connection (i.e. using

Tera Term).

Figure 61: Linaro-Ubuntu 12.09 Appearance

Chapter 5: Summary and Conclusions

 Page 80 of 180

Chapter 5: Summary and Conclusions

The results and conclusions of this work can be divided into these two parts:

 The development and implementation of a custom Linux OS on ZedBoard.

 The differences between implement a not-graphical-user-interface custom

Embedded Linux OS and implement a complex HDMI graphical user-interface

GNU pre-designed Embedded Linux OS.

5.1. Development and Implementation of a custom Linux OS on

ZedBoard

Several actions, files and tools have been required to be able to develop and

implement a specific OS into a specific board, in this case ZedBoard.

On one hand, these required files are responsible for all the tasks that ZedBoard needs

to execute in a particular order to boot Linux OS on it. These tasks range from prepared and

configure the PL and PS in the first stages to boot the operating system itself at last instance

ultimately.

On the other hand, the entire set of necessary actions which have been necessary to

configure and build these files throughout this thesis will be remembered and briefly

summarized below. They will be also accompanied by the most relevant information and tools

which should be known about them.

First, the board has been selected. ZedBoard has been the preferred board because of

its performance and features. ZedBoard is not only a traditional FPGA, it is a complete SoC

(System on a Chip), joining the PS (Processing System) with the PL (Programmable Logic).

Second, once the board is set, there were an endless number of different Operating

Systems which could be implemented on it, depending on the needs of the end user. In this

case, two different and opposing kinds of systems have been developed. On one hand, a

“basic” not-graphical-user-interface custom Embedded Linux OS, designed exclusively for

specific purposes. On the other hand, a complex HDMI graphical user-interface GNU pre-

designed Embedded Linux OS, which can be used similarly to a laptop or PC.

Third, the BootROM or Stage 0 has been configured. It allows choosing among several

boot modes; in this case, it has been configured to load the entire code from the SD Card.

Remember that this stage is not-user configurable.

Next, the ZedBoard required files to implement the desired OS have been configured

and built in order to be able to implement them into the board. These files have been

configured specifically for the particular operating system and board. Nevertheless, their

general purpose is the same, regardless of the OS or the board. These four-required files are

showed below:

1. The Boot Image (“boot.bin”), which initializes the processor resources (FSBL

file), configure the programmable logic (BitStream file), and loads the Linux

kernel (U-Boot file).

Chapter 5: Summary and Conclusions

 Page 81 of 180

2. The Device Tree Binary File (“devicetree.dtb”), which is obtained from the

Device Tree Source File and loaded into the DDR memory by U-Boot. It allows

the kernel to know every detail about the hardware in which it is working on.

3. The Linux Kernel File (“uImage”), which is also loaded into the DDR memory by

U-Boot. It initializes the system hardware and mounts the root file system.

4. The Root File System Image (“uramdisk.image.gz” or another partition with

the OS files and folders), which can be a small custom image which is loaded

into the DDR memory or can be a complete pre-configured OS which contains

all necessary files and libraries to work as a normal PC.

The two different Linux OS offer GNU software in which all the advantages and

disadvantages of implementing it on a SoC board, such as ZedBoard, have progressively

emerged throughout the entire thesis. Fortunately, the number of advantages has been far

outweighs than the number of disadvantages. They will be listed as a whole, to demonstrate

the convenience of knowing how implement a Linux OS on ZedBoard:

 Today, great variety of devices (Smartphones, Smart TVs, etc) have small

integrated embedded systems; being an attractive field for developers.

 ZedBoard is not only a FPGA, but also it is a complete SoC IC. Therefore, it has

different memories types, a more powerful processing system, a great variety

of peripherals, etc. In addition, ZedBoard provides an ARM processor, which is

the most common processor in the devices mentioned above.

 Increasingly, these devices are being programmed with a Linux OS, because of

the Linux advantages showed in the first chapter, highlighting their no cost.

 Thanks to the facilities which are provided by BuildRoot, the process is greatly

simplified, allowing loading default configuration files, changing or adding only

the files or libraries which are going to be customized respect to the standard

configuration. If BuildRoot is not used, the required time to carry out the

whole process will be increased exponentially.

 There are a countless number of GNU directories which have different but

interesting configurations (e.g. pre-configured for HDMI connection). It can be

necessary different configuration process for each one, but they provide

greatest option diversity. Nevertheless, the configuration usually has no

relevant differences between them.

 There are a great variety of tutorials, information and community support,

helping to know how configure and develop the desired files.

 Nevertheless, if there are a lot of information, there are also a wide range of

variants and concepts to learn and understand, requiring a large amount of

time to fully understand all of them before starting to develop a specific OS;

beginning with the hardware architecture study and the development flow for

the Zynq-7000 AP SoC comprehension; fend for oneself with the Xilinx

development tools; understanding the Linux configuration and build flow as

well as U-Boot configuration and building process (differences depending on

Chapter 5: Summary and Conclusions

 Page 82 of 180

the board, the OS, if the files are loaded from the SD Card or the flash memory,

choosing between a “zImage” or “uImage” Linux kernel file, etc).

 There are several ways to perform the same task, which can be confusing at

the beginning of the project.

 There are several tutorials and guides to perform and build the required files,

about “how build them”, but is not clearly explained why these tasks are

performed, “what and why must be done”, requiring also a large amount of

time to really understand this.

 As with any technology, the code is outdated in a small time period; therefore

it must be periodically updated, as well as the tools required for it.

Despite the drawbacks, is clear that the amount of benefits is clearly higher.

Finally, Linux is ready to be used on ZedBoard; a host PC can interchange information

with ZedBoard by using a serial port connection program, such as Tera Term. Nevertheless, in

the Ubuntu case, this program is not necessary if a keyboard, a mouse and a HDMI monitor are

connected to the board. Therefore, the ZedBoard can be switched on.

5.2. Differences between a Custom Linux OS and an Ubuntu Linux OS

In this project, two variants of Linux OS have been developed, analyzing the

advantages and disadvantages that each one has. Which one must be used depends on the

end user who will use it and depends on its purpose.

On one hand, if a very specific application is needed, if there are a limited amount of

resources, and/or if a very fast response of the board is needed (e.g. in RTOS), a custom Linux

OS is the best option. In this case, a not-graphical-user-interface custom Embedded Linux OS

has been developed, which can be designed exclusively for the specific, desired purpose. It can

be configured in order to use only the minimum required resources, not wasting memory and

resources in peripherals which are not going to be used.

Therefore, the advantages and disadvantages of this king of systems are listed below:

 Fewer resources needed, just the necessary and required.

 The system required memory is less.

 Less physical size of the device, because of the least required resources.

 Greater speed, because it requires to manage fewer resources and less

programs at the same time.

 Flash memory possibility, due to its less required memory.

 RTOS possibility, the system does not need a complete user-interface,

requiring fewer resources and becoming in a faster system.

 If the system target changes, the whole system must be complete re-

configured and re-build.

 It is not possible to use a pre-configured generic system, it can be used a

default configuration, but it is necessary configure it.

Chapter 5: Summary and Conclusions

 Page 83 of 180

 It cannot be used as a generic system; it can only perform its specific

functions.

 It usually has not an easy user-interface, getting harder to use.

 It requires more time to configure the whole system.

 More difficult to configure it (i.e. configuring the whole system is required).

On the other hand, if a more generic used is desired, if there are an enough amount of

resources, if a wide range of applications is required and/or if it is not necessary a RTOS, a

complex graphical user-interface pre-designed Embedded Linux OS is the best option. In this

case, a complete-HDMI-user-interface generic Ubuntu Desktop Linux OS has been

implemented, which can be configured to a wider range of applications.

Therefore, the advantages and disadvantages of this king of systems are listed below:

 If the system targets change, it is not necessary to change the whole system,

it is possible to only add the new requirements. It is not necessary to remove

peripherals or delete programs unless it required larger memory or resources.

 It is possible to use a pre-configured generic system, configuring and adding

only the functions which the default system does not have.

 It can be used as a generic system, like a generic laptop can do.

 It usually has an easy user-interface, getting easy to use for everyone.

 Faster to configure it, if a pre-configured OS is used.

 More resources are needed, because it is necessary to control a greater

number of devices and execute a greater number of applications.

 The system required memory is higher.

 Greater physical size of the device, because of the higher required resources.

 Lower speed, because it requires managing a wide range of applications and

resources at the same time.

 Small possibility of flash memory use, due to its higher required memory.

 No-RTOS possibility, due to its wide range of required resources and

applications, becoming in a slower system.

As a conclusion, both of them have great advantages, which make them useful for

different types of applications. Nevertheless, they also have some drawbacks which must be

considered depending on the desired application which is going to be used for. Therefore, it is

necessary to know the specifications which the end-user desires.

Chapter 6: Bibliography

 Page 84 of 180

Chapter 6: Bibliography

Using the entire thesis:

[1] http://www.oa.upm.es/21488/1/PFC_ALVARO_BUSTOS_BENAYAS.pdf

[2] http://www.wiki.xilinx.com/

[3] http://www.wikipedia.org/

[4] http://www.xilinx.com/

[5] http://www.zedboard.org/

[6] http://www.zedboard.org/course/introduction-zynq

[7] http://www.zedboard.org/documentation/1521

[8] http://www.zedboard.org/product/zedboard

Chapter 1:

[9] http://www.free-electrons.com/doc/training/embedded-linux/slides.pdf

[10] https://www.ibm.com/developerworks/linux/library/l-embl/

Chapter 2:

[11] http://en.wikibooks.org/wiki/Embedded_Systems

[12] http://git.denx.de/?p=u-boot.git;a=blob_plain;f=README;hb=HEAD

[13] http://www.abdulet.net/?p=530

[14] http://www.buildroot.uclibc.org/

[15] http://www.elinux.org/Zedboard

[16] http://www.embeddedsoftwarestore.com/

[17] http://www.github.com/Xilinx

[18] http://www.stlinux.com/u-boot

[19] http://www.synnick.blogspot.co.at/2012/02/sistemas-embebidos-y-

ejemplos.html

[20] http://www.webopedia.com/TERM/E/embedded_system.html

[21] http://www-pnp.physics.ox.ac.uk/

Chapter 3:

[22] http://www.csee.umbc.edu/

[23] http://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-

what-does-it-do/

[24] http://www.howtosetproxiesinyourbrowser.blogspot.co.at/2010/12/what-is-

difference-between-zimage-bz.html

[25] http://www.stackoverflow.com/

[26] http://www.zedboard.org/content/zedboard-create-planahead-project-

embedded-processor

http://www.oa.upm.es/21488/1/PFC_ALVARO_BUSTOS_BENAYAS.pdf
http://www.wiki.xilinx.com/
http://www.wikipedia.org/
http://www.xilinx.com/
http://www.zedboard.org/
http://www.zedboard.org/course/introduction-zynq
http://www.zedboard.org/documentation/1521
http://www.zedboard.org/product/zedboard
http://www.free-electrons.com/doc/training/embedded-linux/slides.pdf
https://www.ibm.com/developerworks/linux/library/l-embl/
http://en.wikibooks.org/wiki/Embedded_Systems
http://git.denx.de/?p=u-boot.git;a=blob_plain;f=README;hb=HEAD
http://www.abdulet.net/?p=530
http://www.buildroot.uclibc.org/
http://www.elinux.org/Zedboard
http://www.embeddedsoftwarestore.com/
http://www.github.com/Xilinx
http://www.stlinux.com/u-boot
http://www.synnick.blogspot.co.at/2012/02/sistemas-embebidos-y-ejemplos.html
http://www.synnick.blogspot.co.at/2012/02/sistemas-embebidos-y-ejemplos.html
http://www.webopedia.com/TERM/E/embedded_system.html
http://www-pnp.physics.ox.ac.uk/
http://www.csee.umbc.edu/
http://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
http://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
http://www.howtosetproxiesinyourbrowser.blogspot.co.at/2010/12/what-is-difference-between-zimage-bz.html
http://www.howtosetproxiesinyourbrowser.blogspot.co.at/2010/12/what-is-difference-between-zimage-bz.html
http://www.stackoverflow.com/
http://www.zedboard.org/content/zedboard-create-planahead-project-embedded-processor
http://www.zedboard.org/content/zedboard-create-planahead-project-embedded-processor

Chapter 6: Bibliography

 Page 85 of 180

Chapter 4:

[27] http://git-scm.com/docs/git-checkout

[28] http://wiki.analog.com/

[29] http://www.linaro.org/

[30] http://www.mentor.com/embedded-software/sourcery-tools/sourcery-

codebench/editions/lite-edition/

[31] http://www.releases.linaro.org/

http://git-scm.com/docs/git-checkout
http://wiki.analog.com/
http://www.linaro.org/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.releases.linaro.org/

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 86 of 180

Appendix 1: Guide – Linux on ZedBoard step by

step

1. Overview

First, note that this Appendix is closely related to “Chapter 3: Custom Embedded Linux

OS on ZedBoard” and “Chapter 4: Ubuntu Linux OS on ZedBoard”. These chapters are

complementary to this appendix and vice versa; they will deal with the development and

implementation of the Linux OS. Nevertheless, they will do it in a different form.

These chapters are focus on the idea, on the concepts, on answering the questions

“what must be do”, “why must be do” and “which ways are there available” to develop and

implement the Linux OS. Nevertheless, this appendix is focused on the exactly steps to achieve

the target, on answering “how must be exactly done to develop and implement it”.

Therefore, it is strongly recommended to read and understood these chapters before

performing this appendix.

As in these chapters, the final achievement of this guide is to implement a custom

Linux Operating System (OS) integrated with a specific PL peripheral. How to create, configure,

build and implement an Embedded Linux OS on ZedBoard will be showed in detail in this

appendix.

Remember that Xilinx and its whole family of programs will be the main tool for

achieving this goal. Nevertheless, these tools are not enough, some GNU tools are also

required to get this achievement. Therefore, before continuing this appended, “Appendix 2:

Prerequisites” must be carried out, where all the required programs will be downloaded and

pre-configured.

In this guide will be explained in detailed two different options to build the Linux OS:

 Developing a custom Embedded Linux OS which will be designed exclusively

for the specific purposes (for the specific PL peripheral).

 Implementing a GNU pre-designed Embedded Linux OS in which the specific

PL peripheral can be easily added.

They have different but interesting and important advantages, as it was showed in the

third and fourth chapters. Because of this, both of them will be developed and implemented

on ZedBoard before selecting which one will be finally chosen to implement the PL peripheral.

Finally, before performing this appendix, it will be shown which programs are required

and how install them in “Appendix 2: Prerequisites”.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 87 of 180

2. Custom Embedded Linux OS on ZedBoard

2.1. Overview

As already mentioned in the third chapter, the aim is to build a custom Embedded

Linux OS on ZedBoard. For this purpose, four files are required in the SD Card to start this Linux

OS on ZedBoard:

1. The Boot Image (“boot.bin”), which consists on the following files.

a. The FSBL (First Stage Boot Loader).

b. The Programmable Logic Hardware BitStream (optional).

c. The U-Boot (Second Stage Boot Loader).

2. The Device Tree Binary File (“devicetree.dtb”).

3. The Linux Kernel File (“uImage”).

4. The Root File System Image (“uramdisk.image.gz”).

Figure 62: Files Required in the SD Card

Therefore, the programs and steps to create, configure, build and implement a “Basic”

Embedded Linux Operating System with BuildRoot on ZedBoard are summarized below.

1. PlanAhead:

a. Creating a PlanAhead Project.

b. Adding an embedded source.

2. Xilinx Platform Studio (XPS):

a. Configuring the Hardware Platform (e.g. peripherals, clocks, DDR3

memory, etc).

3. PlanAhead:

a. Design Constraints.

b. Top HDL Module.

c. Hardware Platform Building.

4. Software Development Kit (SDK):

a. Creating the FSBL (First Stage Boot Loader).

5. BuildRoot:

a. Configuring the OS.

b. Building the custom OS.

c. Obtaining the U-Boot file, the Device Tree Binary file, the Kernel Image

and the Root File System Image.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 88 of 180

6. Software Development Kit (SDK):

a. Creating the boot image (“boot.bin”) from the FSBL, the BitStream file

and the U-Boot file.

7. SD Card:

a. Copying the four files in the SD Card.

8. Tera Term:

a. Running Linux on ZedBoard.

2.2. Creating a New Project and Adding Embedded Sources

2.2.1. PlanAhead

Opening PlanAhead and clicking “Create New Project”:

Figure 63: PlanAhead 14.7 Program

Click “Next” and set the Project Name and Project Location. This action will create a

PlanAhead Project file (*.ppr) and locate it in a subdirectory with the same project name

within the specified project location:

Figure 64: Project Name Window

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 89 of 180

Several types of projects can be created. A Register Transfer Level (RTL) project is

required to manage the entire System on Chip design flow. Clicking “Do not specify sources at

this time” because the sources will be imported later:

Figure 65: Project Type Window

The next step is selecting the target device. This can be done by specifying a specific

part or by selecting a development board. In “Boards”, select Family Zynq-7000, Package

clg484 and Speed grade -1. In “Parts”, this is equivalent to selecting Zynq-7000 on Family and

Sub-Family sections, Package clg484, Speed grade -1 and Temp grade C.

Figure 66: Board/Part Selection

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 90 of 180

A project summary is displayed and “Finish”. The current project is blank. Clicking in

“Add Sources”:

Figure 67: PlanAhead 14.7 Program

To access the ARM processing system, an Embedded Source has to be added. Once the

Embedded Source is created configuring the embedded system will be allowed:

Figure 68: Add Sources Window ½

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 91 of 180

An embedded source is created in “Create Sub-Design…” and is called “system”

(generic name usually used):

Figure 69: Create Embedded Source Window

A Xilinx Microprocessor Project (XMP) file will be created. This file (system.xmp) is the

top-level file descriptor of the embedded system. All project information is stored in the XMP

file which is read by XPS and it is graphically showed. Therefore, system.xmp will be the

embedded source file. Clicking Finish, PlanAhead will integrate the module in the sources of

the project and create the required files for the project:

Figure 70: Embedded Source Added

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 92 of 180

XPS is automatically launched:

Figure 71: PlanAhead Launch XPS

2.2.2. Xilinx Platform Studio (XPS)

After XPS is opened, an error is seen with the WebPACK license in Xilinx 14.7, this is a

bug. WebPACK includes the Zynq XPS license; simply click “OK” and Close the Xilinx License

Configuration Manager after it opens:

Figure 72: Xilinx License Bug

The embedded source “system” is now open in XPS. A dialog box will open asking if the

developer wants a Base System using BSB (Base System Builder) wizard to be created.

Although this is a very handy tool that can save a lot of steps in other applications, it won”t be

used here. Click “No”:

Figure 73: Wizard Request in XPS

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 93 of 180

XPS ask for adding Processing System7 to the system. Click “Yes”:

Figure 74: PS7-Adding Request in XPS

As already know, the Processing System 7 IP is the software interface around the Zynq

Processing System. As known, Zynq-7000 family consists on a system-on-chip integrated

processing system (PS) and a Programmable Logic (PL) unit. The Processing System 7 IP acts as

a logic connection between the PS and the PL while assisting users to integrate custom

embedded IPs with the processing system using Xilinx Platform Studio (XPS).

Some releases of Xilinx don”t offer this choice. The Processing System can be added by

right clicking and “Add IP” in it in the processor section. Now, the processor system can be

notice that was added in the “Bus Interfaces” tab:

Figure 75: PlanAhead 14.7 Program

With the lower XPS System Assembly View tab selected, click on the upper Zynq tab:

Figure 76: XPS after Adding the PS7

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 94 of 180

This PS is completely unconfigured, as indicated by all the I/O Peripherals being gray

(none selected). All PS features are in their default state, ready to be customized, which is

what it is going to be made. The green blocks are the configurable items by clicking in them.

The configuration of the peripherals could be made one by one or could be imported

from a configuration file. ZedBoard.org provided a default configuration for the ZedBoard

called “PS7 Configuration Definition (XML)”, which can be downloaded here:

http://zedboard.org/documentation/1521

Once it is downloaded, clicking in “Import”:

Figure 77: Import PS Configuration Window 1/2

Choosing “ZedBoard Development Board Template”, clicking in the green symbol and

adding the required configuration file:

Figure 78: Import PS Configuration Window 2/2

http://zedboard.org/documentation/1521

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 95 of 180

After “OK”, many peripherals are now enabled in the Processing System with some

MIO pins assigned to them in coordination with the ZedBoard layout. For example, UART1 is

enabled and UART0 is disabled because UART1 is connected to the USB-UART bridge chip on

this board.

Remember that the MIOs are listed in numerical order but the peripherals are listed

from top to bottom in order of priority based on either their importance in the system (like the

Flash) or how limited they are in their possible MIO mappings. Moreover, only one boot device

can be selected: QSPI, NOR or NAND; SD Card is also a boot option. If Quad SPI Flash is selected

NOR and NAND peripherals are grayed out because the three interfaces are mutually exclusive.

Figure 79: MIO Configuration

The Zynq PS MIO Configurations window can be closed and the next step is setting the

PS PLL Clocks.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 96 of 180

2.2.2.1. PS PLL Clocks

Clicking on “Clock Generation”, the Clock Wizard will be opened. In “Clock Source”,

three PLL can be selected: the ARM PLL, the DDR PLL and the I/O PLL. Each uses the same input

reference clock, which is 33,3333MHz on ZedBoard. Actually, any value from 30 to 60MHz is

accepted, but 33.3333MHz is the standard value of the Fox clock which provides the best

performance. Ensure that the final result is the same and this window can be close.

Figure 80: Clock Wizard

2.2.2.2. DDR3 Memory

Clicking on “Memory Interfaces”, the PS7 DDR Configuration screen is showed allowing

the configuration of the DDR Controller, the Memory Part and the board details used for DDR

interface. For best DDR3 performance, DRAM training must be enabled for write leveling, read

gate, and read data eye options in the PS Configuration Tool in Xilinx Platform Studio (XPS).

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 97 of 180

The ZedBoard configuration was previously exported, so the configuration is almost

completed. “Expand To Calculate Delay” must be clicked and the columns “Length (mm)” and

“Package Length (mils)” must be filled with the following details found on the ZedBoard

Hardware User Guide. After filling the data, the result is the following image.

Figure 81: DDR Configuration

The XPS tool is no longer necessary, it can be closed. A basic ARM hardware platform is

now configured. The configuration includes clock and DDR controller settings.

2.3.2. PlanAhead

Now hardware platform will be built and exported to the Software Development Kit

(SDK) so that an application can be developed. Once XPS is closed, the top-level project design

file system.xmp and the Microprocessors Hardware Specification file *.mhs are added in the

Sources view in the PlanAhead tool.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 98 of 180

If the Embedded Design Sources is expanded, the target files associated with the sub-

design will be showed (only “system.xmp” in this case). Moreover, other files are created, for

instance “ps7_init.c”, “ps7_init.h”, “ps7_init.tcl” and “ps7_init.html”.

The program looks like as following:

Figure 82: PlanAhead after Adding “system.xmp”

2.3. Design Constraints

The PL needs a User Constraint File (UCF) to define the pin locations and PS timing. The

ZedBoard *.ucf file (zedboard_master_UCF_RevC_v3.ucf) can be downloaded on ZedBoard

official webpage and imported such as the above-mentioned PS7 configuration file.

2.3.1. PlanAhead

In “Project Manager”, click in “Add Sources” and “Add or Create Constraints”:

Figure 83: Add Sources Window 2/2

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 99 of 180

Now, click in “Add Files”, choose “zedboard_master_UCF_RevC_v3.ucf” file and

“Finish”:

Figure 84: Add Constraints Window

The “Sources” Window must looks like the image below:

Figure 85: Sources Window after Adding the Constraints File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 100 of 180

Figure 86: PlanAhead after Adding the Constraints File

2.4. Top HDL and Hardware Platform Building

The hardware platform has to be built and exported to SDK for being able to develop

any application. Building includes the synthesis, the implementation and the BitStream

generation.

2.4.1. PlanAhead

Before creating the Top HDL, the Project Settings should be checked. They are in the

“Project Manager” Panel. The “Target language” must be fixed as “VHDL” and “OK”:

Figure 87: Project Settings

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 101 of 180

“Top module name” will look empty until the Top HDL be created. The top level

wrapper for the design will be created by right clicking in “system (system.xmp)” and “Create

Top HDL”:

Figure 88: Create Top HDL Option

PlanAhead generates a “system_stub.vhd” top-level module for the design where

“system.xmp” is now a sub-module of system_stub.

Figure 89: Sources Window after Adding the Top HDL

The next processes which are needed are the synthesis, implementation, verification

and BitStream generation. In the left panel of PlanAhead there are the main buttons to

configure and launch them. Nevertheless, clicking in “Generate BitStream” will launch

automatically the entire process:

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 102 of 180

Figure 90: PlanAhead after Adding the Top HDL

The BitStream finishes the hardware design. There are not errors, only some warnings,

so the warnings/errors windows can be closed by clicking “OK”.

Figure 91: PlanAhead after Generating the BitStream File

Software project associated with the hardware design has to be created within SDK.

For this purpose, the project will be exported to SDK. Click in “File”, “Export” and “Export

Hardware to SDK…”:

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 103 of 180

Figure 92: Export Hardware for SDK Option

Select “Include BitStream”, “Export Hardware” and “Launch SDK”, click in “OK”:

Figure 93: Export Hardware Settings

If “Project Settings” is displayed again, the “Top module name” section will not be

empty this time.

Figure 94: Project Settings after Adding the Top HDL

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 104 of 180

After this process finishes, SDK will be launched. PlanAhead can be closed; it is not

further needed in this guide.

2.4.2. Software Development Kit (SDK)

The Hardware Platform Specification “system.xml” has been exported by PlanAhead to

SDK. Once SDK has been launched, the “system.xml” file should be opened. It contains the

memory map and associated IP blocks for each of the hardware peripherals that were

connected to the processing system in XPS. To open this file at other times, double -click on

“system.xml” in Project Explorer panel under the “system_hw_platform” project.

Moreover, remember that “ps7_init.c”, “ps7_init.h”, “ps7_init.tcl” and “ps7_init.html”

have been also exported. At this point, SDK will look like the following image:

Figure 95: Project Exported to SDK

Once the hardware platform is successfully exported, the first boot loader will be

explained and created in the next subchapter.

2.5. Stage 0 or BootROM

The Linux OS will be introduced on ZedBoard using the SD Card, hence the MIO

Configuration Modes are the list below, with the required setting highlighted in yellow:

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 105 of 180

Figure 96: ZedBoard Configuration Modes

Therefore, the jumpers must be fixed as the following image:

Figure 97: ZedBoard SD Card Boot Mode Jumper Setting

2.6. Boot Image, “boot.bin”

The FSBL supports multiple partitions, and each partition can be a code image or a

BitStream. In this case, it will be only consisted on 3 files:

 The specific First Stage Boot Loader (FSBL) for ZedBoard.

 The specific Programmable Logic Hardware BitStream file for ZedBoard

(optional).

 The U-Boot file, as Second Stage Boot Loader.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 106 of 180

2.6.1. First Stage Boot Loader (FSBL) and BitStream

2.6.1.1. Software Development Kit (SDK)

If SDK was closed, it will be opened again with the appropriate path:

Figure 98: Path Selection in SDK

Once SDK is anew launched, click on “File”, “New” and “Application Project”.

Figure 99: Creating an Application Project Option

After that, the application project wizard will pop up. A project name has to be written,

for instance, “zynq_fsbl” and the OS Platform will be “standalone”. After that, click “Next.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 107 of 180

Remember that the OS Platform must be selected as “standalone” instead of “linux”,

because the FSBL is always related to the board, regardless of whether an OS is used.

Furthermore, the Hardware Platform will be automatically fixed in “system_hw_platform” and

the processor in “ps7_cortexa9_0”.

Figure 100: New Project Settings

In the next window, “Zynq FSBL” has to be selected and “Finish”:

Figure 101: Creating a Zynq FSBL

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 108 of 180

The FSBL is now created within the same workspace and automatically built by the

compiler:

Figure 102: SDK after Generating the FSBL

Take a look inside “lscript.ld”:

Figure 103: “lscript.ld” File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 109 of 180

Notice that in the Hardware Memory Map, two memories are listed. The

“ps7_ram_0_S_AXI_BASEADDR” is the ARM local OCM memory location following a reset. This

memory runs at the processor speed and is, therefore, one of the fastest types of memory

available to the ARM Cortex-A9 cores. The second memory segment is listed as

“ps7_ram_1_S_AXI_BASEADDR”. This is part of the same ARM local OCM.

Finally, copy the file “zynq_fsbl.elf” which can be found in the path:

.\linuxInZedBoard\linuxInZedBoard.sdk\SDK\SDK_Export\zynq_fsbl\Debug\zynq_fsbl.elf and

paste it in another folder, for instance, a folder called “boot.bin”. Copy also the BitStream file

“system.bit” in the same folder:

Figure 104: “boot.bin” Folder after FSBL

2.6.2. Second Stage Boot Loader, U-Boot

As already mentioned, there are three different methods to get the desired file “u-

boot.elf” and the three provide exactly the same result and create the same “u-boot.elf” file.

 Download the official Xilinx U-Boot repository, configure it for the ZedBoard

and build the required file.

 Download the U-boot BSP generator for the Xilinx git repository, add it to Xilinx

SDK and built the required file.

 Configure BuildRoot to automatically download and configure a specific U-

Boot repository and to build the file (recommended).

Remember that is only necessary to implement the last method, the rest are optional

because of their same result. Moreover, a Linux Operating Systems will be necessary to

continue the process. In this case, the CentOS OS will be used in the Virtual Machine VMware

Player. How install and configure the program is showed in “Appendix 2: Prerequisites”.

2.6.2.1. First Method (optional) – U-Boot Repository

This method is showed in order to better understanding of how U-Boot is built, due to

the fact that BuildRoot carries out automatically these steps to build U-Boot (third method).

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 110 of 180

2.6.2.1.1. VMware Player

Once VMware Player is installed and all the sources are downloaded, and before

building the U-Boot file, a cross compiler is required. It is a compiler capable of creating

executable code for a platform other than the one on which the compiler is running. In this

case, the Sourcery Codebench will be used as cross compiler, which is a complete development

environment for embedded C/C++ development on ARM, among others.

In order not to extend more this guide, how to install it and configure it is realized in

“Appendix 2: Prerequisites”. Consequently, the following items are considered as already

done:

1. Linux environment variable “CROSS_COMPILE” has to be set to “arm-xilinx-

linuxgnueabi-”.

2. The PATH environment variable has to be set to <location_of_the_folder>

/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin:$PATH.

3. The ARCH environment variable has to be set to arm.

Once the Cross Compiler is configured, open the “terminal” program:

Figure 105: Linux “Terminal” Window in VMware Player

Once the Cross Compiler is configured, U-Boot can be configured for one specific

platform with the following commands:

Command Window 6: Building U-Boot

cd ~

source .bash_profile

cd ~/u-boot-xlnx/

make distclean

make zynq_zed_config

make

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 111 of 180

A brief description of the function of each command:

 “cd ~” simply changes the directory to the main folder.

 “source .bash_profile” loads the configuration of the cross compiler.

 “cd ~/u-boot-xlnx/” changes the directory to the u-boot-xlnx folder.

 “make distclean” cleans any previous configuration in order to prevent errors.

 “make zynq_zed_config” configures the U-Boot source tree with the

appropriate soft links to select ARM as the target architecture, the ARM v7,

the Zynq SoC and the ZedBoard as the target platform.

 “make” generates the desired U-Boot file for the Zynq ARM architecture, once

the environment variables are properly set for the cross-compiling toolchain.

The Second Stage Boot Loader is created, with the name “u-boot”. It should be looked

in the “u-boot-diligent” folder, copied, pasted in the windows folder “boot.bin” and renamed

as “u-boot.elf”.

Figure 106: “boot.bin” Folder after Adding the “u-boot.elf” File

2.6.2.2. Second Method (optional) – U-Boot BSP generator for Xilinx

This method will not be displayed in order to not to expend more this guide, due to it

provides the same result as the previous and following ones, and it does not contribute with a

new knowledge, due to the idea and the concept is the same as the previous one.

2.6.2.3. Third Method – U-Boot Using BuildRoot

BuildRoot will generate the U-Boot file, the Device Tree Binary file, the Linux Kernel file

file and the Root File System Image file. Because of that, all subchapters related to BuildRoot

will be merged in the subchapter “3.7. BuildRoot”.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 112 of 180

2.6.3. Boot Image, boot.bin

The boot image will be created in SDK using the FSBL, the hardware BitStream file and

the U-Boot ELF file. This file will be written in the SD Card for allowing to the ZedBoard being

booted into U-Boot. Before carrying out this chapter, remember that subchapter “3.7.

BuildRoot” must be finished to get the desired U-Boot file.

2.6.3.1. Software Development Kit (SDK)

Whether SDK was closed, it must be re-launched with the previous workspace. Once

opened, click in “Xilinx Tools” and “Create Zynq Boot Image”:

Figure 107: Create Zynq Boot Image Selection

For adding the Boot image partitions, click in “Add” three times, adding each file as

showed in the following figures. It is important to remember that the order of the images

should always be the same.

1. First Stage Boot Loader (“zynq_fsbl.elf”).

2. The Programmable Logic BitStream (“system.bit”).

3. The software application file, in this case, the Second Stage Boot Loader U-Boot

(“u-boot.elf”). Remember that this file will be obtained in subchapter “3.7.

BuildRoot”.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 113 of 180

Fill in the information such as the next figures, by clicking in “Add”:

Figure 108: Adding the FSBL

Figure 109: Adding the BitStream File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 114 of 180

Figure 110: Adding the U-Boot File

Finally, the final appearance will be the following:

Figure 111: Create the Zynq Boot Image

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 115 of 180

Finally, click in “Create Image”. Once SDK has been concluded, the file “boot.bin” will

be found in the same folder.

Figure 112: “boot.bin” Folder

Create a new folder, “LinuxInZedBoard”, and paste the file “boot.bin” inside it:

Figure 113: “LinuxInZedBoard” Folder

2.6.3.2. Tera Term (optional)

“boot.bin” can also be copied into the SD Card memory and tested in the board. Notice

that the SD Card has to be previously formatted in FAT32 file system. For tested the boot file,

“Tera Term” can be used. Once Tera Term is launched, switch on the board and click in “File”,

“New conection…”, “Serial” and “OK”.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 116 of 180

Figure 114: Tera Term - New Connection

Now, click in the reset button of the ZedBoard or switch it off and switch it on again. If

no button is pushed, the boot loader will try to load the OS but errors will be displayed

because there is no OS inside the SD Card. Nevertheless, whether a button in the keyboard is

pushed, the boot loaded will not load the operating system and the user will be able to use the

command plot. Writing “?” in the command plot, the command list will be showed. Therefore,

the boot file works properly.

Figure 115: Testing the “boot.bin” File

2.7. Device Tree Binary, “devicetree.dtb”

2.7.1. Device Tree Source (DTS File)

Remember that there are also three methods to get the DTS file.

 Download the Linux Device Tree Generator, add it to Xilinx SDK and build the

custom DTS file (recommended for custom hardware configuration).

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 117 of 180

 Download the official Linux Xilinx repository linux-xlnx, which already contains

the default DTS file.

 Configure BuildRoot to automatically compile the DTB file from the default DTS

file for ZedBoard (recommended for default hardware configuration and

recommended in this case).

2.7.1.1. First Method (optional) – Linux Device Tree Generator

2.7.1.1.1. VMware Player

The Device Tree Generator (dtg) is not included in the tools installed as default. It has

to be downloaded from the Xilinx Github Repository. For this purpose, the “Terminal” program

must be open in VMware Player and the git repository can be downloaded with the following

command:

Command Window 7: Downloading the Device Tree Generator

An image of this process is the following:

Figure 116: Downloading the Device Tree Generator

A folder called “device-tree” with two files will be downloaded. The two files are

“device-tree_vX.mld” and “device-tree_vX.tcl”. Copy the two files from the Linux OP to

Windows and paste them in the following directory:

<Xilinx_ise_installation_path>\ISE_DS\EDK\sw\lib\bsp\device-tree_v0_00_x\data\

For instance, a full path can be the next:

E:\Xilinx\14.7\ISE_DS\EDK\sw\lib\bsp\device-tree_v0_00_x\data

git clone git://github.com/Xilinx/device-tree.git

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 118 of 180

The result is showed in the next figure:

Figure 117: Device Tree Generator Folder

2.7.1.1.2. Software Development Kit (SDK)

Now, the BSP repository has to be added in SDK by clicking in “Xilinx Tools” and

“Repositories”:

Figure 118: Adding the Device Tree Repository 1/2

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 119 of 180

Click in “New…” in “Global Repositories (available across workspaces)” and select the

folder “data” where the two files are inside:

Figure 119: Adding the Device Tree Repository 2/2

Finally, “OK”. When the “Console” finish, “File”, “New” and “Board Support Package”:

Figure 120: Creating the DBS File 1/3

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 120 of 180

Now, a new wizard appears to select what short of BSP (Board Support Package) the

user wants. Select “device-tree” and “Finish”:

Figure 121: Creating the DBS File 2/3

A new window appears, for configuring the “bootargs”, the “console device” and the

“periph_type_overrides”. They are going to be left in blank for the moment and “OK”. Typically

they are left empty in .dts source files and populated at boot time.

Figure 122: Creating the DBS File 3/3

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 121 of 180

The device-tree-BSP has been added to the SDK workspace and displays it in the

Project Explorer:

Figure 123: SDK after Creating the DBS File

After SDK finish rebuilding the project, the new “xilinx.dts” file is created and located

in <workspace>/<device-tree-bsp>/<processor-name>/libsrc/devicetree_v0_00_x folder. This

file is the Device Tree Source (dts):

Figure 124: File Location of the DTS File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 122 of 180

2.7.1.2. Second Method (optional) – Linux Xilinx Repository “xilinx-xlnx”

The second method, downloading the linux-xlnx repository (see “Appendix 2:

Prerequisites”), directly provides the DTS file of almost available boards/architectures. All

these TDS files can be found in:

.../linux-xlnx/arch/arm/boot/dts/zynq-zed.dts

Figure 125: Linux-xlnx Folder with the Default DTS Files

2.7.1.3. Third Method – DTS File Using BuildRoot

BuildRoot includes the default DTS file, because it automatically downloads the desired

Git Repository, in this case the Linux-xlnx repository, which includes the default DTS file for the

ZedBoard. Therefore, no extra steps are required.

2.7.2. Device Tree Binary (DTB File)

Remember that it is necessary to convert the human-readable file DTS in a proper

binary machine-readable file DTB. One again, there are 3 different options.

 Download the Device Tree Compiler (dtc) for Linux and build the DTB file.

 Use the dtc available in the Linux-xlxn folder and create it manually like in the

previous method.

 Use BuildRoot, when the Kernel Image and/or the Root File System Image are

built, the DTB file is automatically created from the pre-indicated DTS source

(recommended).

The linux-xlxn folder has its own dtc compiler; therefore, it is completely unnecessary

to use the first method because the second method is configured and executed in the same

way, since the dtc used in each one is the same. In addition, the third method realizes the

same steps than the second method, but it executes them automatically. Therefore, the

second method will be shown in order to better understanding the third method.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 123 of 180

2.7.2.1. Second Method (optional) – DTB File from the Linux-xlnx dtc

2.7.2.1.1. VMware Player

The device tree compiler (dtc), located under scripts/dtc in the Linux kernel source, is

responsible for carrying out this work. It can compile the DTS file into a DTB file with the

following command:

Command Window 8: Building the DTB File from the DTS File 1/2

There is another method with the dtc compiler which returns the same DTB file. For

this purpose, the “xilinx.dts” file must be copied into the next Linux path:

.../linux-xlnx/arch/arm/boot/dts/xilinx.dts

Whether this folder is opened, a large amount of DTS files will be looked. For compiling

a DTS file into a DTB the commands are the following.

Command Window 9: Building the DTB File from the DTS File 2/2

 “cd ~/linux-xlnx/” selects the linux-xlnx directory.

 “make ARCH=arm distclean” runs a make distribution clean command against

the kernel source code for good measure. This command will remove all

intermediary files created by setting as well as any intermediary files created

by make and it is a good way to clean up any stale configurations.

 “make ARCH=arm CROSS_COMPILE=arm-linux- xilinx_zynq_defconfig”

configures the Linux-xlnx folder for the ZedBoard, like U-Boot and the Linux

kernel. The command prepares the kernel source tree for the Zynq-7000

architecture including some special configuration for the ZedBoard. It builds a

default configuration “.config” file. The architecture type and the cross

compiler prefix are also specified respectively with “ARCH=arm” and

“CROSS_COMPILER=arm-linux-”.

 “make ARCH=arm xilinx.dtb” order to the dtc compiles to convert the DTS file

into a DTB file.

cd ~/linux-xlnx/

make ARCH=arm distclean

make ARCH=arm CROSS_COMPILE=arm-linux- xilinx_zynq_defconfig

make ARCH=arm xilinx.dtb

~/linux-xlnx/scripts/dtc/dtc -I dts -O dtb -o

<output_file_path>/devicetree.dtb <input_file_path>/xilinx.dts

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 124 of 180

The result in the “Terminal” windows is the next:

Figure 126: DTB File Generated

This command will search the “xilinx.dts” file in the previous indicated path, linux-

xlnx/arch/arm/boot/dts/, and it will generate the “xilinx.dtb” file in the next folder:

.../linux-xlnx/arch/arm/boot/

Once the DTB file is generated with any of these two ways, copy it, paste into the

Windows folder “LinuxInZedBoard” and rename it to “devicetree.dtb”.

Figure 127: “LinuxInZedBoard” Folder

2.8. Linux Kernel File, “uImage”

Once again, there are different methods to build the Linux Kernel file:

 Using the linux-xlnx directory.

 Using BuildRoot to configure and build it.

It will be showed how the linux-xlnx directory builds the Kernel file in order to better

understanding how BuildRoot performs this task automatically.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 125 of 180

2.8.1. First Method (optional) – Linux Kernel Using the Linux-xlnx Directory

2.8.1.1. VMware

Using the first method, the required commands are showed below:

Command Window 10: Building the DTB File 2/2

 “cd ~” simply changes the directory to the main folder.

 “source .bash_profile” loads the configuration of the cross compiler.

 “cd ~/linux-xlnx/” selects the linux-xlnx directory.

 “make distclean” runs a make distribution clean command against the kernel

source code for good measure. This command will remove all intermediary

files created by setting as well as any intermediary files created by make and it

is a good way to clean up any stale configurations.

 “make ARCH=arm CROSS_COMPILE=arm-linux- xilinx_zynq_defconfig”

configures the Linux-xlnx folder for the ZedBoard, like U-Boot and the Linux

kernel. The command prepares the kernel source tree for the Zynq-7000

architecture including some special configuration for the ZedBoard. It builds a

default configuration “.config” file. The architecture type and the cross

compiler prefix are also specified respectively with “ARCH=arm” and

“CROSS_COMPILER=arm-linux-”.

 “make xconfig” allows to the user to customize the Kernel if some special

configuration has to be made. Note that it can be also used: “make config”,

“make menuconfig” or “make gconfig”.

 “make” generates the desired Linux Kernel file for the Zynq ARM architecture,

once the environment variables are properly set.

Once the Kernel has been built, it will be showed in the following path directory.

.../linux-xilinx/arch/arm/boot/uImage

cd ~

source .bash_profile

cd ~/linux-xlnx/

make distclean

make ARCH=arm CROSS_COMPILE=arm-linux- xilinx_zynq_defconfig

make xconfig

make

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 126 of 180

Figure 128: “uImage” Location Folder

2.8.2. Second Method – Linux Kernel Using BuildRoot

2.8.2.1. VMware

Remember that BuildRoot will generate the U-Boot file, the Device Tree Binary file, the

Linux Kernel file and the Root File System Image file. Because of that, all subchapters related to

BuildRoot will be merged in the subchapter “3.7. BuildRoot”.

2.9. Root File System Image

Once again, there are different methods to build the Root File System Image:

 Using the linux-xlnx directory.

 Using BuildRoot to configure and build it.

If the File System is build using the linux-xlnx directory, it will require a large amount of

time. Nevertheless, BuildRoot automates the process as already mentioned. Therefore, only

the second method will be showed.

As happened with U-Boot, the Device Tree Binary and the Kernel, this second method

will be explained in the next subchapter.

2.10. BuildRoot

BuildRoot will generate the U-Boot file, the Device Tree Binary file, the Linux Kernel file

file and the Root File System Image file. How set BuildRoot in order to configure and customize

the Embedded Linux OS will be showed and briefly explained if necessary in this subchapter.

2.10.1. VMware

The first step is to pre-configure BuildRoot for the ZedBoard. It can be done with the

following commands:

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 127 of 180

Command Window 11: Setting BuildRoot for ZedBoard

 “cd ~/buildroot/” selects the BuildRoot directory.

 “make distclean” runs a make distribution clean command against the kernel

source code for good measure. This command will remove all intermediary

files created by setting as well as any intermediary files created by make and it

is a good way to clean up any stale configurations.

 “make zedboard_defconfig” configures the BuildRoot folder for the ZedBoard.

The command prepares the kernel source tree for the Zynq-7000 architecture

including some special configuration for the ZedBoard. It builds a default

configuration “.config” file.

 “make xconfig” allows to the user to customize the Kernel if some special

configuration has to be made. Note that it can be also used: “make config”,

“make menuconfig” or “make gconfig”.

After typing the “make xconfig” command, the configuration must be looked as

showed in the next pages. First, the Target Architecture is selected for the ZedBoard: ARM

Cortex-A9.

Figure 129: Target Architecture Selection

cd ~/buildroot/

make distclean

make zedboard_defconfig

make xconfig

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 128 of 180

Figure 130: Target Architecture Variant Selection

Then, a size optimization should be selected, due to the importance of the memory in

embedded systems.

Figure 131: Optimization for Size

After that, the cross compiler tool-chain selected is the BuildRoot internal tool-chain

which is limited to the usage of the µClibc C library. Linux 3.14.x kernel headers are selected

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 129 of 180

according to the Linux source selected. Moreover, it has compatibility for earlier kernel

versions.

Figure 132: Toolchain and Kernel Headers Selection

Later, µClibc is chosen as C library, due to its BuildRoot Toolchain compatibility.

Figure 133: C Library Selection

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 130 of 180

After that, the Binutils version is selected. The GNU Binutils is a collection of binary

tools to generate and manipulate binaries for a given CPU architecture. Moreover, the GNU

Cross Compiler (GCC) version is also set.

Figure 134: Binutils Version Selection

Next, the C++ support is enabled, which offers a set of C++ libraries.

Figure 135: C++ Support Enabled

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 131 of 180

Afterward, a system hostname and system banner can be typed. In addition, the /dev

management options can be set. Remember that the /dev directory contains special files

which allow userspace applications to access the hardware devices by the Linux kernel.

Without the device files, the user applications would not be able to use the hardware devices.

On the other hand, Buildroot provides a default filesystem skeleton under the directory

system/skeleton and the developer can customize it. It can be also selected the init system file

and the password for the root user.

Figure 136: System Configuration Selection

Thereupon, the baud rate must be selected in order to be able to connect to an

external computer and be able to communicate with it. It can be done by clicking in the “getty

options”.

Figure 137: Getty Options Selection

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 132 of 180

Figure 138: Baud Rate Selection

Then, the kernel can be set. The kernel version, the kernel configuration and the kernel

binary format must be selected. Note that the linux-xlnx repository will be chosen as kernel

version. In addition, the “uImage” file will be set as kernel binary format.

Figure 139: Kernel Setting

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 133 of 180

After that, the Device Tree support must be selected and set too. In this case, the

default device present in the linux-xlnx folder will be chosen. Remember that if some custom

project had done, its custom device tree file should be selected.

Figure 140: Device Tree Support

Later, the target packages can be added or removed. In this case, a GNU Chess game

will be added in order to be able to test the Operating System on ZedBoard. The rest of

programs will be the programs which the default configuration includes. Anyway, it is

important to know the great range of available programs which can be added:

 Audio and video applications.

 Compressors and decompressors.

 Debugging, profiling and benchmark.

 Development tools.

 Filesystem and flash utilities.

 Games.

 Graphic libraries and applications.

 Hardware handling.

 Interpreter languages and scripting.

 Libraries, such as audio/sound, compression and decompression, crypto,

database, filesystem, graphics, hardware handling, javascript, networking,

security, among others.

 Miscellaneous.

 Mail.

 Networking applications.

 Package managers.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 134 of 180

 Real-Time.

 Shell and utilities.

 System tools.

 Text editors and viewers.

Figure 141: GNU Chess Selection

After that, the File System type can be selected. In this case, it is required a cpio root

filesystem with a gzip compression method, which will be wrapped later.

Figure 142: File System File Selection

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 135 of 180

Next, the boot loader is set. In this case, U-Boot will be chosen as boot loader,

selecting the u-boot-xlnx repository. In addition, the required binary format is u-boot.elf.

Figure 143: Boot Loader Settings

Afterward, some host utilities or legacy config options could be selected. Nevertheless,

it will not be necessary in this case. Therefore, this configuration can be saved by clicking “Ctrl”

+ “S”, and exit by clicking “File” and “Quit”.

Finally, once the settings have been properly configured, BuildRoot launches the file

generation process for the ZedBoard by typing the following command:

Command Window 12: Building the Required Files for ZedBoard

In BuildRoot, the make command performs the following steps:

 Download the selected source files and repositories.

 Configure, build and install the cross-compiling toolchain.

 Build and install the selected target packages.

 Build the kernel file in the selected format.

 Create the root filesystem in the selected configuration.

The “u-boot”, “zynq-zed.dtb”, “uImage” and “rootfs.cpio.gz” files has been built and

copied into the following folder.

…/buildroot/output/images

make

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 136 of 180

Nevertheless, the ramdisk image (“rootfs.cpio.gz”) has to be wrapped with a U-Boot

wrapper using the mkimage utility available in the U-Boot directory. Therefore, the last

command to be executed is the following:

Command Window 13: Wrapping the RamDisk File into an uRamDisk File

Figure 144: Wrapping the RamDisk File into an uRamDisk File

In addition, “zynq-zed.dtb” has to be renamed as “devicetree.dtb” and “u-boot” as “u-

boot.elf”. Finally, the files are ready to be copied into Windows. After copying the U-Boot file

has to be copy into the “boot.bin” folder, the subchapter “3.3.3. Boot Image, boot.bin” can be

finished.

After that, the rest of the files can be copied into the “LinuxInZedboard” folder.

Figure 145: LinuxInZedBoard Folder

Finally, remember that Buildroot provides several ways of extra customization if a

more custom configuration is required.

 Extra filesystem configuration by customizing the BuildRoot skeleton.

 Extra µClibc configuration by typing “make uclibc-menuconfig”.

 Extra Linux-xlnx configuration by typing “make linux-menuconfig”.

 Extra BusyBox configuration by typing “make busybox-menuconfig”.

 Extra BareBox configuration by typing “make barebox-menuconfig”.

~/buildroot/output/build/uboot-xilinx-v14.5/tools/mkimage -A

arm -T ramdisk -C gzip -d ~/buildroot/output/images/rootfs.cpio.gz

~/buildroot/output/images/uramdisk.image.gz

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 137 of 180

2.10.2. TeraTerm

These four files are the required files that should be copied into the SD Card in order to

be able to run this Linux OS on ZedBoard. Therefore, the ZedBoard can be switch on.

Remember that the user name and password are “root”. The GNU Chess game can be

launched by typing “gnuchess”. Finally, the “poweroff” will shut down the Operating System.

Figure 146: GNUChess Displaying

Figure 147: Shutting Down the Operating System

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 138 of 180

3. Ubuntu Linux OS on ZedBoard

3.1. Overview

As already mentioned in the third and fourth chapter, the aim is to build a Linaro-

Ubuntu Embedded Linux OS on ZedBoard. For this purpose, the required SD card partitions

and files are showed bellow:

1. FAT32 partition:

a. The Boot Image (“boot.bin”), which requires the same three

components:

d. The FSBL (First Stage Boot Loader).

e. The Programmable Logic Hardware BitStream (optional).

f. The U-Boot (Second Stage Boot Loader).

b. The Device Tree Binary File (“devicetree.dtb”), which is again obtained

from the Device Tree Source File and loaded into the DDR memory by

U-Boot.

c. The Linux Kernel File (“uImage”), which is again loaded into the DDR

memory by U-Boot.

2. ext4 partition:

a. The Root File System Image, which is also loaded into the DDR

memory by U-Boot. It contains the Operating System itself.

Nevertheless, it will not be a compress file in this case.

Therefore, the programs and steps to create, configure, build and implement this

Ubuntu Linux OS version on ZedBoard are summarized below.

1. VMware Player:

a. Preparing the SD Card.

2. Xilinx Platform Studio (XPS):

a. Downloading and loading the Project.

b. Generating the BitStream File and exporting to SDK.

3. Software Development Kit (SDK):

a. Creating the FSBL (First Stage Boot Loader).

4. VMware Player:

a. Configuring and obtaining the U-Boot file.

5. Software Development Kit (SDK):

a. Creating the boot image (“boot.bin”) from the FSBL, the BitStream file

and the U-Boot file.

6. VMware Player:

a. Configuring and obtaining the Device Tree Binary file.

b. Configuring and obtaining the Kernel Image.

7. SD Card:

a. Copying the files in the SD Card.

8. Tera Term:

a. Running Linaro-Ubuntu Linux on ZedBoard.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 139 of 180

3.2. Preparing the SD Card

3.2.1. VMware Player

The first step is to prepare the SD Card, which will be prepared by using the GParted

Partition Editor program. Two empty partitions will be created with GParted. The first partition

will be a 52 MB FAT32 format, and the second one will use the remaining space in ext4 format.

Therefore, the SD Card must be connected to the laptop or PC and connect to the

virtual machine by clicking with the right mouse button in “Connect (Disconnect from host)” in

the SD Card icon. In this case, the icon is in the highest and rightmost position.

Figure 148: SD Card Conection to the VMware Player

 GParted must be opened in “Applications”, “System Tools”, “GParted Partition Editor”.

It will also ask for the root password.

Figure 149: Opening GParted Parition Editor

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 140 of 180

Figure 150: Authentication as Root User

The SD Card must be selected in the up-right menu.

Figure 151: SD Card Selection

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 141 of 180

If the SD Card has already any partition mounted, delete them by right-clicking in each

one and “Unmount”, and once again right-clicking and “Delete”.

Figure 152: Unmounting Previous Partitions

Figure 153: Deleting Previous Partitions

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 142 of 180

The SD Card must look empty. Then, click in “Edit”, “Apply All Operations”.

Figure 154: SD Card Empty

Once the operations have completed, the message indicating that all operations were

successful can be closed. After that, right-click in the “unallocated” memory of the SD Card and

“New”.

Figure 155: New Partition Creation

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 143 of 180

A new 52MB FAT32 partition must be created by filling the “Create new Partition”

window as following and “Add”:

Figure 156: New 52MB FAT32 Partition

Create another partition, again right-button on the unallocated space and “New”, and

filling again as the following image to create an ext4 partition in the rest of the SD Card.

Figure 157: New 3740MB ext4 Partition

Once again, click “Edit” and “Apply All Operations” to save the changes. The SD Card is

now formatted in the required format to boot Ubuntu on ZedBoard. Therefore, GParted

Partition Editor can be closed; it will not be further necessary.

Note that if the SD Card is open with Windows, only the 52MB partition will be

displayed, because Windows does not read the ext4 format. Therefore, if the SD Card has to be

formatted, for instance, after finishing this guide, it will have to be done using GParted in

Linux.

Finally, the SD Card can be disconnected from the virtual machine by clicking with the

right mouse button in “Disconnect (Connect to host)” in the SD Card icon. Remember that this

icon is in the highest and rightmost position.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 144 of 180

3.3. Downloading and Loading the Project

3.3.1. Xilinx Platform Studio (XPS)

Once the SD Card is ready to be used, the next step is to download the Zed HDL

Reference Design from the following links:

 https://github.com/analogdevicesinc/fpgahdl_xilinx/archive/master.zip

 https://github.com/analogdevicesinc/no-OS/archive/master.zip

After unzipping the downloaded “fpgahdl_xilinx-master.zip” file, only these two

highlighted files showed below are required; the rest can be deleted.

Figure 158: “fpgahdl_xilinx-master.zip” Required Files

On the other hand, the required files from the “no-OS-master.zip” file are located in

the “adv7511” subfolder, and they are showed below:

Figure 159: “no-OS-master.zip” Required Files

The “system.xmp” file is available in “cf_adv7511_zed” and can be open. This will

launch Xilinx Platform Studio. After XPS is opened, an error is seen with the WebPACK license

in Xilinx 14.7, this is a bug. WebPACK includes the Zynq XPS license; simply click “OK” and Close

the Xilinx License Configuration Manager after it opens:

Figure 160: Xilinx License Bug

https://github.com/analogdevicesinc/fpgahdl_xilinx/archive/master.zip
https://github.com/analogdevicesinc/no-OS/archive/master.zip

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 145 of 180

This project has been done in a previous Xilinx version, in the 14.6 version.

Nevertheless, Xilinx can automatically update the project to the current version. Therefore,

click in “Yes” when the next message appears. The project will automatically update to the

current XPS release.

Figure 161: Updating the Project to the Current Version

3.4. Generating the BitStream File and Exporting to SDK

3.4.1. Xilinx Platform Studio (XPS)

Now, the project is prepared for the current Xilinx version. Next, click on the Generate

BitStream icon in the Navigator panel on the left side of XPS. The build process will create the

“system.bit” file, but it will take approximately from 30 to 90 minutes depending on the PC’s

capabilities.

Figure 162: XPS before Generating the BitStream File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 146 of 180

After, the design has to be exported to SDK by clicking in “Export Design” in the

navigator panel. Accept the default location for the hardware description files and click in

“Export & Launch SDK”.

Figure 163: Export Design Selection

Figure 164: Export Design to SDK

When SDK is launched, it will ask for the workspace folder. Select the folder in which

XPS has generated the SDK file. This folder is the following.

…\cf_adv7511_zed\SDK\SDK_Export\SDK\SDK_Export

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 147 of 180

Figure 165: Workspace Selection

3.5. Stage 0 or BootROM

As already occurred with the other Linux OS, it will be introduced on ZedBoard using

the SD Card, hence the MIO Configuration Modes are the same as it was listed for the other

Linux OS:

Figure 166: ZedBoard Configuration Modes

Figure 167: ZedBoard SD Card Boot Mode Jumper Setting

3.6. Boot Image, “boot.bin”

Once again, the FSBL is composed by 3 files:

 The specific First Stage Boot Loader (FSBL) for ZedBoard.

 The specific Programmable Logic Hardware BitStream file (optional).

 The U-Boot file, as Second Stage Boot Loader.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 148 of 180

3.6.1. First Stage Boot Loader (FSBL) and BitStream

3.6.1.1. Software Development Kit (SDK)

The First Stage Boot Loader has to be built like it occurred with the previous Linux OS.

For this purpose, the same steps will be repeated; click in “File”, “New” and “Application

Project”. Fill the “New Project” window as the following figure, click in “Next”, select the “Zynq

FSBL” option, and click in “Finish”, like it occurred with the previous Linux.

Figure 168: Setting the FSBL for Ubuntu ½

Once the FSBL is built, it can be copied into the “UbuntuLinuxInZedBoard” folder.

Figure 169: Setting the FSBL for Ubuntu 2/2

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 149 of 180

Copy the FSBL file, which can be directly copied from the SDK panel; and paste it into a

new folder, for instance, “UbuntuLinuxInZedBoard”. The “zynq_fsbl.elf” file can be located in

“zynq_fsbl”, “Debug”.

Figure 170: FSBL Location

Figure 171: FSBL File Copied into UbuntuLinuxInZedBoard

The BitStream file has to be also copied into the “UbuntuLinuxInZedboard” folder. It

can be also copied from the SDK panel.

Figure 172: BitStream File Copied into UbuntuLinuxInZedBoard

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 150 of 180

3.6.2. Second Stage Boot Loader, U-Boot

3.6.2.1. VMware Player

Almost the same steps followed in “2.6.2.1. First Method (optional) – U-Boot

Repository” will be repeated. Nevertheless, it must be configured in order to load the Root File

System Image from the ext4 partition of the SD card, unlike the previous case.

Open the Zynq-parameter file (“zynq-common.h”), located in the path showed below,

in order to edit the SD card boot (“sdboot”) configuration line which copies the root file system

from the SD card to memory.

…/u-boot-xlnx/include/configs/

By default, it is configured to load the “uramdisk.image.gz” file, like in the previous

chapter, being defined to load the Linux Kernel image, the Device Tree Binary file and the

compress Root File System image. Look the following commands (search for “sdboot” to locate

them).

Command Window 14: Default SD Card Boot Configuration on Embedded Linux

And change them for the following lines:

Command Window 15: New SD Card Boot Configuration

"sdboot=echo Copying Linux kernel from SD to RAM...RFS in ext4;" \

"mmcinfo;" \

"fatload mmc 0 0x3000000 ${kernel_image};" \

"fatload mmc 0 0x2A00000 ${devicetree_image};" \

"bootm 0x3000000 - 0x2A00000\0" \

"sdboot=if mmcinfo; then " \

"run uenvboot; " \

"echo Copying Linux from SD to RAM... && " \

"fatload mmc 0 0x3000000 ${kernel_image} && " \

"fatload mmc 0 0x2A00000 ${devicetree_image} && " \

"fatload mmc 0 0x2000000 ${ramdisk_image} && " \

"bootm 0x3000000 0x2000000 0x2A00000; " \

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 151 of 180

Now, repeat the configuration already done with the previous Linux OS versionU-Boot

will be generated by opening the “Terminal” program and typing the following commands:

Command Window 16: Building U-Boot

The U-Boot file will be generated as “u-boot” in the u-boot-xlnx folder. It can be copied

into the “UbuntuLinuxInZedBoard” folder and renamed as “u-boot.elf”.

Figure 173: U-Boot File Copied into UbuntuLinuxInZedBoard

3.6.3. Boot Image, “boot.bin”

2.6.3.1. Software Development Kit (SDK)

The boot image will be created in SDK using the FSBL, the hardware BitStream file and

the U-Boot ELF file. Whether SDK was closed, it must be re-launched with the previous

workspace. Once opened, click in “Xilinx Tools” and “Create Zynq Boot Image”:

cd ~

source .bash_profile

cd ~/u-boot-xlnx/

make distclean

make zynq_zed_config

make

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 152 of 180

Figure 174: Create Zynq Boot Image Selection

For adding the Boot image partitions, click in “Add” three times, adding each file as

showed in the following figures. It is important to remember that the order of the images

should always be the same.

1. First Stage Boot Loader (“zynq_fsbl.elf”).

2. The Programmable Logic BitStream (“system.bit”).

3. The software application file, in this case, the Second Stage Boot Loader U-Boot

(“u-boot.elf”).

Fill in the information such as the next figures, by clicking in “Add”:

Figure 175: Adding the FSBL

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 153 of 180

Figure 176: Adding the BitStream File

Figure 177: Adding the U-Boot File

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 154 of 180

Finally, the final appearance will be the following:

Figure 178: Create the Zynq Boot Image

Finally, click in “Create Image”. Once SDK has been concluded, the file “boot.bin” will

be found in the same folder.

Figure 179: “boot.bin” Folder

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 155 of 180

2.6.3.2. Tera Term (optional)

“boot.bin” can also be copied into the SD Card memory and tested in the board like in

the previous section. Notice that the SD Card has to be previously formatted in FAT32 file

system. For tested the boot file, “Tera Term” can be used. Once Tera Term is launched, switch

on the board and click in “File”, “New conection…”, “Serial” and “OK”.

Figure 180: Tera Term - New Connection

Now, click in the reset button of the ZedBoard or switch it off and switch it on again. If

no button is pushed, the boot loader will try to load the OS but errors will be displayed

because there is no OS inside the SD Card. Nevertheless, whether a button in the keyboard is

pushed, the boot loaded will not load the operating system and the user will be able to use the

command plot. Writing “?” in the command plot, the command list will be showed:

Figure 181: Testing the “boot.bin” File

Therefore, the boot file works properly.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 156 of 180

3.7. Device Tree Binary, “devicetree.dtb”

3.7.1. VMware Player

The device tree compiler (dtc), located under scripts/dtc in the Linux kernel source, is

responsible for carrying out this work as it occurred with the previous Linux OS. The commands

are the followings:

Command Window 17: Building the DTB File from the Default DTS File

 “cd ~/ubuntu/” selects the Ubuntu directory.

 “git checkout xcomm_zynq” sets up the xcomm_zynq branch for remote

tracking, importing the required files that this configuration requires.

 “make ARCH=arm distclean” runs a make distribution clean command against

the kernel source code for good measure. This command will remove all

intermediary files created by setting as well as any intermediary files created

by make and it is a good way to clean up any stale configurations.

 “make ARCH=arm zynq_xcomm_adv7511_defconfig” configures the kernel

for the ZedBoard. The command prepares the kernel source tree for the Zynq-

7000 architecture including some special configuration for the ZedBoard. It

builds a default configuration “.config” file. The architecture type and the cross

compiler prefix are also specified respectively with “ARCH=arm” and

“CROSS_COMPILER=arm-linux-”.

 “make ARCH=arm zynq-zed-adv7511.dtb” order to the dtc compiles to

convert the selected default DTS file into a DTB file.

This command will search the default “zynq-zed-adv7511.dts” file in the previous

indicated path, ubuntu/arch/arm/boot/dts/, and it will generate the “zynq-zed-adv7511.dtb”

file in the next path:

.../ubuntu/arch/arm/dts/zynq-zed-adv7511.dtb

cd ~/ubuntu/

git checkout xcomm_zynq

make ARCH=arm distclean

make ARCH=arm zynq_xcomm_adv7511_defconfig

make ARCH=arm zynq-zed-adv7511.dtb

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 157 of 180

Once the DTB file is generated with any of these two ways, copy it, paste into the

Windows folder “UbuntuLinuxInZedBoard” and rename it to “devicetree.dtb”.

Figure 182: Device Tree Binary File in the “UbuntuLinuxInZedBoard” Folder

3.8. Linux Kernel File, “uImage”

3.8.1. VMware

Once again, the method is the same than the previously used in the previous Linux OS.

Therefore, the required commands are showed below:

Command Window 18: Building the “uImage” File

cd ~/ubuntu/

git checkout xcomm_zynq

make ARCH=arm distclean

make ARCH=arm zynq_xcomm_adv7511_defconfig

make ARCH=arm

cd arch/arm/boot

gzip zImage

~/u-boot-xlnx/tools/mkimage -A arm -a 0x8000 -e 0x8000 -n

'Linux kernel' -T kernel -d ~/ubuntu/arch/arm/boot/zImage.gz

~/ubuntu/arch/arm/boot/uImage

make ARCH=arm zynq-zed-adv7511.dtb

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 158 of 180

 “cd ~/ubuntu/” selects the Ubuntu directory.

 “git checkout xcomm_zynq” sets up the xcomm_zynq branch for remote

tracking, importing the required files that this configuration requires.

 “make ARCH=arm distclean” runs a make distribution clean command against

the kernel source code for good measure. This command will remove all

intermediary files created by setting as well as any intermediary files created

by make and it is a good way to clean up any stale configurations.

 “make ARCH=arm zynq_xcomm_adv7511_defconfig” configures the kernel

for the ZedBoard. The command prepares the kernel source tree for the Zynq-

7000 architecture including some special configuration for the ZedBoard. It

builds a default configuration “.config” file. The architecture type and the cross

compiler prefix are also specified respectively with “ARCH=arm”.

 “make ARCH=arm” generates the desired Linux Kernel file for the Zynq ARM

architecture, once the environment variables are properly set.

 “cd arch/arm/boot” selects the indicated directory.

 “gzip zImage” re-compresses the “zImage” file into a “zImage.gz” file.

 “~/u-boot-xlnx/tools/mkimage -A arm -a 0x8000 -e 0x8000 -n 'Linux kernel'

-T kernel -d ~/ubuntu/arch/arm/boot/zImage.gz ~/ubuntu/arch/arm/boot/

uImage” wraps the “zImage.gz” filo into a U-Boot-wrapped “uImage”. The

mkimage tool is used from the U-Boot repository.

Once the Kernel has been built, it will be showed in the following path directory.

.../linux-xilinx/arch/arm/boot/uImage

Figure 183: “uImage” Location Folder

Once again, it must be copied into the “UbuntuLinuxInZedBoard” folder.

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 159 of 180

Figure 184: “uImage” in the “UbuntuLinuxInZedBoard” folder

3.9. Root File System Image

3.9.1. VMware Player

This section is the one which changes most from the previous Linux OS, because it will

be directly obtained from the Linaro website. The commands for downloaded and extract into

the SD Card this Ubuntu version are showed below. However, after executing them, the SD

Card must be re-connected to the virtual machine by right-clicking in “Connect (Disconnect

from Host)”, like it was executed in the previous subchapter “3.2. Preparing the SD Card”.

Command Window 19: Linaro-Ubuntu 12.09 Release

Anyway, other Linaro-Ubuntu Desktop editions can be also implemented:

Command Window 20: Linaro-Ubuntu 11.12 Release

cd ~

wget http://releases.linaro.org/11.12/ubuntu/oneiric-

images/ubuntu-desktop/linaro-o-ubuntu-desktop-tar-20111219-0.tar.gz

sudo tar --strip-components=3 -C /media/rootfs -xzpf linaro-o-

ubuntu-desktop-tar-20111219-0.tar.gz

cd ~

wget http://releases.linaro.org/12.09/ubuntu/precise-

images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923-

436.tar.gz

sudo tar --strip-components=3 -C /media/rootfs -xzpf linaro-

precise-ubuntu-desktop-20120923-436.tar.gz

binary/boot/filesystem.dir

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 160 of 180

Command Window 21: Linaro-Ubuntu 12.03 Release

Command Window 22: Linaro-Ubuntu 12.11 Release

 “cd ~” simply changes the directory to the main folder.

 “wget” + URL downloads the indicated file, an Ubuntu Linux OS version.

 “sudo tar --strip-components=3 -C /media/rootfs” + file_path decompresses

and extracts into the “rootfs” folder (one of the SD Card partitions) the

previous file.

Note that these commands will spend some minutes to be completed because of the

size of the Operating System.

Sometimes, the third command provokes an error, indicating that the

“/media/rootfs/” directory does not exist. This error can be solved by opening manually the

rootfs folder from the “Computer” folder and re-executing the command in the previous

“Terminal” window.

Finally, the SD Card can be disconnected from the virtual machine by clicking with the

right mouse button in “Disconnect (Connect to host)” in the SD Card icon. Remember that this

icon is in the highest and rightmost position.

3.10. Booting Ubuntu on ZedBoard

The Root File System Image has been copied into the “rootfs” partition of the SD Card.

Now, the “UbuntuLinuxInZedBoard” must be opened in Windows and the other required files

must be copied into the “BOOT” partition of the SD Card, which can be opened from Windows.

Remember that the required files are the following:

 The FSBL, together with the BitStream and U-Boot files, “boot.bin” file.

 The Device Tree Binary file, “devicetree.dtb” file.

cd ~

wget http://releases.linaro.org/12.11/ubuntu/precise-

images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20121124-

560.tar.gz

sudo tar --strip-components=3 -C /media/rootfs -xzpf linaro-

precise-ubuntu-desktop-20121124-560.tar.gz

binary/boot/filesystem.dir

cd ~

http://releases.linaro.org/12.03/ubuntu/oneiric-images/ubuntu-

desktop/linaro-o-ubuntu-desktop-tar-20120327-0.tar.gz

sudo tar --strip-components=3 -C /media/rootfs -xzpf linaro-o-

ubuntu-desktop-tar-20120327-0.tar.gz

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 161 of 180

 The Linux Kernel file, “uImage” file.

Figure 185: Required Files in the SD Card

Figure 186: Required Files Copied in the SD Card

Appendix 1: Guide – Linux on ZedBoard step by step

 Page 162 of 180

3.10.1. Tera Term

The SD Card already contains the required files. Thus, it can be inserted into the

ZedBoard. After that, the board can be connected to the Tera Term program, to a HDMI

display, a USB mouse and a USB keyboard; and switched on.

Figure 187: Linaro-Ubuntu 12.09 Appearance

Now, ZedBoard can be used as a normal Laptop with a Desktop Operating System.

Appendix 2: Prerequisites

 Page 163 of 180

Appendix 2: Prerequisites

A2.1. VMware Player

A2.1. Installing VMware Player

VMware player can be downloaded for free from its website:

http://www.vmware.com. Meanwhile, the CentOS Linux can be also downloaded for free in

http://www.centos.org/.

Once VMware is installed, open it and click in “Player”, “File” and “New Virtual

Machine”:

Figure 188: New Virtual Machine Selection

http://www.vmware.com/
http://www.centos.org/

Appendix 2: Prerequisites

 Page 164 of 180

In “New Virtual Machine Wizard” select “Installer disc image file (iso)” and locate the

CentOS installation media image file “CentOS-6.5-x86_64-bin-DVD1.iso”:

Figure 189: New Virtual Machine Wizard Window

Under “Easy Install”, some steps are skipped. A name and password must be

introduced, for instance, “gines” as user (it will be easier if “Full name” and “User name” are

the same):

Figure 190: New Virtual Machine – User Name Selection

Appendix 2: Prerequisites

 Page 165 of 180

A name for the virtual machine and its location have to be selected:

Figure 191: New Virtual Machine – VM Name Selection

At least 20.0GB and “Store virtual disk as single file” must be fixed:

Figure 192: New Virtual Machine - Hard Disk Selection

Appendix 2: Prerequisites

 Page 166 of 180

In the Ready to Create Virtual Machine window, configure the settings for the machine

by clicking “Customize Hardware”:

Figure 193: New Virtual Machine – Settings Displayed

At least 1024MB for the memory must be chosen. Additionally, in “Processors”,

“Preferred mode” must be “Intel VT-x/EPT or AMD-V/RVI” and click in “Virtualize Intel VT-

X/EPT or AMD-V/RVI”:

Figure 194: New Virtual Machine – Customize Hardware Selection

Appendix 2: Prerequisites

 Page 167 of 180

The virtual machine will be created and CentOS installed in the new machine. This

process will take about 30 minutes to complete depending upon the host machine

performance.

A2.2. Configuring VMware Player

Once the installation process is complete, the virtual machine will be powered on and

it will look like the following figure after the login:

Figure 195: Virtual Machine Running

Open a terminal window by clicking “Applications”, “System Tools” and “Terminal”:

Figure 196: Opening the “Terminal” Program

Appendix 2: Prerequisites

 Page 168 of 180

Take on root privileges by running the super-user elevation with the following

command:

Command Window 23: Giving Root Privileges

Use the visudo text editor to edit the /etc/sudoers file:

Command Window 24: Edit the “sudoers” File

Add the “gines” user to the sudoers list by inserting the line: “gines ALL=(ALL) ALL” to

the users section as shown in the next figure (to insert text in the editor, press the “I” key on

the keyboard):

Figure 197: Adding an User

visudo

su

Appendix 2: Prerequisites

 Page 169 of 180

And close it by pulsing the key “Esc”, writing “Shift” + “.wq”, writing “exit” and pulsing

“Enter”.

A2.3. Required Git Repositories

A2.3.1. Sourcery CodeBench Lite for Xilinx GNU Linux

Next, the system will be updated to the latest updates so use the yum package

manager to install the system updates. These updates can take several minutes and may

present several user prompts before completion. If prompted to allow download of packages

and/or for the import of the GPG key, accept by pressing “Y” followed by the Enter key.

Command Window 25: Updating Sourcery CodeBench

The “ncurses-devel” package and Git SCM tool will be installed next using the package

manager and when prompted accept the download and installation of all recommended

packages.

Command Window 26: Installing “ncurses-devel”

For using this as the own development machine to submit patches, Git can be

configured with the name and email address. In this case:

Command Window 27: Setting the Name and E-mail

The editor preference can be set (default is vi or vim) if desired. On this reference

system, the vi editor will be used.

Command Window 28: Setting the Editor

git config --global core.editor vi

git config --global user.name ‘gines’

git config --global user.email ‘gineshidalgo99@gmail.com’

sudo yum install ncurses-devel git

sudo yum update

Appendix 2: Prerequisites

 Page 170 of 180

If there is any preference for any particular diff tool used to resolve merge conflicts,

this should also be set. On this reference system, the vimdiff tool will be used.

Command Window 29: Setting the Diff Tool

For using Sourcery CodeBench on an x86 64-bit Linux host system, the 32-bit system

libraries must be installed. They are available as a series of packages which can be installed

using yum. When prompted, accept the defaults to install all packages.

Command Window 30: Installing the 32-Bit System Library

The Sourcery CodeBench cross toolchain installer “xilinx-2011.09-50-arm-xilinx-linux-

gnueabi.bin” must be obtained from the Xilinx URL below:

http://www.xilinx.com/member/mentor_codebench/xilinx-2011.09-50-arm-xilinx-

linux-gnueabi.bin

It can be also directly downloaded in the next link (this link does not require account

login):

https://code.google.com/p/zedboard-book-source/downloads/detail?name=xilinx-

2011.09-50-arm-xilinx-linux-gnueabi.bin&can=2&q=

Furthermore, the file can be downloaded from Windows host operating system and

directly copy and paste inside the virtual machine or can be directly downloaded in the Virtual

Machine. Once downloaded, launch the CodeSourcery cross toolchain installer:

Command Window 31: Launching the CodeSourcery Cross Toolchain Installer

mv /home/gines/xilinx-2011.09-50-arm-xilinx-linux-\gnueabi.bin .

chmod ugo+x xilinx-2011.09-50-arm-xilinx-linux-\gnueabi.bin

./xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin

sudo yum install glibc-devel.i686 gtk2-devel.i686 \

gtk-nodoka-engine.i686 libcanberra.i686 \

libcanberra-gtk2.i686 PackageKit-gtk-module.i686 \

GConf2.i686 ncurses-libs.i686 xulrunner.i686

git config --global merge.tool vimdiff

http://www.xilinx.com/member/mentor_codebench/xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin
http://www.xilinx.com/member/mentor_codebench/xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin
https://code.google.com/p/zedboard-book-source/downloads/detail?name=xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin&can=2&q=
https://code.google.com/p/zedboard-book-source/downloads/detail?name=xilinx-2011.09-50-arm-xilinx-linux-gnueabi.bin&can=2&q=

Appendix 2: Prerequisites

 Page 171 of 180

Figure 198: Sourcery CodeBench Wizard

Click in “Next” several times and “Install”, verifying the “Typical” install:

Figure 199: Sourcery CodeBench - Choosing Install Set

Appendix 2: Prerequisites

 Page 172 of 180

Once installed, a Getting Started guide which contains useful information on use of the

cross toolchain can be opened. Choose whether this document will be viewed and click “Next”

and “Done”:

Figure 200: Getting Started Guide

Use the gedit text editor to open the bash shell user profile .bash_profile file found in

the /home/gines/.bash_profile path. This file used to build the software package for a specific

embedded target. The line “export CROSS_COMPILE=arm-xilinx-linux-gnueabi-” will be added

to the bash shell user profile:

Command Window 32: Editing the “.bash_profile”

gedit .bash_profile

Appendix 2: Prerequisites

 Page 173 of 180

Figure 201: Final Aspect of the “.bash_profile” File

Save the changes and exit. The toolchain has already been added to the current user

PATH environment variable. Pick up the updated user profile using the source command.

Command Window 33: Loading the “.bash_profile”

This completes the installation and configuration of the virtual machine. The virtual

machine operating system can be suspended in any point. To do this, click on the window close

X button in the upper right hand corner and click on the Suspend button when prompted. This

will close the virtual machine window but it will also persist in the state that the CentOS

desktop is left in so that the work can be resumed by re-launching the virtual machine.

A2.3.2. U-Boot Xilinx

Once again, open the “terminal” program. Xilinx has its modified sources for

supporting their hardware. Therefore, the U-Boot sources used for this system are in following

git repository which can be downloaded with the next command:

Command Window 34: Downloading the U-Boot Git Repository

git clone git://github.com/Xilinx/u-boot-xlnx

source .bash_profile

Appendix 2: Prerequisites

 Page 174 of 180

A2.4. Copying the Virtual Machine

The virtual machine is completely configured. In the next sections, the specific

programs for each Linux OS will be downloaded. Nevertheless, it is recommended to create

another virtual machine. The first one will be used for the “Basic” Linux OS and the second one

for the Ubuntu Linux.

In order to simplify the process, it will be faster to copy the first virtual machine at this

point, because it is already configured. For that, search the installation directory of the last

virtual machine. In this case, this directory is the following:

E:\Virtual Machines\CentOS-6.5-amd64-Zedboard-linux

Figure 202: CentOS VM Installation Directory

The whole folder must be copied and pasted. For instance, it can be pasted in the same

folder, “Virtual Machines” with the name: “Ubuntu-CentOS-6.5-amd64-Zedboard-linux”.

Appendix 2: Prerequisites

 Page 175 of 180

Figure 203: CentOS Folder Copied and Renamed

Once the folder has been completely pasted, open again VMware and click in “Open a

Virtual Machine”.

Figure 204: Opening a VM in VMware Player

The .vmx file is available in the Ubuntu folder and it has to be chosen and opened.

Appendix 2: Prerequisites

 Page 176 of 180

Figure 205: VM Opening Selection

Now, the two VM will appear with the same name in VMware Player. Select the file in

the highest position, which will be the new added VM, and click in “Edit virtual machine

settings”.

Figure 206: VMware Player after Opening the VM

Click in the “Options” window, rename the “Virtual Machine Name” as “Ubuntu -

CentOS-6.5-amd64-ZedBoard-linux” and “OK”.

Appendix 2: Prerequisites

 Page 177 of 180

Figure 207: VM Settings in VMware Player

Finally, both of the virtual machines are ready for their purpose.

Figure 208: VMware Ready for Be Used

Appendix 2: Prerequisites

 Page 178 of 180

A2.5. Required Git Repositories for the Custom Embedded Linux OS

Note that too many “Terminal” windows can be opened at same time. Moreover, one

of the following required files can be downloaded in each one at same time. Therefore, it is

recommended to download each directory in one different window and go for a long coffee

while all these directories are downloaded.

A2.5.1. BuildRoot

BuildRoot will be the main tool used to build the “Basic” Linux OS. It can be

downloaded from its Git Repository:

Command Window 35: Downloading BuildRoot

Figure 209: BuildRoot Installation

A2.5.2. g++, qt4 and Development Tools

BuildRoot needs some programs to be executed without errors. The list of the required

BuildRoot programs is available in the BuildRoot User Manual. First, login as root user and

enter the password.

Command Window 36: Logging as Root User

su

git clone git://git.buildroot.net/buildroot

Appendix 2: Prerequisites

 Page 179 of 180

Then, download and install the necessary programs with the following commands

(write “Y” when it asks whether is ok in any case):

Command Window 37: Installing the Required Programs

A2.5.3. Linux-xlnx (optional)

Once again, open the “terminal” program. Xilinx has its modified sources for

supporting their hardware, which can be downloaded from its own repository by typing the

following command:

Command Window 38: Downloading the Linux-xlnx Git Repository

A2.6. Required Git Repositories for the Ubuntu Linux OS

Remember that too many “Terminal” windows can be opened at same time.

Therefore, it is strongly recommended to download each directory in one different “Terminal”

window.

A2.6.1. Ubuntu Linux

A different Linux version from the previous Linux-xlnx repository is required for this

Ubuntu Linux version. It can be downloaded by typing the following command, which will

download the desired git repository but it will save it in the folder indicated in the own

command, “ubuntu”.

Command Window 39: Downloading the Ubuntu Linux Git Repository

git://github.com/analogdevicesinc/linux.git ubuntu

git clone git://github.com/Xilinx/linux-xlnx.git

yum install gcc-c++

yum install qt qt-demos qt-designer qt4 qt4-designer

yum groupinstall ‘Development Tools’

Appendix 2: Prerequisites

 Page 180 of 180

A2.6.2. GParted Partition Editor

GParted Partition Editor is a GNU program to create, modify and remove disk

partitions. It will be used to create two partitions in the SD Card. It can be installed by typing

the next command:

Command Window 40: Downloading GParted Partition Editor

A2.2. Tera Term

Tera Term is an open-source terminal emulator program. It emulates different types of

computer terminals, from DEC VT100 to DEC VT382. It supports telnet, SSH 1 & 2 and serial

port connections. It also has a built-in macro scripting language (supporting Oniguruma regular

expressions) and a few other useful plugins.

Therefore, Tera Term will be used to interchange information between the ZedBoard

and any computer. It can be downloaded for free. For instance, in its official website:

http://en.sourceforge.jp/projects/ttssh2/

Once Tera Term is installed, to configure baud rate settings, open the Serial Port Setup

window from “Setup” and “Serial port…” in the menu selection. Configure as the following

figure. Notice that the Port will depend of each computer and must be checked.

Figure 210: Tera Term – Serial Port Setup

yum install gparted

http://en.sourceforge.jp/projects/ttssh2/

