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Abstract

Decision makers increasingly operate in real-time information-rich environments, where limited time is available

for interpreting data to inform decisions. These environments are driven by static or mobile sensing devices that can

provide numerous dynamic data points. A prominent approach in this space is to utilise drones, which can be deployed

to gather targeted information. However, deciding how best to deploy available drones is nontrivial, and stands to

benefit from decision support aids that plan routes. Such a system must operate under time constraints created by the

changing attributes of routes as the situation unfolds. This study describes a dynamic decision support system (DSS)

for situational awareness with drones. The system applies Multi-Criteria Decision Making (MCDM) methods within

a dynamic genetic algorithm to provide a continuously revised ranking of routes. Five desiderata for dynamic decision

support are presented. It is shown how a dynamic DSS can be equipped with declarative specification of preferences

(Desiderata 1), dynamic revision of recommendations (Desiderata 2), and high diversity of options (Desiderata 3).

The study then compares four MCDM methods, namely the Weighted Product Model (WPM), the Analytic Hierarchy

Process (AHP), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and the Preference

Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), with regards to how consistently they

trade-off between criteria (Desiderata 4) and the stability of results under small changes to criteria values (Desiderata

5). To evaluate the trade-offs between criteria we analyse the smoothness of change in criteria outcomes as criteria

weightings increase for each algorithm. The outcomes are calculated by automating the selection of routes in a

case study that applies drones to the task of harbour management. The stability of results for the different MCDM

methods are compared. Perturbations were applied to sets of routes ranked by each algorithm then each algorithm was

reapplied and the magnitude of the changes in ranking was assessed. Overall, TOPSIS was found to be the algorithm

which made the most consistent trade-offs between criteria, only under-performing another algorithm with respect to a

single criterion. AHP and WPM were the next most consistent algorithms and PROMETHEE was the least consistent

algorithm. TOPSIS was also found to be the most stable method under small changes to criteria values. AHP was the

second most stable, followed by PROMETHEE and WPM respectively. The results show that TOPSIS achieves the

best result for both Desiderata 4 and 5 and consequently the study finds TOPSIS to be an appropriate MCDM method

for dynamic decision support.
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1. Introduction

Maritime facilities face challenging demands, including monitoring ocean traffic, port safety and emergency re-

sponse. New technology is required to tackle these challenges, under the stresses of higher levels of traffic and an

increased need for rigorous safety and prompt emergency response (Sardain et al. 2019; Pirotta et al. 2019). Drones

are a technology that has been identified for this role, and managing these drones for various tasks is one aspect of the

expanding role of harbour management. Situational awareness has been highlighted as crucial in domains where the

effects of ever-increasing technological and situational complexity on the human decision maker are a concern (Saner

et al. 2009). Drones provide a means for aerial situational awareness, within a harbour and beyond (Frederiksen and

Knudsen 2018; Macrina et al. 2020). One task, which has the potential to improve situational awareness, is automatic

identification of ships approaching a harbour. Drones can be employed to take photos of ships, for the identification

of traffic and potential threats. Selecting an appropriate route for the drone is a complex decision that can be informed

through a decision support system (DSS).

DSSs are enabled by decision analysis, which is the field concerned with the study of complex decisions. Multiple-

criteria decision-making (MCDM) is a sub-discipline of decision analysis comprising techniques for evaluating solu-

tions with multiple conflicting criteria. These criteria are often valued differently by different decision makers and so

require an expression of preferences to identify appropriate trade-offs between objectives. These preferences are then

applied to rank solutions from most to least optimal. To select an appropriate route, the decision maker must consider

multiple conflicting objectives such as identifying as many ships as possible, identifying ships as early as possible

and reducing fuel costs. Navigating this large space of potential routes and making consistent trade-offs between

objectives is a difficult task. Therefore, the management of these drones can potentially be simplified through the use

of MCDM methods, employed within a DSS. MCDM methods allow the user to specify preferences in a declarative

manner, which supports the discovery of candidate solutions and consistent trade-offs between criteria. A challenge

for such a system is that ocean traffic is constantly moving and quickly changes direction. This necessitates that the

problem be solved using a dynamic DSS, which updates routes as the scenario unfolds. In this paper we outline our

approach to building a dynamic DSS which provides situational awareness in a harbour zone using drones.

It is impossible to capture every nuance of a problem within a DSS. Therefore, in this kind of high-stakes decision

making domain, experts are relied upon to make the decision, assisted by the DSS. Together they form a human-

computer team, hopefully performing better than either the human or computer alone (Tomsett et al. 2020; Steiner

et al. 2018). Consequently, it is important that the expert is presented with a diverse array of options, rather than

multiple similar solutions which may fall prey to similar pitfalls that have been overlooked by the system. Options

should be given to the decision maker ranked from the most to least likely suitable solution. This kind of ranking

can be generated using an MCDM method, which takes into consideration user preferences. Different methods can
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produce different rankings when applied to an identical problem, even with identical user preferences. For an MCDM

problem it is often impossible to say which resultant ranking is optimal. Therefore, selecting an appropriate MCDM

method for a problem is difficult (Zanakis et al. 1998).

A solution to this is to pick some desired characteristics for a method (Keshavarz-Ghorabaee et al. 2018), for

example, consistent trade-offs. To make effective use of preferences, it would be useful for changes in criteria weights

to have predictable effects. An aspect underpinning the predictability of changes in criteria weights is the consistency

of trade-offs between criteria. It is expected that as the weighting for a criterion increases, the trade-offs become

more favoured towards that criterion. However, this relationship is not always predictable, as small changes in criteria

weightings can lead to large changes in how an algorithm values certain trade-offs. We view consistency in trade-offs

as a desired feature, as it gives rise to predictable effects when decision makers adjust their preferences.

Another desirable characteristic for dynamic decision support problems is stability of results. In this work we

refer to the propensity to reorder under changes to criteria values as the stability of a ranking. For a ranking to be

functional, the frequency of change must be less than the time it takes for a decision maker to act. For this to be

fulfilled, the rankings must take into account changing criteria values, without reordering significantly when small

changes are made. Therefore, it is desirable for the rankings to be stable under small changes to criteria values.

Drawing this together, we have the following 5 desiderata for dynamic multi-criteria DSSs:

1. declarative specification of preferences,

2. dynamic revision of recommendations,

3. high diversity of options,

4. consistent trade offs between criteria, and

5. high stability of results.

To demonstrate how these desiderata can be supported, we propose a dynamic DSS. This system applies an

MCDM method as a fitness function within a continuously running genetic algorithm. The approach takes into

consideration user preferences (Desiderata 1), to generate a continuously updated ranking (Desiderata 2), with a

mechanism to control the diversity of options (Desiderata 3). In addition, MCDM methods are evaluated with respect

to how consistently they trade-off between criteria (Desiderata 4) and the stability of their rankings (Desiderata 5).

The methods evaluated are the Weighted Product Model (WPM) (Bridgman 1922), the Analytic Hierarchy Process

(AHP) (Saaty 1987), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) (Hwang and

Yoon 1981) and the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) (Brans

and Vincke 1985).

Contributions

The paper contributes the following three items:
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• Desiderata for dynamic DSSs, as outlined above. These items make explicit features and characteristics that

can help DSSs to work effectively over real-time data.

• A DSS for situational awareness using drones that supports declarative specification of preferences, dynamic

revision of recommendations and high diversity of options. The approach uses a priori knowledge of the

decision-maker’s preferences to reduce the multi-objective evolutionary algorithm (MOEA) approach that had

been applied to multi-UAV mission planning support in the literature (outlined in Subsection 2.3) to a single

step process that can be run over dynamic data to continuously refine results.

• An evaluation that brings a generalisable approach to assessing decision support methods (outlined in Sub-

section 2.2) into the dynamic space. We mimic the approach of Belton and Gear (Belton and Gear 1983),

identifying rank reversal as a negative characteristic of MCDM methods through the identification and eval-

uation of desiderata for specifically dynamic problems. The evaluation uses our DSS to analyse stability and

trade-offs of four MCDM methods to determine the method that best supports dynamic decision making by

affording consistent trade-offs between criteria and high stability in the context of small changes in criteria

values.

The rest of this paper is structured as follows: Section 2 presents a background to MCDM methods, including

an evaluation of MCDM methods and their application to situational awareness with drones. Section 3 outlines the

MCDM methods applied within our architecture. Section 4 details the harbour management task. The architecture of

our DSS is given in Section 5, including our implementation for diversification of results. Section 6 follows with an

evaluation of MCDM methods with respect to consistent trade-offs between criteria. Section 7 evaluates the stability

of MCDM methods under small changes of criteria values. Finally, Section 8 discusses the findings, and concludes

on the limitations of the study.

2. Literature Review

2.1. Multi-criteria decision making

Belton and Stewart (Belton and Stewart 2002) categorised MCDM methods into three broad categories:

• Value measurement models that assign numerical scores to solutions.

• Goal, aspiration and reference models where solutions are evaluated by how far they fall from an established

objective.

• Outranking models (the French school) which compares solutions to identify the advantages/disadvantages of

selecting one over another.
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To find a suitable method for dynamic decision making, we evaluate WPM and AHP as value measurement

methods, TOPSIS as a goal, aspiration and reference model, and PROMETHEE as an outranking method.

The Weighted Sum Method (WSM) is the earliest multi-dimensional decision making method (Triantaphyllou

and Mann 1989). A value measurement method, this approach combines normalised scores for criteria in a linear

model. WPM is a modification of WSM proposed by P. Bridgman in 1922 to overcome some of the weaknesses

of the WSM approach (Bridgman 1922). WPM raises weights as powers of the criteria value (positive powers for

benefits and negative powers for costs), eliminating any units of measure. The main benefit of this approach is that

the different units do not require normalisation (Odu and Charles-Owaba 2013). As a result WPM is often referred to

as dimensionless analysis (Triantaphyllou 2000).

In the 1970s, AHP was developed by T. Saaty as an alternative to these simplistic multi-dimensional models

(Saaty 1987). AHP is a structured technique for organising and analysing complex decisions. AHP consists of an

overall goal, a group of options or alternatives for reaching the goal, and a group of factors or criteria that relate the

alternatives to the goal. The decision maker’s preference between two alternatives are quantified on a scale of 1 to

9, with 1 representing no preference of x over y through to 9 representing a strong preference of x over y. These

judgements are then used to synthesise an overall ranking of alternatives. This approach proved popular: by 2008

more publications applied AHP than any other MCDM method (Wallenius et al. 2008). AHP fits into the category of

value measurement models, sometimes referred to as the American school of multi-criteria decision analysis (Lootsma

1990).

Alternatively, the French school was founded by B. Roy, who produced the series of ELECTRE (ELimination Et

Choix Traduisant la REalité) methods (Roy 1990). This served as inspiration for the family of outranking methods,

characterised by the limited degree to which a disadvantage on one criterion may be compensated by advantages in

another. PROMETHEE is an outranking method developed by J.P Brans (Brans and Vincke 1985). PROMETHEE

ranks a set of alternatives on the basis of several criteria by identifying pros and cons of the alternatives in a pair-

wise fashion. Multiple versions of PROMETHEE have been introduced (Brans et al. 1986; Brans and Mareschal

1992, 1995). PROMETHEE I produces a partial ranking, whereas PROMETHEE II computes a complete ranking of

alternatives.

Separately to the aforementioned schools of MCDM methods, we have goal, aspiration and reference models.

The first goal, aspiration and reference model, TOPSIS, was developed in the 1980s by Hwang and Yoon (Hwang and

Yoon 1981). TOPSIS defines a positive ideal solution which represent the best alternative. This imaginary solution

is created by collecting the best possible values across all criteria. The same is done with the worst criteria values to

create a negative ideal solution. The best alternative is then determined by minimising the euclidean distance from the

positive ideal solution and maximising the euclidean distance from the negative ideal solution.
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2.2. Evaluating MCDM methods

Evaluating MCDM methods is understood to be one of the most difficult problems in the field of decision analysis.

Zanakis et al. (Zanakis et al. 1998) stated that it is impossible or difficult to answer questions such as: which method

is more appropriate for what problem and what are the advantages or disadvantages of using one method over another.

In this section we discuss literature attempting to answer these questions. Specifically, we outline the application of

concern, the methods compared, and their evaluation metrics.

Zanakis et al. propose a simulation-based approach which compares the resultant ranking of an MCDM method

to one generated through WSM, referred to in (Zanakis et al. 1998) as the Simple Additive Weighting method (SAW).

In the absence of any other objective standard, WSM is chosen as a result of its simplicity and the popularity of

the method at the time of publication. The paper evaluates rankings produced by WPM (referred to in the paper as

Multiplicative Exponent Weighting), AHP, ELECTRE and TOPSIS. The methods are evaluated through a bundle of

metrics, notably mean squared error of weights (MSEW), the same for ranks (MSER) and Spearman’s correlation for

ranks, comparing both the weights assigned to alternatives and the resultant rankings. The paper concludes that AHP

behaves most similarly to WSM; with ELECTRE being the least similar; the rest of the methods fall between the two.

The same study also evaluated the frequency of rank reversal. Rank reversal, first observed by Belton and Gear

(Belton and Gear 1983), refers to changes in the ranking of alternatives by addition or deletion of an alternative.

This is an unintuitive and therefore undesirable characteristic of any MCDM method, as user understanding and faith

in the results are imperative. The study introduces a new non-optimal alternative, then counts both how often the

top ranked alternative remained the same, and the total number of ranks that are not altered as a percentage of the

number of alternatives. This experiment finds that TOPSIS suffered the least from rank reversal, followed by AHP

and ELECTRE respectively.

Selmi, Kormi and Ali (Selmi et al. 2016) compare the results of ELECTRE III, PROMETHEE I and II, TOP-

SIS, AHP and PEG in two case studies. The first study finds a similarity between PROMETHEE II and AHP, and

observes the starkest difference between TOPSIS and ELECTREE III. The second study finds that ELECTREE III,

PROMETHEE, and AHP agree on the first alternative being the best, while TOPSIS and PEG rank the third alternative

as the highest. The study calculated the Gini Index to measure the rankings dispersion and uses the mean value of

dispersion to perform comparisons between rankings. Sarraf and McGuire (Sarraf and McGuire 2020) highlight an

issue with this approach as it does not consider that the top of the ranked list as being more important than the bottom.

In the study AHP-PROMETHEE II switches one pair at the bottom of the ranked list, whilst TOPSIS-PROMETHEE

II switches a pair at the top of the list, yielding the same mean value of the Gini index. They propose that a change in

the ranks at the top of the list must have a higher negative impact on the evaluation.

Sarraf and McGuire (Sarraf and McGuire 2020) compare the results of AHP, Fuzzy AHP, TOPSIS, Fuzzy TOPSIS

and PROMETHEE through two real-world transport based case studies. They evaluate the similarity of each method

compared to AHP. AHP is chosen as the baseline as it is the most widely used method in the literature. They attempt to

rectify their issue with equal weighting being given to changes regardless of position in the Selmi, Kormi and Ali paper
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(Selmi et al. 2016) by employing average overlap (AO) and discounted cumulative gain (DCG) as evaluation metrics.

AO is highlighted by Webber, Moffat and Zobel (Webber et al. 2010) as an approach to assign greater weighting to

differences at the top of the list. It is based on simple set overlap where the overlap of the two rankings is compared

at an incrementally increased depth. DCG was proposed by Jarvelin and Kekalainen (Jarvelin and Kekalainen 2000)

and is used in information retrieval to evaluate the relevance of results returned by search engines. This metric is an

alteration of cumulative gain (CG) that discounts scores of alternatives using a logarithmic discount function as their

rank increases. The paper finds that the PROMETHEE ranking fits well with the AHP ranking and these two methods

produce the best results. They found that fuzzy AHP produced acceptable results and that TOPSIS and fuzzy TOPSIS

produced poor ranking results. The writers recommend AHP as a simple and robust method for the transportation

field.

The limitation of Sarraf and McGuire’s (Sarraf and McGuire 2020) approach is that both DCG and AO only

compare the rankings generated by each method to those generated through AHP. Unlike the study by Zanakis et al.

(Zanakis et al. 1998), which measured the prevalence of rank reversal, no other characteristics of each method were

analysed. In our research we propose five desiderata, of which two - ((4) consistent trade-offs between criteria and (5)

high stability of results) - can be used as a basis to evaluate the suitability of MCDM methods for dynamic decision

making problems.

The above studies assess decision support methodologies without focusing on a specific application. However

given some context, it can be easier to assess different decision support methodologies. For example, in clinical

DSS some contextual information can be applied to make more effective evaluations of different facets of DSSs. A

study (Kawamoto et al. 2005), in clinical decision support has investigated validity of decision support features by

assessing the improvement in clinical practice. This assessment was enabled through the measurement of patient

outcomes or process measures. The study summarised 82 relevant comparisons of which 71 compared a clinical DSS

with a control group (control-system comparisons) and 11 directly compared a system with the same system plus

extra features (system-system comparisons). Another study (Roshanov et al. 2013), conducted a similar assessment

with 162 randomised control trials. The above studies collate data from a multitude of papers, assessing features for

purpose-built clinical DSS. This type of study is enabled in clinical decision support by the presence of clear success

criteria (patient outcomes), to compare against the presence of decision support features. These studies do not assess

decision support methodologies but instead look at context features of clinical DSSs such as “Use of a computer to

generate the decision support” or “Automatic provision of decision support as part of clinician workflow”.

A recent study (Vasey et al. 2022), applied a Delphi process with 127 experts in the first round and 138 experts

in the second round to create an evaluation framework for clinical DSS. These experts were selected from 20 pre-

defined stakeholder categories such as administrators/hospital management, allied health professionals, clinicians,

engineers/computer scientists etc. The outcome guidance advised the use of patient outcomes as the primary method

for the assessment of clinical DSS, with the reporting of disagreements between the system and the computer as a

secondary measure of system performance.
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These studies evaluate a diverse array of different features of DSSs but not the MCDM method underlying the

ranking process for results. Still, the choice of MCDM is just another feature of a DSS that can be evaluated in the

same way. As shown in these studies, when evaluating DSSs for a specific context, the outcomes of a scenario become

a powerful tool for assessment. In our case, this motivates the use of scenario outcomes, through our simulations, for

the assessment of consistent trade-offs between criteria (Desiderata 4).

2.3. Situational awareness with drones

The unmanned aerial vehicle task assignment problem (UAVTAP) consists of finding an optimal assignment of

UAVs to a set of tasks (Coutinho et al. 2018). In this section we briefly discuss previous research in the area and their

approach to solving UAVTAP as an MCDM problem.

Ries and Ishizaka (Ries and Ishizaka 2012) present a multi-criteria support system for a dynamic UAVTAP. Their

case study employs UAVs for surveillance to investigate ships in a maritime environment. The approach applies AHP

to calculate weightings for PROMETHEE, ranking ships from least to most suspicious as a means of facilitating

an efficient priority for surveillance. The system then assigns a UAV to investigate the most suspicious ship. This

approach differs from our own as it calculates only the next ship to be visited, whereas in our own system we attempt to

qualify an entire tour, limited by the fuel of the drone. This approach allows us to plan further ahead to find more fuel

and time efficient routes. As a result of planning further ahead, our case study features an exponentially larger set of

possible solutions. To explore this large set of possible solutions, we integrate a genetic algorithm as a meta-heuristic

search function.

Ramerirez et al. first formulated UAVTAP as a Constraint Satisfaction Problem (CSP), with the mission be-

ing modelled and solved using constraint satisfaction techniques (Ramirez-Atencia et al. 2014a). In a later paper

(Ramirez-Atencia et al. 2014b), UAVTAP is formulated as a multi-objective optimisation problem. Their objective

consists of minimising the number of drones employed, the total flight time, the total fuel, the total distance, total

cost and the time taken. The original approach was combined with a MOEA (Ramirez-Atencia et al. 2017a); this

algorithm provides an estimate of the Pareto Optimal Front (POF), i.e. the set of all non-dominated solutions of the

problem. A solution s1 is dominated by s2 if s1 is not better in any objective and s2 is better in at least one. A solution

is non-dominated if it is not dominated by any solution in the solution set. Their conclusion is that, as the complexity

of the mission increases the number of solutions in the POF becomes huge, and therefore the time needed to calculate

the complete POF becomes intractable.

To improve on this approach, Ramirez et al. (Ramirez-Atencia et al. 2017b) introduce a Knee-Point MOEA

intending to reduce the POF to a set of the most likely best solutions. This reduces the size of the POF from hundreds

to tens of solutions. This however still leaves a difficult task for decision makers who must select the most appropriate

mission plan. In a later paper, the authors rank the outputted POF using a selection of MCDA algorithms according

to user preferences (Ramirez-Atencia et al. 2020). The work assumes that the decision maker cannot provide a priori

information regarding preferences on criteria. A limitation of this approach is that it can become costly in a dynamic
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setting, as the POF must be recalculated each time the mission scenario is updated. In a later paper, the authors

attempt to improve on this approach by introducing more diversity into the decision space by replacing the crowding

distance metrics from NSGA-II with a combination of Manhattan and crowding distance metrics (Javadi et al. 2021).

Coelho et al. (Coelho et al. 2017) also proposed a multi-objective UAVTAP. Taking inspiration from a multi-criteria

view of real systems, the approach considers seven different objective functions which it seeks to minimise using a

Mixed-Integer Linear Programming model solved by a matheuristic algorithm. This produces an estimate of the POF

but the paper does not attempt to rank the non-dominated solutions.

In our work, we apply the MCDM methods as a fitness function of a genetic algorithm, rather than applying an

MOEA. We take this approach as it is infeasible to calculate a POF in a dynamic setting. Our approach is enabled

by the fact that the decision maker’s preferences are available prior to route calculation. Using a genetic algorithm

with MCDM methods as a fitness function allows us to maintain a solution set ranked according to preferences, as the

situation and therefore solutions, evolve over time.

3. Multi-Criteria Decision Making Methods

In this section we detail how we applied each of the MCDM algorithms, including any adaptations we made to fit

the case study.

3.1. Weighted Product Model

WPM scores alternatives by a simple multiplicative model. The algorithm involves the following steps:

WPM Step 1. All criteria values for alternatives are normalised by applying Equation 1, where minX and maxX

are the smallest and largest criteria values respectively.

Norm(x) =
x − minX

maxX − minX
(1)

WPM Step 2. Weights are used to score each alternative using Equation 2. The criteria value of alternative a is

represented as a j for criterion j. The weighting for criterion j is given as w j. For criteria we seek to minimise, we

replace w j with −w j.

WPM(a) =

n∏
j=1

(a j)w j (2)

WPM Step 3. Rank alternatives according to the value of WPM(a).

WPM Complexity. WPM can be computed in time O(nm) where n represents the number of solutions and m

represents the number of criteria.
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Figure 1: AHP hierarchy structure for the harbour management task

3.2. Analytic Hierarchy Process

AHP is implemented in the following steps:

AHP Step 1. The problem is modelled as a hierarchy. The goal of the problem is at the highest level, with the cri-

teria below it. These criteria can be divided further into sub-criteria, then at the lowest level we have the alternatives.

Figure 1 shows the hierarchy for the harbour management task.

AHP Step 2. Criteria values are normalised according to the range of values across all alternatives using the

formula given in Equation 1, where minX and maxX are the smallest and largest criteria values respectively.

AHP Step 3. Priorities are established across the hierarchy by constructing a pairwise comparison matrix for

each level. In our experiments, we evaluate a fixed set of weights and therefore it is only alternatives that require

comparison. To produce a ranking, criteria values must be scored. The normalised values are compared pairwise to

generate a comparison matrix. For three alternatives a1, a2 and a3 and a criterion X with normalised criteria values

x1, x2, x3, we would generate a comparison matrix C.

C =

a1 a2 a3


a1 1 f (x1, x2) f (x1, x3)

a2 f (x2, x1) 1 f (x2, x3)

a3 f (x3, x1) f (x3, x2) 1

Equation 3 is applied to compare criteria values. This formula maps two normalised values (x, y) to the funda-

mental scale proposed by Saaty (Saaty 1987).
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f (x, y) = e x−y (3)

AHP Step 4. Comparison matrices generated through AHP have a concern with departure from consistency be-

tween judgements. When a matrix is inconsistent, the resultant vector of relative weights is viewed as untrustworthy.

Therefore, the next step in AHP is to check the consistency of the matrix. In general practice, this is done by cal-

culating the consistency ratio (CR) and discarding matrices with a CR greater than 0.1 (Siraj et al. 2015). A matrix

C = (ci j) is termed consistent (Basile and D’Apuzzo 2006) if:

ci j · c jk = cik ∀ i, j, k = 1, 2, ..., n

It is unnecessary to check consistency in our application of AHP as the comparison formula f (x) produces com-

parison matrices that satisfy this equation for all values of i, j, k as shown below.

f (i, j) · f ( j, k) = f (i, k)

e i− j · e j−k = e i−k

e i−k = e i−k

AHP Step 5. The principal eigenvector P j of the comparison matrix for each criterion j is calculated; this vector

represents the priorities for each alternative. This priority vector P j is then multiplied by the weighting w j of each

criterion j and summed to produce a global score vector G. For a problem with m alternatives and n criteria, the

formula is given by Equation 4.

G = (gi)m =

n∑
j=1

P j · w j (4)

AHP Step 6. Rank alternatives according to their global score. For alternative i, the global score is entry gi in G.

AHP Complexity. AHP can be computed in time O(n2m) where n represents the number of solutions and m

represents the number of criteria (Dewi et al. 2018).

3.3. TOPSIS

TOPSIS is described by the following steps:

TOPSIS Step 1. Create an evaluation matrix (xi j)m×n consisting of m alternatives and n criteria, with the criteria

values for each alternative i and criterion j given as xi j.
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TOPSIS Step 2. Calculate the normalised evaluation matrix R = (ri j)m×n by applying the formula given in

Equation 5.

ri j =
xi j√∑m
k=1 x2

k j

, i = 1, 2, ... ,m, j = 1, 2, ... , n (5)

TOPSIS Step 3. Calculate the weighted normalised decision matrix T = (ti j)m×n by applying the formula from

Equation 6.

ti j = ri j · wi j, i = 1, 2, ... ,m, j = 1, 2, ... , n (6)

TOPSIS Step 4. Compute the positive (A+) and negative (A−) ideal solutions. These serve as imaginary perfect

and worst points in the solutions space, from which we can calculate the distance from real solutions as a form of

evaluation.

A+ = {x+
1 , x

+
2 , ... , x+

n }

where x+
j = {max(xi j) if j ∈ B; min(xi j) if j ∈ C)}

A− = {x−1 , x
−
2 , ... , x−n }

where x−j = {min(xi j) if j ∈ B; max(xi j) if j ∈ C)}

where B is associated with benefit criteria (values we seek to maximise) and C with cost criteria (values we seek

to minimise).

TOPSIS Step 5. Calculate the L2-distance from positive ideal (d+
i ) and negative ideal (d−i ) solutions for each

alternative.

d+
i =

√√ n∑
j=1

(xi j − x+
j )2, i = 1, 2, ... ,m

d−i =

√√ n∑
j=1

(xi j − x−j )2, i = 1, 2, ... ,m

TOPSIS Step 6. Calculate the similarity to the worst condition for each alternative (s−i ).

s−i =
d−i

d−i + d+
i
, i = 1, 2, ... ,m
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TOPSIS Step 7. Rank the alternatives according to the similarity to the worst condition (s−i ).

TOPSIS Complexity. TOPSIS can be computed in time O(n2m) where n represents the number of solutions and

m represents the number of criteria (Hamdani 2016).

3.4. PROMETHEE

In our work, PROMETHEE is defined by the following procedure:

PROMETHEE Step 1. Pairwise comparisons d j(x, y) are made between each criteria value xi j for alternative i

and criterion j using Equation 7.

d j(xi j, xk j) = xi j − xk j (7)

PROMETHEE Step 2. Unicriterion preference degree is calculated by applying a preference function P(x) to the

difference as shown in Equation 8.

πk(xi j, xk j) = P[dk(xi j, xk j)] (8)

This function can be different for each criterion. Six types of preference function are proposed; usual criterion,

quasi criterion, criterion with linear preference, level criterion, V-shape with indifference criterion, and Gaussian

criterion (Brans et al. 1986). In this work, the criterion with linear preference is applied, as shown in Equation 9.

P(x) =


0 x ≤ 0

x 0 < d ≤ 1

1 d > 1

(9)

PROMETHEE Step 3. A multi-criteria (global) preference degree π(x, y) is computed to globally compare every

pair of alternatives as shown in Equation 10.

π(xi j, xk j) =

q∑
k=1

πk(xi j, xk j) · wk (10)

PROMETHEE Step 4. Calculate the positive (φ+(a)) and negative (φ−(a)) preference flows for each alternative.

φ+(a) =
1

n − 1

∑
x∈A

π(a, x)

φ−(a) =
1

n − 1

∑
x∈A

π(x, a)
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PROMETHEE Step 5. Calculate the net preference flow φ(a).

φ(a) = φ+(a) − φ−(a)

PROMETHEE Step Six. Rank alternatives according to the net preference flow.

PROMETHEE Complexity. PROMETHEE can be computed in time O(mnlog(n)) where n represents the number

of solutions and m represents the number of criteria (Calders and Van Assche 2018).

4. Situational Awareness Scenario

To illustrate how our desiderata for dynamic multi-criteria decision support can be implemented, we consider

an application of drones to a harbour management task. This application is then used as part of our evaluation of

various MCDM methods with respect to our desiderata. In this section, we outline the harbour management task and

its requirements in relation to our desiderata. We then describe the criteria used for the selection of routes and the

scenarios used for our evaluation.

4.1. Harbour management task

In this task, a decision maker takes the role of a harbour master managing a harbour. The harbour master controls

a single drone to identify ships close to the harbour zone. The job of the user is to select a route for the drone, with a

view to identifying ships before they reach the harbour zone. The length of these routes is limited by the fuel of the

drone. Once the drone has run out of fuel, it must return to the refueling point, located within the harbour zone.

We assume that the most suitable route may depend on different criteria: unidentified ships in harbour, lead time

and fuel per ship.

• Unidentified Ships In Harbour - The number of unidentified ships which will arrive in the harbour over the

course of the route.

• Average Lead Time - The average amount of time between a ship being identified and arriving in the harbour.

• Fuel Per Ship - The amount of fuel used by the drone per ship identified.

As with all MCDM problems, these criteria have different values for different decision makers, so we require a

specification of preferences (Desiderata 1). In our case, criteria are predicted values based upon the current trajectory

of ships in the area surrounding the harbour. Ships approaching a harbour can quickly change direction, causing the

criteria values of a route to change. This has an impact on the ranking of options, necessitating dynamic revision of

recommendations (Desiderata 2). It is also worth noting that a decision maker may have knowledge outside the scope

of the system. An example for harbour management could be multiple ships that do not require identification. If every
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route visits these ships then the decision maker is left to manually plot a route, rendering the system useless. This

suggests that a diverse set of routes would be desired (Desiderata 3).

4.2. Criteria

In this section we describe the motivation and calculations for each of the criteria used for route selection in our

harbour management task.

4.2.1. Unidentified Ships in Harbour

The primary goal of the situational awareness task is to identify ships before they reach the harbour. As a result,

the first criterion is the number of unidentified ships that will arrive in the harbour over the course of the route. The

system calculates the length of time needed to complete a route, then uses the current trajectory and speed of all boats

to calculate which of the unidentified ships will reach the harbour before the drone returns.

4.2.2. Average Lead Time

For situational awareness, information gained sooner is more valuable. If a ship is identified seconds before it

passes the threshold into the harbour, there is no time to respond to the gathered information. As such, it is important

to maximise the time between a ship’s identification and its arrival in the harbour. We call this metric lead time. The

system takes the speed and trajectory of each ship within a route to predict the lead time for each. The average of

these values is calculated and used as the criterion average lead time.

4.2.3. Fuel Per Ship

An important part of managing any operation is minimising cost. For this task, that means reducing the amount

of drone fuel we consume. To maximise efficiency, another objective is therefore to minimise the fuel cost per ship

visited. For our simulation the drone burns a fixed amount of fuel per distance travelled. To compute a value for this

criterion, we first determine the total fuel required for a route, by calculating the total distance of the route divided by

the fuel efficiency of the drone. We calculate the distance of the route by predicting an intercept point for each ship

then summing the distance between each journey plus the distance to return to harbour. The total fuel is then divided

by the number of ships identified, giving us fuel per ship.

4.3. Scenarios

To analyse and evaluate our desiderata we have ten scenarios which simulate traffic in harbours around Great

Britain and Ireland. The set of scenarios comprises simulations of the following locations:

1. Edinburgh

2. Liverpool

3. Dublin
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Figure 2: A visualisation of the Edinburgh scenario (colour print)

4. Belfast

5. Portsmouth

6. Plymouth

7. Oban

8. Douglas

9. Dover

10. Hull

A scenario is defined by a set of 600 points in time and the position of all ships at each point. To maintain

comparability between scenarios, each simulation includes 30 ships, of which 20 arrive at the harbour. The gap

between each time step is equivalent to 30 seconds, therefore the entire simulation plots the routes of ships over a

duration of 5 hours. We chose a five hour window of time for each scenario as this represents a sensible maximum

flight time for a harbour management drone (based on domain expertise). This allows the drone time to identify

roughly 20/30 of the ships. Therefore, if the correct route is picked, the drone should be able to achieve a perfect

score. Unfortunately, due to the ships changing directions and speed, this route is impossible to predict every time,

and often ships will arrive in the harbour before the drone reaches them or ignored ships will change path towards the

harbour. Figure 2 shows a screenshot of the Edinburgh scenario visualised through a web interface.
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4.4. Criteria Correlations

For a multi-criteria decision making problem to be interesting, it is important to have criteria that do not correlate

strongly or have a negative correlation. For example, when purchasing a car, buyers may choose to minimise cost

whilst maximising top speed. These criteria are correlated but conflicting, producing a need for trade-offs between

objectives and therefore a need for MCDM methods. If the criteria are too strongly correlated then often all objectives

can be maximised at the same time. As a consequence, strongly correlated criteria would be unfit for evaluating the

capabilities of a MCDM system.

4.4.1. Experimental Set Up

To analyse the suitability of our criteria, we designed an experiment to calculate the Pearson Correlation between

pairs of criteria. We generated 20 routes across each of the 10 scenarios outlined in Subsection 4.3 using the criteria

weightings given in Table 1 for a total of 1400 generated routes. Each of these routes has a criteria value for Unidenti-

fied Ships in Harbour, Average Lead Time and Fuel Per Ship. We then calculated the Pearson Correlation Coefficient

between each pair of criteria values, with the results given in Table 2.

Table 1: Criteria weightings - USH: Unidentified Ships in Harbour; ALT: Average Lead Time; FPS: Fuel Per Ship

Weighting USH ALT FPS

A 1 0 0

B 0 1 0

C 0 0 1

D 0.5 0.5 0

E 0.5 0 0.5

F 0 0.5 0.5

G 0.33 0.33 0.33

4.4.2. Results

Before analysing the results given in Table 2, it is worth noting that Unidentified Ships in Harbour and Fuel Per

Ship are both criteria we seek to minimise whilst maximising the Average Lead Time as stated in Subsection 4.2. With

this in mind, the following can be observed:

• Average Lead Time and Fuel Per Ship have a high degree of correlation, but are conflicting.

• Unidentified Ships in Harbour and Fuel Per Ship have a moderate degree of correlation.

• Average Lead Time and Unidentified Ships in Harbour have a low degree of correlation.
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The highest correlation occurs between Average Lead Time and Fuel Per Ship. These two criteria are highly

correlated because Fuel Per Ship is low when a route identifies groups of ships which are close to the harbour zone

and therefore fuel efficient. For these kinds of routes, the Average Lead Time is also low as only a short amount of time

passes between the identification of ships and their arrival in the harbour. Fortunately, these criteria are conflicting as

one is a cost (Fuel Per Ship) and the other is a benefit (Average Lead Time), therefore the correlation is acceptable.

The second most correlated pair is Unidentified Ships in Harbour and Fuel Per Ship. These two criteria are

correlated as identifying many ships which are close to the harbour often includes ships which are most likely to pass

into the harbour zone. The pair are not highly correlated though as the most fuel efficient route often includes ships

which are moving away or are otherwise unlikely to enter the harbour. Average Lead Time and Unidentified Ships

in Harbour also have a weak correlation, explained as a transitive effect of the other correlations. Overall, the set of

criteria are suitable as it is impossible to simultaneously minimise Unidentified Ships in Harbour and Fuel Per Ship

whilst maximising Average Lead Time.

Table 2: Criteria Pearson correlation coefficient - USH: Unidentified Ships in Harbour; ALT: Average Lead Time; FPS: Fuel Per Ship

Criteria USH ALT FPS

USH 1

ALT 0.254679 1

FPS 0.434399 0.644990 1

Criteria Objectives - Maximise: Unidentified Ships in Harbour, Fuel Per Ship; Minimise: Average Lead Time

5. Multi-Criteria Dynamic Genetic Algorithm

In our work, we apply MCDM methods as a fitness function, rather than applying a MOEA. This approach is

enabled by the fact that the decision makers preferences are available prior to route calculation. The approach allows

us to maintain a solution set ranked according to preferences (Desiderata 1), via a continuously running evolutionary

algorithm, as the situation and therefore solutions, evolve over time (Desiderata 2). In this section we describe the

genetic algorithm applied for route selection, how it fits into our streaming genetic algorithm architecture, and our

approach to encourage diversification of results (Desiderata 3).

5.1. Genetic Algorithm for Route Selection

In this section we describe the genetic algorithm for the harbour management task. We include evaluation of the

optimal number of generations to compute for future experiments.
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5.1.1. Chromosome encoding of Routes

The routes for the drone in the harbour management task can be represented by Chromosomes that consist of

genes. Each gene of the Chromosome represents a ship to be identified. The routes can therefore be modelled as

follows:

Let S be the set of ships to be visited,

For si ∈ S ,

r = (s1, s2, .. sn)

For the harbour management task, this chromosome represents the route

s1 → s2..→ sn

To ensure the validity of the route the following conditions are needed:

1. Each ship may only be visited once.

2. The total distance of the route must be less than the range of the drone.

3. A route must visit at least one ship.

5.1.2. Fitness Function

The fitness function is used to evaluate the quality of the route. As this is a MCDM problem, a MCDM algorithm

is used calculate the fitness. This MCDM method could be one of AHP, WPM, TOPSIS or PROMETHEE, outlined

in Section 3. The method is given a set of criteria weights, which are used to calculate a score for each solution. A

diversity discount is then applied to each solution (described in Section 5.4) and the scores are normalised with the

following formula:

Norm(x) =
x − minX

maxX − minX

5.1.3. Mutate Function

The mutation operator exists to maintain the diversity of the population. Generally, for travelling salesmen prob-

lems, mutate is defined as a swap operation, swapping the order of two cities in a route. This is because in the

travelling salesmen problem all cities must be visited in a valid route. In the harbour management task the drone can

only visit a portion of the ships, limited by fuel. As a result we define mutate as a combination of two functions; add

a ship (1) and remove a ship (2). When a route is chosen to be mutated, one of the two functions is applied with equal

chance of each. The two functions are defined below:
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Let S be the set of ships to be visited,

Let r = (s1, .. sn), sx ∈ S , sx < r,

A(r) = (s1, sx.. sn) (11)

Such that the position of sx is selected at random.

R(r) = (s1, .. sn) (12)

5.1.4. Crossover Function

The crossover operator combines two selected routes together. For our the harbour management task the crossover

operator is a single-point crossover function c(x, y) defined by the following steps.

1. Two parents are selected from the population as parents; denoted as x and y.

For si, ti ∈ S ,

x = (s1, s2, .. sn), y = (t1, t2, .. tm)

2. A sub-path z is selected from parent x at a random point j of length k < n.

z = (s j, s j+1.. s j+k)

3. All ships from sub-path z are removed from parent y except the first ship in the path. This produces an

intermediate path y1

For s j = t2, s j+1 = t4, s j+k = t6,

y1 = (t1, t3, t5, t6.. tm)

4a. The path is merged into parent y at the point of the first ship in the path.

For s j = t2,

c(x, y) = (t1, s j, s j+1, .. s j+k, .. tm)

4b. If the first ship in the path doesn’t exist in y then add the path to the end of y.
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For s j < y,

c(x, y) = (t1, .. tm, s j, s j+1, .. s j+k, )

5.1.5. Solution Selection

The selection operator is used to select individuals from the last generation. To keep a high quality set of solutions,

individuals are selected based on their fitness value. This fitness value is calculated by applying one of the MCDM

methods described in Section 3. The route with the highest fitness is first selected for the next generation. To improve

the diversity of the population, we then apply a fitness penalty to all other routes based upon their overlap with the

chosen route. Another route is then chosen and the process is repeated with all other routes being discounted according

to the overlap with the set of selected routes. This process continues until enough routes have been selected for the

population.

The discount function includes a diversity weighting W. This weighting can be set to different levels to control

to what extent overlapping routes are discounted to promote diversity. A value of 0 for W means that no discount is

applied. The discount function d(x) is described in Equation 13.

Let f (r) be the fitness of route r,

R refers to the set of selected routes,

o(r,R) be the overlap between r and R,

d(r) = e W o(r,R) f (r) (13)

This discount formula calculates the overlap between a route r and the selected routes R using the formula de-

scribed in Equation 14.

|R| refers to the cardinality of R,

|r | refers to the numbers of ships in r,

N(R, s) is the number of routes in R visiting ship s,

o(r,R) = 1 −
1
|r |

r∑
s

N(R, s)
|R|

(14)
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Figure 3: The flow of data through the continuous genetic algorithm

The discount function d(r) is introduced in an attempt to improve diversity (Desiderata 3). We evaluate the effect

changing the diversity weighting W has on diversity and the impact on quality of solutions in Subsection 5.4.

5.2. Streaming Genetic Algorithm

Data streams exist as an abstraction to support analysis of dynamic data as it is produced (Muthukrishnan 2005).

DSSs exist to support users in navigating a space of options (Greco et al. 2016). Our streaming MCDM genetic

algorithm was designed to bring together these complementary paradigms to support decision making with dynamic

data. Current practice in stream data processing makes extensive use of Stream Processing Engines (SPEs) which

provide a framework for acting upon elements in a stream. Apache Flink is an SPE developed by the Apache Software

Foundation that we chose to implement our streaming genetic algorithm (Carbone et al. 2015).

Figure 3 shows the flow of data through the algorithm. The Solution Creator takes the current state of the scenario

and the previous ranking, applying mutate(x) and crossover(x,y) operations to create new solutions. The details of

these mutate/crossover functions for the harbour management task are given in Subsection 5.1. For the first generation,

it creates a random set of solutions. The Criteria Calculator then calculates the criteria values for each route. In

streaming, it is common to perform set-based aggregations over subsets of events that fall within a period of time.
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This set of elements is referred to as a window. We take a window of recently validated routes in the Solution Ranker,

and aggregate them into a ranking.

To produce a ranking, criteria values must also be scored. This is done by applying one of the MCDM methods

described in Section 3. Initial calculations for each algorithm are applied within the solution ranker, by producing

scores for each criterion. These intermediary values and criteria weightings are then passed to the Fitness Calcula-

tor. Within the Fitness Calculator, solutions are assigned a fitness value calculated using the MCDM method. When

selecting routes for the next generation of the algorithm, we first chose the route with the highest fitness. We then

applied a fitness penalty to routes that overlap with the set of routes chosen for the next generation. This was intended

to promote a diverse set of routes for recommendation. The process is described in detail in Subsection 5.4. The ap-

plication of the MCDM method for this procedure dominates the rest of the steps, giving rise to an overall complexity

shown in Equation 15.

r represents the number of routes,

c refers to the number of criterion,

O(rc) represents the complexity of the MCDM method employed as the fitness function

g refers to the number of generations,

gO(rc) (15)

5.3. Number of Generations Experiment

In this section we measure the convergence of the population in our genetic algorithm to determine an appropriate

number of generations for further experiments.

5.3.1. Evaluation Methodology

To determine the number of generations to run for future experiments, we measured the convergence of our

population to a stable set of solutions. For this experiment we applied our genetic algorithm with WPM as the fitness

function, to the first time-step of the 10 scenarios, with each of the 7 weightings outlined in Table 1. The population

size for the genetic algorithm is chosen to be 30 solutions. We iterate the algorithm given in Subsection 5.2 and at

each generation we output the current ranking of solutions in the population.

To quantify the similarity between rankings of subsequent generations, we utilise the evaluation metric AO dis-

cussed by Sarraf and McGuire (Sarraf and McGuire 2020) and Webber et al. (Webber et al. 2010). AO is a similarity
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measurement algorithm that assigns more weights to the top of the list. It is based on simple set overlap, where

the user compares the overlap of the two rankings at incrementally increasing depths. The AO formula is given in

Equation 16. The AO overlap between generations is given with the results shown in Figure 4.

Pt is the population at generation t

Pt+1 is the population at generation t + 1

k is the evaluation depth,

d is the depth.

AO(Pt, Pt+1, k) =
1
k

k∑
d=1

|Pt ∩ Pt+1|

d
(16)

5.3.2. Results

Figure 4: Average Overlap Between Generations (colour print)
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The results show that different criteria weightings (as depicted in Table 1) converge at different times. The dif-

ference between these weightings can be explained by observing that weightings C, E, F and G include a non zero

weighting for Unidentified Ships in Harbour. This criterion favours longer routes, which naturally creates a larger

search space of potentially optimal routes than Average Lead Time which is optimal for short routes. Unidentified

Ships in Harbour also takes longer to optimise than Fuel per Ship, because the heuristic used to initialise the popula-

tion is most similar to Fuel per Ship.

As shown in Figure 4, weightings A, B and D converge the fastest, achieving an AO between populations of 1

after 103 generations. Weightings C, E, F and G converge more slowly, achieving an AO of 1 between populations

after 789 generations. Therefore, 800 generations is chosen as the appropriate parameter for later experiments.

5.4. Diversification of Options

In this section, we analyse our approach to enabling a high diversity of options (Desiderata 3). We evaluate the

effect of different diversity weightings on the discount function outlined in Subsection 5.1.5.

5.4.1. Evaluation Methodology

To evaluate the effect of the diversity discount function (shown in Equation 13), we generated rankings using

different values for the diversity weighting W. A ranking was generated for each of the 10 scenarios, using each

weighting from Table 1. The ranking was generated by running the genetic algorithm for 800 generations, using

WPM as the fitness function.

To calculate the effect of W, diversity was measured for each of the resultant rankings. To calculate diversity, we

removed each route from the ranking then calculated the overlap (given in Equation 14) between the route and the

routes remaining in the ranking. Diversity d was then calculated as the average of these overlap values as shown in

Equation 17.

R is the ranking

|R| is the number of routes in the ranking

ri is a route in the ranking,

R \ ri is the ranking without ri.

d(R) =
1
|R|

|R|∑
i=1

o(ri,R \ ri) (17)

It is also important to note that changing the fitness function has an effect on the quality of the solutions in a

ranking. To measure this effect, we recorded the criteria values for each criterion. The average of these criteria values

across the rankings are compared as the diversity weighting W changes. When analysing criteria values, we plot only
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Figure 5: Effect of the diversity weighting on diversity of rankings (colour print)

weightings that include a non-zero weight for the respective criterion. We analyse only these weightings because

maximising a specific criterion is only an objective of the algorithm when the weighting is non-zero.

5.4.2. Results

Figure 5 shows the effect of diversity weighting w on diversity. For each criteria weighting, increasing w increases

the diversity of the rankings. It can also be observed that the criteria weighting has a significant effect on the diversity.

Criteria weightings C and E both have lower diversity, whereas weightings B and D both have higher diversity. This

is because C and E are highly weighted towards distance per ship, and this criterion favours longer routes which

therefore overlap more frequently. Whereas B and D have a high weighting for average lead time which favours

shorter routes.

Figures 6, 7 and 8, show the effect of W on criteria values for Unidentified Ships in Harbour, Average Time to

Arrival and Fuel per Ship, respectively. Unidentified Ships in Harbour is a (cost) criterion we seek to minimise, Fuel

per Ship is another cost criterion. Whereas, we seek to maximise values for the Average Time to Arrival because it is
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Figure 6: Effect of the diversity weighting on Unidentified Ships Time in Harbour (colour print)

a benefit. Weightings A, B and C are weighted towards only one criterion. Each of these weightings shows a decrease

in quality as the diversity weighting increases. The effect is more complex for weightings D, E, F and G as a result of

the relationships between criteria. Figure 7 shows that weighting G features the highest Average Lead Time values at a

diversity weighting of 2.0. This is caused by weighting G having equal weighting across criteria. Average Lead Time

is correlated with the other criteria and therefore more optimal values are attained as the solutions decline in overall

quality.

5.4.3. Conclusion

Increasing diversity weighting W gives rise to the desired effect on diversity, at the cost of a decreased quality

of solutions. This is because the optimal routes with 0 diversity weighting W often visit the same ships. It is worth

noting that the recommended (first route) in each ranking is unchanged by altering W.
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Figure 7: Effect of the diversity weighting on Average Time of Arrival (colour print)

6. Method Trade-off Evaluation

In this section we generate rankings using each of WPM, AHP, TOPSIS and PROMETHEE, with various weight-

ings for criteria. The top 3 routes for each ranking were then simulated to calculate the outcomes. The smoothness of

change in criteria outcomes as criteria weightings increases is used to evaluate the consistency of trade offs between

criteria (Desiderata 4).

6.1. Motivation

Changing criteria weightings is an important part of a decision maker’s process of exploring a solution space.

For MCDM methods it is desirable for changing criteria weightings to create predictable effects on the outcomes of

decisions. In a dynamic setting, the outcomes of decisions are uncertain. For example, in our situational awareness

case study, the decision maker selects a route based upon the predicted outcomes. These predicted values for the

criteria, Unidentified Ships in Harbour, Average Lead Time and Fuel per Ship, are not sure to be consistent with the

actual values for the route. Therefore, in this experiment we simulate routes across the scenarios to calculate values
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Figure 8: Effect of the diversity weighting on Fuel per Ship (colour print)

for the outcome of a route. The outcome is measured through three criteria that map to a corresponding predicted

criterion.

• Score - The number of ships that arrive at the harbour identified minus the number of ships that arrive uniden-

tified.

• Average Lead Time - The actual average lead time for identified ships.

• Fuel Per Ship - The actual amount of fuel used per ship identified.

Score is predicted through the number of unidentified ships in harbour, average lead time through predicted average

lead time and fuel per ship through predicted fuel per ship. To measure the consistency of trade-offs in a dynamic

setting, we compare the weighting for our criteria to the corresponding actual values of the top 3 routes in a ranking.
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6.2. Evaluation Methodology

To generate rankings, the genetic algorithm was run over each of the 10 scenarios, for 800 generations using the

weightings shown in Table 3. The weightings capture a smooth transition of the weight of C1 between a weighting

of 0 and 1. This process was repeated to generate 11 rankings for each criterion (C1) and scenario pair. We then

simulated the drone according to the first 3 routes, across all 600 time-steps of the corresponding scenario, allowing

us to calculate each of the outcomes: score, average lead time and fuel per ship.

To combine these three outcomes into a single metric for each ranking, we used DCG. We chose DCG because

when providing recommendations, the further an option is down the ranking, the less likely it is to be picked. DCG

quantifies this by giving a higher weighting to higher ranked solutions. The result is three evaluation metrics for a

ranking R: the DCG of score (score-DCG(R)), the DCG of average lead time (ALT-DCG(R)) and the DCG of fuel per

ship (FPS-DCG(R)). The formulas are given in Equations 18, 19 and 20 respectively.

Let R be a ranking

Let ri be the ith route in a ranking

sc(ri) is the simulated score of ri

score-DCG(R) =
sc(r1)
log3 2

+
sc(r2)
log3 3

+
sc(r3)
log3 4

(18)

lt(ri) is the simulated average lead time of ri

ALT-DCG(R) =
lt(r1)
log3 2

+
lt(r2)
log3 3

+
lt(r3)
log3 4

(19)

fps(ri) is the simulated fuel per ship of ri

FPS-DCG(R) =
fps(r1)
log3 2

+
fps(r2)
log3 3

+
fps(r3)
log3 4

(20)

For each of the rankings generated through weightings 1-11 over a criterion C1, the DCG of the corresponding

outcome is calculated. The average DCG across all scenarios of each algorithm for Unidentified Ships in Harbour,

Average Lead Time and Fuel per Ship are shown in Figures 9, 10 and 11 respectively.

To measure the smoothness of trade-offs, the Pearson correlation between the weight of a criterion and the corre-

sponding outcome is calculated. This metric reflects the linear correlation of variables, and thus provides an indication
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of the consistency of trade-offs as the weighting changes. The correlation is calculated for each scenario, from which

we calculate a mean and standard error of the mean. Tables 4, 5 and 6 show the mean and standard error of the mean

for unidentified ships in harbour weight vs score, predicted average lead time weight vs average lead time and fuel

per ship weight vs fuel per ship.

Weighting C1 Weight C2 Weight C3 Weight

1 0 0.5 0.5

2 0.1 0.45 0.45

3 0.2 0.40 0.40

4 0.3 0.35 0.35

5 0.4 0.30 0.30

6 0.5 0.25 0.25

7 0.6 0.20 0.20

8 0.7 0.15 0.15

9 0.8 0.10 0.10

10 0.9 0.05 0.05

11 1.0 0 0

Table 3: Weighting for criteria to evaluate changing C1 weight

6.3. Results

Figure 9 shows the weighting for unidentified ships in harbour against the score DCG. It can be observed that as

the weight for unidentified ships in harbour increases, the score DCG also increases. The exception to this can be seen

at the highest weights where score DCG decreases. This is caused by the fact that the other criteria also have an effect

on score. Increasing the weighting past 0.6 gives diminishing returns for the criterion at the cost to other criteria.

Unidentified ships in harbour is not a perfect predictor of score because ships can change direction unexpectedly,

therefore having a small weighting towards fuel per ship improves performance.

Figure 10 shows the weighting for average lead time against the average lead time DCG. It can be observed that

as the weighting for average lead time increases, the average lead time DCG also increases. Once the weight reaches

0.7 the average lead time DCG peaks with no further gains in outcome associated with a higher weighting. This is

caused by the algorithm selecting the routes with the highest average lead time once the weight is equal to or greater

than 0.7.

Figure 11 shows the weighting for fuel per ship against the fuel per ship DCG. It can be observed that as the

weight for fuel per ship increases, the average fuel per ship DCG decreases. This is because the fuel per ship is a

cost criterion. The fuel per ship DCG decreases quickly, then reaches an optimum value at a weighting of 0.5 with
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Figure 9: The change in score DCG as the weighting for Unidentified Ships in Harbour increases (colour print)

no further gains in outcome associated with a higher weighting. The exception to this is with the PROMETHEE

algorithm, which shows an increase in fuel per ship DCG as the criterion weight increases. The likely cause of this

is the preference function being unsuitable for the range of values of fuel per ship. In this case, a linear preference

function was applied to all criteria, as described in Subsection 3.4, but it may be that a non-linear preference function

better models the behaviour of our criteria. The values for fuel per ship fall closer to an exponential scale, therefore

the trade-offs made are inappropriate. This creates a linear correlation for the predicted values. It is worth noting that

there is a difference between predicted values and the actual outcomes measured. This noise is particularly great for

fuel per ship due to the wide range of possible values. As a result, the correlation is reversed.

Table 4 shows the mean Pearson correlation and standard error of the mean for unidentified ships in harbour

weight vs score. TOPSIS has the highest correlation, followed by PROMETHEE, AHP and WPM respectively.

TOPSIS has substantially more consistent trade-offs than the other algorithms, with a correlation of 0.833. Table 5

shows the mean Pearson correlation and standard error of the mean for average lead time weight vs average lead

time. WPM has the highest correlation, followed by PROMETHEE then TOPSIS and AHP. All the correlations are
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Figure 10: The change in Average Lead Time DCG as the weighting for Average Lead Time increases (colour print)

strong, with little difference between the algorithms. Table 6 shows the mean Pearson correlation and standard error

of the mean for fuel per ship weight vs fuel per ship. Fuel per ship is a cost criterion, therefore a high negative

correlation corresponds to consistent trade-offs between criteria. The correlations are negative with the exception of

PROMETHEE. Generally the correlation is weak, showing inconsistent behaviour of changing weightings. The most

consistent trade-offs are made by the TOPSIS algorithm, which had a correlation of -0.64. TOPSIS was followed by

WPM, AHP and PROMETHEE respectively.

6.4. Conclusions

Overall, TOPSIS was found be the algorithm which made the most consistent trade-offs between criteria (Desider-

ata 4), only under-performing another algorithm with respect to average lead time. AHP and WPM were the next

most consistent algorithms with no significant difference in correlation between weights and outcome. Finally,

PROMETHEE was the least consistent algorithm, this was caused by the implementation using a fixed preference

function P(x) for all criteria.
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Figure 11: The change in Fuel per Ship DCG as the weighting for Fuel per Ship increases (colour print)

7. Method Criteria Values Sensitivity Evaluation

In this section we generate rankings using each of WPM, AHP, TOPSIS and PROMETHEE as a fitness function

for our dynamic genetic algorithm. The stability of the resultant rankings is evaluated (Desiderata 5) under small

changes to criteria values.

7.1. Evaluation Methodology

To evaluate the stability of rankings we used each MCDM method for 800 generations to generate a ranking. This

process was repeated for each of the scenarios to generate a total of 10 rankings per method. Each algorithm used

weighting G which assigns equal weighting to each criterion. For this experiment the diversity weight W was set to 0

to remove any effect of the diversity discount function on the outcome.

Once we generated a ranking we applied small changes to criteria values. To do this we modelled a random

variable (X) using a gamma distribution (Γ) for each criteria value of each route in the ranking (Lukacs 1955). The
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USH weighting vs score DCG

WPM 0.541 +- 0.115

AHP 0.603 +- 0.049

TOPSIS 0.833 +- 0.0355

PROM 0.629 +- 0.0895

Table 4: Correlation between USH weighting and score DCG for each algorithm; USH refers to Unidentified Ships in Harbour

ALT weighting vs ALT DCG

WPM 0.942 +- 0.00541

AHP 0.885 +- 0.0415

TOPSIS 0.885 +- 0.0245

PROM 0.893 +- 0.0208

Table 5: Correlation between ALT weighting and ALT DCG for each algorithm; ALT refers to Average Lead Time

gamma distribution is a two-parameter family of continuous probability distributions. The gamma distribution is

parameterised using shape k and scale θ as shown in Equation 21. For a gamma distribution with shape k and scale θ,

the mean (µ) and variance (σ2) are given in Equations 22 and 23 respectively.

X ∼ Γ(k, θ) = Gamma(k, θ) (21)

µ = kθ (22) σ2 = kθ2 (23)

The shape parameter affects the shape of the distribution rather than shifting it or stretching it. The scale parameter

spreads the distribution across a larger range. We created a gamma distribution with the mean (µ) as the original value

for the criteria (cx) and the variance (σ2) being 0.1% of the value for the criteria. To achieve this we parameterised

the gamma distribution with θ and k as shown in Equations 24 and 25 respectively. Resultant gamma distributions are

shown in Figure 12 for criteria values (cx): c1 = 5, c2 = 15, and c3 = 30.

θ =
1

1000
(24) k =

cx

θ
(25)

Each X was then sampled 200 times to generate 200 new sets of solutions with small changes to all criteria values.

The sampled rankings were then re-ranked according to the MCDM method used to generate the original ranking. We

then measured the average change in rank for each route.
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FPS weighting vs FPS DCG

WPM -0.268 +- 0.109

AHP -0.166 +- 0.176

TOPSIS -0.64 +- 0.0997

PROM 0.436 +- 0.159

Table 6: Correlation between FPS weighting and FPS DCG for each algorithm; FPS refers to Fuel Per Ship

The change in rank for each route for the Edinburgh scenario is shown in Figures 13, 14, 15 and 16 for WPM,

AHP, TOPSIS and PROMETHEE respectively. The changes in rank were then averaged to calculate an average

change across each ranking for each algorithm and scenario, as shown in Table 7. Finally, these scores were averaged

across all scenarios to calculate the average change for each algorithm, given in Table 8.

7.2. Results

Figures 13-16 show the ranks of routes across 200 samples for each algorithm over the Edinburgh scenario. The

original rank of the route is shown across the bottom with the box plot showing the mean, upper quartile, lower

quartile and range of ranks for each route, circles are drawn represent outlying values.

Figure 13 shows that the WPM ranking is very unstable, with an average rank change of 2.91. It can be observed

that the ranks of routes varies through almost the entire range of potential values, with the trend of increasing rank

from left to right only visible through the mean and interquartile range. Figure 14 shows the most stable ranking,

generated by AHP, resulting in an average rank change of 0.604. The top four routes are always the same, with

positions varying more for lower ranked routes. Figure 15 shows a ranking generated by TOPSIS with an average

rank change of 1.43. The first two routes are always the same, with positions varying over a large range for the rest of

the ranking. Figure 16 shows a relatively stable ranking generated by PROMETHEE, with an average rank change of

0.853. For this ranking, the lowest ranked routes are the most stable, with the top results varying across a wider range

of ranks.

Table 7 shows the average rank change for each algorithm across each scenario. It can be observed that the

scenario has a significant effect on the stability of the rankings. For example, the Liverpool scenario on average

generated much more stable rankings, resulting in an average rank change of 0.189. This was caused by the fact

the scenario tended towards shorter routes which caused larger differences between criteria values in the resultant

rankings. On the other hand, scenarios which tended towards longer routes, such as Oban which had an average

rank change of 3.24, generated clusters of very similar routes. This created rankings with much smaller differences

between criteria values that were therefore much less stable under small changes.

Table 8 shows the average change for each algorithm across all scenarios. The standard error resulting from the

randomness of sampling is also given. We found that applying TOPSIS resulted in the most stable rankings, followed
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Figure 12: Gamma distribution probability density function with criteria values (cx): c1 = 5, c2 = 15, and c3 = 30. (colour print)

by AHP, PROMETHEE and WPM respectively. The standard error for each algorithm was very small, meaning

that all the differences were highly significant, under the epistemic uncertainty generated by random variable X from

Equation 21. This was calculated via t-test between all pairs of distributions (each generated by a different MCDM

method).

7.3. Conclusions

TOPSIS was found to be the most stable method under small changes to criteria values (Desiderata 5). AHP was

the second most stable with a slightly higher change in rank than TOPSIS. AHP was followed by PROMETHEE and

WPM respectively, which were found to be substantially less stable.
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Figure 13: WPM ranking sensitivity box plot, showing an average rank change of 2.91 across 200 samples.

8. Discussion and Conclusion

8.1. Discussion

There are few comparative studies which compare different MCDM methods. Such studies fall into two categories:

those that compare the results of MCDM methods and those that compare the attributes. The first category includes

Sarraf et al. (Sarraf and McGuire 2020) and Triantaphyllou et al. (Triantaphyllou and Mann 1989), that compare

the results of different methods to a benchmark. Generally, these benchmarks are results generated using the most

popular MCDM method at the time. The second category includes Zanakis et al. (Zanakis et al. 1998), that evaluates

the frequency of rank reversal in MCDM methods. Rank reversal is an undesired characteristic for MCDM methods,

therefore understanding its prevalence is invaluable when selecting an appropriate algorithm. Our study falls into

the second category, comparing desirable attributes of methods in the context of dynamic decision support. The two

attributes highlighted as imperative for dynamic problems are the consistency of trade-offs between criteria and the

stability of results under small changes to criteria.
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Figure 14: AHP ranking sensitivity box plot, showing an average rank change of 0.604 across 200 samples.

The effect of different strategies for the integration of weighting is not well studied but is an important character-

istic contributing to the suitability of an MCDM method. For example, TOPSIS was found to be the MCDM method

that made the most consistent trade-offs between criteria. The trade-offs between criteria in TOPSIS are controlled by

the scaling of dimensions, each representing a criterion, in the solution space. This strategy has been shown to create

consistently linear trade-offs, that can easily be understood by a decision maker.

TOPSIS was also found to be the most stable method under small changes to criteria values. This result is

consistent with the study by Zanakis et al. (Zanakis et al. 1998), which found TOPSIS to be the most stable algorithm

(suffering the least from rank reversals) when the members of a ranking are changed. Albeit using a different definition

for stability, these results show the robustness of the goal, aspiration and references based models. This is because

this class of models relates the solutions to an objective, leading to less sensitivity in the rankings when solutions are

added/removed or criteria values are altered.

On the other hand, both AHP and PROMETHEE rely substantially on comparisons between all solutions and

therefore have increased risk of rank reversal both under small changes to criteria values or when solutions are
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Figure 15: TOPSIS ranking sensitivity box plot, showing an average rank change of 1.43 across 200 samples.

added/removed. Zanakis et al. showed that WPM is relatively stable under addition/removal of solutions, because

there is no relative scoring of solutions beyond normalisation. Unfortunately, this normalisation causes a large amount

of instability when criteria values change. When the largest criteria value changes, the multiplicative approach of

WPM can cause a substantial change in the relative values of criteria. This leads to unstable rankings, under small

changes to criteria values.

8.2. Conclusion

In this paper, a dynamic multi-criteria DSS was presented for situational awareness using drones. It was shown

how the DSS enabled declarative specification of preferences (Desiderata 1), dynamic revision of recommendations

(Desiderata 2) and high diversity of options (Desiderata 3). The approach uses declarative specification of preferences

to set weights for an MCDM method. The MCDM methods were applied within a streaming genetic algorithm running

in real-time to enable dynamic revision of recommendations. Our methodology goes further than the literature by

applying a priori knowledge of the decision-maker’s preferences to reduce the multi-objective evolutionary algorithm
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Figure 16: PROMETHEE ranking sensitivity box plot, showing an average rank change of 0.853 across 200 samples.

(MOEA) approach to a single step process that can be run over dynamic data to continuously refine results.

This approach was combined with a diversity discount function (as shown in Equation 13) that provides a lever to

control the diversity of solutions. It was then shown that this function provided the desired effect, creating a diverse

set of routes at the cost of reduced attainment of criteria. The mechanism leaves the recommended route (the route

ranked first) unchanged.

This was followed by an evaluation of WPM, AHP, TOPSIS and PROMETHEE for suitability as components of a

dynamic DSS using our situational awareness case study. The evaluation was designed as a generalisable approach to

assessing decision support methods in the dynamic space. We mimic the approach of Belton and Gear, who identified

rank reversal as a negative characteristic of MCDM methods through the identification and evaluation of desiderata

for specifically dynamic problems. Our identified desiderata for comparing MCDM methods were the consistency

of trade-offs (Desiderata 4) and the stability of results (Desiderata 5). These were both assessed in the context of

our situational awareness scenario, using simulated route rankings to assess the stability of results and simulated

route outcomes to assess the consistency of trade-offs. Based on the results, we found that TOPSIS best fulfils both
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Algorithm WPM AHP TOPSIS PROM AVG

Edinburgh 2.91 0.604 1.43 0.853 1.45

Liverpool 0.294 0.185 0.222 0.0547 0.189

Belfast 1.57 1.3 1.11 1.79 1.44

Dublin 0.633 0.743 0.47 0.408 0.564

Portsmouth 4.90 1.51 1.35 3.27 2.76

Plymouth 2.32 0.41 0.486 0.661 0.969

Oban 4.98 2.17 1.00 4.82 3.24

Douglas 4.98 0.489 0.853 0.586 1.73

Dover 4.89 1.54 1.31 3.39 2.78

Hull 0.153 0.244 0.132 0.11 0.160

Table 7: Average change of rank across rankings for each algorithm and scenario; AVG refers to the average for all algorithms across each scenario;

PROM refers to PROMETHEE.

Algorithm Average Change in Rank

WPM 4.40 +- 0.0172

AHP 1.5 +- 0.0204

TOPSIS 0.931 +- 0.0107

PROM 2.88 +- 0.0403

Table 8: Average rank change and standard error for each algorithm across all scenarios; PROM refers to PROMETHEE.

Desiderata 4 and 5. We therefore suggest TOPSIS as an appropriate MCDM method for dynamic decision making.
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