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Abstract The stability of an interval type-2 (IT2)
sampled-data (SD)polynomial fuzzy-model-based con-
trol system with a switching control scheme is studied
in this paper. The uncertain nonlinear plant is depicted
via an IT2 polynomial fuzzy model. To realize con-
trol, a switching IT2SD polynomial fuzzy controller
is generated. This paper adopts a switching control
scheme with a variable sampling period. The mod-
eling domain consists of several sub-domains, and
each sub-domain corresponds to a local IT2SD polyno-
mial fuzzy controller. These local IT2SD polynomial
fuzzy controllers form the switching IT2SD polyno-
mial fuzzy controller. To aid in the stability analysis,
this paper adopts a looped-functional-based technique.
The imperfect premise matching concept is brought in
to solve the mismatch dilemma caused by the SD con-
trol strategy and uncertainties. For decreasing the con-
servativeness, this paper takes into account the state
information as well as the information of IT2 member-
ship functions. The stability analysis is performed for
each sub-domain, providing the potential for further
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relaxation. As polynomials exist in the stability con-
ditions, this paper employs the sum-of-squares method
for the stability investigation. The simulation outcomes
confirm the efficacy of the proposed method.

Keywords Switching control scheme · Membership
functions (MFs) · Imperfect premise matching (IPM)
concept · Variable sampling period · Sum-of-squares
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1 Introduction

To support the controller synthesis for the plant which
is hard to be described because there exist nonlin-
earities, the Takagi-Sugeno (T-S) fuzzy-model-based
(FMB) technique is viewed as a powerful alternative
[1]. The T-S fuzzy model combining multiple sub-
systems through a weighted sum can be used to depict
the nonlinear plant [2]. To implement feedback con-
trol, the fuzzy controller which combines multiple sub-
controllers through a weighted sum is applied [3,4].
When the T-S FMB technique is applied, the stability
could be investigated via the linear-matrix-inequality
(LMI) method.

Recently, the polynomial fuzzy-model-based
(PFMB) technique extended from the T-S FMB tech-
nique has been extensively utilized to support the con-
troller synthesis [5,6]. The polynomial fuzzy model
is regarded to possess better description capability.
For the stability investigation where polynomials are
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involved, [5,6] leveraged the sum-of-squares (SOS)
method.

The discussion of fuzzy sets is very important for
fuzzy control. Type-1 fuzzy sets are popular for han-
dling nonlinearities, but their capability of directly cap-
turing uncertainties is far from enough [7]. To tackle
nonlinearities aswell as uncertainties, type-2 fuzzy sets
were employed [8]. Through the footprint of uncer-
tainty (FOU), the information of uncertainties is able to
be seized. Despite the superior capability of capturing
uncertainties, the increasing computational complexity
is still a problem. Thanks to the appearance of interval
type-2 (IT2) fuzzy sets, not only can the information of
nonlinearities and uncertainties be seized, but also the
computational burden can be reduced at the same time
[8,9]. In [10], an IT2FMB control system was put for-
ward. [11] then further proposed an IT2PMFB control
system.

The alleviation of the conservativeness of stability
conditions is a key target in the design. To realize it,
the parallel distributed compensation (PDC) approach
was used [4]. However, the PDC approach requires the
membership functions (MFs) and the number of rules
of the fuzzy controller to be consistent with those of
the fuzzy model, which results in weak design flexibil-
ity [12]. Given this, the following works were done.
In [13], the membership-function-dependent (MFD)
approachwas used for alleviating the conservativeness.
[14] put forward an imperfect premise matching (IPM)
concept. Under the IPM concept, it can be flexible in
determining the MFs and the number of rules of the
fuzzy controller. Then, large amounts of works adopt-
ing the MFD approach as well as the IPM concept
were proposed [7,15–17]. In some papers, the switch-
ing control is also regarded as a great option to relax
the stability conditions. For example, in [18], a switch-
ing sampled-data (SD) control approach was applied
to relax results. In [19], a switching polynomial fuzzy
controller accompanying a switching polynomial Lya-
punov function was put forward for relaxation.

Along with the rapid advancements in digital tech-
nology as well as other related technologies, the SD
control strategy has found extensive applications [20–
22]. In the SD control strategy, the control input is
in staircase form, which makes the stability analy-
sis extremely difficult [23]. For the facilitation of the
stability analysis, many techniques were applied, like
the looped-functional-based technique, the input delay
technique, etc. [24–28]. Till now, there have beenmany

excellent achievements regarding the SD control strat-
egy. [29] applied the aperiodic SD control strategy
to the networked control systems taking into account
time-varying delays. In [30], the mode-dependent ape-
riodic SD control strategy was proposed for delayed
error stochastic Markovian jump neural networks. [31]
analyzed the stability of the Itô stochastic systems
incorporating time-delays under the aperiodic SD con-
trol strategy. However, the IT2PFMB control system
that adopts both the SD control strategy and switching
control scheme has not been considered.

This study implements the stability investigation
of an interval type-2 sampled-data polynomial fuzzy-
model-based (IT2SDPFMB) control system with a
switching control scheme. In the study, a switching
control scheme with a variable sampling period is car-
ried out. The modeling domain consists of some sub-
domains. If the system is within a sub-domain and
does not transit from the sub-domain to another sub-
domain, the sampler will sample every interval hs ,
and a corresponding local IT2SD polynomial fuzzy
controller will be chosen; if the system transits from
one sub-domain to another sub-domain, the sampler
will sample immediately, and a local IT2SD polyno-
mial fuzzy controller corresponding to the new sub-
domain will be chosen to generate the new control
input. These local IT2SD polynomial fuzzy controllers
compose the switching IT2SD polynomial fuzzy con-
troller. A looped-functional-based technique is applied
to the analysis, and then the information between tk and
t can be used. Due to the mismatch dilemma caused
by the SD control strategy and uncertainties, the PDC
approach cannot be implemented. Given this situation,
the IPM concept as well as the MFD approach are
applied. For relaxing the stability conditions, the infor-
mation of IT2 MFs is utilized. For further relaxation,
the state information is also considered [23]. In addi-
tion, the stability conditions have the potential to be
more relaxed by the switching control scheme.

Listed below are the primary contributions:

(1) The stability of an IT2SDPFMB control system
with a switching control scheme is investigated for
the first time.

(2) The IPM concept is employed to promote flexibil-
ity by freely determining the MFs and the number
of rules of the switching IT2SD polynomial fuzzy
controller. In addition, the implementation cost can
be reduced by granting the simpler shape of MFs
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and the smaller number of rules to the switching
IT2SD polynomial fuzzy controller.

(3) An MFD switching IT2SD polynomial fuzzy con-
troller design considering the information between
tk and t , the state information, the information of
IT2 MFs and the switching control scheme with a
variable sampling period is proposed, which can
achieve less conservative results.

(4) The SOS-based conditions presented in this paper
are first developed to guarantee the stability of the
IT2SDPFMB control system where a switching
control scheme with a variable sampling period is
considered.

Below is an outline of the remaining sections in this
paper. Section2 introduces the preliminary knowledge.
Section3presents themain results. Section4 reveals the
efficacy of the proposedmethod through the simulation
outcomes. A conclusion has been drawn in Section5.

Notations:Themonomial in ζ(t) = [ς1(t) ς2(t) · · ·
ςn(t)]T is considered to be ς

o1
1 (t)ςo2

2 (t) · · · ςon
n (t) in

which oi ≥ 0, i = 1, 2, · · · n, denotes the inte-
ger. o = ∑n

i=1 oi represents the degree of a mono-
mial. A polynomial e (ζ(t)) denotes an SOS when
e (ζ(t)) = ∑m

j=1 f 2j (ζ(t))where f j (ζ(t)) is the poly-
nomial,m > 0 denotes an integer. Clearly, e (ζ(t)) ≥ 0
when e (ζ(t)) denotes an SOS. Superscript “T ” repre-
sents the transposition of amatrix and superscript “−1”
signifies the inverse of a matrix, “0m×n” signifies the
m×n zero matrix and “Im” represents them×m iden-
tity matrix. “Sym {C}” is equivalent to C + CT .

2 Preliminaries

2.1 IT2 polynomial fuzzy model

The ith rule of the IT2 polynomial fuzzy model with p
rules is shown below [7,19]:

Rule i : IF f 1(ζ(t)) is M̃i
1 AND . . . AND f Ψ (ζ(t)) is M̃i

Ψ ,

THEN ζ̇ (t) = Ai (ζ(t)) ζ̌ (ζ(t)) + Bi (ζ(t))u(t) (1)

inwhich M̃i
α represents the ith rule’s IT2 fuzzy term that

corresponds to the function f α(ζ(t)), where i is from 1
to p andα is from1 toΨ , p > 0 andΨ > 0 are integers;
ζ(t) = [ς1(t) ς2(t) · · · ςn(t)]T represents the state
vector; ζ̌ (ζ(t)) = [

ς̌1 (ζ(t)) ς̌2 (ζ(t)) · · · ς̌N (ζ(t))
]T

represents the vector of the monomials in ζ(t); u(t) =
[u1(t) u2(t) · · · um(t)]T represents the input vector;
Ai (ζ(t)) ∈ Rn×N that represents the polynomial sys-
tem matrix and Bi (ζ(t)) ∈ Rn×m that represents the
polynomial input matrix have been given. Through the
proper selection of ζ̌ (ζ(t)), the condition ζ̌ (ζ(t)) = 0
if and only if ζ(t) = 0 is considered. The ith rule’s
firing strength is shown below:

W̆i (ζ(t)) = [
wi (ζ(t)) , wi (ζ(t))

]
, i is from 1 to p

(2)

in which wi (ζ(t)) that signifies the lower grade of
membership equals

∏Ψ
α=1 μ

M̃i
α
( f α (ζ(t))),

μ
M̃i

α
( f α (ζ(t))) signifies the lower MF; wi (ζ(t)) that

signifies the upper grade of membership equals
∏Ψ

α=1
μM̃i

α
( f α (ζ(t))), μM̃i

α
( f α (ζ(t))) signifies the upper

MF; μ
M̃i

α
( f α (ζ(t))) and μM̃i

α
( f α (ζ(t))) satisfy 0 ≤

μ
M̃i

α
( f α (ζ(t))) ≤ μM̃i

α
( f α (ζ(t))) ≤ 1, then we have

0 ≤ wi (ζ(t)) ≤ wi (ζ(t)) ≤ 1.
Finally, we have

ζ̇ (t) =
p∑

i=1

w̃i (ζ(t))
(
Ai (ζ(t)) ζ̌ (ζ(t)) + Bi (ζ(t))u(t)

)

(3)

where

w̃i (ζ(t)) = λi (ζ(t)) wi (ζ(t)) + λi (ζ(t))wi (ζ(t)) ,

(4)

inwhich w̃i (ζ(t)) is nonnegative,
∑p

i=1 w̃i (ζ(t)) = 1,
λi (ζ(t)) and λi (ζ(t)) both lie between zero (inclusive)
and one (inclusive), the sum of λi (ζ(t)) and λi (ζ(t))
is one, for ∀i , functions λi (ζ(t)) and λi (ζ(t)) are not
demanded to be given.

2.2 Switching IT2SD polynomial fuzzy controller

A switching control scheme with a variable sampling
period is considered in this work. Suppose the model-
ing domain Υ includes L̂ sub-domains, in other words,

Υ = ⋃L̂
l=1 Υl , where L̂ > 0 denotes an integer. A cor-

responding local IT2SD polynomial fuzzy controller
will be chosen if the system is within the sub-domain
Υl .

123



M. Chen et al.

The jth rule of the switching IT2SD polynomial
fuzzy controller with c rules is shown below [7,19]:

Rule j : IF g1 (ζ(tk)) is Ñ j
1 AND . . . AND gΩ (ζ(tk)) is Ñ j

Ω,

THEN u(t) = G jl ζ̌ (ζ(tk)) , for ζ(t) ∈ Υl (5)

in which Ñ j
β represents the jth rule’s IT2 fuzzy term

that corresponds to the function gβ (ζ(tk)), where j is
from 1 to c, l is from 1 to L̂ and β is from 1 to Ω ,
c > 0 and Ω > 0 are integers, k = 0,…, ∞. G jl ∈
Rm×N represents the feedback gain matrix which will
be obtained. The jth rule’s firing strength is below:

M̆ j (ζ(tk)) =
[
m j (ζ(tk)) , m j (ζ(tk))

]
, j is from 1 to c

(6)

in which m j (ζ(tk)) that signifies the lower grade of

membership equals
∏Ω

β=1 μ
Ñ j

β

(
gβ (ζ(tk))

)
,

μ
Ñ j

β

(
gβ (ζ(tk))

)
signifies the lower MF; m j (ζ(tk))

that signifies the upper grade of membership equals∏Ω
β=1 μ

Ñ j
β

(
gβ (ζ(tk))

)
, μ

Ñ j
β

(
gβ (ζ(tk))

)
signifies the

upper MF; μ
Ñ j

β

(
gβ (ζ(tk))

)
and μ

Ñ j
β

(
gβ (ζ(tk))

)
sat-

isfy 0 ≤ μ
Ñ j

β

(
gβ (ζ(tk))

) ≤ μ
Ñ j

β

(
gβ (ζ(tk))

) ≤ 1,

then we have 0 ≤ m j (ζ(tk)) ≤ m j (ζ(tk)) ≤ 1.
Finally, we have

u(t) =
c∑

j=1

m̃ j (ζ(tk))G jl ζ̌ (ζ(tk)) ,

for ζ(t) ∈ Υl , l is from 1 to L̂,

tk ≤ t < tk+1 (7)

where

m̃ j (ζ(tk))

= κ j (ζ(tk))m j (ζ(tk)) + κ j (ζ(tk))m j (ζ(tk))
∑c

f =1

(
κ f (ζ(tk))m f (ζ(tk)) +κ f (ζ(tk))m f (ζ(tk))

) ,

(8)

inwhich m̃ j (ζ(tk)) is nonnegative,
∑c

j=1 m̃ j (ζ(tk)) =
1, κ j (ζ(tk)) and κ j (ζ(tk)) both lie between zero
(inclusive) and one (inclusive), the sum of κ j (ζ(tk))
and κ j (ζ(tk)) is one, for ∀ j , κ j (ζ(tk)) and κ j (ζ(tk))

are functions to be provided. hs ≥ hk = tk+1 − tk > 0
and hs signifies the largest sampling interval.

Lemma 1 [32] Let z: [l, u] → Rn be a vector func-
tion, where l and u are both scalars and l < u. For a
vector ξ ∈ Rm, matrixK ∈ Rm×n and positive definite
matrix J = JT ∈ Rn×n, then

−
∫ u

l
zT (s)Jz(s)ds ≤ (u − l)ξ TKJ−1KT ξ

+ 2ξ TK
∫ u

l
z(s)ds. (9)

3 Main results

The IT2SDPFMBcontrol systemwith a switching con-
trol scheme shown as below can be obtained based on
(3), (7), and

∑p
i=1 w̃i (ζ(t)) = ∑c

j=1 m̃ j (ζ(tk)) =
∑p

i=1

∑c
j=1 w̃i (ζ(t)) ×m̃ j (ζ(tk)) = 1,

ζ̇ (t) =
p∑

i=1

w̃i (ζ(t))
(
Ai (ζ(t)) ζ̌ (ζ(t))

+ Bi (ζ(t))
c∑

j=1

m̃ j (ζ(tk))G jl ζ̌ (ζ(tk))
)

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk))
(
Ai (ζ(t)) ζ̌ (ζ(t))

+ Bi (ζ(t))G jl ζ̌ (ζ(tk))
)
,

for ζ(t) ∈ Υl , l = 1, . . . , L̂. (10)

Consider ˙̌
ζ (ζ(t)) as below:

˙̌
ζ (ζ(t)) = ∂ζ̌ (ζ(t))

∂ζ(t)

dζ(t)

dt
= U (ζ(t)) ζ̇ (t) (11)

in which U (ζ(t)) ∈ RN×n whose αβth element is
shown below:

Uαβ (ζ(t)) = ∂ς̌α (ζ(t))

∂ςβ(t)
, α = 1, . . . , N ;

β = 1, . . . , n. (12)
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To be further, we have

˙̌
ζ (ζ(t))

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk))
(
Ái (ζ(t)) ζ̌ (ζ(t))

+ B́i (ζ(t))G jl ζ̌ (ζ(tk))
)
, for ζ(t) ∈ Υl ,

l = 1, . . . , L̂ (13)

where Ái (ζ(t)) = U (ζ(t))Ai (ζ(t)) and B́i (ζ(t)) =
U (ζ(t)) Bi (ζ(t)).

To simplify representations, define � =
[
ζ̌ T (ζ(t)) ˙̌

ζ T (ζ(t)) ζ̌ T (ζ(tk))
]T

,E1 = [
IN 0N×2N

]
,

E2 = [
0N×N IN 0N×N

]
, E3 = [

0N×2N IN
]
.

3.1 MFI stability analysis and controller design

Theorem 1 Suppose G jl in (7) is known beforehand.
The IT2SDPFMB control system with a switching con-
trol scheme formed by an uncertain nonlinear plant
depicted via the IT2 polynomial fuzzy model (3) as
well as the switching IT2SD polynomial fuzzy con-
troller (7) composed of several local IT2SD polyno-
mial fuzzy controllers can be deemed asymptotically
stable, when there exist matrices P = PT ∈ RN×N ,
S = ST ∈ RN×N , R1 = RT

1 ∈ RN×N , R2 ∈ RN×N ,
M = MT ∈ RN×N , Q ∈ R3N×N and X̃ ∈ RN×N

satisfying the SOS-based conditions below for i =
1, . . . , p; j = 1, . . . , c; l = 1, . . . , L̂:

T1 (P − ε1IN ) 1 is SOS; (14)

T1 (M − ε2IN ) 1 is SOS; (15)

− T2
(
Θ1,i jl (ζ(t)) + ε3 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l;

(16)

− T2
(
Θ1,i jl (ζ(t)) + hsΘ2 + ε4 (ζ(t)) I3N

)
2 is SOS,

∀i, j, l; (17)

− T3

([
Θ1,i jl (ζ(t)) + hsΘ3 hsQ

hsQT −hsM

]

+ ε5 (ζ(t)) I4N

)

3

is SOS, ∀i, j, l; (18)

in which 1 ∈ RN , 2 ∈ R3N as well as 3 ∈
R4N represent arbitrary vectors not dependent of
ζ(t); user-defined ε1 > 0, ε2 > 0, ε f̂ (ζ(t)) >

0, f̂ is from 3 to 5; scalars hs , �1, �2 and �3
are predetermined; Ái (ζ(t)) = U (ζ(t))Ai (ζ(t)),
B́i (ζ(t)) = U (ζ(t))Bi (ζ(t)), U (ζ(t)) ∈ RN×n in
which Uαβ (ζ(t)) = ∂ς̌α(ζ(t))

∂ςβ(t) , α is from 1 to N and β

is from 1 to n; furthermore,

Θ1,i jl (ζ(t)) = Λ1 + Λ3,1 + Λ4,3 + Λ5,i jl (ζ(t)) ,

Θ2 = Λ2,1 + Λ3,2 + Λ4,1,

Θ3 = Λ2,2,

Λ1 = Sym
{
ET
2 PE1

}
,

Λ2,1 = ET
3 SE3,

Λ2,2 = −ET
3 SE3,

Λ3,1 = −
(
ET
1 − ET

3

)
R1 (E1 − E3) − Sym

{(
ET
1 − ET

3

)
R2E3

}
,

Λ3,2 = Sym
{(

ET
1 − ET

3

)
R1E2 + ET

2 R2E3

}
,

Λ4,1 = ET
2 ME2,

Λ4,3 = Sym {Q (E1 − E3)} ,

Λ5,i jl (ζ(t))

= Sym

{

F
(
Ái (ζ(t))E1 + B́i (ζ(t))G jlE3 − E2

)}

,

F = �1ET
1 X̃

T + �2ET
2 X̃

T + �3ET
3 X̃

T
.

Proof Please see Appendix A.

Theorem 2 as below is derived based on Theorem 1
to get the switching IT2SD polynomial fuzzy con-
troller. �	

Theorem 2 The IT2SDPFMB control system with a
switching control scheme formed by an uncertain non-
linear plant depicted via the IT2 polynomial fuzzy
model (3) as well as the switching IT2SD polynomial
fuzzy controller (7) composed of several local IT2SD
polynomial fuzzy controllers can be deemed asymptoti-
cally stable, when there exist matricesX ∈ RN×N , P̀ =
P̀
T ∈ RN×N , S̀ = S̀

T ∈ RN×N , R̀1 = R̀
T
1 ∈ RN×N ,

R̀2 ∈ RN×N , M̀ = M̀
T ∈ RN×N , Q̀ ∈ R3N×N

and N jl ∈ Rm×N satisfying the SOS-based condi-
tions below for i = 1, . . . , p; j = 1, . . . , c;
l = 1, . . . , L̂:
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T1

(
P̀ − ε1IN

)
1 is SOS; (19)

T1

(
M̀ − ε2IN

)
1 is SOS; (20)

− T2

(
Θ̀1,i jl (ζ(t)) + ε3 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l;

(21)

− T2

(
Θ̀1,i jl (ζ(t)) + hsΘ̀2 + ε4 (ζ(t)) I3N

)
2 is SOS,

∀i, j, l; (22)

− T3

([
Θ̀1,i jl (ζ(t)) + hsΘ̀3 hsQ̀

hsQ̀
T −hsM̀

]

+ ε5 (ζ(t)) I4N

)

3

is SOS, ∀i, j, l; (23)

in which 1 ∈ RN , 2 ∈ R3N as well as 3 ∈
R4N represent arbitrary vectors not dependent of
ζ(t); user-defined ε1 > 0, ε2 > 0, ε f̂ (ζ(t)) >

0, f̂ is from 3 to 5; scalars hs , �1, �2 and �3
are predetermined; Ái (ζ(t)) = U (ζ(t))Ai (ζ(t)),
B́i (ζ(t)) = U (ζ(t))Bi (ζ(t)), U (ζ(t)) ∈ RN×n in
which Uαβ (ζ(t)) = ∂ς̌α(ζ(t))

∂ςβ(t) , α is from 1 to N and β

is from 1 to n; furthermore,

Θ̀1,i jl (ζ(t)) = Λ̀1 + Λ̀3,1 + Λ̀4,3 + Λ̀5,i jl (ζ(t)) ,

Θ̀2 = Λ̀2,1 + Λ̀3,2 + Λ̀4,1,

Θ̀3 = Λ̀2,2,

Λ̀1 = Sym
{
ET
2 P̀E1

}
,

Λ̀2,1 = ET
3 S̀E3,

Λ̀2,2 = −ET
3 S̀E3,

Λ̀3,1 = −
(
ET
1 − ET

3

)
R̀1 (E1 − E3) − Sym

{(
ET
1 − ET

3

)
R̀2E3

}
,

Λ̀3,2 = Sym
{(

ET
1 − ET

3

)
R̀1E2 + ET

2 R̀2E3

}
,

Λ̀4,1 = ET
2 M̀E2,

Λ̀4,3 = Sym
{
Q̀ (E1 − E3)

}
,

Λ̀5,i jl (ζ(t)) = Sym
{

F̀
(
Ái (ζ(t))X1E1 + B́i (ζ(t))N jlE3

− X1E2

)}

,

F̀ = �1ET
1 + �2ET

2 + �3ET
3 .

G jl is given by:

G jl = N jlX−1, for ζ(t) ∈ Υl . (24)

Proof Please see Appendix B. �	

3.2 MFD stability analysis and controller design

Theorem 3 Suppose G jl in (7) is known beforehand.
The IT2SDPFMB control system with a switching con-
trol scheme formed by an uncertain nonlinear plant
depicted via the IT2 polynomial fuzzy model (3) as
well as the switching IT2SD polynomial fuzzy con-
troller (7) composed of several local IT2SD polyno-
mial fuzzy controllers can be deemed asymptotically
stable, when there exist matrices P = PT ∈ RN×N ,
S = ST ∈ RN×N , R1 = RT

1 ∈ RN×N , R2 ∈ RN×N ,
M = MT ∈ RN×N , Q ∈ R3N×N , X̃ ∈ RN×N ,
Hi jl (ζ(t)) = HT

i jl (ζ(t)) ∈ R3N×3N , Hi jl (ζ(t)) =
H

T
i jl (ζ(t)) ∈ R3N×3N and Yl (ζ(t)) = YT

l (ζ(t))

∈ R3N×3N satisfying the SOS-based conditions below
for i = 1, . . . , p; j = 1, . . . , c; l = 1, . . . , L̂:

T1 (P − ε1IN ) 1 is SOS; (25)

T1 (M − ε2IN ) 1 is SOS; (26)

T2

(
Hi jl (ζ(t)) − ε3 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l; (27)

T2
(
Hi jl (ζ(t)) − ε4 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l; (28)

T2 (Yl (ζ(t)) − ε5 (ζ(t)) I3N ) 2 is SOS, ∀l; (29)

− T2
(
Φ1,i jl (ζ(t)) + ε6 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l;

(30)

− T2
(
Φ1,i jl (ζ(t)) + hsΘ2 + ε7 (ζ(t)) I3N

)
2 is SOS,

∀i, j, l; (31)

− T3

( [
Φ1,i jl (ζ(t)) + hsΘ3 hsQ

hsQT −hsM

]

+ ε8 (ζ(t)) I4N

)

3

is SOS, ∀i, j, l; (32)

in which 1 ∈ RN , 2 ∈ R3N as well as 3 ∈
R4N represent arbitrary vectors not dependent of
ζ(t); user-defined ε1 > 0, ε2 > 0, ε f̂ (ζ(t)) ≥
0, f̂ is from 3 to 5, εr̂ (ζ(t)) > 0, r̂ is from 6
to 8; δi jl = wilm jl , δi jl = wilm jl ; scalars hs ,
�1, �2, �3, wil , wil , m jl , m jl , vectors ζ

l
∈ Rn,

ζ l ∈ Rn and the diagonal matrix T ∈ Rn×n
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are predetermined; Ái (ζ(t)) = U (ζ(t))Ai (ζ(t)),
B́i (ζ(t)) = U (ζ(t))Bi (ζ(t)), U (ζ(t)) ∈ RN×n in
which Uαβ (ζ(t)) = ∂ς̌α(ζ(t))

∂ςβ(t) , α is from 1 to N and β

is from 1 to n; furthermore,

Φ1,i jl (ζ(t)) = Λ1

+ Λ3,1 + Λ4,3 + Λ5,i jl (ζ(t)) + Hi jl (ζ(t))

− Hi jl (ζ(t)) +
p∑

r=1

c∑

s=1

(
− δrslHrsl (ζ(t))

+ δrslHrsl (ζ(t))
)

+
( (

ζ(t) − ζ
l

)T
T

× (
ζ l − ζ(t)

)
)

Yl (ζ(t)) ,

Θ2 = Λ2,1 + Λ3,2 + Λ4,1,

Θ3 = Λ2,2,

Λ1 = Sym
{
ET
2 PE1

}
,

Λ2,1 = ET
3 SE3,

Λ2,2 = −ET
3 SE3,

Λ3,1 = −
(
ET
1 − ET

3

)
R1 (E1 − E3) − Sym

{(
ET
1 − ET

3

)
R2E3

}
,

Λ3,2 = Sym
{(

ET
1 − ET

3

)
R1E2 + ET

2 R2E3

}
,

Λ4,1 = ET
2 ME2,

Λ4,3 = Sym {Q (E1 − E3)} ,

Λ5,i jl (ζ(t)) = Sym
{

F
(
Ái (ζ(t))E1 + B́i (ζ(t))G jlE3 − E2

)}

,

F = �1ET
1 X̃

T + �2ET
2 X̃

T + �3ET
3 X̃

T
.

Proof Please see Appendix C. �	
Theorem 4 as below is derived based on Theorem 3

to get the switching IT2SD polynomial fuzzy con-
troller.

Theorem 4 The IT2SDPFMB control system with a
switching control scheme formed by an uncertain non-
linear plant depicted via the IT2 polynomial fuzzy
model (3) as well as the switching IT2SD polynomial
fuzzy controller (7) composed of several local IT2SD
polynomial fuzzy controllers can be deemed asymptot-
ically stable, when there exist matrices X ∈ RN×N ,

P̀ = P̀
T ∈ RN×N , S̀ = S̀

T ∈ RN×N , R̀1 =
R̀
T
1 ∈ RN×N , R̀2 ∈ RN×N , M̀ = M̀

T ∈ RN×N ,

Q̀ ∈ R3N×N , H̀i jl (ζ(t)) = H̀
T
i jl (ζ(t)) ∈ R3N×3N ,

H̀i jl (ζ(t)) = H̀
T

i jl (ζ(t)) ∈ R3N×3N , Ỳl (ζ(t)) =
Ỳ
T
l (ζ(t)) ∈ R3N×3N and N jl ∈ Rm×N satisfying

the SOS-based conditions below for i = 1, . . . , p;
j = 1, . . . , c; l = 1, . . . , L̂:

T1

(
P̀ − ε1IN

)
1 is SOS; (33)

T1

(
M̀ − ε2IN

)
1 is SOS; (34)

T2

(
H̀i jl (ζ(t)) − ε3 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l; (35)

T2

(
H̀i jl (ζ(t)) − ε4 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l; (36)

T2

(
Ỳl (ζ(t)) − ε5 (ζ(t)) I3N

)
2 is SOS, ∀l; (37)

− T2

(
Φ̀1,i jl (ζ(t)) + ε6 (ζ(t)) I3N

)
2 is SOS, ∀i, j, l;

(38)

− T2

(
Φ̀1,i jl (ζ(t)) + hsΘ̀2 + ε7 (ζ(t)) I3N

)
2 is SOS,

∀i, j, l; (39)

− T3

( [
Φ̀1,i jl (ζ(t)) + hsΘ̀3 hsQ̀

hsQ̀
T −hsM̀

]

+ ε8 (ζ(t)) I4N

)

3

is SOS, ∀i, j, l; (40)

in which 1 ∈ RN , 2 ∈ R3N as well as 3 ∈
R4N represent arbitrary vectors not dependent of
ζ(t); user-defined ε1 > 0, ε2 > 0, ε f̂ (ζ(t)) ≥
0, f̂ is from 3 to 5, εr̂ (ζ(t)) > 0, r̂ is from 6
to 8; δi jl = wilm jl , δi jl = wilm jl ; scalars hs ,
�1, �2, �3, wil , wil , m jl , m jl , vectors ζ

l
∈ Rn,

ζ l ∈ Rn and the diagonal matrix T ∈ Rn×n

are predetermined; Ái (ζ(t)) = U (ζ(t))Ai (ζ(t)),
B́i (ζ(t)) = U (ζ(t))Bi (ζ(t)), U (ζ(t)) ∈ RN×n in
which Uαβ (ζ(t)) = ∂ς̌α(ζ(t))

∂ςβ(t) , α is from 1 to N and β

is from 1 to n; furthermore,

Φ̀1,i jl (ζ(t)) = Λ̀1 + Λ̀3,1

+ Λ̀4,3 + Λ̀5,i jl (ζ(t)) + H̀i jl (ζ(t))

− H̀i jl (ζ(t)) +
p∑

r=1

c∑

s=1

(
− δrslH̀rsl (ζ(t))

+ δrslH̀rsl (ζ(t))
)

+
( (

ζ(t) − ζ
l

)T
T
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× (
ζ l − ζ(t)

)
)

Ỳl (ζ(t)) ,

Θ̀2 = Λ̀2,1 + Λ̀3,2 + Λ̀4,1,

Θ̀3 = Λ̀2,2,

Λ̀1 = Sym
{
ET
2 P̀E1

}
,

Λ̀2,1 = ET
3 S̀E3,

Λ̀2,2 = −ET
3 S̀E3,

Λ̀3,1 = −
(
ET
1 − ET

3

)
R̀1 (E1 − E3) − Sym

{(
ET
1 − ET

3

)
R̀2E3

}
,

Λ̀3,2 = Sym
{(

ET
1 − ET

3

)
R̀1E2 + ET

2 R̀2E3

}
,

Λ̀4,1 = ET
2 M̀E2,

Λ̀4,3 = Sym
{
Q̀ (E1 − E3)

}
,

Λ̀5,i jl (ζ(t))

= Sym

{

F̀
(
Ái (ζ(t))X1E1 + B́i (ζ(t))N jlE3

− X1E2

)}

,

F̀ = �1ET
1 + �2ET

2 + �3ET
3 .

G jl is given by:

G jl = N jlX−1, for ζ(t) ∈ Υl . (41)

Proof Please see Appendix D. �	

4 Simulation example

For the demonstration of the efficacy of the proposed
method, the simulation outcomes are presented below.

Take into account the IT2 polynomial fuzzy model
below for depicting an uncertain nonlinear plant,

ζ̌ (ζ(t)) = ζ(t) =
[

ς1(t)
ς2(t)

]

,

A1 (ς1(t)) =
[
0.59 − 0.03ς2

1 (t) −1.29 + 0.21ς1(t)
0.02 −2.85

]

,

A2 (ς1(t)) =
[
0.02 − 0.15ς2

1 (t) −2.64 + 0.03ς1(t)
0.35 −1.86

]

,

A3 (ς1(t)) =
[
a + 0.73 2.45 + 0.05ς1(t)
0.26 −1.54

]

,

B1 (ς1(t)) =
[
2.12 + 0.03ς2

1 (t)
0

]

,

B2 (ς1(t)) =
[
7.89 + 0.25ς1(t)

0

]

,

B3 (ς1(t)) =
[
b + 0.21 + 0.12ς2

1 (t)
0.8

]

,

where the IT2 MFs are defined as [33]: w1(ς1(t)) =
μ
M̃1

1
(ς1(t)) = 1 − 1

1+e−ς1(t)−3.5 , w3(ς1(t)) =
μ
M̃3

1
(ς1(t)) = 1

1+e−ς1(t)+3.5 and w2(ς1(t)) = μM̃2
1

(ς1(t)) = 1−μ
M̃1

1
(ς1(t))−μ

M̃3
1
(ς1(t)); w1(ς1(t)) =

μM̃1
1
(ς1(t)) = 1 − 1

1+e−ς1(t)−2.5 , w3(ς1(t)) = μM̃3
1

(ς1(t)) = 1
1+e−ς1(t)+2.5 andw2(ς1(t)) = μ

M̃2
1
(ς1(t)) =

1− μM̃1
1
(ς1(t)) − μM̃3

1
(ς1(t)). In addition, the model-

ing domain of ς1(t) is [−10, 10].
Take into account a 2-rule switching IT2SD poly-

nomial fuzzy controller for control. Select its IT2
MFs to be [33]: m1(ς1(tk)) = μ

Ñ1
1
(ς1(tk)) = {1 for

ς1(tk) < −5.5; −ς1(tk )+4.5
10 for −5.5 ≤ ς1(tk) ≤ 4.5;

0 for ς1(tk) > 4.5}, and m2(ς1(tk)) = μÑ2
1
(ς1(tk))

= 1 − μ
Ñ1
1
(ς1(tk)); m1(ς1(tk)) = μÑ1

1
(ς1(tk)) = {1

for ς1(tk) < −4.5; −ς1(tk )+5.5
10 for −4.5 ≤ ς1(tk) ≤

5.5; 0 for ς1(tk) > 5.5}, m2(ς1(tk)) = μ
Ñ2
1
(ς1(tk)) =

1 − μÑ1
1
(ς1(tk)).

Choose hs = 0.001s; ε1 = ε2 = ε3 (ζ(t)) =
ε4 (ζ(t)) = ε5 (ζ(t)) = ε6 (ζ(t)) = ε7 (ζ(t)) =
ε8 (ζ(t)) = 0.0001; �1 = 1, �2 = 0.1 and �3 = 1;

T =
[
1 0
0 0

]

; the degrees of H̀i jl (ζ(t)), H̀i jl (ζ(t)) and

Ỳl (ζ(t)) are all 0.
In this example, the three cases are employed to

study how L̂ influences the stability regions for 0 ≤
a ≤ 90, 0 ≤ b ≤ 5 (the spacing of a is 10 and the
spacing of b is 1). The detailed information of the three
cases can be found in Table 1. Firstly, Theorem 2 is
applied to acquire the solutions for the three cases for
different a and b, but all solutions are infeasible. Then,
Theorem 4 is applied to acquire the solutions. The sta-
bility regions for L̂ = 1, L̂ = 3 and L̂ = 5 with
Theorem 4 can be found in Fig. 1. It is obvious that the
region for L̂ = 1where feasible solutions can be sought
out is the smallest, while the region for L̂ = 5 where
feasible solutions can be sought out is the broadest.
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Table 1 Sub-domains
Sub-domain l Case 1 (L̂ = 1) Case 2 (L̂ = 3) Case 3 (L̂ = 5)

1 −10 ≤ ς1(t) ≤ 10 −10 ≤ ς1(t) ≤ −4 −10 ≤ ς1(t) ≤ −6

2 − −4 < ς1(t) ≤ 4 −6 < ς1(t) ≤ −2

3 − 4 < ς1(t) ≤ 10 −2 < ς1(t) ≤ 2

4 − − 2 < ς1(t) ≤ 6

5 − − 6 < ς1(t) ≤ 10

Fig. 1 The stability regions for Case 1 (×), Case 2 (�) and Case
3 (©) with Theorem 4

Table 2 G jl got through Theorem 4 for Case 1 for a = 0 and
b = 0

Sub-domain l Feedback gain matrices

1 G11 = [ −1.5709 − 0.8902
]

G21 = [ −1.5709 − 0.8902
]

Table 3 G jl got through Theorem 4 for Case 2 for a = 30 and
b = 3

Sub-domain l Feedback gain matrices

1 G11 = [ −8.9353 − 0.7009
]

G21 = [ −5.8084 − 0.4627
]

2 G12 = [ −11.0903 − 0.8996
]

G22 = [ −11.0903 − 0.8996
]

3 G13 = [ −6.0515 − 0.5319
]

G23 = [ −7.4484 − 0.6719
]

Table 4 G jl got through Theorem 4 for Case 3 for a = 90 and
b = 5

Sub-domain l Feedback gain matrices

1 G11 = [ −26.2739 − 0.8243
]

G21 = [ −11.4559 − 0.3861
]

2 G12 = [ −28.7972 − 0.9364
]

G22 = [ −28.4626 − 0.9236
]

3 G13 = [ −22.3622 − 0.7301
]

G23 = [ −22.3622 − 0.7301
]

4 G14 = [ −22.7525 − 0.7796
]

G24 = [ −22.7392 − 0.7776
]

5 G15 = [ −11.0541 − 0.4114
]

G25 = [ −14.2822 − 0.5230
]

To conduct simulations, the following settings are
considered: λ1(ς1(t)) = sin (5ς1(t))+1

2 and λ1(ς1(t)) =
1− λ1(ς1(t)), λ3(ς1(t)) = cos (5ς1(t))+1

2 and λ3(ς1(t))
= 1 − λ3(ς1(t)), the explicit definitions of λ2(ς1(t))
andλ2(ς1(t)) are noneed tobegivenbecause w̃1(ς1(t))
= λ1(ς1(t))w1(ς1(t)) + λ1(ς1(t)) w1(ς1(t)),
w̃3(ς1(t)) = λ3(ς1(t))w3(ς1(t))+λ3(ς1(t))w3(ς1(t))
as well as w̃2(ς1(t)) = 1 − w̃1(ς1(t)) − w̃3(ς1(t));
κ j (ς1(tk)) and κ j (ς1(tk)) are both 0.5, for j = 1, 2.

Some stable points in Fig. 1 are chosen for further
verification. For Case 1, a = 0 and b = 0 are chosen;
through Theorem 4,we can obtain feedback gainmatri-
ces shown in Table 2. For Case 2, a = 30 and b = 3
are chosen; throughTheorem4,we can obtain feedback
gainmatrices shown in Table 3. For Case 3, a = 90 and
b = 5 are chosen; through Theorem 4, we can obtain
feedback gain matrices shown in Table 4. The phase
plots of ς1(t) and ς2(t) for the three cases for specific
a and b with Theorem 4 are shown in Fig. 2. As seen
from Fig. 2, the curves for the three cases for specific
a and b originating from 4 different initial states which

are
[
10 10

]T
,
[−5 6

]T
,
[−8 −4

]T
and

[
9 −7

]T
, all
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Fig. 2 Phase plots of ς1(t) and ς2(t) with Theorem 4. (Red
curves: phase flows. Black circles: initial states. The black dot:
the origin). (Color figure online)

Fig. 3 Time responses for Case 1 for a = 0 and b = 0 with
Theorem 4

approach the origin. In addition, the time responses for
the three cases for specific a and b with Theorem 4 are

provided, where the initial states are
[
5.5 0

]T
. It can

be found that the sampling intervals in Fig. 3b are the
same, which is because there is only one domain for
Case 1. Then, from Figs. 4b and 5b, the variation in
sampling intervals can be intuitively viewed. Note that
the sampling intervals between 0 and 0.02s are given
in figures because the switching for Case 2 for a = 30
and b = 3, and the switching for Case 3 for a = 90
and b = 5, both happen in 0.02s.
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Fig. 4 Time responses for Case 2 for a = 30 and b = 3 with
Theorem 4

As seen from the simulation outcomes, the proposed
method can be used to realize the control of the uncer-
tain nonlinear plant depicted by the IT2 polynomial
fuzzy model. It is well known that the most practi-
cal examples, such as the inverted pendulum [17], can
be considered to be uncertain nonlinear plants, so the
proposed method can be widely applied to practical
examples, and achieve relaxed results.

Fig. 5 Time responses for Case 3 for a = 90 and b = 5 with
Theorem 4

5 Conclusion

The stability of an IT2SDPFMB control system with a
switching control scheme has been studied. A switch-
ing IT2SD polynomial fuzzy controller consisting of
several local IT2SD polynomial fuzzy controllers has
been synthesized for control. For the support of the
stability analysis, a looped-functional-based technique
has been adopted. For solving the mismatch dilemma
and improving design flexibility, the IPM concept has
been leveraged. The state information, the information
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of IT2 MFs, as well as the switching control scheme,
have been considered, resulting in relaxed stability con-
ditions. The simulation outcomes have confirmed the
efficacy of the proposed method.

In the future, the optimization of MFs will be con-
sidered based on the proposed method for the improve-
ment of control performance.
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Appendix A

Proof of Theorem 1 The functional below is
employed:

V (t) =
4∑

i=1

Vi (t), tk ≤ t < tk+1, (42)

V1(t) = ζ̌ T (ζ(t))Pζ̌ (ζ(t)) , (43)

V2(t) = (t − tk)(tk+1 − t)ζ̌ T (ζ(tk))Sζ̌ (ζ(tk)) ,

(44)

V3(t) = (tk+1 − t)
(
ζ̌ T (ζ(t)) − ζ̌ T (ζ(tk))

)(

R1

(
ζ̌ (ζ(t))

− ζ̌ (ζ(tk))
)

+ 2R2ζ̌ (ζ(tk))

)

, (45)

V4(t) = (tk+1 − t)
∫ t

tk

˙̌
ζ T (ζ(s))M ˙̌

ζ (ζ(s)) ds, (46)

where P > 0 and M > 0.
Take the derivative of Vi (t), i = 1, . . . , 4, we have

V̇1(t) = ˙̌
ζ T (ζ(t))Pζ̌ (ζ(t)) + ζ̌ T (ζ(t))P ˙̌

ζ (ζ(t))

= � TΛ1� , (47)

V̇2(t) = (tk+1 − t)ζ̌ T (ζ(tk))Sζ̌ (ζ(tk))

− (t − tk)ζ̌
T (ζ(tk))Sζ̌ (ζ(tk))

= (tk+1 − t)� TΛ2,1� + (t − tk)�
TΛ2,2� , (48)

V̇3(t) = −
(
ζ̌ T (ζ(t)) − ζ̌ T (ζ(tk))

)(

R1

(
ζ̌ (ζ(t)) − ζ̌ (ζ(tk))

)

+ 2R2ζ̌ (ζ(tk))

)

+ 2(tk+1 − t)

((
ζ̌ T (ζ(t)) − ζ̌ T (ζ(tk))

)

× R1
˙̌
ζ (ζ(t)) + ˙̌

ζ T (ζ(t))R2ζ̌ (ζ(tk))

)

= � TΛ3,1� + (tk+1 − t)� TΛ3,2� . (49)

V̇4(t) = (tk+1 − t) ˙̌ζ T (ζ(t))M ˙̌
ζ (ζ(t))

−
∫ t

tk

˙̌
ζ T (ζ(s))M ˙̌

ζ (ζ(s)) ds. (50)

From (50) and Lemma 1, the following is obtained:

V̇4(t) ≤ (tk+1 − t) ˙̌ζ T (ζ(t))M ˙̌
ζ (ζ(t))

+ (t − tk)�
TQM−1QT�

+ 2� TQ
(
ζ̌ (ζ(t)) − ζ̌ (ζ(tk))

)

= (tk+1 − t)� TΛ4,1� + (t − tk)�
TΛ4,2�

+ � TΛ4,3� (51)

where Λ4,2 = QM−1QT .
From (13), we get

0 = 2
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � TF
(
Ái (ζ(t)) ζ̌ (ζ(t))

+ B́i (ζ(t))G jl ζ̌ (ζ(tk)) − ˙̌
ζ (ζ(t))

)

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � TΛ5,i jl (ζ(t))� ,

for ζ(t) ∈ Υl , l = 1, . . . , L̂ (52)

where F = �1ET
1 X̃

T + �2ET
2 X̃

T + �3ET
3 X̃

T
.

Using (47)–(49), (51), and (52), it follows that for
t ∈ [tk, tk+1),
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V̇ (t) ≤
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk))� T
(
Λ1 + Λ3,1 + Λ4,3

+ Λ5,i jl (ζ(t)) + (tk+1 − t)
(
Λ2,1 + Λ3,2 + Λ4,1

)

+ (t − tk)
(
Λ2,2 + Λ4,2

) )
�

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk))� T
(
Θ1,i jl (ζ(t))

+ (tk+1 − t)Θ2 + (t − tk)
(
Θ3 + Λ4,2

) )
�

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk))� T
(

(tk+1 − t)

hk

(
Θ1,i jl (ζ(t))

+ hkΘ2

)
+ (t − tk)

hk

(
Θ1,i jl (ζ(t)) + hk

(
Θ3 + Λ4,2

) ))

� ,

for ζ(t) ∈ Υl , l = 1, . . . , L̂. (53)

By the convex combination technique [32,34,35],
V̇ (t) < 0 will be obtained if

Θ1,i jl (ζ(t)) + hkΘ2 < 0, ∀i, j, l, (54)

Θ1,i jl (ζ(t)) + hk
(
Θ3 + Λ4,2

)
< 0, ∀i, j, l. (55)

Based on (54), we have

hs − hk
hs

Θ1,i jl (ζ(t)) + hk
hs

(Θ1,i jl (ζ(t)) + hsΘ2) < 0, ∀i, j, l.

(56)

It is apparent that (54) will be valid if

Θ1,i jl (ζ(t)) < 0, ∀i, j, l, (57)

Θ1,i jl (ζ(t)) + hsΘ2 < 0, ∀i, j, l. (58)

Based on (55), we have

hs − hk
hs

Θ1,i jl (ζ(t))

+ hk
hs

(
Θ1,i jl (ζ(t)) + hs(Θ3 + Λ4,2)

)
< 0,

∀i, j, l. (59)

With the Schur complement [36], (55) will be valid
if (57) holds and

[
Θ1,i jl (ζ(t)) + hsΘ3 hsQ

hsQT −hsM

]

< 0, ∀i, j, l. (60)

If (16) holds with ε3 (ζ(t)) > 0, (17) holds with
ε4 (ζ(t)) > 0 and (18) holds with ε5 (ζ(t)) > 0, then
(57), (58) and (60) will be valid, which reveals that (10)
is asymptotically stable.

The proof is completed. �	

Appendix B

Proof of Theorem 2 Define

X1 = X, (61)

X2 =
[

X 0N×N

0N×N X

]

, (62)

X3 =
⎡

⎣
X 0N×N 0N×N

0N×N X 0N×N

0N×N 0N×N X

⎤

⎦ , (63)

X4 =

⎡

⎢
⎢
⎣

X 0N×N 0N×N 0N×N

0N×N X 0N×N 0N×N

0N×N 0N×N X 0N×N

0N×N 0N×N 0N×N X

⎤

⎥
⎥
⎦ . (64)

In addition, define P̀ = X
T
1 PX1, S̀ = X

T
1 SX1,

R̀1 = X
T
1 R1X1, R̀2 = X

T
1 R2X1, M̀ = X

T
1 MX1, Q̀ =

X
T
3 QX1, X̃ = X−1 and F̀ = �1ET

1 + �2ET
2 + �3ET

3 .
(57) is pre-multiplied and post-multiplied through

X
T
3 , X3, we have

Θ̀1,i jl (ζ(t)) < 0, ∀i, j, l. (65)

(58) is pre-multiplied and post-multiplied through
X
T
3 , X3, we have

Θ̀1,i jl (ζ(t)) + hsΘ̀2 < 0, ∀i, j, l. (66)

(60) is pre-multiplied and post-multiplied through
X
T
4 , X4, we have

[
Θ̀1,i jl (ζ(t)) + hsΘ̀3 hsQ̀

hsQ̀
T −hsM̀

]

< 0, ∀i, j, l. (67)

If (21) holds with ε3 (ζ(t)) > 0, (22) holds with
ε4 (ζ(t)) > 0 and (23) holds with ε5 (ζ(t)) > 0, then
(65), (66) and (67) will be valid.

The proof is completed.

�	
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Appendix C

Proof of Theorem 3 For relaxation, the information of
IT2 MFs is utilized. Define

δi jl = wilm jl , for ζ(t) ∈ Υl , i is from 1 to p,

j is from 1 to c, l is from 1 to L̂, (68)

δi jl = wilm jl , for ζ(t) ∈ Υl , i is from 1 to p,

j is from 1 to c, l is from 1 to L̂ (69)

in which wil , m jl are lower bounds of w̃i (ζ(t)) as
well as m̃ j (ζ(tk)), respectively, for ζ(t) ∈ Υl ;wil ,m jl

are upper bounds of w̃i (ζ(t)) as well as m̃ j (ζ(tk)),
respectively, for ζ(t) ∈ Υl . δi jl and δi jl need to satisfy

w̃i (ζ(t)) m̃ j (ζ(tk)) − δi jl ≥ 0, for ζ(t) ∈ Υl ,

i is from 1 to p,

j is from 1 to c, l is from 1 to L̂, (70)

δi jl − w̃i (ζ(t)) m̃ j (ζ(tk)) ≥ 0, for ζ(t) ∈ Υl ,

i is from 1 to p,

j is from 1 to c, l is from 1 to L̂. (71)

Via slack polynomial matrices Hi jl (ζ(t)) ≥ 0,

Hi jl (ζ(t)) ≥ 0, inequalities (70) and (71), we have

p∑

i=1

c∑

j=1

(
w̃i (ζ(t)) m̃ j (ζ(tk)) − δi jl

)
Hi jl (ζ(t)) ≥ 0,

for ζ(t) ∈ Υl , l = 1, . . . , L̂, (72)
p∑

i=1

c∑

j=1

(
δi jl − w̃i (ζ(t)) m̃ j (ζ(tk))

)
Hi jl (ζ(t)) ≥ 0,

for ζ(t) ∈ Υl , l = 1, . . . , L̂. (73)

Furthermore, the state information is taken into
account for further relaxation. Through ζ

l
, ζ l which

are lower as well as upper bounds of ζ(t), respectively,
for ζ(t) ∈ Υl , we have

(
ζ(t) − ζ

l

)T
T

(
ζ l − ζ(t)

)

≥ 0, for ζ(t) ∈ Υl , l = 1, . . . , L̂ (74)

where T =

⎡

⎢
⎢
⎢
⎣

T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...

0 0 · · · Tn

⎤

⎥
⎥
⎥
⎦
, Ti is either zero or one;

if Ti is one, then the information of ςi (t) will be con-
sidered, otherwise not; i = 1, . . . , n.

Via the slackmatrixYl (ζ(t)) ≥ 0 and (74), we have

( (
ζ(t) − ζ

l

)T
T

(
ζ l − ζ(t)

)
)

Yl (ζ(t))

≥ 0, for ζ(t) ∈ Υl , l = 1, . . . , L̂. (75)

Recalling (53) and combining (72), (73), (75), it fol-
lows that for t ∈ [tk, tk+1),

V̇ (t) ≤
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � T
(
Θ1,i jl (ζ(t))

+ (tk+1 − t)Θ2 + (t − tk)
(
Θ3 + Λ4,2

) )
�

+ � T
p∑

i=1

c∑

j=1

(
w̃i (ζ(t)) m̃ j (ζ(tk)) − δi jl

)
Hi jl (ζ(t))�

+ � T
p∑

i=1

c∑

j=1

(
δi jl − w̃i (ζ(t)) m̃ j (ζ(tk))

)
Hi jl (ζ(t))�

+ � T
( (

ζ(t) − ζ
l

)T
T

(
ζ l − ζ(t)

)
)

Yl (ζ(t))�

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � T
(

Θ1,i jl (ζ(t))

+ Hi jl (ζ(t)) − Hi jl (ζ(t))

+
p∑

r=1

c∑

s=1

(
− δrslHrsl (ζ(t)) + δrslHrsl (ζ(t))

)

+
( (

ζ(t) − ζ
l

)T
T

(
ζ l − ζ(t)

)
)

Yl (ζ(t))

+ (tk+1 − t)Θ2 + (t − tk)
(
Θ3 + Λ4,2

)
)

�

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � T
(

Φ1,i jl (ζ(t))

+ (tk+1 − t)Θ2 + (t − tk)
(
Θ3 + Λ4,2

)
)

�

=
p∑

i=1

c∑

j=1

w̃i (ζ(t)) m̃ j (ζ(tk)) � T
(

(tk+1 − t)

hk

(
Φ1,i jl (ζ(t))

+ hkΘ2

)
+ (t − tk)

hk

(
Φ1,i jl (ζ(t)) + hk

(
Θ3 + Λ4,2

) ))

� ,

for ζ(t) ∈ Υl , l = 1, . . . , L̂. (76)
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By the convex combination technique [32,34,35],
V̇ (t) < 0 will be obtained if

Φ1,i jl (ζ(t)) + hkΘ2 < 0, ∀i, j, l, (77)

Φ1,i jl (ζ(t)) + hk
(
Θ3 + Λ4,2

)
< 0, ∀i, j, l. (78)

Based on (77), we have

hs − hk
hs

Φ1,i jl (ζ(t))

+ hk
hs

(Φ1,i jl (ζ(t)) + hsΘ2) < 0, ∀i, j, l. (79)

It is apparent that (77) will be valid if

Φ1,i jl (ζ(t)) < 0, ∀i, j, l, (80)

Φ1,i jl (ζ(t)) + hsΘ2 < 0, ∀i, j, l. (81)

Based on (78), we have

hs − hk
hs

Φ1,i jl (ζ(t))

+ hk
hs

(
Φ1,i jl (ζ(t)) + hs(Θ3 + Λ4,2)

)
< 0,

∀i, j, l. (82)

With the Schur complement [36], (78) will be valid
if (80) holds and

[
Φ1,i jl (ζ(t)) + hsΘ3 hsQ

hsQT −hsM

]

< 0,∀i, j, l. (83)

If (30) holds with ε6 (ζ(t)) > 0, (31) holds with
ε7 (ζ(t)) > 0 and (32) holds with ε8 (ζ(t)) > 0, then
(80), (81) and (83) will be valid, which reveals that (10)
is asymptotically stable.

The proof is completed. �	

Appendix D

Proof of Theorem 4 Define H̀i jl (ζ(t)) = X
T
3 Hi jl

(ζ(t))X3, H̀i jl (ζ(t)) = X
T
3 Hi jl (ζ(t))X3, Ỳl (ζ(t))

= X
T
3 Yl (ζ(t))X3, and the other matrices have been

defined in the proof of Theorem 2.

(80) is pre-multiplied and post-multiplied through
X
T
3 , X3, we have

Φ̀1,i jl (ζ(t)) < 0, ∀i, j, l. (84)

(81) is pre-multiplied and post-multiplied through
X
T
3 , X3, we have

Φ̀1,i jl (ζ(t)) + hsΘ̀2 < 0, ∀i, j, l. (85)

(83) is pre-multiplied and post-multiplied through
X
T
4 , X4, we have

[
Φ̀1,i jl (ζ(t)) + hsΘ̀3 hsQ̀

hsQ̀
T −hsM̀

]

< 0, ∀i, j, l. (86)

If (38) holds with ε6 (ζ(t)) > 0, (39) holds with
ε7 (ζ(t)) > 0 and (40) holds with ε8 (ζ(t)) > 0, then
(84), (85) and (86) will be valid.

The proof is completed. �	
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