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Abstract

Autonomous navigation requires determining a collision-free path for a mobile robot

using only partial observations of the environment. This capability is highly needed

for a wide range of applications, such as search and rescue operations, surveillance,

environmental monitoring, and domestic service robots. In many scenarios, an accu-

rate global map is not available beforehand, posing significant challenges for a robot

planning its path. This type of navigation is often referred to as Mapless Navigation,

and such work is not limited to only Unmanned Ground Vehicle (UGV) but also

other vehicles, such as Unmanned Aerial Vehicles (UAV) and more. This research

aims to develop Reinforcement Learning (RL)-based methods for autonomous navi-

gation for mobile robots, as well as effective tracking strategies for a UAV to follow

a moving target.

Mapless navigation usually assumes accurate localisation, which is unrealistic.

In the real world, localisation methods, such as simultaneous localisation and map-

ping (SLAM), are needed. However, the localisation performance could deteriorate

depending on the environment and observation quality. Therefore, To avoid de-

teriorated localisation, this work introduces an RL-based navigation algorithm to

enable mobile robots to navigate in unknown environments, while incorporating

localisation performance in training the policy. Specifically, a localisation-related

penalty is introduced in the reward space, ensuring localisation safety is taken into

consideration during navigation. Different metrics are formulated to identify if the

localisation performance starts to deteriorate in order to penalise the robot. As such,
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the navigation policy will not only optimise its paths in terms of travel distance and

collision avoidance towards the goal but also avoid venturing into areas that pose

challenges for localisation algorithms.

The localisation-safe algorithm is further extended to UAV navigation, which

uses image-based observations. Instead of deploying an end-to-end control pipeline,

this work establishes a hierarchical control framework that leverages both the capa-

bilities of neural networks for perception and the stability and safety guarantees of

conventional controllers. The high-level controller in this hierarchical framework is a

neural network policy with semantic image inputs, trained using RL algorithms with

localisation-related rewards. The efficacy of the trained policy is demonstrated in

real-world experiments for localisation-safe navigation, and, notably, it exhibits ef-

fectiveness without the need for retraining, thanks to the hierarchical control scheme

and semantic inputs.

Last, a tracking policy is introduced to enable a UAV to track a moving tar-

get. This study designs a reward space, enabling a vision-based UAV, which utilises

depth images for perception, to follow a target within a safe and visible range. The

objective is to maintain the mobile target at the centre of the drone camera’s image

without being occluded by other objects and to avoid collisions with obstacles. It

is observed that training such a policy from scratch may lead to local minima. To

address this, a state-based teacher policy is trained to perform the tracking task,

with environmental perception relying on direct access to state information, includ-

ing position coordinates of obstacles, instead of depth images. An RL algorithm is

then constructed to train the vision-based policy, incorporating behavioural guid-

ance from the state-based teacher policy. This approach yields promising tracking

performance.
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Chapter 1

Introduction

1.1 Background and motivation

Mobile robots come in various forms designed to operate across diverse domains

such as land, air, underwater, and surface. Widely deployed in numerous indus-

tries and our daily lives, these robots serve a broad range of applications, including

domestic service, scientific surveys, military defence, and aeronautic and maritime

operations. Over decades of research and development, mobile robots have gained

significant attention, leading to advancements in unmanned and autonomous capa-

bilities. Those developments are highly desirable as mobile robots are well-suited to

undertake tasks deemed tedious or risky for human beings.

The following subsections discuss the motivations and the challenges of Rein-

forcement Learning (RL)-based algorithms proposed by this thesis regarding robot

navigation and moving target tracking.

1.1.1 Autonomous robot navigation

Autonomous navigation is undoubtedly an essential and fundamental ability for

robots across a range of tasks, such as warehouse automation with Unmanned

Ground Vehicles (UGVs) [1] or Unmanned Aerial Vehicles (UAVs) for power line
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inspection [2]. Built upon this, robots can carry out various complex tasks. Methods

for mobile robot navigation can be generally divided into two groups: non-learning-

based and learning-based [3].

While non-learning-based navigation methods have demonstrated success on nu-

merous occasions, they do come with certain limitations. One prominent constraint

is the necessity for an explicit environment map. This requirement becomes chal-

lenging and may lead to unexpected failures in scenarios where no map is available,

as seen in search and rescue operations (SAR) or when dealing with highly complex

and dynamic environments. Additionally, an overreliance on manually designed path

planning can restrict the generalization capability of mobile robots for deployment

in diverse environments [4]. Furthermore, these methods often demand accurate an-

alytical dynamic models of mobile robots, posing challenges in cases such as UAVs

with complex dynamics.

To address the limitations outlined above, the recent advancements in Deep

Learning (DL) and RL offer solutions through learning-based navigation methods,

which will be explored in Section 2.1. While reinforcement learning navigation has

demonstrated significant success in various applications, the issue of localisation dur-

ing navigation is often overlooked. Many works assume that a robot has access to its

accurate position. However, in real-world applications, a Simultaneous Localisation

and Mapping (SLAM) system, such as Lidar-based or Visual Odometry (VO), is

typically employed for robot self-localisation, and the accuracy of localisation can

be influenced by the robot’s chosen actions. Such a SLAM system relies on environ-

mental features as spatial references for self-localisation and mapping. An action

that directs the robot straight towards the target position may lead to travelling

in a featureless area, resulting in a localisation failure. For example, a robot using

Lidar-based localisation algorithms will lose its position when it follows decision

commands to travel into a long symmetric space, such as a corridor or tunnel [5].

Additionally, violent behaviours caused by UAV’s complex dynamics during agile
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flight may also result in localisation failure as this may introduce inconsistencies

between consecutive observations [6]. The navigation policy should avoid making

such decisions that may lead to localisation failures.

Navigation policies trained with ground truth pose as most of the methods pro-

posed in the literature may lead to localisation failures when deployed in real-world

applications which utilise SLAM algorithms as discussed above, contributing to the

sim-to-real problem. This is because such policies may overlook localisation per-

formance along the navigation trajectory if corresponding rewards are not provided

during training. Additionally, RL-based policies trained in simulation environments

face another aspect of the sim-to-real problem, as observations such as images from

simulators can significantly differ from real-world observations.

Problem 1: The above challenge serves as one key motivation of this project

– to develop RL algorithms that train the navigation policies of mobile robots to be

localisation-aware. The developed algorithms should empower the agent with the

capability to navigate in an unknown environment, optimising not only its goal of

reaching the target position with minimal time cost but also taking into account

the distribution of environmental features for localisation fail-safe decision-making,

which has not been taken care of in current research works. The agent relies solely

on raw sensor information, such as laser scans or camera images, without any prior

knowledge of the environment. For instance, robots carry out search and rescue

tasks in structural disasters, such as fires or earthquakes, where environments are

altered, on-site environment maps are unavailable, and the robots are only provided

with the relative target position they need to reach. The robot will have to carry out

localisation and navigation at the same time without getting lost in the environment.

1.1.2 Autonomous robot tracking

Besides navigation, cooperation is another essential capability for robots to achieve

more complex tasks. Cooperation among multiple robots can achieve more than
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what a single robot can accomplish. Such cooperation is evident in examples involv-

ing UAVs and UGVs. While air vehicles excel in tasks such as delivery, environmen-

tal exploration, and landscape photography, they face constraints, such as limited

battery capacity due to their small sizes. Here, a ground vehicle can play a crucial

role. UAVs can be recharged using power from ground vehicles, or ground vehicles

can transport UAVs during parts of the journey, allowing the UAVs to conserve

energy by not flying.

Additionally, ground vehicles can benefit from aerial vehicles, which can offer

improved traffic and environmental information for ground vehicles as UAVs can

provide a different view and often can look further, and in return, ground vehicles

can enhance their route planning capabilities [7,8]. As demonstrated above, ground

and aerial mobile robots can mutually benefit through cooperation. A fundamental

aspect of achieving such cooperation is enabling the UAVs to autonomously track

the ground vehicle. This capability is crucial for preparing landing operations or

providing enhanced vision around the ground vehicle.

Current tracking strategies for UAVs are often based on trajectory planning,

where the tracking task is decomposed into various sub-tasks executed sequentially.

These components include sensing, mapping, planning, and trajectory optimisa-

tion [9]. However, this task decomposition has the potential to increase processing

latency, involving time for computation and communication between different com-

ponents. Moreover, it may result in a complex system that has the potential to

accumulate errors throughout the pipeline [10].

RL algorithms have demonstrated significant capabilities in achieving complex

UAV manoeuvres through end-to-end policies, resulting in a simple and straight-

forward system. In other words, such end-to-end control schemes allow a robot to

map control signals directly from sensor inputs, such as depth images, with neural

networks. With such a control structure, processing latency can be minimised. Also,

it eliminates the need for environmental mapping, which is typically a challenging
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problem [11]. However, there is a scarcity of research applying RL-based algorithms

to tracking tasks in complex environments, which will be discussed in detail in the

literature review chapter (Section 2.2).

Additionally, this thesis has found that training a tracking policy network from

scratch using high-dimensional inputs, such as images, leads to local minima and low

training efficiency. Consequently, this can result in catastrophic tracking outcomes,

a topic that will be thoroughly explained in Chapter 6.

Problem 2: Hence, this constitutes the second part of the project’s mo-

tivation: to train a UAV to autonomously track a moving target using a novel

end-to-end RL training pipeline. The core challenge is to develop an innovative

RL-based tracking policy that enables the UAV to keep the target vehicle centred

in its camera’s field of view while simultaneously avoiding obstacles in the environ-

ment. This is an essential function for scenarios, such as the above-mentioned search

and rescue operations that are usually within complex and hazardous environments;

UAVs need to track ground vehicles and also ensure collision avoidance.

Motivated by the above-mentioned challenges, this work will particularly focus on

Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). This

does not only include research on single robot navigation but also the capability of

target tracking that is highly demanded by tasks that involve multiple vehicles, such

as using UGVs and UAVs cooperatively under the SAR scenario [12].

Note that, in this thesis, the term mobile robots will be interchangeably used

with UGVs and UAVs in different contexts. Similarly, UAV, drone, and quadrotor

all refer to aerial vehicles and are interchangeably used throughout the thesis.

1.2 Aim and objectives

This project aims to explore how a learning-based system can augment the capabil-

ities of mobile robots. As outlined, several open and intriguing challenges persist.



6 1.3 Contributions

Therefore, the project has a dual focus: 1) enhancing the navigation capabilities of a

single mobile robot with a fail-safe localisation mechanism, and 2) achieving reliable

autonomous tracking of a mobile vehicle by a UAV in environments with obstacles.

The specific objectives include:

• To develop new reinforcement learning reward spaces and training procedures

to prevent mobile robot behaviours from causing localisation failures.

• To develop system structures (end-to-end or hierarchical) tailored to the dy-

namics and complexity of UGV and UAV and bridge the sim-to-real gap for

policy trained in simulation to be applicable in the real world.

• To design a novel reinforcement learning reward space for UAV tracking, en-

suring the target is centred in images without occlusion.

• To develop a novel RL framework for efficient training of vision-based UAV

tracking policy.

1.3 Contributions

Based on the aim and objectives described above, this thesis has achieved the fol-

lowing accomplishments.

Localisation-safe mobile ground robot navigation:

• This thesis transforms the mapless navigation problem of ground vehicles from

an inherent Partially Observable Markov Decision Process (POMDP) setting

to a Markov Decision Process (MDP) setting. This is achieved by 1) termi-

nating a training episode early, when localisation algorithms begin to diverge,

and 2) reconstructing the state with historical information embedding obtained

from the Long Short-Term Memory (LSTM) module.
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• The thesis introduces a novel reward component to penalise mobile robots in

the event of a localisation failure, a component that has not been discussed in

previous works.

• A new training strategy is formulated to train the navigation policy that aims

to not only reach the goal destination swiftly but also avoid moving into regions

where localisation algorithms are susceptible to failure.

VO-safe vision-based UAV navigation:

• For vision-based navigation, to alleviate the sim-to-real problem introduced by

unrealistic RGB images rendered by game-style training simulators, this thesis

develops a high-level policy using semantic images instead of raw RGB images.

In this way, the navigation policy can recognise localisation-unfriendly tex-

tures, such as water or trees, with limited training environments and episodes.

• To compensate for the undesired effect of the complex dynamics of UAVs

on localisation performance, this thesis constructs a hierarchical navigation

system for UAVs comprising an RL-based high-level policy and a conventional

low-level policy. This structure leverages both the ability to comprehend high-

level information of neural networks and the safety and stability provided by

conventional controllers.

• The method proposed in this thesis enables a control policy trained in simu-

lations to achieve vision odometry (VO)-safe navigation in real-world imple-

mentations without the need for retraining.

UAV target tracking:

• For the task of UAV target tracking, a novel reward space is introduced to

penalise the UAV for cases when 1) the target is located at the edge of the

observed image, 2) occluded by obstacles, and 3) outside of the defined distance

ranges.
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• Training a vision-based tracking policy from scratch using depth images tends

to lead to local minima. To address this issue, a novel teacher-student training

strategy is introduced, where the teacher is a state-based policy with accurate

coordinates and radius information of obstacles, as opposed to depth images.

Training with such state information enables policy training to converge to

promising performance more efficiently. Importance sampling is employed to

reformulate the RL training loss function, allowing training data from the

state-based policy to guide the vision-based student policy. Consequently, the

trained vision-based policy can achieve promising tracking performance and

avoid local minima during training.

This research has significant implications for deploying RL-based navigation in

real-world applications, as this work mitigates the assumption of ground-truth local-

isation of the robot. Prioritising localisation safety in navigation strategies for both

ground and aerial vehicles significantly enhances the safety of autonomous mobile

robots. The proposed RL-based tracking policies not only improve the efficiency and

reliability of mobile robot operations but also simplify the overall system framework.

These algorithms can be readily integrated into existing robot platforms and act as

fundamental components for a variety of tasks, including surveillance, search and

rescue, and environmental monitoring.

1.4 Outline

This section outlines the thesis’s content, consisting of seven chapters.

Chapter 2 introduces relevant literature on learning-based navigation, control, and

target tracking of UAVs, followed by an overview of key concepts in reinforcement

learning and important RL algorithms in Chapter 3.

Chapter 4 introduces a localisation-safe navigation method for ground vehicle nav-
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igation in both indoor and outdoor environments. To adapt such localisation-safe

navigation concepts and training methods to vision-based UAVs, which have more

complex dynamics and sensors, Chapter 5 introduces a hierarchical control frame-

work that combines learning-based and conventional control strategies to achieve

VO-safe UAV navigation.

After developing localisation-safe navigation algorithms for individual ground and

aerial robots, to establish the capability of multiple vehicle cooperation, Chapter 6

presents an end-to-end learning framework to train a UAV to track a moving target.

Chapter 7 concludes the thesis. The limitations and challenges of the approaches

developed in this thesis are discussed, and future research directions are proposed.
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Chapter 2

Literature Review

This chapter will present a detailed literature review on the topics of this thesis.

Section 2.1 will provide an in-depth discussion of navigation methods devel-

oped in the literature. This section will start with a brief overview of conventional

navigation methods and their limitations. Subsequently, it will delve into learning-

based algorithms, encompassing both deep learning and reinforcement learning ap-

proaches. Four distinct topics will be presented regarding the implementation of

RL-based algorithms, covering navigation that combines RL with classical control,

uncertainty-aware RL-based navigation, RL-based exploration, and RL for multi-

agent navigation.

In Section 2.2, special attention will be dedicated to learning-based UAV control

and navigation algorithms. This focus arises from the complex dynamics of UAVs,

necessitating additional considerations in control system design. The section will

comprehensively introduce DL-based algorithms, RL-based methods, techniques to

optimise RL policies for optimum performance, approaches that integrate RL with

Model Predictive Controller (MPC), and methodologies for UAV modelling.

Building upon the foundational UAV control methods outlined in Section 2.2,

Section 2.3 will delve into the specifics of autonomous target tracking by UAVs,

aligning with the second focus of this thesis. The section will start by introducing
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traditional non-learning-based approaches, encompassing both control-based and

trajectory planning-based methodologies. Subsequently, it will discuss learning-

based (mainly RL-based) methods that have been explored in the literature for

addressing tracking challenges.

Limitations of methods found in the literature will be discussed in Section 2.4.

These will formulate the research gaps that this thesis tries to bridge. And, the

chapter will be concluded in Section 2.5.

2.1 Navigation by learning-based methods

The methods employed for mobile robot navigation can be broadly categorized into

two main groups: non-learning-based and learning-based.

In the realm of non-learning-based approaches, critical components include sens-

ing, avoidance, and path planning. For instance, the identification of obstacles can

be accomplished through techniques such as optical flow [13] or Lidar-based [14],

facilitating obstacle avoidance. Additionally, rapid exploration random tree algo-

rithms (RRT) [15] are instrumental in designing effective path-planning strategies.

Another noteworthy approach involves the use of SLAM [16]. Such a method entails

running the SLAM algorithm to construct an accurate map of the environment. Sub-

sequently, path planning methods like RRT or A∗ [17] can be seamlessly integrated,

enabling obstacle-free navigation based on the constructed map [3].

While non-learning-based methods have demonstrated success in various appli-

cations, a notable limitation is their reliance on explicit path planning. This require-

ment introduces challenges, particularly in scenarios where no map is available for

an unfamiliar environment, as is often the case in search and rescue scenarios [18].

In such instances, or when dealing with exceedingly complex and dynamic envi-

ronments, the necessity for explicit path planning may lead to unexpected failures.

Additionally, an over-reliance on manually designed path planning [19] has the po-
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tential to curtail the generalization capabilities of mobile robots, restricting their

adaptability to diverse environments [3]. It is crucial to note that purely geomet-

ric intermediate representations may fall short of capturing the nuanced navigation

affordances [4].

As stated above, traditional non-learning-based methods do exhibit certain lim-

itations. Those limitations may be overcome by learning-based algorithms [20] [21].

The subsequent subsections present the discussion of learning-based navigation meth-

ods including DL-based algorithms and RL-based algorithms. As this thesis will

focus on RL algorithms, it will discuss a bit more on RL learning methods.

2.1.1 DL-based navigation

Harnessing the powerful capabilities of neural networks [22], deep learning has

emerged as a valuable tool in instructing mobile robots through expert demonstra-

tions. A prevalent approach involves the establishment of an end-to-end pipeline,

wherein raw sensor inputs are mapped directly to driving commands. Research

works [23] [24] have introduced supervised learning methods trained with human

demonstrations using Convolutional Neural Network (CNN) [25]. This enables

robots to produce driving commands based solely on depth images or Lidar data,

facilitating navigation in obstacle environments without the need for prior environ-

ment mapping (referred to as mapless navigation).

In a different vein, Kanezaki et al. [26] incorporate local maps as inputs to CNNs,

generating the next move based on demonstrations conducted by a traditional plan-

ning algorithm A∗. The core innovation of this approach lies in the manipulation of

obstacle maps through cropping, rotation, and rescaling, contingent on the agents’

current and goal locations. This adaptive transformation enhances the robot’s ca-

pability to handle a broader spectrum of environments, extending beyond those

encountered during training. Furthermore, a map containing the robot’s movement

history is supplied, mitigating the risk of the robot getting stuck in local minima
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and thereby reducing the probability of failures during navigation.

Supervised learning algorithms often entail training robots in virtual environ-

ments owing to the substantial data requirements. However, challenges arise when

deploying these networks in real-world applications [27]. Tai et al. [28] address this

issue by proposing an algorithm that, during the testing phase with real-world in-

puts, translates the input images back to the training world domain using cycleGAN.

This translation ensures that the networks make more informed decisions within the

familiar training domain. The consideration of uncertainty is a key aspect of this

approach, enhancing the safety of driving commands. Similarly, Choi et al. [29]

tackle uncertainty stemming from the lack of training data and measurement noise.

Their approach involves the utilization of a mixture density network to address and

account for uncertainties in the model, contributing to more robust decision-making

in real-world scenarios.

While end-to-end proposals may appear straightforward, there is a high risk

associated with entrusting all tasks to a single neural network. Navigation tasks

can be effectively divided into distinct sub-tasks, with crash avoidance emerging

as a critical component. Convolutional neural networks can be adeptly trained to

predict crash probabilities based on sensor inputs. However, acquiring real-world

crash data presents a formidable challenge. Lee et al. [30] address this issue by

leveraging the video game GTA V to collect training data. The trained model, thus

enriched with information from the virtual environment, can decide how collision

probabilities are influenced by wheel angles, vehicle orientations, and distances.

This innovative approach provides valuable insights into crash avoidance strategies

in situations where real-world crash data is challenging to obtain.

In addition to accounting for the geometric aspects of navigation environments

for effective obstacle avoidance, navigation decision-making should also consider fac-

tors like the physical affordance of the planned trajectory. For instance, traversing

an off-road field covered in tall grass might seem feasible geometrically; however,
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it poses challenges such as bumpiness and high energy consumption for vehicles on

uneven terrain. The study by Kahn et al. [31] addresses this concern by incor-

porating affordance into trajectory planning. They employ supervised learning to

train an LSTM network, predicting costs like collision, bumpiness, and future po-

sitions based on image observations. Subsequently, an MPC computes actions by

minimizing costs derived from events predicted by the LSTM network.

However, the aforementioned approach overlooks prediction uncertainty. Au-

thors in work [32] argue that uncertainties, particularly in terrain properties like

traction, can significantly impact the prediction of dynamic rollouts and terrain

traversability. To address this, they propose learning a Gaussian mixture distribu-

tion of observed terrain traction properties instead of a single value. Additionally,

they train a density estimator to discern whether the observed terrain aligns with the

training data distribution. If not, the subsequent planning phase avoids generating

a trajectory for that terrain.

The majority of trained neural networks remain static without further online

training during deployment. Liu et al. [33] introduce a lifelong learning framework

to enable autonomous vehicles to continuously improve when encountering diverse

and unfamiliar environments, and prevent the forgetting of previously learned skills.

They employ the gradient episodic memory technique to counteract catastrophic

forgetting when agents are trained with new samples from new environments. This

framework maintains a small memory sample buffer from old environments to con-

struct an update constraint. Consequently, the policy does not deteriorate when

evaluated on these old samples after being updated with new environment-collected

samples, facilitating continuous learning without forgetting.

2.1.2 RL-based navigation

While supervised deep learning policies excel at learning from demonstrations, their

generalization ability is somewhat limited, and the process demands a substantial
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amount of labelled data, leading to labour-intensive human efforts [34]. In contrast,

reinforcement learning agents possess the capability to autonomously learn naviga-

tion strategies, exhibiting a greater potential for generalization to unseen situations

during training [35].

Lei and Ming [36] employ a two-step approach to train robots using reinforce-

ment learning for mapless navigation with depth image inputs. In the initial step,

a perception network is trained to extract feature maps from raw depth images

through supervised learning. Subsequently, another network, utilizing these feature

maps as input, is trained using Q-learning to generate move commands. Notably,

in this approach, perception and action decision networks are trained separately.

Building on this methodology, they later integrate perception and decision networks

into a single end-to-end network, employing Deep Q-Network (DQN) training [37].

The results demonstrate that this unified DQN-trained network outperforms both

a supervised learning network and separately trained networks.

Several enhancements have been proposed in the realm of DQN reinforcement

learning for navigation applications based on the above two works. Wang et al. [38]

advocate for a modular architecture to train robots for navigating through com-

plex environments. This approach partitions the navigation task into distinct local

obstacle avoidance and global navigation modules, introducing an action schedul-

ing mechanism to optimise exploration and exploitation strategies. They design a

two-stream network to process different components of the inputs to produce better

state features. Building on state-of-the-art DQN techniques, Ruan et al. [39] inte-

grate advancements such as double networks and duel architectures into a unified

framework, thereby augmenting the robot’s navigation capabilities. Moreover, other

improvements have been explored, including those related to sample efficiency [40],

algorithm hyperparameter selection [41], and various other aspects aimed at refining

the efficiency and effectiveness of DQN-based navigation systems [42–44].

While DQN is only available for discretized action spaces, Tai et al. [45] demon-
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strate the application of reinforcement learning to navigation in continuous ac-

tion spaces using synchronous Deep Deterministic Policy Gradient (DDPG) algo-

rithms. Carlucho et al. [46] extend the scope of reinforcement learning to the three-

dimensional navigation of autonomous underwater vehicles (AUVs). Navigating in

3D poses challenges for non-learning-based algorithms due to the high action dimen-

sion (6DOF) and complex coupled dynamics between vehicles and the underwater

environment. Reinforcement learning proves adept at addressing these challenges.

However, reinforcement learning in continuous action spaces may demand more data

than [47]. Pfeiffer et al. [48] enhance sample efficiency by combining imitation learn-

ing and reinforcement learning. The policy network is initially pre-trained using

imitation learning, and then the pre-trained networks undergo further training with

the constraint policy optimisation (CPO) RL algorithm. This integrated approach

contributes to improved efficiency in learning policies for continuous action spaces.

To ensure the applicability of policies in real-world applications, it is essential

to utilize more realistic simulated environments. Significant efforts have been di-

rected towards constructing simulators capable of rendering photorealistic images

and simulating real-world physics. Examples of such simulators include SUNCG [49],

Habitat [50], AI2-THOR [51] and Gibson [52]. These platforms aim to provide im-

mersive and authentic virtual environments that closely replicate the visual and

physical characteristics of the real world. Such advancements in simulation tech-

nology contribute to the robustness and adaptability of policies developed within

these environments, enhancing their potential for effective deployment in real-world

scenarios.

In addition to the above discussion on general reinforcement algorithms appli-

cations, researchers also pay attention to the implementation details of those algo-

rithms to achieve better performance.

RL training with auxiliary task The complex details of network architec-

tures and training processes in reinforcement learning become crucial, particularly
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in scenarios involving visual inputs, such as images. Training networks with image

inputs could be difficult and unstable. Given the high-dimensional nature of image

inputs, thoughtful consideration must be given to employing specific network layers

to reduce dimensionality and extract feature maps for an optimal robot state repre-

sentation. An innovative technique known as reinforcement learning with auxiliary

tasks is introduced to enhance the decision-making process by obtaining a more

refined representation [53].

When reinforcement learning agents are trained with auxiliary tasks, they con-

tinue training with pseudo rewards derived from these auxiliary tasks in the absence

of extrinsic rewards where the reward of the major task is sparse. This is possible

because auxiliary tasks and the main task (navigation in this case) share a common

representation extraction network [54]. Mirowski et al. [55] embrace this concept

and train an agent capable of navigating a complex simulated environment. The

auxiliary tasks employed in their study include depth prediction and loop closure.

The paper contends that, while depth could be directly used as an input, provid-

ing depth as an auxiliary task loss yields denser training signals, as navigation and

depth prediction share the same representation. The training method employed is

Asynchronous Advantage Actor-Critic (A3C). In a related vein, Tongloy et al. [56]

introduce the work of GPU A3C, enabling the algorithm [55] to run efficiently on

GPU hardware, thereby enhancing computational efficiency and accelerating the

training process.

These advancements collectively contribute to the refinement of network archi-

tectures and training strategies, particularly in the context of reinforcement learning

with visual inputs.

Target-object-driven navigation Some applications extend to a realistic world

application: target reach tasks. In this setting, the robot produces move commands

based on the current camera image and the image of the target object, eventu-

ally navigating to the target object’s position even in the absence of odometry or
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Global Positioning System (GPS) information. Zhu et al. [57] propose a vision-

based target-driven visual navigation system in an AI2-THOR environment, known

for providing high-quality 3D real-life indoor scenes. The authors argue that the

network, with image input, can learn a rough map of the environment, enabling the

agent to both locate itself and identify the target object’s position. The network in

their study comprises two parts: the generic part, shared across all scenes (living

room, bathroom, etc.), is a pre-trained ResNet. However, the scene-specific part

requires retraining when applied to unseen scenes.

Building on the target-driven concept, Kulhanek et al. [58] integrate the idea of

training with auxiliary tasks from work [54] and work [55] to empower robots with

navigation abilities in more realistic environments. In this work, the reliance on

pre-trained ResNet is thus abandoned in favour of a more adaptive approach.

Hsu et al. [59] introduce a classifier designed to categorize features in the embed-

ding space. This enables the robot to automatically select the corresponding scene

model while moving in a specific scene, thereby contributing to more dynamic and

adaptive navigation strategies. These real-world simulation applications underscore

the adaptability and potential of vision-based navigation systems in diverse and

complex environments.

Chancan et al. [60] adopts a pipeline similar to work [57], training an agent to

navigate through outdoor city environments with a current image observation and

a target poison image as inputs. To efficiently represent the current agent position,

a pre-trained feature extractor derived from visual place recognition (VPR) models

is employed, resulting in a concise representation obtained from the current visual

image observation.

Incorporating additional semantic information beyond the current observed im-

age is another avenue for enhancing navigation capabilities. Druon et al. [61] lever-

ages a pre-trained YOLO network to extract objects (e.g., microwave, sink, oven,

fridge) from the image. A context grid map is then constructed based on the ex-
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tracted objects and their corresponding bounding box positions. The target object

is represented by a text word (e.g., ”Bread”) instead of an image, and a word2vec

model encodes this text into a vector, forming part of the input. The input com-

prises three components: the RGB image, the context grid, and the target vector.

In their evaluations, the proposed algorithm surpasses a baseline that lacks context

grid inputs.

Analogous to target-driven navigation, visual servoing tasks involve moving the

agent to a target view pose using images from the current and target viewpoints. Li

et al. [62] propose employing DQN to address such tasks. In comparison to classical

image-based visual servoing (IBVS), they argue that the reinforcement learning-

based algorithm remains effective even when the overlap between the current view

and the target view is minimal, a scenario where IBVS struggles to compute feature

correspondence.

Socially compliant navigation In environments where humans are present,

it becomes essential for robots to be socially aware [63–65]. This requirement is

driven by the need for robots to navigate and interact with humans while avoiding

collisions in dynamic environments. Tail et al. [66] employ a generative adversarial

imitation learning strategy to train robots. This approach aims to teach robots

a more human-like behaviour when interacting with human beings. By leveraging

generative adversarial imitation learning, robots can learn to navigate and engage in

social interactions with behaviour that aligns more closely with human norms and

expectations. This approach contributes to safer and more socially attuned robotic

behaviour in dynamic human-robot environments.

Additionally, they offer a simulator based on Gazebo wherein dynamic objects,

such as pedestrians, move in a socially compliant manner. Environments with such

dynamic elements prove valuable in generating exploration trajectories during the

reinforcement learning training of robots, fostering awareness of social norms. Fur-

thermore, these environments can furnish socially compliant expert behaviours for
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robots trained through supervised learning. The dynamic objects within the envi-

ronment are influenced by four forces, as defined in [66]:

dvt
dt

= Fdesired + Fsocial + Fobs + Fflut (2.1)

Here, Fdesired defines the force propelling the object towards its navigation target

position. It can be simplified as λ(pgoal − pt), where pgoal and pt denote the nav-

igation target and current poses, respectively, and λ serves as a weighting factor.

Fobs represents the force repelling the object from static obstacles within the envi-

ronment. The force Fflut emerges from environmental randomness and the inherent

stochastic behaviour of the dynamic object. Additionally, Fsocial characterizes the

force resulting from the influence exerted by other nearby dynamic pedestrians.

While the prior work by Tai et al. [66] exclusively predicts Fsocial and considers

Fdesired as inputs, Tsai et al. [67] took a different approach by training a Genera-

tive Adversarial Network (GAN) model. This model is designed to predict all three

forces—Fdesired, Fflut, and Fsocial—excluding Fobs. The predictions are based on se-

quences of historical trajectories that encompass both the robot and pedestrians

within the given environments.

To solve such a navigation problem influenced by social-norm, considerable effort

has been dedicated to human behaviour prediction [68–70], which is not the main

interest of this paper and will thus not be discussed in detail.

POMDP-based Navigation In scenarios involving mapless navigation and

reinforcement learning, robots may face challenges due to limited information about

the whole scope of the environments and a lack of history information due to the

reinforcement learning MDP setting, potentially leading to getting stuck in local

minima like a long wall in front of the navigation goal [3]. A strategic solution to

address this issue is to model the navigation problem as a POMDP. Memory-based

recurrent neural networks [71] and deep recurrent Q-learning [72] present effective
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approaches for tackling the complexities inherent in POMDP problems.

In the study by Meng et al. [73], an innovative approach was taken by combining

the LSTM network with Twin Delayed Deep Deterministic Policy Gradients (TD3)

to address POMDP tasks. The integration of the LSTM network plays a crucial

role in encoding historical temporal information within a time series [74]. This en-

hancement contributes to the model’s ability to capture and utilize past information

effectively in the context of POMDP tasks.

Wang et al. [3] propose an innovative solution by introducing a fast recurrent

deterministic policy gradient. Notably, this algorithm allows for online training

without requiring the entire trajectory. The efficacy of this approach is demonstrated

in practical applications, such as navigating UAVs through large-scale and complex

environments. In such environments, where UAVs might easily become stuck in local

regions, this algorithm proves valuable in ensuring efficient and dynamic navigation.

Navigation with instructions In scenarios where navigation instructions are

available, such as guiding a stranger in an unfamiliar building, work by Devo et

al. [75] incorporates textual instructions for a robot navigating through a maze.

Instructions, like ”Go straight, at the next intersection turn left, at the next inter-

section go straight, at the next intersection turn right,” are pre-processed using a

pre-trained GloVe word encoding network [76] and a Bidirectional Gated Recurrent

Unit (BI GRU) network. The resulting embedding vector becomes part of the policy

input, supplementing the current observed image input. The policy is trained using

the GPU-based A3C reinforcement learning algorithm.

In a different approach, Xie et al. [77] presents instructions in the form of a

sparse sequence of images paired with steering commands (e.g., turn left, turn right,

stop). A commander block, constructed with dense layers, GRU layers, and CNN

layers, is trained through attention-based supervised learning to provide steering

commands. These commands, along with the currently observed image and sparse

image sequence with instructions, are used as inputs for a reinforcement learning-
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based controller, trained to follow the provided steering commands.

Brunner et al. [78] introduce an algorithm that addresses the balance between

direction-following commands and localisation needs in robotic navigation. In their

approach, after training, the robot is designed to explore its surroundings to improve

localisation rather than solely adhering to directional commands. It’s worth noting

that, in this particular paper, the direction-following command is not learning-based,

showcasing a strategy where the robot dynamically adjusts its behaviour during

exploration for improved localisation.

Safe RL navigation Safe navigation in terms of collision avoidance is an essen-

tial factor to be considered during policy decisions. Previous work encoded safety

requirements as a soft constraint by producing a negative value reward in addition

to other task-related reward components. The overall objective function to be op-

timised will be a trade-off between safety and other task aims. It may violate the

safety constraint if other reward components are larger than the safety violation

punishment and are thus dominant in constructing the overall objective function.

Hence, safety should be treated separately and be imposed as a hard constraint

where safety is critical. This brings the constrained reinforcement learning:

max
θ
J(θ) = Eτ∼πθ [

∞∑
k=0

γkrt(st, at)] (2.2a)

s.t. cπθ(st, at) ∈ C, (2.2b)

where cπθ(st, at) is the overall safety cost with action at depending on the state st

at time step t. The cost should not exceed an acceptable range as defined by C.

Work [79] proposes to solve such a constrained optimisation problem by a La-

grangian method, which converts the constrained problem to an unconstrained min-

max problem by introducing dual variables (Lagrangian multipliers). Within this

work, the dual variables are learned along with the primal variables(policy param-

eters πθ). Hence, the learning procedure is noisy and it may violate the safety
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constraints before the convergence of the policy training [80]. Instead of learning

the dual variables from the intermediate policy πθ, work [80] computes the dual vari-

ables from scratch for each policy update during training such that the constraint is

always satisfied. In addition to the safety constraint, this work also put a constraint

on the update distance between two consecutive policy update steps similar to trust

region optimisation to alleviate the difficulties brought by the requirement of the

off-policy evaluation of the cost. To guarantee monotonically reducing violation of

safety constraints, work [81] design the policy update dynamics following a trajec-

tory resulting in the policy stably converging to the feasible set. This is done by

converting the safety constraints to Lyapunov functions. They designed to learn

an LSTM-based optimiser to achieve the desired update dynamics. The algorithm

is tested by a navigation task with obstacle avoidance as the safety constraint. In

comparison to works [79] and [80], this work shows a monotonical decrease in ob-

stacle collision numbers as the training steps grow and is less noisy, while work [79]

even diverges without the ability to satisfy safety constraints during the training.

Transfer and Adaptability of RL-trained Policies In certain scenarios,

learned policies may need to be transferred to navigation tasks with settings differ-

ent from their training environment, such as a sim-to-real gap [82], varying sensor

configurations [83], or even different types of sensors [84]. Retraining policies from

scratch in these situations can be time-consuming [85].

Most reinforcement learning policies are initially trained in simulated environ-

ments, introducing a sim-to-real gap when deployed in the real world [86]. This gap

arises from the differences in the visual observation and physical dynamics between

the training and deployment environments. Truong et al. [85] address this sim-to-

real problem by proposing a Bi-directional domain adaptation method. They train

a visual navigation policy using a decentralized distributed variant of the Proximal

Policy Optimisation (PPO) reinforcement learning algorithm. To bridge the dy-

namics gap, a sim2real dynamics adaptor is trained, modelling the residual error
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between simulation and reality dynamics. This dynamics adaptor refines the PPO-

trained policy network to account for more realistic dynamics transfer. For real-

world deployment, they train a real2sim observation adaptor using CycleGAN [87]

to convert real-world images into simulation-like images. This bi-directional adap-

tation requires significantly less real-world data and achieves comparable navigation

performance to direct fine-tuning in the real world.

In a similar vein, Luo et al. [88] adapt a reinforcement learning navigation policy

with camera inputs to a robot with a camera at a different height. By separating

the policy network into perception and inference parts, they fine-tune only the per-

ception part and fix the parameters of the inference network. This approach avoids

retraining the entire policy network and achieves adaptation by aligning the latent

embeddings produced by the perception networks for both the old and new camera

configurations.

Another study by Huang et al. [84] explores the adaptation of a policy trained

with Lidar inputs to work with millimetre-wave (mmWave) inputs. They fine-tune

both the perception and inference blocks of the policy network, introducing an extra

contrastive loss related to the perception embedding difference between mmWave

and Lidar inputs in addition to regular navigation rewards. For comparison, an

observation adaptor is trained to transfer mmWave inputs to the Lidar domain as

an alternative method without retraining the policy network similar to the real2sim

part of work [85], which turns out to face challenges such as a ’phantom wall’ and

susceptibility to noise in mmWave inputs.

Chisari et al. [89] propose introducing uncertainty and regularization terms dur-

ing training to account for unmodeled dynamics in racing tasks. Instead of capturing

unmodeled dynamics with a dynamics adaptor, they utilize a multiplicative uncer-

tainty model. Also, recessive and jerky control signals will result in introducing extra

vehicle dynamics, which are difficult to model. To avoid stimulating such complex

dynamics, which are unseen during training dynamics when applying the policy
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to real racing cars, regularization penalties related to policy outputs are added to

prevent the policy from generating excessive and jerky control signals.

2.1.3 Navigation by combining RL and classical control

While navigation policies trained through end-to-end reinforcement learning offer

the advantage of handling multimodal inputs [90] and simplifying the overall vehicle

control framework, concerns arise regarding reduced transparency and the potential

compromise of safety in control signal outputs [91,92]. To address these challenges,

researchers advocate for a hierarchical system that integrates reinforcement learn-

ing policies with conventional controllers. In such hierarchical control pipelines,

reinforcement learning policies are responsible for high-level decision-making, while

execution is delegated to conventional controllers, providing theory-based conver-

gence and safety guarantees.

In the context of autonomous highway driving, Mirchevska et al. [91] imple-

mented a hierarchical system where a DQN-based high-level network selects a lane

from a set of reachable lanes. The low-level conventional optimal control-based tra-

jectory planning then plans a trajectory to the selected lane. Evaluation results

demonstrate that the proposed algorithm outperforms purely conventional algo-

rithms in terms of navigation time cost. Similarly, Qiao et al. [93] propose training

a high-level behaviour planner to decide whether to change lanes or follow the front

vehicle. In this case, the trajectory planner is also a reinforcement learning-trained

policy, and the low-level execution control is implemented using a PID controller.

Another approach is presented by Brito et al. [94], where a high-level controller

serves as the global planner to determine a sub-goal, and an MPC controller acts

as the local planner to reach the sub-goal. This hybrid approach ensures that the

low-level control signal adheres to the robot’s kinodynamic and obstacle avoidance

constraints. Comparative assessments against pure MPC navigation policies and

pure reinforcement learning policies reveal that the hybrid MPC approach achieves
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superior performance in terms of success rate and travel distance. In their subse-

quent work [95], they train the high-level RL policy to predict informative subgoal.

The overall system is the same. Work [96] has followed the same hierarchical struc-

ture and applied it to build a quadrotor navigation controller.

In addition to explicit high-level navigation commands, high-level decision-making

can involve implicit parameter decisions. Conventional non-learning-based naviga-

tion control systems often optimise or sample control signals using a fixed set of

heuristically chosen parameters, which may need re-tuning for different environ-

ments. Neural networks, with their proficiency in environment perception, can han-

dle the re-tuning task. In the work by Xu et al. [92], a high-level parameter decision

policy network is trained using the Twin Delayed Deep Deterministic Policy Gra-

dient reinforcement learning algorithm. This network selects parameters such as

maximum linear and angular velocity, obstacle inflation radius, collision avoidance,

path following, and goal-reaching cost weight factors for a DWA [97] planner. The

algorithm adapts navigation behaviours in environments with varying configura-

tions or numbers of obstacles, outperforming a DWA planner with fixed parameters

in terms of reducing traversal time.

Similarly, Li et al. [98] propose a high-level policy to decide the reference velocity

for the low-level safe controller, Constrained Iterative Linear Quadratic Regulators

(CILQR). CILQR can solve optimal control for a non-linear dynamics system with

non-convex constraints, but it tends to exhibit aggressive tracking of reference speed.

The reference velocity can be selected adaptively by the RL policy according to

different environmental conditions (e.g. crowdy or sparse). The proposed algorithm

achieves a high completion rate and a low collision rate by selecting a suitable

reference velocity.

In contrast to these works, Patel et al. [99] explore how conventional control

formulations can aid and regulate reinforcement learning algorithms. They argue

that a policy trained by reinforcement learning may over-reward collision avoidance
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behaviour, leading to violations of robot dynamic feasibility. To address this, they

propose using the conventional DWA controller to compute a set of dynamically

feasible velocities and the cost of achieving corresponding velocities. These values

are then used to construct the observation of the reinforcement learning policy,

ensuring that the command from the reinforcement learning policy satisfies robot

dynamics constraints and significantly reducing the dimensionality of the state space

explored by the reinforcement learning policy.

2.1.4 Uncertainty-aware RL Navigation

Navigation policies developed through reinforcement learning algorithms encounter

challenges when confronted with unfamiliar state inputs due to limited exploration

during training [100]. In such instances, there arises a need for the navigation strat-

egy to transition to a more conservative navigation policy to ensure safety when un-

certainties in decision-making are apparent, for instance, slowing down speed [101].

To gauge the confidence of the learned policy in its action decisions based on the

current observation, the study in work [102] introduces a method for estimating de-

cision uncertainty in policies trained with the DQN algorithm. Instead of relying on

a single Q-value prediction at the last layer of the Q network, the proposed approach

involves adding multiple heads as the last layer. Each head comprises several neural

network layers and produces a Q-value estimation based on its unique set of network

parameters. The authors argue that, given the random nature of exploration and

initialization, each head will generate a distinct Q-value estimation. As training

progresses, these estimations converge to real values and become more consistent

when the states are thoroughly explored. For unfamiliar states, where exploration

may be limited, the Q-value estimations from different heads are expected to differ.

By calculating the variance of Q-values across all heads, the method provides an

estimation of the decision uncertainty. This uncertainty measure allows the naviga-

tion policy to determine its confidence level in action decisions based on the current
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observation.

Motivated by the concept of uncertainty awareness, the study conducted by Rana

et al. [103] involves the training of a reinforcement learning-based residual navigation

controller atop a sub-optimal classical controller. In instances where the learned

residual controller exhibits low uncertainty concerning the current observation, it

generates incremental linear and angular velocity corrections, denoted as [vδ, wδ],

which are applied to the linear and angular velocity commands from the sub-optimal

classical controller, denoted as [v, w]. Consequently, the control command becomes

CMD = [v + vδ, w + wδ]. However, in cases where uncertainty is high regarding the

correction command from the residual controller, the velocity correction suggestions

[vδ, wδ] are not accepted, and the control command remains solely derived from the

classical controller: CMD = [v, w]. The uncertainty is quantified by the variance of

the network output using the Monte Carlo dropout technique, as proposed in the

work by Kahn et al. [104], without altering the network configuration.

In contrast to the MC-dropout technique, Liu et al. [105] argue that it imposes a

substantial computational burden, rendering it impractical in resource-constrained

environments. They propose an alternative approach by advocating for the use of

evidential deep learning, a method capable of directly learning epistemic uncertainty

without the need for sampling or network reconfiguration. This technique is sub-

sequently applied in the training of an efficient and robust end-to-end navigation

policy. Notably, the evidential technique is also endorsed by Wang et al. [106] for

estimating policy uncertainty.

An additional source of uncertainty stems from observation uncertainty, at-

tributed to factors such as sensor measurement noise or estimation uncertainty in the

movements of dynamic objects [107]. In addressing this challenge, Fan et al. [108]

introduce a novel approach by explicitly incorporating the uncertainty value as a

component of the policy input. Post-training, the policy, now equipped with obser-

vation uncertainty inputs, demonstrates the ability to guide the robot away from
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uncertain obstacles or dynamic objects following random patterns. Consequently,

this leads to a reduction in collision rates when compared to the uncertainty-unaware

baseline.

2.1.5 RL-based exploration

Beyond path planning, map-based reinforcement learning can also serve exploration

purposes. Niroui et al. [109] task the robot with deciding which frontier point to

explore based on the unexplored map during the exploration phase. The objective

is to fully explore the environment as quickly as possible. Reinforcement learning is

utilized to determine the next exploration point, and navigation to the chosen point

is executed using the classic A∗ algorithm. In their subsequent work [110], navigation

is also conducted using reinforcement learning, highlighting the versatility of map-

based reinforcement learning in handling various aspects of robotic navigation.

Diverging from the approach in work [109], where the networks primarily offer

selection preferences for pre-processed frontier points, leaving the navigation to a

conventional controller, Chen et al. [111] take a different path. Their method involves

providing navigation steering commands based on a comprehensive set of inputs.

These inputs encompass an estimated robot position, an RGB image, an RGBD

image, a fine egocentric map, and a coarse egocentric map, forming an end-to-end

pipeline. This enables the agent to simultaneously gather environmental information

for mapping and obstacle avoidance. Notably, the robot poses are estimated using

a motion model, which may accumulate estimation errors during exploration. The

network is pre-trained using trajectories collected from human demonstrations.

While the end-to-end pipeline is a compelling concept, the authors of work [112]

contend that such a method comes with the drawback of requiring a large number

of training examples. In response, they propose a decomposition of the system into

three distinct components: a neural SLAM, a global planner, and a local planner.

The neural SLAM module is tasked with map construction and robot pose estima-
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tion, trained through supervised learning. The global planner component undergoes

reinforcement learning to predict a long-term goal to increase map coverage. This

long-term goal is then employed by an analytic path planner to generate a short-term

goal, serving as the navigation destination for the local planner. The local planner,

in turn, is trained using imitation learning. This hierarchical algorithm surpasses the

aforementioned end-to-end method [111] in terms of overall environment coverage.

Adopting a framework similar to [112], work [113] introduces an additional learn-

able module called the occupancy anticipation network, aiming to accelerate explo-

ration. Unlike other methods that construct occupancy maps through projection,

this module generates predictions based on RGBD images. Projection-based map

construction is constrained to visible regions, but the occupancy anticipation net-

work enables the robot to construct maps through predictions, allowing for reason-

able imagination. For instance, the system can predict free space behind a table

without directly navigating to that area for observation. This approach saves time

by eliminating the need to physically travel to every location. The reward space for

training the global planner is designed not only to enhance map coverage but also

to improve the accuracy of the occupancy anticipation map.

The exploration policies trained in simulation environments may encounter chal-

lenges when deployed in untrained environments or the real world, where sizes and

obstacles may differ. In addressing these sim-to-real issues, work [114] takes a dif-

ferent approach by constructing an exploration graph as inputs, where nodes rep-

resent poses from SLAM and frontier points. Utilizing Graph Convolutional Net-

works [115], which are scalable, the policy network is trained to produce commands

to minimize the uncertainty of virtual landmarks. This novel approach allows for

the successful transfer of a policy trained in one environment to be deployed in other

environments of varying sizes, including real-world scenarios.

Navigation with Maps In contrast to mapless navigation, some algorithms

incorporate environment maps as input, introducing a path-planning element to the
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navigation process. Lv et al. [116] employ a technique where a map is converted into

an image, with pixel values representing obstacles, robot position, or goal position.

A dense network processes this image to generate move commands, and the network

is trained using DQN. While this method addresses map-based navigation to some

extent, concerns about its generalization to unseen maps persist [117].

Recognizing the limitations of single CNN-based networks in understanding plan-

ning aspects, Tamar et al. [117] propose a Value Iteration Network to approximate

the classic value iteration planning algorithm. This differentiable network can be

trained through reinforcement learning or imitation learning. The effectiveness of

this approach is demonstrated in grid-world navigation tasks and a Mars rover nav-

igation within the reinforcement learning framework. Pflueger et al. [118] enhance

this network’s training by incorporating the inverse reinforcement learning algo-

rithm.

2.1.6 RL algorithms for multi-agent navigation

In navigation scenarios, deploying multiple robots in a single environment and train-

ing them collectively is a notable strategy. Long et al. [119] undertake the training

of a single navigation policy using reinforcement learning with multiple robots in the

same environment, sharing experiences to contribute to the training of the policy.

All robots utilize this shared navigation policy during the training process, akin to

asynchronous reinforcement learning methods. The results demonstrate that the

robots develop cooperative behaviours during navigation, even in the absence of

explicit cooperation rewards during training.

Expanding on this cooperative navigation strategy, Fan et al. [120] combine the

navigation approach [119] with SLAM methods for pose estimation. This integra-

tion aims to ensure that robots can navigate to their goal positions through dense

pedestrian crowds without getting lost.

Sun et al. [121] take a similar approach by combining the algorithm proposed in
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[119] with the Reciprocal Velocity Obstacle (RVO) [122] algorithm. This combina-

tion enables four groups of agents to navigate to their designated positions without

collisions. These efforts underscore the potential for collective training and naviga-

tion strategies to enhance cooperation and coordination among multiple robots in

shared environments. Traditional methods like optimal reciprocal collision avoid-

ance often incur high online computation costs. Learning-based methods offer a

promising alternative by offloading this online computation to offline training pro-

cedures.

Chen et al. [123] present an approach where a value network is employed to train

agents in collision avoidance with each other. The paper also introduces the idea of

imposing a penalty when two agents take significantly different amounts of time to

reach their goals. This penalty serves as an encouragement for cooperation among

the agents, highlighting the potential for learning-based methods to enhance not

only collision avoidance but also cooperative behaviours in multi-agent scenarios.

In contrast to previous methods where the target position of each agent is manu-

ally or randomly assigned, there is a potential to consider the target position assign-

ment as a dynamic and learning-based process. Work [124] introduces an interlaced

deep reinforcement learning method wherein each agent can autonomously and dy-

namically select a target position and navigate to the chosen location without collid-

ing with other agents. The essence of this method lies in learning two key functions:

a target selection Q function and a collision-avoidance Q function. The combination

of these Q functions facilitates the guidance for agents in the navigation process,

optimising the time taken for all agents to occupy their respective target positions.

This approach represents a more adaptive and intelligent way for agents to handle

target selection and navigation in a collaborative environment.

Indeed, multi-agent cooperation can significantly enhance the efficiency of infor-

mation gathering, especially in the context of exploring an unknown environment.

Viseras and Garcia [125] leverage deep reinforcement learning to achieve effective
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information gathering with multiple robots. In their approach, robots are trained to

explore a designated area and efficiently gather comprehensive information through

cooperative actions. The design of the observation and reward functions within

the reinforcement learning algorithm plays a crucial role in guiding the robots to

collectively explore and gather information promptly. This application highlights

the potential of reinforcement learning and multi-agent cooperation in optimising

information collection tasks in complex and unfamiliar environments.

Reinforcement learning can also be used for flocking tasks [126]. Wang et al. [127]

employ DDPG reinforcement learning to train multiple UAVs to navigate to their

respective destinations while maintaining a cohesive flock. Cooperative behaviours

are encouraged by introducing positive rewards when a UAV maintains a distance

of around 20 meters to its nearest two neighbours on the left and right sides. This

strategy incentivizes the UAVs to coordinate their movements and remain in a col-

lective formation during navigation.

Similarly, Zhou et al. [128] implement an algorithm for three Unmanned Surface

Vehicles (USVs) to navigate in a triangular formation using reinforcement learning

with reward shaping. The reinforcement learning framework, coupled with carefully

designed reward signals, facilitates the cooperative navigation of the USVs, enabling

them to maintain a specific formation during their movement. These applications

showcase how reinforcement learning can be effectively utilized to train multiple

autonomous agents to navigate collaboratively while adhering to specific formation

requirements.

In contrast to the assumption of agents sharing the same policy, Lowe et al. [129]

propose a modified actor-critic reinforcement learning training algorithm that allows

different agents to act according to distinct policies. These policies can be coopera-

tive, competitive, or a mix of both. The key modification in their approach involves

training the critic by considering both the agent’s own observation and the actions

of other agents, while the actor’s input is solely based on its own observation. This
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modification introduces flexibility in the behaviour of different agents, enabling them

to follow diverse strategies during training.

Furthermore, this work suggests training an ensemble of policies for each agent to

enhance robustness. This ensemble approach introduces diversity in the policies of

individual agents, promoting adaptability and resilience in different scenarios. This

work highlights the potential of training heterogeneous agents with distinct policies,

enabling a richer and more flexible range of behaviours in multi-agent environments.

2.2 Learning-based UAV control

2.2.1 Deep learning

To train a policy capable of controlling a quadrotor in urban environments, the work

by Loquercio et al. [130] recommends employing supervised learning with demon-

strations. This approach utilizes visual images as network inputs, generating a

steering angle command and a collision probability. The utilization of high-level

control commands facilitates learning from demonstrations obtained in safer con-

texts such as car driving or bicycling, eliminating the potential risks associated with

collecting demonstration data while flying a quadrotor in dynamic urban environ-

ments. The collision probability serves the purpose of adjusting the forward speed

of the UAV. This policy simplifies the traditional and intricate ’map-localise-plan’

control pipelines. Remarkably, the policy trained in outdoor settings demonstrates

effectiveness even in indoor environments, such as parking lots or indoor corridors.

Imitation learning is employed in the training of a quadrotor to adeptly follow

a trajectory that traverses a sequence of gates [131]. Unlike traditional methods

that represent gates using ground truth 3D positions, this approach relies on the

observation of gates through onboard cameras. This bears a resemblance to the

way humans utilize their eyes to execute tasks, emphasizing the practicality and

real-world applicability of the learning process. The authors endorse a hierarchical
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learning framework that integrates supervised learning with classical control. In this

approach, the neural network produces a two-dimensional goal vector in the camera

frame, along with a desired speed serving as the command signal for the low-level

controller. The low-level controller, in turn, is capable of devising a minimum jerk

trajectory based on the received command and subsequently tracking that trajectory.

The demonstration data utilized in this context is derived from a global trajectory

planning algorithm, which strategically plans a trajectory passing through all gates,

providing essential labelled data.

Training a network from scratch with image inputs will be difficult. Work [132]

adopts a two-component structure for the control policy designed for a visual UAV

racing task, comprising perception and control. The training of the perception block

involves fine-tuning YOLO(v5) to obtain invariant feature embeddings against back-

ground visual disturbances unrelated to the navigation task. The fine-tuning proce-

dure minimizes the embedding differences between images taken at the same pose

but augmented with different visual disturbances. Once fine-tuned, the perception

block remains fixed. The control block is then trained by imitation learning.

Using the same hierarchical framework, Loquercio et al. [10] propose a promi-

nent work that trains a high-level policy by imitation learning with demonstrations

from a sampling-based planning algorithm [133]. The high-level policy produces 3

control points to construct a B-spline trajectory that will be followed by an MPC

controller. The method has achieved high-speed flight in real quadrotors in various

environments (e.g. forests, city streets etc.)

While visual inputs have the potential to offer a wealth of information, not all

components are relevant or may even prove detrimental to the task at hand. Training

neural networks with raw images can exacerbate training challenges. Unlike machine

learning models, humans instinctively focus on crucial areas within an image rather

than processing the entire visual field. In the work by Pfeiffer et al. [134], gaze

data obtained from human demonstrations is employed to train an encoder-decoder
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network, using imitation learning to predict attention on images. The output of

the encoder serves as extracted features for the control network. Additionally, the

control network undergoes imitation learning from an expert MPC to generate low-

level thrust and body rate commands.

2.2.2 RL-based methods

The efficacy of policies trained through supervised learning is constrained by the

quality of demonstrations provided by human experts or classical controllers, poten-

tially resulting in suboptimal performance when optimal demonstrators are unavail-

able. In contrast, reinforcement learning algorithms empower quadrotors to explore

autonomously during training, eliminating the need for expert guidance and facili-

tating the attainment of optimal performance. Several works have contributed to the

development of reinforcement learning algorithms for quadrotor control, addressing

various aspects such as exploration, convergence, tasks, and implementation details

etc.

In the study by Hwangbo et al. [135], a novel approach is proposed for training

a policy using reinforcement learning algorithms to stabilize quadrotors under chal-

lenging initial states, such as being manually thrown into the air at an upside-down

configuration with a velocity of 5m/s. These scenarios pose difficulties even for

human expert pilots or conventional controllers like model predictive control. The

presented work devises an actor-critic algorithm akin to the standard Trust region

policy optimisation (TRPO), employing a distinct distribution distance measure

method to achieve a faster convergence speed. Similarly, Molchanov et al. [136] aim

to achieve a comparable task but utilize the standard PPO algorithm.

In the research conducted by Lin et al. [137], the objective is to train a controller

for navigating a quadrotor through an inclined narrow gap using end-to-end rein-

forcement learning. The authors advocate that the end-to-end approach not only

reduces computation time through parallel processing on GPUs but also mitigates
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errors accumulated in each module of conventional pipelines. Their methodology in-

volves initial pre-training of the network through imitation learning, utilizing demon-

strations from a traditional planning-based method. Subsequently, the network un-

dergoes refinement through reinforcement learning. The study demonstrates that

reinforcement learning outperforms both imitation learning and traditional methods

in achieving superior performance.

The study by Wang et al. [138] identified a limitation in standard policy gradient

algorithms, attributing it to the bias and variance in Q-value estimation introduced

during training. Specifically, their findings revealed that velocity controllers trained

by DDPG were unable to bring a quadrotor to a desired velocity, resulting in non-

zero steady-state tracking errors. In response to this challenge, the researchers drew

inspiration from classical control theory and introduced an integrator to the system

to eliminate steady-state errors. They augmented the state inputs of the network

with an integral compensator, which accumulates state errors over time. The inte-

gration of this compensator allowed them to achieve nearly zero velocity tracking

for the quadrotor. Notably, the learned controller exhibited robustness and gener-

alization to quadrotors of different weights and sizes, surpassing the performance

of a well-tuned PID controller in maintaining stable velocity control for previously

unseen quadrotors

Policies trained through reinforcement learning often exhibit aggressiveness when

robots are tasked with completing assignments as quickly as possible, leading to

control commands that lack smoothness and introduce oscillations, as discussed by

Mysore et al. [139]. This aggressive behaviour not only results in suboptimal per-

formance but can also lead to increased energy consumption, unnecessary system

wear, and even catastrophic crashes in the case of quadrotors with complex dynam-

ics. In response to these challenges, the work by Mysore et al. [139] proposes the

introduction of an action regularization loss during training to impose constraints

on the policy output. The regularization comprises two components: a spatial term
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aimed at minimizing action differences between similar states and a temporal term

designed to reduce action differences between consecutive time steps.

Navigating through a predefined sequence of waypoints in a specific order with

minimal time cost is a typical and challenging task for an autonomous quadrotor,

serving as a valuable metric for evaluating controller capabilities. Work by Penicka

et al. [140] proposes employing a topological path as a reference and training a

policy through a reinforcement learning algorithm to guide the quadrotor along

this topological path. Training a policy from scratch to control the quadrotor for

achieving minimal flight time is a challenging task and may result in converging to a

local minimum. To address this, the authors adopt a curriculum training approach.

In the initial phase of curriculum training, the policy is trained to complete the

task within a restricted maximum speed. This facilitates the network in learning

to effectively control the quadrotor. In the subsequent phase, the constraint on

maximum speed is removed, and the policy undergoes retraining to learn how to

exploit the full capabilities of the quadrotor.

When the policy is provided with high-dimension inputs (i.e. images), it will be

difficult to train the network from scratch to converge to good performance with

reinforcement learning. Work [141] employs a teacher-student learning framework.

Instead of explicitly presenting depth images for obstacle perception, the teacher

policy, which is trained by a reinforcement learning algorithm, possesses full ground

truth obstacle position information. This approach allows the teacher policy to

maximize the vehicle’s capabilities and achieve optimal racing results. Behaviour

cloning is then applied to train the visual-based student policy, utilizing demonstra-

tions from the state teacher policy.

Training a control policy for UAV navigation using visual image input poses

another significant challenge in terms of difficulty in transferability to unseen envi-

ronments. This difficulty arises due to the high dimensionality of images, coupled

with substantial differences between simulated and real-world images. In efforts to
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address these challenges, researchers in works such as [132, 142–144] advocate for

a modular approach, dividing the policy network into a perception block followed

by a control block. The primary focus lies in constructing the perception block us-

ing techniques like domain randomization or conservative learning. This emphasis

aims to facilitate training convergence and the extraction of invariant features across

diverse scenes, encompassing both virtual and real environments

2.2.3 Combination of RL and MPC

While reinforcement learning excels at optimising long-term objectives through of-

fline exploration, directly applying its output control commands to a quadrotor with

complex system dynamics can pose risks without a theoretically guaranteed safety

measure. On the other hand, model predictive control-based controllers can plan

online control sequences, ensuring adherence to dynamics and safety constraints.

However, their planning horizon is inherently limited and short-term.

The work by Romero et al. [145] seeks to leverage the advantages of both meth-

ods for quadrotor control. This is achieved by training a neural network policy using

a reinforcement learning algorithm, where the policy’s outputs become parameters

used to construct an objective function representing long-term costs. Subsequently,

an MPC controller determines the control sequence by optimising this objective

function while considering quadrotor dynamics and other system or environment

constraints. The proposed algorithm demonstrates superior performance compared

to both a control policy trained solely with PPO and a standalone MPC controller,

as measured by navigation success rate and average navigation speed. Furthermore,

evaluations indicate the hybrid control strategy’s robustness in unforeseen scenar-

ios and against unknown disturbances. This robustness may be attributed to the

adaptive nature of the objective function, constructed by the reinforcement learning-

trained policy, in contrast to the fixed set of objective function parameters employed

by the pure MPC controller.
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In contrast to constructing an objective with long-term cost prediction, the ap-

proach proposed by Song et al. [146] advocates employing a learning-based policy

as a high-level reinforcement learning-based controller to determine hyperparam-

eters for a low-level MPC controller, enhancing its adaptability. Conventionally,

human experts heuristically craft the hyperparameters of MPC controllers, which

may be suboptimal. The suggested structure not only reduces human intervention

but also achieves optimal control performance through exploration in various en-

vironments. For evaluation, the researchers devised a task involving a quadrotor

autonomously navigating a square gate attached to a pendulum. The high-level

policy learns to determine the optimal time to traverse the gate, and the MPC con-

troller plans the control sequence based on this selected timing. The success rate

of the MPC controller, when utilizing the traversal time suggested by the high-level

policy, surpasses that of controllers relying on randomly determined or heuristic-

decided traversal times. Similarly, work by Romero et al. [147] employs a similar

methodology for hyperparameter tuning of a Model Predictive Contouring controller

designed for autonomous UAV racing tasks.

An alternative approach to enhance MPC involves leveraging deep learning tech-

niques. MPC, while planning into future horizons, relies on a system dynamics model

to predict future states. Deep learning can facilitate the learning of a highly precise

system model using neural networks. However, executing partial differentiations on

these networks, especially on embedded systems with limited computation resources,

can be time-consuming. This prolonged computational time may not meet real-time

requirements for systems demanding high-frequency control signals, such as those

used in the control of high-speed quadrotors.

To address this challenge, the authors in work [148] propose approximating the

neural network-modelled system dynamics up to the second order through a Taylor

expansion around the current state. This approach stands in contrast to linearizing

the neural network model at all timesteps within the planning horizon. Their find-
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ings indicate that such an approximation introduces negligible errors in the context

of agile quadrotor control

To alleviate the computational burden associated with MPC controllers, Wiede-

mann et al. [149] present an alternative approach distinct from the use of simplified

linearized dynamics. Their proposal involves training a neural network-based solver.

This solver takes the current state and future reference states within the planning

horizon as input and generates a sequence of control signals. In comparison to the

conventional MPC controller, this neural network-based solver achieves comparable

performance with significantly reduced computation time, as evidenced by trajec-

tory tracking errors in quadrotor control. Remarkably, it surpasses the performance

of both a model-free reinforcement learning controller, PPO, and a model-based

reinforcement learning controller, Probabilistic Ensemble with Trajectory Sampling

(PETS)

2.2.4 Achieving the best performance of RL

It is arguable whether the reinforcement learning controller is better than the con-

ventional non-learning-based controller. Song et al. [150] conducted a comprehensive

performance comparison between classical optimal control and reinforcement learn-

ing control for an autonomous UAV racing task. By assessing these controllers in

both simulation and real-world environments, the authors observed that the rein-

forcement learning-trained controller outperformed the classical optimal controller

in terms of both success rate and completion lap time.

The authors posit that this superiority stems from the reinforcement learning

controller’s ability to directly optimise a task-level objective, which may be nonlin-

ear and nonconvex. In contrast, optimal controllers are constrained to decoupling the

task into planning a reference trajectory using an intermediate representation and

designing a controller to follow this trajectory. This decoupling limits the quadro-

tor’s overall capability. Additionally, the study demonstrated that the reinforcement
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learning controller exhibits robustness to unmodeled dynamics, achieved through the

adoption of domain randomization during training.

A crucial consideration in reinforcement learning is determining the control com-

mands that the trained neural networks should output. Work [151] categorizes con-

trol commands into three groups based on their corresponding command hierarchy:

Linear Velocity (LV), Collective Thrust and Bodyrates (CTBR), and Single-Rotor

Thrust (SRT). The LV represents a high-level command requiring a full control

stack to map the command into individual rotor thrusts. Importantly, this com-

mand does not rely on specific UAV dynamics, facilitating easy transferability to

different UAVs. On the other hand, the CTBR command also requires a controller

for individual thrust mapping. However, compared to the LV command, CTBR is

a more low-level command that enables significantly more aggressive UAV maneu-

vers [151]. Lastly, the SRT provides direct control of individual thrust, allowing for

the full utilization of the true actuation capability of the UAVs.

To compare the control performance of different action spaces, Three distinct

policies, each with different action spaces as discussed above, were trained to execute

a trajectory tracking task. Following extensive testing with 600 diverse trajectories

covering the entire flight envelope of the quadrotor, the authors of the study conclude

that the CTBR policy demonstrates robustness against model dynamics mismatch.

Furthermore, it exhibits successful transferability between different domains without

compromising agility. Conversely, the policy producing LV commands yields inferior

performance, particularly for agile manoeuvres. Policies directly controlling SRT ex-

perience a notable reduction in performance when tested with models different from

the training environments, especially for agile trajectories. SRT-based controllers

exhibit significantly higher tracking errors in reference trajectories of slow-speed op-

erations and undergo a higher number of crashes when tested on faster manoeuvres.

In work [152], the authors achieved a significant milestone by training a UAV

controller capable of competing with three world-leading pilots in drone racing and
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achieving victory in most races. This autonomous UAV policy is learned to make

control decisions solely based on onboard computation resources and sensors, with-

out relying on external systems such as motion capture.

The system architecture, like others, is divided into two essential components:

the perception module and the control policy module. The perception module con-

ducts state estimation using a visual-inertial-odometry algorithm based on IMU data

and RGB images from the onboard camera. A neural network track gate detector

is employed to detect gate corners from images, which are then utilized to estimate

the gate’s pose. On the other hand, the control policy is trained using the standard

PPO algorithm.

Beyond the typical task-related reward, which encourages the quadrotor to nav-

igate through track gates, an additional reward component is introduced in the

reward space. This extra component incentivizes the quadrotor to focus on the tar-

get gate, thus enhancing perception. To bridge the gap between the simulation and

real-world environments, the authors employ a Gaussian process to model state es-

timation errors and a k-nearest-neighbour regression to model dynamic errors. This

approach utilizes data collected from the real world to enhance the realism of the

simulation.

2.2.5 Learning complex dynamics

Achieving high-accuracy models for quadrotors, a necessity for conventional con-

trollers like MPC, is challenging due to the complex aerodynamics involved in their

operation, making analytical methods less effective. In response, data-trained neu-

ral networks have shown promising performance in modelling systems with complex

dynamics [153]. Researchers have thus explored learning-based methods to model

quadrotors. For instance, in Work [153], a two-layer neural network is employed

to model a small quadrotor, specifically the Crazyflie. This network serves as the

prediction model for an MPC controller, effectively controlling the Crazyflie.



2.2 Learning-based UAV control 45

The dynamics of a quadrotor are inherently complex, making analytical simula-

tion challenging, and this complexity is compounded when the quadrotor is in flight

with suspended payloads. Work [154] leverages the capacity of neural networks to

learn the dynamics model of this intricate system. Similar to the approach taken

in [153], the learned neural network serves as the prediction model for an MPC

controller, enabling the generation of a control sequence

Accidental physical damage is a potential factor that can alter the dynamics of

UAVs. In such instances, it becomes crucial for the controller’s model to promptly

recognize these changes and adapt to the new dynamics. Work [155] suggests em-

ploying neural networks for monitoring the system and facilitating adaptation to

the altered dynamics when such changes occur

In addition to the complex dynamics of the quadrotor itself, external factors

like wind disturbances can lead the quadrotor away from its nominal dynamics.

Work [156] takes a different approach by employing neural networks to model the

effect of wind disturbance as a residual error added to the quadrotor’s nominal ve-

locity. The performance of the neural network-augmented controller demonstrates

a smaller tracking error compared to the controller using L1 adaptive control. Sim-

ilarly, in work [157], an attempt is made to capture the complex aerodynamic dis-

turbances introduced by airflow from propellers and the ground during near-ground

operations, such as flying or landing, using neural networks. The neural network

is employed to predict the additional forces and torques introduced by the ground

effect
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2.3 Autonomous tracking of moving objects with

UAV

2.3.1 Non-learning-based methods

The related works for tackling moving objects for a UAV are mostly based on con-

ventional non-learning and optimisation methods. For these works, they can be

further categorized into two main streams: control-based algorithms and trajectory

planning-based algorithms.

The control-based methods tackle the tracking task by directly computing opti-

mal UAV control signals such as UAV x, y, z velocities and leave out the necessity

of planning feasible trajectories. in [158], it uses a PD feedback controller to out-

put control commands consisting of pitch, heading rate, and vertical velocity. The

tracking error for the PD controller includes error components defined in the image

space and the 3D world space. The control objective is threefold. The image space-

based error components are designed to keep the target appearing in the image’s

horizontal centre and occupying enough pixels. The error component defined in the

3D world space is to require the quadrotor to stay at the same altitude as the target.

Similar to [158], paper [159] computes heading, throttle, and pitch commands based

on a cascade PID controller while the feedback error terms are all defined in image

space to achieve the same control objective in [158]. Research [160] follows a similar

pipeline as the above two works but with additional available control variables which

are the pitch and angle of the camera gimbal.

These PID-based works are similar to the visual servoing technique and are gen-

erally limited to simple environments without obstacles and do not require avoiding

obstacle collision or occlusion. Also, the target to be tracked is static or moves at

a relatively low speed. While another control-based algorithm [161] does take en-

vironmental obstacles into consideration. It constructs a to-be-optimised objective

function including collision avoidance cost and visibility cost in addition to the cost



2.3 Autonomous tracking of moving objects with UAV 47

of keeping the target in the image centre with a specified pixel size. The objective is

optimised subject to the quadrotor dynamics. The controller follows the procedure

of the horizon receding model predictive control method. This work however re-

quires the real-time position information of the environment obstacles. The number

of obstacles is also limited.

Trajectory planning-based algorithms, instead of optimising control commands,

optimise trajectories that are collision-free and dynamically feasible. Research [162]

builds a complete system including detection, localisation, and tracking modules.

It assumes that the target is a sphere with a known radius. Thus the relative

pose of the target can be determined from a single camera image with the camera

projection model and nonlinear minimization problems. The trajectory of the target

is presented by a polynomial which can be estimated by fitting with observations over

some horizon steps. The estimated target trajectory will be used for target position

prediction during the quadrotor tracker trajectory planning phase. A polynomial is

used to represent the quadrotor’s planned trajectory and is obtained by minimizing

a carefully designed cost function. The quadrotor’s to-be-optimised trajectory is

also represented with a polynomial. Instead of simply constructing a cost function

to minimize relative pose errors between the target and the quadrotor, this work

proposes to minimize the velocity difference. It also sets up a constraint due to the

field of view of the camera sensor such that the target will not leave the image.

The camera field of view is approximated with an inscribed pyramid to formulate

the constraint as a quadratic one. This will simplify the optimisation procedure.

The quadratically constrained quadratic program (QCQP) is used to obtain the

optimised tracking trajectory. With the trajectory estimation of the target and

the trajectory planning of the quadrotor tracker, aggressive autonomous tracking is

possible.

While the work introduced above does not have obstacles in the environment,

work [163] includes the discussion of possible collision and occlusion caused by envi-
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ronmental obstacles. A multi-objective cost function is constructed to optimise the

tracker’s trajectory which is represented by piece-wise polynomial functions in the

B-spline form. The cost function is designed to reduce the relative distance between

the target and the quadrotor and encourage smoothness while at the same time

satisfying constraints including the dynamic constraint, the visibility constraint, the

obstacle avoidance, and occlusion constraints. It assumes the obstacle to be in a

sphere shape and requires the knowledge of position and size information of the

obstacles. The target’s moving ability is also limited.

In [164], it follows a similar methodology that optimises the trajectory by min-

imizing a multi-objective function. In order to solve this optimisation problem, a

covariant gradient and steepest descent-based method is proposed. Unlike the works

introduced above, It does not make assumptions about the shape of the obstacles.

Real-world tests have shown the effectiveness and the robustness of the proposed

algorithm. However, the environment is still quite simple and is not cluttered. The

trajectory of the target is also easy to predict with straightforward moves. The

planning also requires environment maps in advance.

The above works optimise directly a smooth trajectory for the quadrotor tracker

and thus they only work in relatively simple environments. The difference between

a path and a trajectory is that a path only carries position information while a

trajectory has time information in addition to the position information.

In [165], it predicts a trajectory of the target over a horizon. After which, a

reference trajectory for the tracker is produced by shifting the predicted target tra-

jectory to a distance. Based on the reference trajectory, The search-based A∗ is

utilized to find a collision-free corridor near the reference trajectory. Finally, the

tracking trajectory is determined with the quadratic programming optimisation al-

gorithm similar to the works introduced above but subject to one more constraint

which is that the trajectory has to lay within the obstacle-free corridor. This pro-

posed algorithm is effective in clutter environments. It however does not consider
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obstacle occlusion and the limited camera field of view constraints. The yaw trajec-

tory is thus not optimised but is simply pointing to the target.

In [166], instead of directly planning a trajectory, it utilizes a graph-based search

method to pre-plan a path represented by a set of viewpoints in sequence. A smooth

trajectory is then fitted based on those pre-planned viewpoints. This two-step plan-

ning enables the algorithm to work in cluttered environments with arbitrary obsta-

cle shapes. This however requires the construction of graphs and traversing through

graphs during path planning, both of which consume large amounts of time. The

weights of the edges between vortexes in the graph represent costs to fulfil obstacle

avoidance and visibility requirements. Also, this work assumes that global envi-

ronment maps are available and locations of the target are known over a future

horizon. Thus it may not be suitable for more general applications with unfamiliar

targets in unknown environments. A similar methodology is applied in their other

work [167]. Instead of achieving obstacle or occlusion avoidance, they focus on op-

timising a trajectory that maximizes the colour difference between the target and

the observed background for better target detection. In their following work [168],

they create safe corridors based on the planned viewpoints which are then used to

ensure collision avoidance during the smooth trajectory fitting process. Instead of

knowing the target’s future trajectory as a prior which is assumed to be available

in their previous work [166], it also makes target path prediction based on history

observation and the assumption that the target will avoid obstacles.

The coarse path planning phase of the works introduced above does not involve

quadrotor dynamics cost. They simply apply acceleration or velocity constraints

during the trajectory fitting phase. This may produce dynamically infeasible results.

Also, they are planning globally which requires obstacle information of the whole

environment as a prior. Research [9] uses kinodynamic search to include dynamic

cost during the path planning phase. It plans locally with the current observed

environments and replans the path if new obstacles are observed. This eliminates
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the requirements of global environment maps and makes the algorithm feasible for

unknown environments. For the generation of a smooth trajectory, the trajectory is

presented by the use of the Bézier curve. The trajectory curve can then be obtained

by optimising a set of control points.

As work [9] does not optimise the cost of target visibility regarding the camera’s

limited field of view and obstacle occlusion, they try to address this issue in their

subsequent work [169]. In order to analytically represent the requirement of obstacle

occlusion avoidance, they require a set of ball-shaped areas that cover the camera

FOV to be free of obstacles. With the use of the Euclidean Signed Distance Field,

this constraint can be differentiable and can thus be used for optimisation.

Those occlusion avoidance formulations introduced in the above works such

as [164, 168, 169] often require constructing ESDF which contributes to the algo-

rithm time cost. Work [170] redefined the visibility requirement from the view of

the target which eliminates the need for (Euclidean Signed Distance Field) ESDF

construction. The previous works pre-plan a path utilizing algorithms such as graph-

searching or A∗ to ensure collision avoidance and visibility which is then followed by

a trajectory optimisation phase to refine the path by methods like path smoothing.

This will result in inconsistency and may cause constraint violation. This work in-

stead introduces those safety and visibility constraints in the trajectory optimisation

phase.

Compared to control-based algorithms, trajectory planning-based algorithms can

handle cluttered environments more naturally during problem formulations. By

optimising trajectories, the algorithm can plan much deeper into the future such

that they are capable of dealing with complex environments. However, this benefit

comes with a cost which is that they require more computation resources and are

more time-consuming. The overall system is also complex, where learning-based

algorithms can reduce the complexity
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2.3.2 Learning-based methods

To simplify the system, learning-based algorithms can help. There have been many

works that use supervised learning or reinforcement learning for quadrotor control.

A learning-based work [171] close to the task trains a vision-based drone with a

position-based flocking control expert polity by imitation learning. The task is

relatively simple just to follow a leader drone in an open space environment without

obstacles. The behavior of the leader drone is not complex as well which also

simplifies the task. Work in [172] proposes to use deep Q-learning to control a

quadrotor following a ground vehicle involving discussion on obstacle avoidance,

and limited field of view of sensors. The action space of the tracker and target

are both discretized, however. The simulated quadrotor is not based on quadrotor

dynamics but a simple 3D velocity model. It assumes the quadrotor has access

to the position information of the environment information. Work in [173] focuses

on noisy target relative position measurements. Authors in [174] extend the work

into continuous action space based on the DDPG algorithm. The obstacle detection

changes to a more realistic Lidar-based sensor. The quadrotor is still a simple 2D

velocity model. Work [175] augments the algorithm by introducing Gaussian noise

and Ornstein-Uhlenbeck (OU) noise to improve exploration. It also applies transfer

learning such that the policy can be quickly adapted to new tracking tasks that are

not presented during training. With similar environments and quadrotor settings,

Research [176] introduced multiple quadrotors to track a single target. It applies a

two-step training procedure whose action policy is first pre-trained by a PID control-

based expert and then refined by the TD3 RL algorithm. The above works use simple

non-real quadrotor physics models. Work [177] simulates the quadrotor based on real

quadrotor dynamics and achieves real 3D obstacle avoidance and target tracking.

The environment and test settings are still quite simple with a single obstacle whose

position is known in advance. The target trajectories are simple direct lines or

circles. The RL algorithm used is PPO algorithm.
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As presented above, those works are based on very simple assumptions such as

non-real quadrotor physics, no or simple environment obstacles, predictable target

movements, etc. The environmental obstacle positions are known as inputs for

decisions. Those assumptions may make the developed algorithms not capable of

more real-world tracking tasks.

In real-world applications, cameras are usually equipped on drones for environ-

ment sensing because of their lightweight feature. This is adopted in work [178], this

work uses a downlooking camera to track a ground vehicle. The constructed algo-

rithm is end-to-end which takes in images as input and outputs speed commands to

be carried out by the UAV controller. The reward space is designed to encourage the

quadrotor to move to the target regarding distance and heading angle. There are no

environmental obstacles involved. For environments with obstacles, the algorithms

proposed in work [179] use camera images(RGB and Depth) together with other

state information as inputs to achieve moving target tracking. The reward space

is designed to avoid collisions, maintain a reasonable distance from the target, and

keep the target pixels in the image centre. The simulator used is Airsim which pro-

vides realistic quadrotor physics and image rendering. This work however assumes

the target moves on a fixed route. The action space is discretized into eight actions

which commands the quadrotor to move along a direction at a fixed velocity and

duration. Those settings undermined the agility of the quadrotors.

To achieve target tracking moving in random trajectories and occlusion caused by

the obstacles, work [180] proposes a DQN-based tracking algorithm. The quadrotor

is equipped with a down-looking camera and the target moves in indoor environ-

ments with items of furniture. The input is the observed RGB image. The target

in such environments can be easily occluded by furniture. For example, the target

may move under desks. In order to address such an issue, this work proposes a

novel network structure. The observed image is first fed to a vision module consist-

ing of several layers of convolution networks to produce low-dimension appearance
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features. Such appearance features are not insufficient for decision-making when

occlusion happens and the target disappears in the image. A motion module built

by LSTM networks is used to encode a sequence of history and current appearance

features from the vision module and history quadrotor actions to produce motion

features. This will help estimate the target pose. The motion features together with

the current appearance feature are fed to a decision module built by several fully

connected layers to output action commands to be executed by the quadrotor. The

reward space only has one component to reduce the distance between the target and

the quadrotor.

Although this work has achieved good performance, there is no collision avoid-

ance involved as the quadrotor flies above the furniture. Also, it can not actively

avoid occlusion. This thesis also aims to solve these two problems and meet other

requirements at the same time.

2.4 Research Gap

After reviewing the literature presented above, several limitations have been identi-

fied and are discussed below to justify the motivation behind this thesis.

While the works highlighted in the discussion have shown promising outcomes,

it is noteworthy that, to the best of the author’s knowledge, few learning-based

algorithms have taken into account the impact of localisation performance on the

overall navigation results. These approaches typically assume access to ground-truth

robot poses throughout navigation, resulting in policies that resemble shortest-path

strategies. This assumption is not valid in many real-world applications, where

robot poses are not always available, such as under GPS-denied environments. In-

stead, real-world applications rely on localisation algorithms using external sensor

observations, such as Lidar scans or camera images. This assumption made in most

existing research works does not consider the quality of localisation along the navi-
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gation trajectories. Essentially, in such works, robot perception and the navigation

strategy are decoupled. This decoupling introduces the risk of severe navigation fail-

ures, especially when planned paths traverse featureless regions where localisation

algorithms may fail.

Hence, this thesis removes the unrealistic assumption of availability of ground-

truth robot poses and, instead, employs observation-based localisation algorithms,

such as Orb-slam [11] or Hector slam [181], for pose estimation. This work makes

efforts to develop localisation-safe navigation algorithms for both UGVs and UAVs

to bridge this research gap.

For the UAV tracking task, conventional non-learning-based trajectory planning

algorithms have demonstrated promising results. Nevertheless, these algorithms

tend to construct a complex system, demanding substantial computational resources

and time. On the other hand, learning-based end-to-end UAV control pipelines of-

fer the potential to reduce system complexity and computation time significantly.

However, most learning-based tracking policies, as discussed above, rely on rather

simplistic assumptions that include non-realistic dynamics, the absence or simplic-

ity of environmental obstacles, and predictable target movements. Notably, the

assumption that environmental obstacle positions are known inputs for decision-

making might limit the capability of these algorithms to handle more real-world

tracking scenarios.

Therefore, to bridge the research gap identified in existing literature regarding

learning-based tracking algorithms, this work also focuses on addressing the track-

ing task of a randomly moving target in complex environments full of randomly

distributed obstacles for UAVs using visual inputs. This removes the assumption

of simple environment settings commonly found in the literature. Additionally, this

work will model physical UAV dynamics, rather than relying solely on simple veloc-

ity models as used in previous research. These settings aim to help develop tracking

policies applicable to real-world applications and alleviate the simulation-to-reality
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gap encountered by methods in the existing literature. Moreover, it has been ob-

served that training an end-to-end tracking policy network with high-dimensional

depth images as inputs may encounter local minima. To tackle this challenge, this

thesis proposes a novel solution leveraging a teacher-student reinforcement learning

framework to enhance the effectiveness of training the visual robot agent.

2.5 Summary

In this chapter, a detailed literature review is presented to explore various imple-

mentations of state-of-the-art reinforcement learning algorithms within the domains

of mobile robot navigation, UAV control and autonomous tracking of targets by

UAVs, offering a nuanced understanding of the advancements and methodologies

employed in the existing body of research. Also, research gaps found in the existing

literature are identified and discussed.
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Chapter 3

Preliminary

This chapter introduces several preliminary concepts, including reinforcement learn-

ing and robot localisation algorithms, to enhance understanding of this thesis.

It begins with introducing key concepts formulated under the reinforcement

learning framework in Section 3.1. This overview aims to enhance the compre-

hension of RL-based navigation and control methods developed in this thesis, which

will be presented in subsequent chapters.

Following this section, Section 3.2 will introduce two prominent practical RL

algorithms: DQN and PPO, which form the foundation of the algorithms developed

in this thesis. It is followed by the description of the key design components for

training RL-based policies that this thesis will focus on.

Robot localisation algorithms utilised in this thesis are introduced in Section 3.3.

This introduction is necessary to comprehend the primary causes of localisation

failures, which inspire the proposed work on strategies to avoid such localisation

failures.

Section 3.4 concludes this chapter.
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3.1 Reinforcement learning overview

Reinforcement learning trains agents by interacting with environments and optimis-

ing strategies (policies) aiming to collect maximum cumulative rewards from the

environments.

During the learning process, the agent will be deployed to do explorations by

taking actions based on observations in the environments to collect experience tra-

jectories. Those collected trajectories will be stored in replay buffers and be used

to optimise the action strategy. The agent will then exploit the improved strategy

to collect trajectories to achieve higher reward returns and the procedure will it-

erate until the optimisation converges. Hence this is why the term ’reinforcement’

is used [182]. The strategy of the reinforcement learning agent can be represented

by some mathematical models like parameterised distributions [183] or table ma-

trices [182]. In order to achieve a better representation of the strategy with high-

dimension state or actions, by utilising the approximation capability of the deep

learning techniques, the strategy can be presented by deep neural networks [184],

where the term ’deep reinforcement learning’ comes from.

To describe reinforcement learning in mathematical formulation, the next section

will first introduce some key concepts used to define the problem that reinforcement

learning tries to solve. After this, some important reinforcement learning algorithms

will be discussed. This will help readers understand the foundations of algorithms

developed in the literature and the methods proposed in the following chapters of

this thesis.

3.1.1 Key concepts

The interaction process between agents and environments in reinforcement learning

is described by the MDP mathematical framework. An MDP can be represented by

a tupleM = ⟨S,A, P, R, γ⟩, where S is the state space, A denotes the action space,
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the P describes the transition distribution model, R describes the reward function

and γ is the future reward discount factor.

A vital assumption of the MDP is that the future system states depend only

on the current state. The current state has all the information that is required to

decide the future without the need for historical information:

P[St+1|St] = P[St+1|S1, . . . , St] (3.1)

Where P is a symbol of probability.

Hence the transition model P , which is usually unknown, represents the transi-

tion probability from state s to state s′ by taking action a while receiving reward

feedback r:

P (s′, r|s, a) = P[St+1 = s′, Rt+1 = r|St = s, At = a] (3.2)

The definition of the state transition function can be written as :

P a
ss′ = P (s′|s, a) = P[St+1 = s′|St = s, At = a] =

∑
r∈R

P (s′, r|s, a) (3.3)

The reward function R predicts the reward r received after taking an action a

based on state s:

R(s, a) = E[Rt+1|St = s, At = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a) (3.4)

The policy used to decide the action based on state observation is denoted as π,

which is the behaviour function of the agent during the MDP process. The policy

π maps state s to an action a, which can be either deterministic functions π(s) = a

or stochastic distributions π(a|s) = Pπ[A = a|S = s].

The goal of reinforcement learning is to maximise cumulative rewards within an

episodic trajectory, which usually penalises the future rewards with the discounting
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factor γ ∈ [0, 1]:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (3.5)

Furthermore, the following definition has to be made in order to describe how

reinforcement learning improves the behaviour strategy.

The state-value function Vπ(s) represents the expectation of cumulative future

returns when the agent starts from state s based on a policy π:

Vπ(s) = Eπ[Gt|St = s] (3.6)

While the action-value (Q-value) function Qπ(s, a) is the expected return after

taking an action a based on current state s and a policy π:

Qπ(s, a) = Eπ[Gt|St = s, At = a] (3.7)

The relation between the state value and the action value:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s) (3.8)

Additionally, an advantage function is used to calculate the difference between

the action value function and the state value function, which implies how much

better on average an action is than others :

Aπ(s, a) = Qπ(s, a)− Vπ(s) (3.9)

Bellman equations are a set of equations which are used to calculate the value

function at time step t by the sum of immediate reward and the value function of

the next time step t+ 1:
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V (s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . . )|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV (St+1)|St = s]

(3.10)

Similarly, the equation for Q-value:

Q(s, a) = E[Rt+1 + γV (St+1) | St = s, At = a]

= E[Rt+1 + γEa∼πQ(St+1, a) | St = s, At = a]

(3.11)

3.1.2 Value-based RL algorithms

Instead of optimising the policy directly, the value-based RL algorithms optimise the

agent behaviour through value functions V (s) or Q(s, a) estimation. The estimation

of these value functions is also the foundation of other reinforcement algorithms.

Monte-Carlo method

Monte-Carlo (MC) methods approximate the value functions V (s) = E[Gt|St = s]

or Q(s, a) = E[Gt|St = s, At = a] by computing the observed mean return from

experience data collected through interactions with environments. This kind of

method requires full complete episodes S1, A1, R2, ..., ST , where T is the terminal

time step. To take into account multiple visits of state s in one episode, The mean

return for state s taking action a is

Q(s, a) =

∑T
t=1 1[St = s, At = a]Gt∑T
t=1 1[St = s, At = a]

(3.12)

where 1 is a binary indicator and Gt =
∑T−t−1

k=0 γkRt+k+1 can be computed from the

data collected during each episode.
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The optimal policy will be

π(s) = argmax
a∈A

Q(s, a) (3.13)

It will be improved along with the approximation of the Q-value.

During trajectory collections, the agent usually uses a behaviour policy called ϵ−

greedy. It selects an action based on current approximation a = argmaxa∈AQ(s, a)

with a probability of ϵ, otherwise it will randomly select an action within the action

space. Through enough cycles of iterations, the approximation of the Q-value will

converge to the optimal value.

One obvious disadvantage of the Monte-Carlo method is that it is only suited

for problems with short horizons, small state space and action space. Otherwise, it

will take a long time to roll out a complete episode trajectory and update the value

functions. The value estimation will also be of high variance as there are too many

possible state-action pairs with large state spaces and action spaces, which require

a large number of sample trajectories to cover.

Hence, temporal-difference (TD) methods are proposed such that the update of

the value functions can be done with every single transition (st, at, st+1, rt+1) the

agent collects during exploration, which eliminates the requirement of a full episode

trajectory and reduces the estimation variance [185].

On-policy Temporal-Difference (TD) method

The value estimation based on TD methods relies on the Bellman equation Eq. 3.10

and Eq. 3.11 such that the value function V (St) can be estimated by Rt+1+γV (St+1)
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(refer to TD target) with a single collected transition tuple (st, at, st+1, rt+1):

Vk+1(St)← (1− α)Vk(St) + αGt

Vk+1(St)← Vk(St) + α(Gt − Vk(St))

Vk+1(St)← Vk(St) + α(Rt+1 + γVk(St+1)− Vk(St))

(3.14)

Where α is the learning rate that controls the update extent of the value function

based on the sample, k denotes the update step.

Similarly, for Q-value function estimation:

Qk+1(St, At)← Qk(St, At) + α(Rt+1 + γQk(St+1, At+1)−Qk(St, At)) (3.15)

Those values Vk(t+1) and Qk(t+1) used to update the value functions are based

on existing approximation (i.e. from update step k), which is different from the MC

method which calculates the value functions from a full trajectory (i.e. Eq. 3.12).

This technique is referred to as bootstrapping.

Sarsa RL algorithmm The Sarsa algorithm uses Eq. 3.15 to update the Q-

value approximation at every single transition collected at each time step. It uses

the same ϵ − greedy exploration policy to collect data as that of the MC method

described above. Compared to MC methods, Sara can achieve faster convergence

when handling problems with long horizons as well as problems with large action or

state spaces. The overall procedure is described as follows:

1. Initialisation of values of Q function; initial state S0; set t=0.

2. Select an action a0 = argmaxa∈AQ(s0, a) with probability of ϵ otherwise ran-

domly selects a0 ∈ A.

3. For each time step, apply action at, and receives reward rt+1 and new state

st+1.

4. Select the next action based on the new state with the same ϵ−greedy method
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of step 2: at+1 = argmaxa∈AQ(st+1, a) or randomly selects at+1 ∈ A. This is

the action to be executed for the next time step.

5. Update the action value functionQ based on (st, at, rt+1, st+1, at+1) with Eq. 3.15:

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at))

6. Increase t = t+ 1 and iterate from step 3.

Both the MC method and the Sarsa algorithm update the value functions with

transitions collected from the policy to be updated. This means that the policy that

generates the action decisions during the data collection phase is identical to the

policy that is to be updated based on the collected data, which is known as on-policy

training. When the exploration policy is different from the policy to be updated, it

is called off-policy training. The on-policy algorithm will only use the collected data

once and discard the data after updating the value functions on that data. Hence,

the on-policy algorithms may suffer from sample efficiency as the collected data is

not reusable.

Hence an off-policy algorithm named Q-learning is proposed [186].

Off-policy TD method: Q-learing

The Q-learning, in contrast to the Sarsa algorithm, updates the Q-value function

with a modification of Eq. 3.15:

Qk+1(st, at)← Qk(st, at) + α(rt+1 + γmax
a∈A

Qk(st+1, a)−Qk(st, at)) (3.16)

The learning procedure works as follows:

1. Initialisation of values of Q function; initial state S0; set t=0.

2. For each time step, select an action at = argmaxa∈AQ(st, a) with probability

of ϵ otherwise randomly selects at ∈ A.
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3. After the agent applies the action at, it receives reward rt+1 and new state

st+1.

4. Update the action value function Q based on (st, at, rt+1, st+1) with Eq. 3.16:

Q(st, at)← Q(st, at) + α(rt+1 + γmaxa∈AQ(st+1, a)−Q(st, at))

5. Increase t = t+ 1 and iterate from step 2.

The key difference between Sarsa and Q-learning is that Q-learning does not

utilise the current policy to decide a next-time step action at+1. It uses the best

Q-value of the next state over the action space to update the Q value without

considering which action (denoted as a∗) can achieve that maximal Q, and in the

next time step, it may not necessarily follow that a∗ [187] thus the algorithm is

off-policy.

3.1.3 Policy gradient

In contrast to the value-based methods introduced above which try to estimate the

value functions and find the optimal actions based on the estimated value func-

tions, policy gradient algorithms aim to model and optimise a policy directly with

interactions with the environments. The to-be-optimised policy is usually denoted

as πθ(a|s) parameterised by θ and is required to be differentiable. The objective

function that parameter θ tries to optimise is defined by Eq. 3.17 which represents

the cumulative reward for the episodic case from the start state shown as follows.

J(θ) = V π(s0)

=
∑
a∈A

πθ(a|s)Qπ(s, a)
(3.17)

For simplicity’s sake, the parameter θ will be omitted from the policy symbol πθ when

the policy occurs in the subscript of other functions. Taking the above equation as

an example, Qπ and V π represent Qπθ and V πθ respectively.
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To find the parameter that θ that maximises the objective function Eq. 3.17, the

iterative optimisation algorithm gradient ascent can be used to update the parameter

θ by taking gradient on the objective function:

θi+1 = θi + α∇J(θi) (3.18)

where i and i+1 denotes update step; α is the learning rate. The gradient indicates

the direction following which the parameter θ change can improve the expected

returns.

In contrast to value-based methods, the policy gradient algorithms which op-

timise the policy directly are more favoured for problems with continuous state

or action space, because the number of state-action pairs will be infinite for such

problems. Therefore, the estimation of the value functions (the state value func-

tion V and/or the action value function Q) for problems with continuous space

will be computationally expensive or infeasible. To find an optimal from Q-value

at = argmaxa∈AQ(st, a) is also not trivial, which is why the prominent algorithm

DQN can only work with discrete action spaces.

Policy Gradient Theorem

According to the policy gradient theorem [188], the gradient of the objective function

Eq. 3.17 has the following form:

∇θJ(θ) = ∇V π(s0)

=
∑
s

∞∑
k=0

ρπ(s0 → s, k)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)

∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)

= Eπ[
∑
a∈A

Qπ(s, a)∇θπθ(a|s)]

(3.19)
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where ρπ(s0 → s, k) represents the probability of transitioning from a state s0 to the

state s in k steps with policy πθ; and dπ(s) represents the stationary distribution

of the agent state under the policy πθ. Policies update using Eq. 3.19 is called

all-actions method as it computes the gradient over the whole action space.

REINFORCE

The REINFORCE further replaces the sum over the action space by an expectation

under the police π, and estimating the expectation by sampling:

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)
∇θπθ(a|s)
πθ(a|s)

= Eπ[Qπ(s, a)∇θ lnπθ(a|s)] ; as (lnx)′=1/x

= Eπ[Gt∇θ lnπθ(a|s)]

(3.20)

The REINFORCE method computes the return Gt with a full trajectory from

time t which makes it a Monte-Carlo method. Hence, the following equation is used

to update the policy parameter θ iteratively.

θ ← θ + αγtGt∇θ lnπθ(At|St) (3.21)

Here, γt is introduced because Eq. 3.19 is derived based on the assumption that

γ = 1.

The full learning process is shown as follows:

1. Initialize the parameter θ of the policy.

2. Roll out a full trajectory with πθ: S1, A1, R2, ..., ST .

3. For t = 1, 2, ..., T :

• 1. Compute the return Gt

• 2. Update θ according to Eq. 3.21
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4. Repeat step 2 with updated πθ

Actor-Critic

According to Eq. 3.20:

∇θJ(θ) = ∇Vθ(s0) ∝ Eπ[Qπ(s, a)∇θ lnπθ(a|s)] (3.22)

It has been discussed that it is natural that one may use a nonlinear function to ap-

proximate the Q-value function. With prediction from the approximation function,

the policy can be updated with every transition tuple without the need for waiting

for a complete trajectory as that of the REINFORCE algorithm. This is why the

actor-critic methods are introduced.

• Critic optimises the value approximator parameters w to improve the approx-

imation of the value functions Qw(a|s) or Vw(s) with loss defined by Bellman

equations Eq. 3.11 and Eq. 3.10. It is called critic as it controls how much

the objective function J (the expected return V (s0)) can improve along the

gradient direction as shown in Eq. 3.22.

• Actor optimises the policy parameters θ with Qw(a|s) according to Eq. 3.22.

Actor means that it controls the agent’s actions to collect rewards.

It has been discussed in [182] that this vanilla policy gradient method will be of

high variance. It also suggests that baselines b(s) that will not change with actions

can be introduced to mitigate the high variance problem, which modifies the gradient

Eq. 3.20: to the equation shown as follows:

∇θJ(θ) ∝ Eπ[(Qπ(s, a)− V (s))∇θ ln πθ(a|s)]

= Eπ[Aπ(s, a)∇θ lnπθ(a|s)]
(3.23)

where Aπ(s, a) = Qπ(s, a) − V π(s) is the advantage function described in Sec-

tion 3.1.1. Introducing the baseline V (s) will not lead to a biased estimation of
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the gradient as proved in [182].

3.2 Practical RL algorithms implementation

This section will first introduce two RL algorithms, DQN and PPO, upon which the

algorithms proposed in this thesis are based. After this, the design focus of the RL

training procedure this thesis follows will be discussed.

3.2.1 DQN

In theory, a table (known as Q-table) can be used to record the value of Q of all pos-

sible state-action pairs belonging to the state space and action space. This, however,

quickly becomes impossible or computationally infeasible under the scenario where

the state space is large or continuous. Therefore, researchers propose to utilise pa-

rameterised functions to serve as the approximation of the Q values, which is called

function approximation. The Q value function parameterised with θ can be denoted

as Q(s, a; θ).

With the improvement of deep learning techniques, the Deep Neural Network

(DNN) shows great capability of approximating non-linear functions with high-

dimensional inputs. Hence, research works have suggested the use of DNNs to

approximate the Q value.

The most prominent work combining the DNNs technique with Q-learning is

the DQN proposed in work [184], which achieves human-level performance on Atari

games.

DQN proposes two key innovative techniques to address the issues of instability

or even divergency introduced by the use of nonlinear function approximator [189]:

experience replay and periodically updated target.

• Experience Replay: A replay buffer D = e1, ...et is designed to store all

experience tuples collected during training, where et = (st, at, rt, st+1) denotes
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the experience data at time step t. Hence the replay buffer D stores the expe-

rience data over many different episodes. During the update of the Q value, it

draws samples randomly from the experience pool D. The use of experience

replay can improve data efficiency as one sample can be revisited multiple

times due to the random sampling procedure. It can also remove correlations

in the observation sequence, which makes the learning unstable [184].

• Periodically Updated Target The target values which are used to optimise

the Q value are only updated periodically. For every C step, the target Q-value

network clones the parameters from the Q network and is frozen between two

consecutive cloning steps. This will help stabilise the training procedure and

avoid short-term oscillations.

The loss defined to train the DNN parameters is the application of the Bellman

equation Eq. 3.11 and Q-learning Eq. 3.16 shown as follows:

L(θ) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2]
(3.24)

where (s, a, r, s′) ∼ U(D) denotes the uniform sampling procedure in the replay

bufferD; θ is to-be-learned parameters of the Q networks; θ− denotes the parameters

of the target Q networks and is frozen during the update of θ.

3.2.2 PPO

Although policy gradient methods are well-defined, the authors of work [190] argue

that it often results in large policy updates which lead to performance collapse.

TRPO proposed in [191] based on [192] put a hard constraint on the policy update

size at every policy update step. The constraint is constructed by measuring the

difference between the old policy and the new policy with KL divergence.

As described in [191], it optimised an objective function defined by advan-
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tage [193]:

J(θ) =
∑
s∈S

ρπθold
∑
a∈A

(
πθ(a|s)Âθold(s, a)

)
=

∑
s∈S

ρπθold
∑
a∈A

(
β(a|s)πθ(a|s)

β(a|s)
Âθold(s, a)

)
= Es∼ρπθold ,a∼β

[πθ(a|s)
β(a|s)

Âθold(s, a)
]

(3.25)

where β(a|s) is the behaviour policy used to collect samples. Â(s, a) means the

estimation of the advantage, which is usually approximated by nonlinear functions

such as deep neural networks in deep reinforcement learning.

In TRPO, it utilises KL-divergence to measure the difference between two policies

before and after an update and requires the difference to be smaller than a defined

threshold:

Es∼ρπθold [DKL(πθold(.|s)∥πθ(.|s)] ≤ δ (3.26)

During implementation, usually πθold is used as behaviour policy, which leads to:

θ = argmax
θ
J(θ) = argmax

θ
Es∼ρπθold ,a∼πold

[ πθ(a|s)
πold(a|s)

Âθold(s, a)
]

s.t. Es∼ρπθold [DKL(πθold(.|s)∥πθ(.|s)] ≤ δ

(3.27)

While the TRPO algorithm is complicated, PPO advocates for a similar idea

of setting constraints on the policy update and uses a clipped surrogate objective

function to simplify the pipeline.

The policy update of the PPO is via:

θ = argmax
θ

E
s,a∼πθold

[L(s, a, θold, θ)]

L(s, a, θold, θ) = min

(
πθ(a|s)
πθold(a|s)

Aπθold (s, a), g(ϵ, Aπθold (s, a))

) (3.28)
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in which ϵ is a small hyperparameter and g is the clipping function:

g(ϵ, A) =

 (1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0.
(3.29)

The PPO method is relatively easy to implement and has achieved similar per-

formance compared to the TRPO method. It is the algorithm this thesis frequently

used in the following sections.

3.2.3 Training RL policies

The overall RL procedure is depicted in Fig. 3.1.

Agent 

Environment

replay
buffer

Optimisation

Figure 3.1: The RL interaction procedure: at time step t, the agent takes an action based
state st and policy π. The environment will then produce the reward feedback r and
transfer to a new state st+1. The agent receives the reward and the new state. The
process will then iterate. The transition pair (st, at, st+1, rt+1) will be also stored in the
replay buffer. The policy will be updated according to the samples from the replay buffer
to achieve a higher cumulative return G.

The following paragraphs will describe vital components of optimising RL-based

policies.

Training Environments The training of RL policies requires a large number of

experience data, which will consume an unacceptable amount of time if the training

procedures are all performed in real-world environments. Also, during this trial-



3.2 Practical RL algorithms implementation 73

and-error training procedure, robots may act unexpectedly and cause damage to

the environment or themselves. Hence, most RL-based policies are first trained in

simulation. The simulator engines have to be capable of modelling real-world physics

and rendering various sensor outputs like Lidar scans or camera images.

The developers have to construct environments to model the robot tasks using

simulators. In this thesis, Gazebo [194] and Flightmare [195] are used for training en-

vironment construction for ground and aerial vehicles, respectively. They can model

the real-world physical dynamics of both ground and aerial vehicles. Also, they sup-

port communication and integration with the Robot Operating System (ROS) [196],

which is widely applied for real-world robots. Hence, this thesis will also develop

algorithms using ROS. This feature can help transfer the trained policy to real-world

robots conveniently with minimum effort. This thesis will use them to design indoor

and outdoor environments such as offices, lakes or forests for navigation and tracking

tasks.

Action Space The action space can be continuous or discrete. For example, a

robot moving with a continuous action space at ∈ [0 ∼ 1]m/s means that the robot

velocity can be any value between 0 and 1. A discretised action space will be a set of

values at ∈ {0, 0.5, 1.0}m/s, where the robot can only move at the velocity selecting

one value from these 3 possible values.

It can be seen that using continuous action space can make the robot move

smoother and make full use of the robot’s agility. Training policies with continuous

action space will request a larger amount of data as the training procedure has to

sample actions over the entire continuous action range instead of sampling from a

set of discrete action values, as is the case with a discrete action space. Also, agility

may even be detrimental to the task. It will be shown in Chapter 5 that agile UAV

movements will deteriorate localisation performance. However, a discrete action

space will not be enough for a tracking task of UAVs because the target may move

quickly and randomly and environments are full of randomly distributed obstacles.
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The action space should be carefully designed. This thesis will design the action

space to meet the specific requirements of the task.

Reward Space The design of the reward space is vital because it serves as the

criterion to justify the decisions made by the policies. Based on this criterion, the

policies can be optimised. The reward space should be designed to encourage actions

that facilitate task accomplishment and penalize actions that hinder it. Additionally,

reward signals should be provided at the right moments to prevent confusion for

the robots. Typically, the reward space consists of several different components

for various objectives, such as goal-reaching or obstacle avoidance. Therefore, the

scales of different reward components are important, as they could lead to either

too aggressive or too conservative behaviours.

The absence of certain reward signals will render the robot unable to acquire

the expected abilities, which will be discussed in detail in Chapter 4 and Chapter 5

regarding localisation-safe behaviour. A novel reward space design for the tracking

task will be illustrated in Chapter 6.

Training data collection Training policies with the DQN algorithm, which is

off-policy, can use directly any experience data produced at any stage of the whole

training procedure. Hence, any experience data can be stored in a replay buffer as

long as the storage memory capacity allows.

While the DQN algorithm is only available for discrete action spaces, the policy

gradient algorithm PPO is selected for tasks with continuous action spaces due to

its stable performance. As an on-policy method, PPO requires that training data

come exclusively from the current policy, eliminating the possibility of learning from

data collected by other experienced agents directly. This thesis will propose a novel

PPO-based algorithm such that data from a teacher policy can be reused to train a

student policy, which will be discussed in detail in Chapter 6.
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3.3 Localisation algorithms

The localisation algorithms vary for indoor and outdoor navigation based on the

measurement sensor used. The subsequent subsections will provide distinct descrip-

tions of these algorithms for each navigation scenario.

3.3.1 FastSLAM

In the context of outdoor navigation for a ground vehicle used in Chapter 4, it

will utilise distance measurement sensors with known data associations, such as

UWB, AprilTag and RGBD image features. This implies that the algorithm has

the knowledge of information about which landmark a specific measured distance

corresponds to.

The localisation algorithm employed is the FastSLAM algorithm [197], specifi-

cally a feature-based Rao-Blackwellized Particle Filter (RBPF) algorithm. In brief,

within the Rao-Blackwellized Particle Filter framework, the joint probability of the

mapm and the robot poses x is factorized through Rao-Blackwellization, formulated

as follows:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) (3.30)

where z and u represent the measurement and the control input respectively; and

t is the time steps. Such factorisation allows the SLAM algorithm to estimate the

trajectory p(x1:t|z1:t, u1:t−1) of the robots first and subsequently process the mapping

p(m|x1:t, z1:t) with the estimated poses.

The estimation of the trajectory p(x1:t|z1:t, u1:t−1) using a particle filter method

involves maintaining and updating a set of weighted particles X = {< xk, wk >

}k=1,...,N in accordance with the observations. Each particle in this set represents a

potential estimation of the robot’s trajectory. Additionally, each individual parti-

cle maintains a map estimation based on the estimated trajectory of that specific

particle and the observations.
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The update of those particles of the FastSlam algorithm is based on the sampling

importance resampling (SIR) filter, which incrementally estimates the robot trajec-

tory and the map based on the incoming received sensor measurements. The overall

procedure consists of four steps: sampling, importance weighting, map estimation

and resampling [198].

1. Sampling: the algorithm sample the generation t of particles Xt = {<

xkt , w
k
t >}k=1,...,N from a distribution based on the previous generation t − 1:

Xt−1 = {< xkt−1, w
k
t−1 >}k=1,...,N . As it is difficult to sample from the target

distribution p(x1:t|z1:t, u1:t−1), it is suggested to sample from a proposal distri-

bution q. The proposal distribution q used in the FastSlam is the probabilistic

motion model: p(xt|xt−1, ut−1).

2. Importance weighting: As shown in the sampling step, the proposal distri-

bution q differs from the target distributionp(x1:t|z1:t, u1:t−1). A weight wk has

to be applied on the associated particle k. This weight is computed based on

the importance sampling principle following a recursive formulation as shown

in Eq. 3.31 (refer to paper [198] for detail).

wkt (x
k
t ) =

target(xk)

proposal(xk)

=
p(xk1:t|z1:t, u1:t−1)

p(xkt |xkt−1, ut−1)

∝ p(zt|mk
t−1, x

k
t )× wkt−1

= |2πQ|−
1
2 exp{−1

2
(zt − ẑk)TQ−1(zt − ẑk)} × wkt−1

(3.31)

where ẑk represents the expected measurement calculated from the map and

pose of particle k, and Q is the innovation covariance. When the actual mea-

surement zt aligns with the expected ẑk, it indicates a favourable estimation of

the pose and the map. This alignment results in a higher weight, as illustrated

in Eq. 3.31.
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3. Map estimation: For each particle, the map estimation p(mk
t |xk1:t, z1:t) in-

volves updating the localisation and uncertainty of all the landmarks observed

in particle k, denoted as {< µki,t,Σ
k
i,t >}i=1,...,n, based on the distance mea-

surements. FastSLAM achieves this update for landmarks using the standard

Extended Kalman Filter algorithm.

4. Resampling Particles are drawn with replacement proportional to the nor-

malised importance weight ŵkt .

ŵkt =
wkt∑N
k=1w

k
t

(3.32)

During the resampling procedure, particles with high normalised importance

weight will replace those with low weight. After resampling, all particle has

the same importance weight, specifically 1
N
. This step is crucial since only a

finite number of particles are used to approximate a continuous distribution.

However, the resampling does not execute at every time step as doing so may

remove potentially valuable samples. According to [198], an indicator called

effective particle number Neff is designed to determine when resampling should

tasks place: signal when to resample:

Neff =
1∑N

k=1(ŵk)
2

(3.33)

The resampling will be carried out when Neff is less than 1
2
N .

3.3.2 Lidar-based Localisation

A 2D-Lidar sensor is used for Lidar-based indoor navigation in Chapter 4 and the

Hector slam [181] is used for localisation, which estimates robot poses and updates

an occupancy grid map using a scan matching technique.

The optimisation method aims to refine a robot pose ξ = (px, py, ψ) in the world
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frame, aligning it to best match the currently observed laser endpoints represented

as si = (si,x, si,y) in the sensor frame with the constructed grid mapM from previous

time steps. The cost function is formulated using the following equation:

ξ∗ = argmin
ξ

N∑
i=1

[1−M(f(ξ, si))]
2 (3.34)

where f(ξ, si) is to transfer the ith laser beam endpoint si represented in the sensor

frame to the world frame according to a pose ξ, which is :

f(ξ, si) =


cos(ψ) −sin(ψ) px

sin(ψ) cons(ψ) py

0 0 1



si,x

si,y

1

 (3.35)

The functionM(p) gives the map value at position p. N is the total number of laser

beams that have valid readings. Number 1 means the laser beam detected objects.

From this, it can be learned that if the laser scan is in an open space where the laser

beam can not detect any objects (valid reading beams N=0), the cost function will

not be well-constructed.

The Hector slam algorithm uses the Gauss-Newton approach to solve such a

problem, which linearized the cost function Eq. 3.34 using first-order Taylor expan-

sion at around an initial guess ξ0, with ∆ξ = ξ − ξ0:

∆ξ∗ = argmin
∆ξ

N∑
i=1

[1−M(fi(ξ, si))−∇M(fi(ξ, si))
∂fi(ξ, si)

∂ξ
∆ξ]2

= argmin
ξ

N∑
i=1

[∆y −∇M(fi(ξ, si))
∂fi(ξ, si)

∂ξ
∆ξ]2

= argmin
ξ

N∑
i=1

[∆y − J∆ξ]2

(3.36)

where ∆yi = 1−M(fi(ξ, si)) is the error residual. J = ∇M(fi(ξ, si))
∂fi(ξ,si)

∂ξ
is the

observation matrix.
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Eq. 3.36 can be solved analytically:

∆ξ∗ =
N∑
i=1

(H)−1JT∆y (3.37)

where H = JTJ is the Hessian matrix. The optimisation is usually done for several

iterative steps:

ξk+1 = ξk +∆ξ∗k (3.38)

Based on the estimated poses, the algorithm will update the occupancy grid map

using the laser scans.

The covariance of the pose estimation is approximated with the Hessian matrix

H defined above:

C = V ar{ξ} = σ2 ·H−1 (3.39)

where the σ is the variance of the measurement noise.

3.4 Conclusion

This chapter introduces key concepts and algorithms within the reinforcement learn-

ing framework. With this foundational understanding of reinforcement learning, two

major RL algorithms utilised in this thesis, DQN and PPO, are presented. Addition-

ally, key design modules of RL policy training are discussed. Furthermore, detailed

descriptions of localisation algorithms are provided to enhance comprehension of the

subsequent chapters presented in this thesis.
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Chapter 4

Localisation-Safe Reinforcement

Learning for Mapless Navigation

As discussed in the literature review section, most RL-based works for mapless

point goal navigation tasks assume the availability of the robot ground-truth poses,

which is unrealistic for real-world applications. The navigation method proposed in

this chapter will remove such an assumption and deploy observation-based practical

localisation algorithms, such as Lidar-based localisation or Ultra-wideband (UWB)

positioning, for robot self-pose estimation.

Although these localisation algorithms have demonstrated promising performance

and robustness in various challenging environments, they still may encounter diffi-

culties, such as loss of track of robot locations, in challenging environments where

observations along robot trajectories are insufficient or ambiguous. Consequently,

these localisation algorithms can introduce unexplored challenges for mapless nav-

igation tasks that have not been addressed in previous research. This chapter will

provide a thorough discussion of these novel problems.

This chapter introduces a localisation-safe mapless navigation strategy based on

reinforcement learning for both open space and indoor navigation. As illustrated

in Fig. 4.1, the robot may encounter difficulties of localisation in the middle of the
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yard where no landmarks can be observed directly.

The following sections first introduce the navigation problem. The proposed

method is described in Section 4.2 which includes the system overview and the

novel RL agent training design, followed by experiments and results in section 4.3.

The conclusions are presented in Section 4.4.

Yard

Building 1

Building 2

Building 3

?

Landmarks

Figure 4.1: Navigation in buildings and yards. The robot may encounter difficulties of
localisation in the middle of the yard where no landmarks can be observed directly.

4.1 Introduction

Mapless point goal navigation has emerged as a popular research focus, with the aim

of instructing robots to navigate toward a target goal position in environments lack-
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ing pre-existing maps, as seen in search and rescue scenarios. While conventional

path-planning algorithms cater to a broad range of scenarios or environments, they

exhibit well-known limitations [45]. Notably, these algorithms may necessitate hand-

crafted or constrained functions tailored to specific application conditions, resulting

in a lack of generalization capability for diverse environments [127].

To enhance navigation generalisation ability, learning-based navigation, partic-

ularly RL, has garnered increasing attention. In contrast to other learning-based

algorithms, such as supervised learning, RL demands minimal human resources or

intervention during the training stage. Robots are trained by receiving continuous

rewards or punishments through direct interaction with their environments. In the

realm of mapless navigation, RL-based algorithms have demonstrated effectiveness,

enabling mobile robots to achieve promising performance in collision-free navigation

within unknown environments [45].

Mapless navigation tasks often employ two distinct goal position representation

formats: images or coordinates of goal positions. In the case of image goals, agents

may not require knowledge of their current poses but only need to recall environ-

mental configurations to locate goal positions. Consequently, such agents may have

limited generalization ability to unseen environments. The focus of this chapter is

on goals represented by coordinates, requiring agents to estimate their own positions

at each time step, which could apply to more general environments.

Among the RL algorithms discussed earlier for mapless navigation tasks in Chap-

ter 2, the majority operate under the unrealistic assumption that robots have ac-

cess to ground truth poses throughout their missions. However, this assumption is

impractical for real-world applications. Typically, observation-based localisation al-

gorithms, such as Particle-filter-based, Lidar-based or visual odometry, are essential

for aiding robot self-localisation in practical robot navigation tasks.

Therefore, this work adopts a more realistic approach to tackle mapless naviga-

tion tasks by introducing observation-based localisation algorithms for robot self-
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pose estimation.

The subsequent subsections will provide a detailed exposition of the problem.

4.1.1 Outdoor open-space navigation

The localisation algorithm used for open space navigation is based on distance mea-

surement sensors. The localisation algorithm with such sensors is based on the fact

that the observations of distances from three or more landmarks can decide the po-

sition of the sensor, as shown in Fig. 4.2. The landmarks can be anything that helps

localisation, such as UWB anchors [199], Apriltags [200] or image features [11]. Due

to the unknown position of the landmarks and the noise in sensor measurements, the

estimation of the robot position is not this easy, as shown in Fig. 4.2. The SLAM

technique is developed to solve such a mapping and localisation problem, which has

been described in detail in Section 3.3.

Landmark 3

Landmark 2

Landmark 1

Estimated position

Figure 4.2: Position estimations from landmarks observation

It is evident that when the observed number of landmarks is insufficient, e.g.

when most of the landmarks are out of the sensor observation range, the SLAM
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algorithm encounters difficulty in determining the sensor’s position. For instance,

with two landmarks, there may be two possible positions based on distance obser-

vations from the landmarks. Notably, landmarks are typically situated on or near

walls in open space scenarios. For example, Apriltags can be attached to walls to

provide spatial references for localisation [201].

Previous research in RL has primarily focused on obstacle avoidance and mini-

mizing trajectory distance, often neglecting the importance of pose estimation qual-

ity. This oversight stems from the assumption of constant access to accurate robot

poses, effectively decoupling perception from path planning. However, navigation

policies trained under such assumptions can lead to catastrophic failures. For in-

stance, consider the navigation scenario depicted in Fig. 4.1, where the robot aims

to navigate from Building 1 to Building 2. Navigation policies based on the as-

sumption of readily available robot poses may choose a route directly pointed to the

destination position (the black dashed trajectory in Fig. 4.1) as it represents the

shortest path.

In reality, as the robot moves to the centre of the yard, the limited sensing range

of the sensor (depicted by the red circle in Fig. 4.1) results in no observations of

landmarks. Consequently, the robot loses its location and fails to determine the

goal, thereby failing the navigation task. In contrast, the green trajectory, although

slightly longer in distance, consistently observes enough landmarks along the path

to aid in localisation, enabling successful arrival at the destination. This behaviour

aligns with the approach proposed in this chapter.

4.1.2 Indoor navigation

The sensor employed for indoor navigation is a Lidar sensor. In contrast to the

challenges of insufficient features (landmarks) observed in outdoor navigation, the

Lidar-based odometry algorithm may encounter difficulties in the presence of am-

biguous observations. This type of odometry becomes problematic and inadequately
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Figure 4.3: Navigation examples (red regions: regions where localisation fails; black tra-
jectory: unsuccessful trajectory into the symmetric corridor; yellow trajectory: successful
trajectory avoiding the symmetric corridor.)

constrained in long symmetric corridor environments, leading to inaccurate pose es-

timations [202]. Specifically, as illustrated by the red regions in Fig. 4.3, these

corridor areas feature only two parallel and symmetric walls that are less distinct

geometric features for the Lidar to accurately estimate motion changes.

The approach advocated in this chapter anticipates that robots trained with

observation-based self-localisation for mapless navigation will possess the capability

to recognize regions with deteriorated localisation. Consequently, these robots may

choose alternative trajectories to avoid areas with challenges, such as symmetric

corridor regions. As exemplified by the yellow trajectory in Fig. 4.3, this path,

although slightly suboptimal in terms of length, proves more reliable in achieving
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Figure 4.4: The robot gets stuck in local minimum (the goal region is at the other end of
the corridor)

its goal owing to enhanced localisation performance.

However, one problem will arise when taking localisation performance into con-

sideration. When robots are discouraged from entering localisation-unsafe regions,

the robots are more likely to get stuck in local minimum, if this navigation problem

is treated as a Markov Decision Process (MDP), as with many previous research

works [203]. As shown in Fig. 4.4, the robot starts from point A and arrives at point

B where it finds the corridor ahead is not traversable. It will return to the initial

position A, where the same decision i.e. navigating to point B will be taken because

history information is not used for decision making in the MDP setting. Conse-

quently, the robot will be trapped in the local minimum (the black trajectories in

Fig. 4.4). Hence, an MDP setting may sometimes fail the task.

To alleviate the problem above, the method proposed in this chapter considers

that the use of history information will help robots get out of local minimum regions

as illustrated by the yellow trajectory in Fig. 4.4. This is achieved through the

utilization of a Long Short-Term Memory (LSTM) module in the policy network.
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4.1.3 Summary

This chapter will develop seperate navigation strategies for indoor and outdoor

scenarios tailored for a ground mobile robot, as depicted in Fig. 4.1 (illustrating

navigation within and/or between buildings). The decision to separate navigation

strategies arises from the fact that different sensors are used for indoor and outdoor

navigation according to their specific capabilities. Consequently, the assumption in

this chapter is that the robot employs a Lidar-based sensor for indoor navigation

and sensors equipped with distance measurement capabilities, such as UWB sensors

or RGBD cameras, for outdoor open-space navigation.

While there are separate strategies for indoor and outdoor navigation, the over-

arching training procedure remains similar, leveraging the RL-based algorithm in-

troduced in this chapter. With this algorithm, robots are trained to navigate in

a manner that mitigates the risk of localisation failures. This crucial ability is ac-

quired through the implementation of a technique proposed in this work: a reward

component employed to penalize behaviours that lead to localisation failures.

The formulation of the localisation-related reward design also brings about a local

minimum challenge in indoor navigation. To tackle this issue, this chapter introduces

a reconfigured state representation that incorporates both current observations and

historical trajectory information. This transformation aims to shift the problem

from a Partially Observable Markov Decision Process (POMDP) to an MDP model,

effectively mitigating local minimum concerns.

The contributions of this chapter are summarised as follows:

• This chapter proposes an innovative RL-based mapless navigation algorithm

that prioritizes localisation-safe navigation, effectively avoiding localisation

failures during the navigation process.

• This approach incorporates a localisation performance-related reward, ensur-

ing that robots are penalized when the quality of localisation begins to degrade,
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which helps the learning of behaviours that maintain robust localisation.

• It introduces a method based on the determinant of pose estimation covariance

as the localisation performance metric to decide the reward component for

Lidar-based localisation.

• The LSTM network is introduced to feed robots with encoded history informa-

tion, as part of state information of the RL algorithm, such that the original

POMDP problem is converted to an MDP problem to address the local mini-

mum problem.

4.2 Method

Localisation
Algorithm

RL-based
Policy

Movement

Measurement

Velocity
Command

Goal
Position

Estimated
Pose

Relative Goal Pose

Measurement

Figure 4.5: System overview. This work incorporates robot localisation algorithms into the
training procedure, which has been ignored by most previous methods in the literature. A
new RL-based policy is introduced that considers not only robot navigation and collision
avoidance but also the localisation performance in the training process.

Fig. 4.5 illustrates the system overview of the method. Firstly, the robot receives

sensor measurement data, e.g. Lidar range measurements in this case, from the
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environment, and the measurements are input into the localisation algorithm for

the computation of the estimated robot pose. Subsequently, the estimated robot

pose and goal position are utilised to calculate the relative goal pose, denoted by

the relative distance and relative heading in relation to the robot. The resulting

relative goal pose, along with the measurement data, is then provided to the fail-safe

localisation reinforcement learning agent, which determines the next action, which

is the velocity command in the scope of this chapter. The robot acts according

to the velocity command and moves in the environment. This iterative procedure

continues until the robot successfully reaches the designated goal position.

The upcoming subsections will delve into detailed discussions of the localisation

module and the RL-based agent for both indoor and outdoor navigation.

4.2.1 Configuration of RL-based navigation agent

The reinforcement algorithm for training both the indoor and outdoor navigation

policies is based on the DQN, which has been discussed in Section 3.1.2.

This paragraph will recap several key concepts of reinforcement learning and

the procedure of the DQN algorithm. Markov Decision Process is a mathematical

framework to model problems that can be solved using RL. To describe a MDP,

it needs a state space S, an action space A, a state transition model p(st+1|st, at),

and a reward function R(st, at): S × A → R, which describes the feedback from

the environment after agents taking actions at at state st. The objective is to

obtain maximum overall discounted rewards Rt =
∑∞

k=0 γ
krt+k from environments.

RL algorithms usually involve estimating a state-action pair value function (Q-

value): Qπ(st, at) = E[Rt|st, at] or state value function Vπ(st) = E[Rt|st], where π:

a ∼ π(·|s, θ) described by parameters θ is the policy that agents try to learn.

The DQN represents the Q-value by deep neural networks Q(s, a; θ) and trains

the neural network with a loss defined by the TD error Eq. 3.24. The policy for

a DQN agent is to select an action that maximises the Q-value function: π(st) =
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argmaxa∈AQ(st, a; θ).

Two noteworthy observations emerge from the above description. Firstly, Re-

inforcement Learning (RL) necessitates problems that satisfy the Markov property

p(st+1|st, at), wherein the next state st+1 depends solely on the present state st, and

the past does not influence the future. This property, however, is not satisfied for a

POMDP problem. In POMDPs, agents lack access to state information st but only

receive observations ot from a state-conditioned distribution p(ot|st). The Markov

property breaks down, as p(ot+1|ot, at, ot−1, at−1, ..., o0) ̸= p(ot+1|ot, at). In mapless

navigation settings, where the robot can only observe its surrounding environment,

the problem can be inherently cast as a POMDP. Additionally, in this work, the

robot lacks ground truth poses and must estimate poses from history observations

using localisation algorithms, such as Lidar or visual odometry, further aligning with

the characteristics of a POMDP.

Secondly, the learned policy heavily relies on rewards and feedback from the

environment. Given that this work aims to train agents to navigate based on

localisation-safe policies, the introduction of a metric to determine a reward as-

sociated with localisation performance becomes necessary.

This chapter details the configuration of the proposed novel RL-based policy

based on the above findings, which have not been discussed in previous works in the

literature. The following section will discuss it in detail.

Configuration of the proposed RL-based navigation

As discussed above, mapless navigation that uses estimated localisation could be

viewed as a POMDP problem from the following two perspectives.

Firstly, from the localisation perspective, the robot pose estimation at the current

time step will require historical poses estimated as described in Eq. (3.30) introduced
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in Section 3.3:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1)

The above equation highlights that pose estimation, built on past inaccurately es-

timated poses resulting from insufficient or ambiguous observations, will also be in-

accurate. Given that estimated robot poses and observations constitute part of the

agent’s state input data, continuous training on such problematic data can mislead

the robot’s learning process. To mitigate this, this work proposes ending training

episodes when localisation begins to deviate from the ground truth. While one might

consider using pose estimation errors as a localisation performance criterion, it takes

time for position errors to accumulate to a noticeable scale. Experiences during this

time can still detrimentally impact the training procedure.

For outdoor navigation, the suggested metric is the number of landmarks ob-

served at the current timestep. In the case of indoor navigation, where a Lidar

sensor is employed, this work recommends using the determinant of the estimation

covariance calculated from the Hessian matrix as the metric. Further discussion on

this metric will be presented later.

From the perspective of mapless settings, robots lack access to global maps,

making them susceptible to getting stuck in local minimum regions where they

may hesitate to enter certain localisation-unsafe areas, as illustrated in Fig. 4.4

in Section4.1. To address this challenge and transform the POMDP problem into

an MDP for RL algorithms, this work proposes combining historical information

ht−1 = (ot−1, ot−2..., o0) with the current observation ot as an approximation of the

current state st. Storing entire historical trajectories can be resource-consuming and

inefficient for neural network inputs. In this work, it suggests utilizing the LSTM

architecture, specifically designed for processing sequences of data. The LSTM

encodes history information, represented by hidden values ht at each time step t,
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which are preserved as inputs for calculations in subsequent time steps, as illustrated

in Fig. 4.6.

Figure 4.6: LSTM for encoding history information

4.2.2 Novel DQN agent implementation detail

The specific configuration details for DQN used in the localisation-safe navigation

within this work are as follows. The state space of the DQN agent encompasses

both the sensor observation measurement ot and the relative goal position gt. The

latter includes the relative distance dg and heading β with respect to the robot.

As the classic DQN is designed for handling discrete action spaces, the action

space needs to be discretized. During each time step, the agent selects a linear

velocity vlinear from a set of values [vl1 , vl2 ...vli ] and an angular velocity from a set

of values [w1, w2...wj]. i and j can be decided according to specific requirements.

Novel reward space

In this task, the agent is tasked with navigating to a designated goal position while

simultaneously avoiding obstacles and minimizing its localisation uncertainty. Con-
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sequently, the novel reward function proposed is defined as follows:

r =



rlost if localisation fails

rcollision if collision happens

rgoal if dg < dgmin

f × (dt−1 − dt) otherwise

(4.1)

Here, rlost is a negative value generated when the localisation algorithm reports fail-

ures, and rcollision is also a negative value intended to penalize the agent for collisions

with obstacles. On the positive side, rgoal is a reward value granted when the robot

successfully reaches the goal position within a minimum acceptable distance, defined

by dgmin. The term dt−1 − dt is included to encourage the agent to make decisions

that decrease the relative goal distance, and f represents the distance rate factor,

which can be adjusted. Whenever one of the three situations (localisation failure,

collision, or reaching the goal) occurs, the episode terminates, and a new episode

begins.

Localisation failure indicators

This section discusses the details of the localisation failure signal, rlost, proposed by

this work. Previous research works seldom consider the penalty of rlost to regulate

agent behaviours.

However, this reward is crucial to prevent the robot from venturing into open

spaces where no or very sparse features can be observed. As described in Section 3.3,

it is evident that when the robot moves into open space, where the sensor lacks

sufficient observed features, the second term in Equation 3.31 will not be computed.

Consequently, the weight factors of the particles will not be updated. This results

in the particle filter being unable to assess the quality of the particles, leading to a

failure to perform re-sampling for correct estimation of the robot state using these
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weight factors. As a consequence, the localisation algorithm will fail and rely solely

on odometry, which is not accurate.

For the outdoor navigation agent, when the number of observed landmarks is

below a certain threshold, the episode will terminate, and a negative rlost will be

assigned to penalize the robot.

For the indoor Lidar-based navigation agent, even with many laser beams pro-

viding valid readings, the loss function in Equation 3.34 may not be well-constrained

when these readings are obtained from a symmetric corridor or a single straight wall.

Consequently, the number of observed features proves to be an unreliable indicator

of localisation failure.

As an alternative, this chapter suggests employing the determinant of the esti-

mation covariance, denoted as det C. The covariance is computed using the Hessian

matrix H, as outlined in Equation 3.39, as discussed in the localisation section

(Section 3.3).

det C = σ2 det(H−1) (4.2)

The detailed procedure for training a DQN-based navigation agent is shown in Al-

gorithm 1.

4.3 Evaluation

The evaluation of the outdoor navigation agent and the indoor navigation agent will

be discussed separately in this section.

4.3.1 Outdoor navigation agent evaluation

Experiment setup

The outdoor navigation method proposed in this chapter undergoes testing within

a 2-dimensional simulation environment utilizing a mobile robot featuring a 3-
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Algorithm 1 DQN-based Navigation

1: Initialise action value function Q with parameters θ including the LSTM module
discussed in Section 4.2.1,

2: Copy the initial Q parameters θ as the target value function Q̄ initial parameter
θ−: θ− = θ0

3: Create an empty memory buffer D with a maximum capacity N
4: for k = 0, 1, 2, ... do
5: Randomly set both the robot pose and the navigation goal position.
6: Construct the state from robot observation and the goal position: s0
7: for t = 0, ..., T do
8: Select an action at = argmaxa∈AQ(st, a; θ) with probability of ϵ;

otherwise randomly select at ∈ A.
9: Send the action at command to the robot;

wait to receive observation and calculate reward rt using Eq. 4.1;
construct the new state according to new observation: st+1.

10: Store transition (st, at, rt, st+1) in memory buffer D
11: Sample a minibatch n of transition data (sj, aj, rj, sj+1) from D.
12: Compute the target valuey:

yj =

{
rj if sj+1 is the terminal state

rj + γmaxa′ Q̄(sj+1, a
′; θ−) otherwise

(4.3)

13: Construct the loss function:

L =
1

n

n∑
j=1

(yj −Q(sj, aj; θ))2 (4.4)

14: Update the Q network with performing gradient descent on L
with respect to parameter θ

15: if st+1 is terminal state then
16: break
17: end if
18: Set target Q̄ parameter θ− = θ every K steps
19: If the episode termination condition is detected, as described in Sec-

tion 4.2.2, break and go to step 4 ;
20: end for
21: end for

dimensional kinematic motion model. As depicted in Fig. 4.7, the black dots repre-

sent landmarks observable by the robot for localisation. Each landmark also serves

as an obstacle, taking on a circular shape with a radius of 1 m, as illustrated by the

blue regions in Fig. 4.7. The robot’s observations encompass relative distances and

angles to these landmarks within the robot’s maximum observation range, set at 5.0
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m with full 2π coverage. The objective for the robot is to navigate to a designated

goal position, denoted by a blue star in Fig. 4.7. The red crosses signify estimated

landmarks computed by the FastSlam localisation algorithm and observed during

navigation.

Figure 4.7: Environment: robot (green dot) and goal position (blue star); green lines
indicate the 5-meter sensor detection range; all landmarks (black dots) have a 1-meter
collision radius (blue region); red crosses are the estimated landmarks by the FastSlam.

During training, those landmarks and goal positions are generated randomly. the

training procedure also uses randomly generated maps of different shapes. The robot

linear velocity is set to be a constant value vl = 1.0 m/s. The angular velocity is a

selection from the following set of values (−2.0,−1.0, 0.0, 1.0, 2.0) rad/s. Both linear

and angular velocities are added with Gaussian noises during the robot execution

to simulate odometry errors. The reward elements rlost, rcollision and rgoal are −300,

−300 and 600 respectively and the distance rate factor f is 10.

For the DQN-based RL framework, measurement data need to be converted

into a discrete structure. The full 2π coverage of the sensor is first divided into

36 groups according to relative angles (10 degrees per group). The observation ot

consists of two value lists: [n1 · · ·n36] where each element represents the number of
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observed landmarks in that angle group and [lmin1 · · · lmin36] where each element

represents the value of the relative distance to the nearest landmark in that angle

group. Using the restructured observation (36 + 36 dimensions) together with the

relative goal position (2 dimensions), the agent state would be then represented by

a 74-dimension vector. The input data is connected with 2 dense layers (512 nodes

each) and the final layer uses a linear activation function, as shown in Fig. 4.8.

Other DQN parameters are shown in Table 4.1.

parameter value
learning rate 0.00025
discount factor 0.99

epsilon decay rate 0.998
replay buffer 1000000

target network update rate per 10 episodes

Table 4.1: DQN settings

Figure 4.8: The outdoor navigation Q network structure

Training results

Baseline methods in the literature: As mentioned earlier, previous research

often assumes access to ground truth robot poses. In Fig. 4.9, the trajectory illus-

trates the scenario when a robot is provided with true poses and trained without
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Figure 4.9: Robot navigation trajectories with ground truth poses provided

(a) (b)

Figure 4.10: Trajectories generated without localisation failure penalty (a) PF localisation
diverges when no feature is observed, (b) PF localisation re-converges to wrong poses (blue
star: goal; blue line: ground truth trajectory; red line: estimated trajectory)

the penalty for localisation failures. The robot navigates through an open space

diagonally, reaching the goal position in a relatively short distance. However, in

the real world, obtaining ground truth poses is not always feasible. When particle

filter-based localisation is employed in the same task, the robot’s trajectory diverges

from the true path, as shown in Fig. 4.10, where the red and blue lines represent

the estimated and ground truth trajectories, respectively.

During navigation, divergence occurs due to poor observations of environmental

features, as depicted in Fig. 4.10a. In situations where navigation involves diverged
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particles, observing new features triggers particle resampling, aiming to relocalise

the robot and converge to a new pose based on the newly observed features. How-

ever, the estimated pose may lose its original track and converge to incorrect poses,

as illustrated in Fig. 4.10b. This failure in particle filter localisation can lead to

catastrophic consequences. In certain instances, the robot’s goal position may be-

come unreachable due to misaligned obstacles, as indicated by the red crosses at the

bottom right corner in Fig. 4.10b. Consequently, the robot will never reach the goal

position.

Figure 4.11: Trajectories generated by the proposed agent with localisation failure penalty:
The trajectories stick close to landmarks instead of going directly into goal positions
to keep observing enough landmarks. The localisation failure is avoided compared to
navigation by other methods. (blue star: goal; blue line: ground truth trajectory; red
line: estimated trajectory)

Performance of the proposed method: In the same set of experiments, the

navigation policy trained with the additional localisation failure penalty rlost, intro-

duced in this work, was tested. Fig. 4.11 displays the trajectories estimated using

the particle filter algorithm for localisation. As anticipated, the estimated trajec-

tories closely align with the true trajectories. Notably, the new trajectories tend

to stay close to landmarks, ensuring high-quality landmark observations for robust



4.3 Evaluation 101

localisation. Consequently, the robot successfully reaches the goal relying solely on

PF-based localisation. The enhanced performance can be primarily attributed to

the novel landmark-aware RL-based navigation policy, which encourages the robot

to maintain a distance that ensures good feature observations for high localisation

confidence.

The success rates, evaluated at different training episodes, are presented in

Fig. 4.12. Eq. 4.5 defines the success rate, where Nall is the total testing number

conducted at each episode and Nsuccess records the number when the robot reaches

goal regions successfully within the Nall tests. It is evident that the success rate

increases with the number of training episodes and stabilises at around 80% after

3000 episodes. Given the simplicity of the network, the training process takes sev-

eral hours on a workstation equipped with an Intel i7-8700 CPU and an Nvidia

RTX-2080 GPU.

success rate =
Nsuccess

Nall

(4.5)

Figure 4.12: Success rate: It marks a success when the robot reaches the goal region for
one navigation task. Otherwise, it is considered a failure when collision failure, time-out
failure, or localisation failure occurs. 100 navigation tasks are tested for each episode.
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4.3.2 Indoor navigation agent evaluation

Figure 4.13: Agent network architecture

The indoor navigation algorithm is tested using a Turtlebot-3 mobile robot

equipped with a 2D-Lidar sensor in Gazebo simulation environments as shown in

Fig. 4.3.

The observation state ot for the agent consists of laser scan data (l1 · · · l72) and

the relative pose to the goal, represented in the polar coordinate (relative distance

and angle to the goal (dg, β)). This would result in a 74-dimension state vector as

the input for the agent network.

Given the discretized action space, the action set includes angular velocities:

{−1.5,−0.75, 0.0, 0.75, 1.5} rad/s. To simplify the problem, the robot’s linear veloc-

ity is set as a constant value vl = 0.1 m/s. The network configuration, as depicted

in Fig. 4.13, comprises one LSTM cell and three Dense layers.

For pose estimation, as detailed in Section 3.3, the indoor navigation algorithm

employs the well-known Lidar-based localisation algorithm, Hector SLAM. Notably,

the maps constructed by Hector are not utilized by the agent, emphasizing the

mapless navigation approach.
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Inverse of Hessian Matrix as Reward Metric

Figure 4.14: Robot travelling from room into corridor

This section will first demonstrate the effectiveness of the value of determinant

det C, on how it may affect the robot’s behaviours, e.g., if the robot could avoid

areas with deteriorated localisation. For illustration purposes, Fig. 4.14 presents a

scenario where the robot is positioned in a room with distinct geometric features

and subsequently moves into a corridor following human commands. The corridor

poses a challenge for Lidar-based localisation due to ambiguous symmetric features.

As discussed before, one obvious metric could be the error of the estimated pose.

Therefore, the evaluation here compares the pose errors between the estimated robot

poses and the ground truth poses and the determinants det C along the trajectory.

As shown in Fig. 4.15, it can be seen that, after the robot enters the corridor at the

time step of about 380, the pose estimation error starts to rise gradually, while, in

contrast, the determinant sharply moves upwards and remains high afterwards with
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Figure 4.15: Determinant values of covariance and pose estimation errors

a certain level of fluctuations.

The pose estimation errors exhibit a gradual increase, taking a considerable

number of time steps to reach a noticeable level. This characteristic is undesirable

when considering it as a reward metric in the context of localisation safety and the

MDP setting, as it fails to provide an immediate response to localisation failures. In

contrast, as depicted in the figure, the proposed determinant of the covariance can

promptly indicate when the robot begins to lose its track. Consequently, it enables

the RL agent to be penalized immediately for such behaviours. This work has tested

extensively on similar scenarios and has consistently observed similar changes of the

determinant value.
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DQN Training Results

The algorithm’s training process for the DQN agent is outlined as follows: In each

episode, the robot is respawned at a random position, with the goal position also

being randomly determined. The episode terminates when any of the following con-

ditions are met: 1) the robot collides with an obstacle or wall; 2) the determinant

value of the covariance exceeds a predefined threshold, indicating deteriorated lo-

calisation (e.g., the robot entering a symmetric corridor area in this environment);

3) the robot reaches the goal region; 4) or the maximum time step is reached. The

training of the policy network is summarised in Algorithm. 1.

Figure 4.16: Success rate and localisation failure rate

The results of the agent’s navigation policy are depicted in Fig. 4.16. The success

rate defined in Eq. 4.5 reaches approximately 85% after the training of about 3300

episodes, indicating promising performance for this DQN-based learning implemen-

tation. Fig. 4.17 illustrates some trajectories of the agent trained with the proposed
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method, where the red circles represent the goal regions. It is clear that the agent

can reach the goal positions and avoid obstacles in the environment with different

initial positions and goal positions.

Figure 4.17: Example trajectories of the agent trained with the proposed method with
randomly located start and end positions. (red circles: goal region)

Directly comparing with the original mapless navigation, which assumes the

availability of ground-truth poses, would be unfair. To address this, the training

procedure in this work periodically calculates failure rates specifically for cases that

failed due to unsuccessful localisation problems—when det C is above the threshold.

As depicted in Fig. 4.16, the localisation-related failure rate drops from 14% to 6%
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(green line), clearly contributing to the overall success rate of navigation. This val-

idates the hypothesis that penalizing behaviours entering regions with deteriorated

localisation is effective in improving navigation performance.

To further demonstrate the effectiveness of the proposed RL policy, specific sce-

narios have been created for illustration purposes. In these scenarios, the robot is

initially spawned at the entrances of symmetric corridors, with the corresponding

goals located at the other end of the corridor.

Figure 4.18: Trajectories of the baseline agent without localisation related reward rlost:
the robot travels directly towards goal regions without avoiding corridors. (red circles:
goal region)

Navigation performance by other baseline methods: RL algorithms that do
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not consider localisation performance would typically result in the robot choosing

to traverse the corridor directly. As depicted in Fig. 4.18, the agent trained without

the localisation-related reward rlost exhibits behaviour similar to the shortest path

strategy. However, traversing through corridors can lead to localisation failures and

inaccurate pose estimations, as discussed previously (Fig. 4.15). Consequently, even

if the agent passes through the goal regions, it may miss the targets because it lacks

knowledge of its true state, ultimately ending up with an inaccurate position due to

the unreliable pose estimation.

Navigation performance by the proposed method: With the proposed method

in this work, as expected, the robot’s capability to avoid entering localisation failure

regions has been significantly enhanced. Fig. 4.19 displays trajectories generated us-

ing the new algorithm, illustrating that the robot successfully avoids corridor areas

that are challenging for Lidar-based localisation.

In each task, the agent initially hesitates slightly around the corridor entrance

to gather path information ahead. As the agent processes Lidar scan information,

it becomes well-informed about the presence of a symmetric corridor (a challenging

region for Lidar-based localisation) and opts to navigate along a more distant path.

The acquired capability to avoid entering regions with deteriorated localisation is

attributed to the introduction of the proposed punishment reward rlost during train-

ing. The incorporation of an LSTM cell allows past observations to be encoded

and transmitted as hidden state values to subsequent time steps, as illustrated in

Fig. 4.6. In the context of localisation, this empowers the robot with the capability

to recall its previous locations and the environmental features it has encountered.

As a result, after the robot extensively explores its local surroundings, it accumu-

lates sufficient information to make informed decisions. Ultimately, the robot can

escape local minimum regions.

In addition, the navigation policy has been tested in unseen environments of dif-

ferent layouts, corridor entrance conditions and sizes (Fig. 4.20, Fig. 4.21, Fig. 4.22).
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Figure 4.19: Trajectories of the agent trained with the method proposed in this chapter
(red circles: goal region)

As shown in Fig. 4.20, the robot can still navigate to the goal position without travel-

ling in the region dangerous for localisation (the red region). However, interestingly,

the agent behaved more conservatively than needed in this case. At the beginning,

the robot hesitated at the two entrances of the two corridors, including one corridor

that is alike a symmetric corridor (the blue region in the figure), which is actually

safe for localisation. The robot finally abandoned entering this passage and chose

another one which presented more distinct features for localisation at the entrance

of the corridor.
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Figure 4.20: A navigation example in the unseen environment-1

Figure 4.21: A navigation example in the unseen environment-2
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Figure 4.22: A navigation example in the unseen environment-3

4.4 Conclusion

This chapter introduces a novel RL-based mapless navigation method, eliminating

the reliance on the availability of ground truth robot poses ( as assumed in other

works ) by utilizing onboard localisation algorithms for pose estimation. To train

robots to avoid navigation in regions where localisation algorithms might fail, a

penalty term rlost is designed to regulate robot behaviours. For outdoor navigation,

localisation failure is detected when the number of observed landmarks falls below

a threshold, while for indoor navigation, the determinant of the pose estimation

covariance is proposed as the measure of localisation failures.

Given the use of pose estimation algorithms, the agent may encounter local

minima more easily in indoor environments. To address this issue, the incorporation

of history information for decision-making is proposed by integrating an LSTM cell

into the robot policy network.

Experimental results demonstrate that the agent has successfully learned map-
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less navigation while avoiding localisation-unsafe regions or getting trapped in local

minimum regions. This achievement is attributed to the localisation-related penalty

and the inclusion of historical information in the state representation.

However, it is important to note that the proposed method has been tested

in relatively simple simulation environments without dense obstacles or dynamic

objects. Future work could focus on evaluating the algorithm in more realistic

and complex indoor and outdoor settings. Additionally, testing the algorithm with

real-world robots and sensors poses an avenue for future research, necessitating the

development of techniques to address the sim-to-real transfer problem.

Furthermore, it’s important to highlight that this work has not integrated the

indoor and outdoor navigation strategies into a unified system. Currently, they

are tested independently in their respective environments. Future endeavours could

focus on developing an autonomous switching module that determines whether to

employ the indoor policy or the outdoor policy based on real-time observations.

This can be formulated as an environment perception problem using neural network

techniques. This integration would contribute to a more comprehensive and versatile

robotic navigation system capable of seamlessly adapting to diverse environments

and challenges.
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Chapter 5

VO-Safe Reinforcement Learning

for Drone Navigation

The previous chapter focuses on localisation-safe algorithms for ground vehicles.

This chapter will extend the localisation-safe concept to a more complex navigation

system: drones with visual odometry for localisation. Here in this chapter, the term

drone is the same as UAV in previous chapters. Similarly, it is crucial for these

drones to avoid areas with poor visual features, as such areas can result in degraded

localisation or complete tracking loss. Several challenges have arisen from such a

system with VO-safe navigation requirements.

To address the challenges, a hierarchical control scheme is proposed. In this

scheme, an RL-trained policy serves as the high-level controller, generating way-

points for the next control step. A low-level controller guides the drone to reach

these selected waypoints. Unlike other existing RL-based navigation approaches, the

training of the high-level policy incorporates awareness of VO performance. This is

achieved by introducing pose estimation-related penalties into the policy training.

To enhance a robot’s ability to distinguish between perception-friendly areas and

unfavourable zones, semantic images are used as input for decision-making, instead

of raw images. This approach not only aids in effective decision-making but also
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helps bridge the gap between simulation and real-world implementations.

The policy trained with the proposed method has been successfully tested in

real-world scenarios. Thanks to the semantic inputs and the hierarchical structure,

the learned policy can be directly applied to the real-world VO-safe navigation task

without the need for retraining.

This chapter will start with an introduction in Section 5.1. This will be followed

by the preliminary knowledge for this chapter in Section 5.2. Subsequently, the

proposed method will be discussed in detail in Section 5.3. Following the method,

Section 5.4 will present the evaluation results of the proposed methods. The chapter

will conclude with a summary and insights in Section 5.5.

5.1 Introduction

Reinforcement learning algorithms have proven effective in guiding robots to goal

points specified by relative coordinates without the need for prior environment maps,

as exemplified by Tai et al. [45]. In tasks involving reaching specific goal points, the

initial goal position is provided with relative coordinate numbers. The robot must

then calculate its poses dynamically during navigation to reach the actual goal.

While many prior studies on reinforcement learning have concentrated on ob-

stacle avoidance and path searching, fewer have considered the quality of pose es-

timation during navigation. This oversight often stems from the assumption that

ground truth poses are somehow provided to the robots. In practical applications,

obtaining accurate pose information is crucial. External sensor systems, such as the

Vicon motion tracking system, can provide high-frequency pose information but are

expensive and fixed in certain environments.

For lightweight mobile robots, onboard sensors like cameras and Lidar sensors of-

fer a more practical solution. These sensors, combined with localisation algorithms,

can provide odometry information for robots during navigation.
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Figure 5.1: A drone travels from the start to the destination, crossing a lake. Features
detected on the water surface are not consistently tracked, hence negatively impacting the
VO performance. The red trajectory, despite being shorter, lacks reliable visual features
for pose tracking. In contrast, the longer green trajectory enhances visual odometry
performance by maximising reliable feature quality over terrain, houses, etc.

The performance of these algorithms, however, heavily relies on the observations

received at different time steps. If observations along planned trajectories contain

ambiguous or insufficient features, it can lead to the failure of localisation algorithms.

Consequently, robots may receive inaccurate pose estimations, ultimately causing a

loss of the goal position and, subsequently, the failure of the navigation task. Pro-

viding robots with inaccurate pose estimations can have catastrophic consequences,

particularly in safety-critical tasks.

A real-world drone navigation scenario, as illustrated in Fig. 5.1, can help elu-

cidate the aforementioned arguments. The drone is equipped with a down-looking

camera and uses VO for pose estimation. The water area should be avoided due to

insufficient and potentially harmful features from moving water, impacting pose esti-

mation negatively. In this scenario, the green path, despite being longer in distance,

is preferable to the shorter red trajectory (assuming no access to GPS information).

The green trajectory enhances the drone navigation task by providing more valuable

features for motion estimation. Conversely, the red path may result in the loss of
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drone location when traversing over water and missing the destination at the end.

Most current research in RL-based path planning focuses solely on either effi-

ciency, aiming for shorter paths, or safety, prioritizing collision-free routes. The

above issue has been seldom noticed in previous works. Also, most RL-based robots

are usually trained in simulation environments, where robot poses are always ac-

cessible. As a result, agents after training with ground truth poses tend to choose

shorter paths (Fig. 5.1), ignoring the possible failed localisation in the real world,

where ground truth poses are unavailable. Therefore, the assumption of the avail-

ability of the ground truth poses will introduce a huge gap between the simulation

and real-world environments for deployment on the real robot.

Another aspect of the sim-to-real problem arises from the fact that many re-

inforcement learning algorithms train policies in unreal simulated worlds, such as

environments created by the Unity game engine [204] or PyBullet [205]. Visual ob-

servations obtained from such simulators differ significantly from real-world images.

When these trained policy networks are presented with real-world image inputs,

they may produce erroneous decisions.

To address the sim-to-real problem, this work suggests utilizing semantic inputs

instead of raw image inputs. Ensuring that specific objects in simulators and the

real world fall into the same semantic categories (e.g., house, tree, water) facili-

tates consistent input for both simulator and real-world applications. Additionally,

using semantic inputs offers the advantage of distinguishing objects with similar

appearances but varying effects on robot pose estimation, such as distinguishing

between green terrains and moving green tree leaves. An RGB observation and its

corresponding semantic observation are shown in Fig. 5.2.

For the control system, a hierarchical framework rather than an end-to-end ap-

proach is proposed. This involves a high-level controller generating short-term way-

points, coupled with a traditional low-level controller guiding the drone to these

waypoints. This hybrid approach leverages the capabilities of neural networks while
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(a) Simulated lake

(b) Semantic Mask

Figure 5.2: Simulated environments and semantic output from the simulator.

ensuring safety through the reliability of conventional controllers [91].

While end-to-end learning has proven effective for drone flight tasks, it presents

problems in the context of navigation with VO-based pose tracking. This is partic-

ularly evident in agile motions where significant differences in observations between

consecutive frames occur due to rapid and erratic movements, leading to challenges

in VO feature matching.

Moreover, end-to-end policies are trained for specific robot configurations, mak-
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ing them incompatible with other robots. In contrast, the high-level policy of a

hierarchical framework merely decides the next waypoint without considering robot

configurations. The low-level controller, tailored for individual robots, then guides

the robot to the specified waypoint. This eliminates the need for retraining RL-based

policies for different robots.

5.1.1 Summanry

To address the challenges, the algorithm of this chapter proposes adding an addi-

tional objective to be optimised, specifically focusing on visual odometry perfor-

mance. This is introduced alongside the conventional objective of achieving the

shortest path during trajectory planning, achieved by redesigning the reward space

in the reinforcement learning training process.

To narrow the gap between simulation and real-world environments, the algo-

rithm applies semantic masks to raw RGB images before inputting them into the

policy. This preprocessing step enhances the model’s ability to generalize across

different environments.

Additionally, the algorithm advocates for the implementation of a hierarchical

control system. This framework capitalizes on the advantages of safety-guaranteed

conventional control while maintaining a vehicle-agnostic nature, thus eliminating

the need for retraining when transitioning to other platforms.

The contributions of work introduced in this chapter are summarised below:

• It proposes an RL-based navigation framework to prevent odometry failures

during flight.

• A novel reward space is introduced to encourage VO-safe behaviours.

• Semantic images are used to bridge the sim-to-real gap.

• The proposed approach combines learning-based and conventional control in

a hierarchical scheme.
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5.2 Preliminary

5.2.1 Drone dynamics

The drone is modelled as a 6-degree-of-freedom rigid body with a mass of m and

a diagonal moment along x − y − z axis of inertia matrix J = diag(Jx, Jy, Jz).

Additionally, the four propellers’ rotational speeds, denoted as Ωi, are simulated as

a first-order system with a time constant of kmot. The input for this system is given

by the commanded motor speeds Ωcmd.

The drone can be represented with a 17-dimensional state, and its dynamics can

be expressed as Eq. 5.1 [151,206].

ẋ =


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(5.1)

q = [qo, qv]T is the attitude quaternion, which consists of a real part qo and a vector

qv. Operator ⊗ stands for the quaternion multiplication, given two quaternions q1

and q2, the multiplication is:

q1 ⊗ q2 =

 qo1q
o
2 − qv1Tqv2

qo1q
v
2 + qo2q

v
1 + qv1 × qv2

 (5.2)

⊙ denotes quaternion rotation. For a quaternion q and a vector e, the quaternion

rotation is q ⊙ e = q ⊗ [0, e]T ⊗ q−1.

Here, g = [0, 0,−9.81m/s2]⊺ represents Earth’s gravity, fprop and τprop denote

the collective force and torque generated by the propellers, and fdrag represents a

linear drag term. The following shows the calculation of their values:
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fprop =
∑
i

fi , τprop =
∑
i

τi + rP,i × fi , (5.3)

fdrag = −
[
kBvxvx kBvyvy kBvzvz

]⊤
, (5.4)

where rP,i denotes the position of propeller i expressed in the drone body frame,

fi, τi represents forces and torques produced by the i-th propeller respectively. The

linear drage coefficients are denoted by (kvx, kvy, kvz) [207]. The torques and forces

generated by a propeller are commonly approximated by values proportional to the

square of the rotational speeds of the propeller [151] as shown in Eq. 5.5. The thrust

and drag coefficients, cl and cd, can be determined through experimentation on a

test stand. The motor first-order time constant kmot can also be acquired through

measuring the rotational speed response of the propeller during these tests.

fi(Ω) =

[
0 0 cl · Ω2

]⊤
, τi(Ω) =

[
0 0 cd · Ω2

]⊤
(5.5)

A Semi-implicit Euler method with step size 2ms is used for the drone dynamics

integration.

5.2.2 Visual-odometry

Visual odometry is the process of estimating the motions of a monocular or stereo

camera based on the received image sequence, which usually consists of several

components including feature detection, feature matching, motion estimation, and

local bundle adjustment [208].

Feature detection is to find salient keypoints like corners or blobs in one image

observation that may be well-matched in other observed images, which should distin-

guish themselves from their immediate neighbourhood [209]. A good feature should

have the property of distinctiveness and localisation accuracy (both in scale and po-
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sition) [209]. There are various methods used as feature detectors (e.g. FAST [210],

Harris [211], SIFT [212]). The feature matching is to find corresponding features in

other images. The simplest way to match features between two images is to compare

all feature descriptors in the first image to all other feature descriptors in the second

image. A feature pair with similar descriptors across images are treated as the same

feature observing from different camera poses. The 3-D locations of features in the

real world will be estimated through triangulation with observations from different

camera poses.

Motion Estimation Once there are features with known 3D poses after initial-

isation, the camera pose can be calculated by optimising reprojection error, which

is called the perspective from n points (PnP) problem. It compute the camera

orientation R ∈ SO(3) and position t ∈ R3 by minimizing the reprojection error

between matched 3D points Xi ∈ R3 in world coordinates and keypoints xi(·), either

monocular uim ∈ R2 or stereo uis ∈ R3 in image frame, with i ∈ X the set of all

matches [11]:

{R, t} = argmin
R,t

∑
i∈X

ρ
(∥∥ui(·) − π(·) (RXi + t

)∥∥2

Σ

)
(5.6)

where ρ is the robust Huber cost function and Σ the covariance matrix associated to

the scale of the keypoint. The projection functions π(·), monocular πm and rectified

stereo πs, are defined as follows:

πm



X

Y

Z


 =

fxXZ + cx

fy
Y
Z
+ cy

 , πs


X

Y

Z


 =


fx

X
Z
+ cx

fy
Y
Z
+ cy

fx
X−b
Z

+ cx

 (5.7)

where (fx, fy) represents the focal length, (cx, cy) denotes the principal point and b

is the baseline, all of which can be estimated from calibration.

Local Bundle Adjustment Different from the motion estimation step, it op-
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timises poses and map points at the same time. This step optimises a set of camera

poses from a sequence of frames KL within a time window and all points PL seen in

those frames. The optimisation problem is the following:

{Xi,Rj, tj|i ∈ PL, j ∈ KL} = argmin
Xi,Rj ,tj

∑
j∈KL

∑
i∈PL

ρ (Eij)

Eij =
∥∥ui(·) − π(·) (RjX

i + tj
)∥∥2

Σ

(5.8)

5.3 Method

As described, the overall target of the problem is to navigate a drone to a designated

goal within a specified time frame, while also avoiding regions unfavorable to visual

odometry. The problem can be formulated as

min
π(x)
Jo =

∫ T

0

∥p(t)−Goal∥2dt, (5.9a)

s.t. xt+1 = f(xt, π(xt)), (5.9b)

x0 ∈ X , (5.9c)

p(t) ∈ P , ∀t ∈ [0, T ], (5.9d)

where x represents the drone state and p specifies the drone position. Eq. 5.9b

represents the drone’s dynamic model which has been described in detail in the

preliminary Section 5.2.1 and X is the possible initial state set. P denotes areas

with high-quality visual features suitable for VO-based pose tracking. π(xt) is the

policy to be optimised subject to dynamics (Eq. 5.9b) and VO constraints P . The

proposed method focuses on policy training within collision-free environments, em-

phasizing visual odometry performance. This assumption is reasonable, considering

that collision detection is typically not required for open-space navigation.

To address such a problem, this chapter proposes a reinforcement learning-based

algorithm with a hierarchical control flow. The overall framework and key modules
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will be illustrated in the following subsection.

5.3.1 Design of the overall system

Figure 5.3: The proposed overall system framework. This thesis proposes a hierarchical
control scheme tailored for the VO-safe navigation task for drones. It suggests incorporat-
ing a previously overlooked VO module for localisation during training and using semantic
images to alleviate the sim-to-real gap issue.

A hierarchical RL-based control scheme is proposed in this work. The proposed

framework and key modules are illustrated in Fig. 5.3. A drone equipped with an

RGB camera is employed for VO-based navigation. Firstly, raw images undergo

processing by the VO module to conduct pose estimation. With the ultimate goal

position, this process yields relative goal positions, contributing to the RL agent’s

observations. The raw images are also input into a classifier to generate semantic

images, constituting another component of the observations. Using these observa-

tions, the reinforcement learning agent decides on one action from eight possible

moving directions. On the other hand, at the low-level control, a classical controller

computes individual rotor thrusts to guide the drone along the selected direction

for a predetermined fixed distance. This process repeats until the goal position is

successfully reached.

The subsections will begin by providing a brief recapping of the fundamental

concepts of reinforcement learning and the PPO algorithm. Following this, the
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implementation details proposed in this chapter to address the VO-safe navigation

problem will be outlined. Finally, a detailed description of the low-level controller

will be provided.

5.3.2 Design of the VO-safe high-Level controller

This work adopts the PPO-clip method as it is easier for implementation and has

proven to be more efficient than PPO-penalty in work [190]. The updating process

of PPO-clip is through optimising the following objective function:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (5.10)

where L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
(5.11)

in which ϵ is a small hyperparameter and g(ϵ, A) =

 (1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0.

The intuition behind this is to increase the possibility of actions (πθ(a|s)) that are

better than others, evaluated by the advantage Aπ(s, a) and lower the probabilities

of worse actions. Clipping is employed to limit the update between the new and old

policies, preventing divergence. For detailed information, please refer to Section 3.1

and Section 3.2.2. Subsequently, the implementation details of the proposed novel

VO-safe navigation RL training will be presented.

Implementation details of VO-safe RL

The following section outlines the details of the proposed VO-safe RL-based naviga-

tion policy training. The state s is composed of the estimated relative goal position

pg and the observed images Oimg: s = [pg, Oimg]. The action space A consists of 8

discrete actions, each representing movement along one of 8 possible directions for
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a distance of 1 meter. The discretized action space can help accelerate and stabilise

the training process.

VO-safe Reward space is designed to involve considering the drone’s reliance

on visual odometry for pose estimation. Hence, the agent’s objective is extended

beyond optimising path length to avoid actions that may result in VO failures.

Unlike many prior research works, the proposed method introduces an additional

penalty based on the VO status. The reward space is defined as follows:

Rt = Rs(p(t)) +RG(p(t)) +RV O (5.12)

Rs(p(t)) is the progress reward designed to encourage the agent to reduce the

distance from the robot to the goal:

Rs(p(t)) = α× (dt−1 − dt) (5.13)

where dt is the distance from the robot to the goal at time step t and α is the

distance weight. The goal reaching reward RG(p(t)) is:

RG(p(t)) =


10 dt <= dg

0 otherwise

(5.14)

A positive reward of 10 is provided when the distance to the goal is within a

threshold dg.

The last term RV O is the VO-related reward for penalising actions leading to

the deterioration of VO-based tracking, which is usually ignored in methods in

the literature. Tracking is considered lost or failed when consecutive frames are

not consistent with each other or do not observe enough features as instructed by
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Eq. 5.6. RV O is defined as:

RV O =


−10 if visual odometry failed

0 otherwise

(5.15)

The scales of the reward and penalty (10 or −10) are selected empirically though

experiments.

Design of the policy and value function networks. The proposed networks

are shown in Fig. 5.4. The training procedure is conducted in the Flightmare simu-

lator [195], a Unity game engine-based simulator responsible for rendering raw and

semantic images (480x360x3). Semantic images are converted and downsampled to

grayscale (240x180x1). The grayscale image, along with the relative goal position,

undergoes feature extraction shared by both the policy network and the value func-

tion network represented by a module consisting of 3 CNN layers and a linear fully

connected (FC) layer.

Following feature extraction, the Critic calculates the value function through two

additional FC layers, while the Actor determines the optimal action for the low-level

control through 3 extra FC layers. The resulting control signals from the low-level

controller are sent to the simulator, updating the drone state.

Figure 5.4: High-level policy network
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The training procedure is shown in the Algorithm. 2

Algorithm 2 VO-safe high-level policy training

1: Input: initial policy parameters θ0, initial value function parameters ϕ0 with
network structures described in Section 5.3.

2: for k = 0, 1, 2, ... do
3: Initialize rollout buffer D
4: for t = 1, ...,m do
5: Sample an action from current policy π(s, θk).
6: Execute action at by the proposed low-level controller in Section 5.3.3

and receive reward r defined in Eq. 5.12 and new state st+1.
7: Store transition (st, at, rt, st+1) in the rollout buffer D.
8: end for
9: Compute rewards-to-go ˆR(t) =

∑T
h=t+1 γ

h−t−1Rh for trajectories in

10: Compute advantage estimates Ât based on the value function Vϕk
11: Update the policy by maximizing importance sampling weighted objective:

θk+1 = argmax
θ

1

|Dk|T
∑
∀τ∈D

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ϵ, A
πθk (st, at))

)
(5.16)

via stochastic gradient ascent with Adam optimiser
12: Update value function network by regression on mean-square error on

samples:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
∀τ∈D

T∑
t=0

(Vϕ(st)−R(t))2 (5.17)

via gradient descent algorithm with Adam optimiser.
13: end for

5.3.3 Designing of the Low-level controller

The low-level controller employs a classic PID controller to compute control signals

u for motor controllers. This enables the drone to move toward the next waypoint

determined by the high-level policy. The low-level controller follows a cascaded

control structure, comprising a position controller followed by an attitude controller,

as depicted in Fig. 5.5. The position PID controller receives position commands

pd = [px, py, pz]d, which outputs the desired attitude Θd for the attitude controller
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Position controller

Attitude Controller

Motor Controller Drone

Figure 5.5: Low level controller

and also the collective thrust:

Θhd = −g−1A−1
ψ (−KhD(ṗh)−KhP (ph − phd)),

f = m(g + kzD(ṗz − ˙pzd) + kzP (pz − pzd)),

Θd = [Θhd, ψd],

(5.18)

where the control of horizontal position ph = [px, py] and altitude pz are decoupled.

The attitude control Θ = [ψ, θ, ϕ] is also separated into two parts: Θh = [θ, ϕ] and

yaw ψ. The desired yaw ψd is provided by the task and Aψ =

 sinψ cosψ

− cosψ sinψ

. m
and g are the drone mass and gravity, respectively. KhD, KhP , KzD and KzP are

the corresponding derivative and proportional weights.

The attitude PID controller calculates the desired moment τd such that the drone

can fly in desired attitudes:

ωd = −KΘ(Θ−Θd),

eω = ω − ωd,

τd = −KωP eω −KωI

∫
eω −KωDėω,

(5.19)

KΘ is designed to control the drone attitude to converge to desired attitude

following an expected trajectory, and KωP , KωI , KωD denote the coefficients for the

proportional, integral, and derivative terms, respectively. u = [τd, f ] can then be
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used to calculate individual motor control signals [f1, f2, f3, f4].

5.4 Evaluation

5.4.1 Experiments setup

Hierarchical RL Agent (VO-safe). To simplify the nomination, the method

proposed by this chapter is referred to as VO-safe. To train the proposed PPO agent,

in each episode, the robot is spawned at a random position. The goal position is also

randomly assigned. At each time step, the drone flies along the RL-decided direction

for 1 meter. Each episode is terminated and restarted when any of the following

cases occurs: 1) the drone reaches the goal within an acceptable threshold; 2) visual

odometry reports failures; or 3)the predefined maximum time steps are reached.

End-to-end State-based RL Agent (GT-state-based). An end-to-end state-

based agent from previous research [151] is also trained as the baseline for compar-

ison. Ground truth state information s = [pg,Θ, ω]gt is provided instead of images

and VO inputs. In this case, the agent decides individual motor control signals

[f1, f2, f3, f4] directly. The reward space is similar to VO-safe, excluding the VO-

related reward component RV O. The overall training procedure is akin to VO-safe

but eliminates the necessity for a low-level controller and follows the standard PPO

training algorithm. For convenience, it is named GT-state-based in the following

sections.

5.4.2 PPO training results

Fig. 5.6 displays the average rewards during the training of the policy. The state-

based agent, which has access to ground-truth state information from the simulator,

achieves the highest average reward after training, serving as a benchmark reference.

This allows for the evaluation of the performance of the vision-based VO-safe agent

proposed in this work. Notably, the performance of our visual agent is comparable
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to that of the GT-State-based agent in terms of the total rewards received as shown

in Fig. 5.6.
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Figure 5.6: Average rewards

The test success rates are presented in Table 5.1. The proposed algorithm VO-

safe achieved a success rate of 0.78 out of 1.0 during testing. In contrast, the

GT-state-based agent, which is trained with ground truth poses and benefits from

their availability during testing, can always reach the given goal.

VO-State-based. However, if the state-based agent is fed with VO-estimated

poses (named VO-State-based), the success rate drops significantly to 0.56. The

main failure reasons include the drone flying over VO-unfavoured regions, such as

water, and occurrences of excessive flying velocities ṗ or attitudes Θ, which will be

discussed in detail in Section 5.4.3.

Fig. 5.7 illustrates trajectories of different agents, with red circles representing

the goals. The state-based agent opts to fly directly towards the goal, lacking
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Table 5.1: Success rates and VO performance

Metrics VO-safe GT-State-based VO-State-based

Success Rate 0.78 1.0 0.56

RMSE (m) 0.38± 0.31 N/A 1.10± 0.5

consideration of visual information for pose estimation. This leads to failures when

ground truth is unavailable, and visual odometry (VO) is utilized for pose estimation,

exemplified by the VO-State-based agent in the figure. In contrast, the agent trained

with the algorithm proposed by this paper chooses a path that avoids dangerous

regions where there are no reliable features for VO, such as water or trees, known

for ambiguous and less distinct features.

Fig. 5.8 displays trajectories in more photo-realistic environments not encoun-

tered during training. Remarkably, the agent proposed by this work successfully

accomplishes tasks in these new environments without requiring retraining, thanks

to its utilization of semantic images as input.

Figure 5.7: The VO-safe agents can navigate successfully while the VO-State-based fails
due to VO being lost over trees.
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Figure 5.8: In a photo-realistic environment. VO-State-based fails above the water region,
while VO-safe succeeds without retraining as with GT-State-based.

5.4.3 Hierarchical architecture

This section justifies the use of a hierarchical architecture by analyzing the impact

of drone dynamics on visual odometry (VO) performance.

As illustrated in Table 5.1, the hierarchical method significantly improves the

accuracy of poses estimated by VO, compared to the VO-State-based approach.

This improvement is mainly attributed to the short-term goals generated by the

high-level policy, preventing the drone from making abrupt and violent movements.

In contrast, the end-to-end VO-State-based approach tends to induce excessive

motions to achieve high speed, leading to large discrepancies between consecutive

images and, consequently, inaccurate localisation. This discrepancy is visually de-

picted in Fig. 5.9.

To assess the impact of excessive motions on visual odometry (VO) performance,

the two agents, the VO-safe agent and the VO-state-based, are assigned an identical

task where the drone is tasked with reaching four goals located at the corners of a

square in a simulation environment (Fig. 5.10a and Fig. 5.10b).
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Figure 5.9: VO performance

The VO-safe method decomposes each task into a series of short segments, each 1

meter long. The VO estimation errors are then projected onto the drone’s trajectory.

In contrast, the end-to-end agent (VO-state-based) directly moves to the next target,

with each waypoint 5 meters away. The drone’s rapid and violent movements to

reach each subsequent target lead to a drop in localisation accuracy, as depicted in

Fig. 5.10b. Notably, VO loses track during the last segment, rendering the drone

unable to navigate to target 4. Fig. 5.11 illustrates the attitude response to various

distance commands.

Excessive attitude changes and high velocities have a negative impact on visual

odometry (VO) performance and can lead to VO failures as shown in Fig. 5.10.

Hence, previous research works which do not consider pose estimation quality during

training could lead to failures during deployment where ground truth pose estimation

is not available. This is part of the sim-to-real problem, which has not been studied

thoroughly.
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(a) VO performance (VO-safe agent)

(b) VO performance (VO-State-based)

Figure 5.10: VO Performances (VO-safe vs VO-State-based)

In this work, the hierarchical architecture is employed to enhance VO perfor-

mance and reduce VO failure rates by decomposing long-distance paths into short-

range goals (1 meter in this work), which introduce gentle drone response as shown

in Fig. 5.11.
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Figure 5.11: Drone attitude responses to navigation with different goal distances.

5.4.4 Real-world experiments

Real-world experiments are carried out to verify the proposed method. The drone

configuration is shown in Fig. 5.12. A down-looking camera RealSense D435 is used

for drone perception and visual odometry. An onboard computer (Intel NUC 11 pro)

is used for image segmentation, high-level policy calculation and VO computation.

No ground station computers were required.

Figure 5.12: Drone configuration
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VO-failure due to tree movements

A real-world test was conducted to demonstrate that the movements of trees can

cause visual odometry failures. The testbed comprises an OAK-DW camera and

a 3DM-gx5-45 IMU unit placed in a stationary position. VINS-mono [213], a VO

algorithm integrated with IMU inputs which has been proven to perform well for

mobile robots, is utilized for pose estimation. High-accuracy GPS-RTK signal poses

serve as a baseline for comparison. The observed RGB image is depicted in Fig. 5.13.

It is observed that the algorithm identified numerous features on trees, as shown

in Fig. 5.14. This abundance of features should be sufficient for motion estimation

if these features are static. However, during the test, the trees were moving due to

environmental winds leading to random movement of observed features, causing the

estimation algorithm to find consecutive frames inconsistent with each other. Conse-

quently, the estimation relies solely on IMU integration for pose estimation, leading

to drift in the estimation, as illustrated in Fig. 5.15. Therefore, it is reasonable for

drones to avoid flying over areas with trees during navigation.

Figure 5.13: Trees observation
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Figure 5.14: Features detected on trees
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Figure 5.15: VO-failure due to trees movements: RTK is the nearly ground-truth value

VO-safe based navigation

The test scenario is depicted in Fig. 5.16. A region of the floor covered by white

paper serves as the featureless area. The starting point (black) and the goal (red)

are positioned on opposite sides of the white paper region. While the floor boasts

rich visual textures suitable for visual odometry tracking, the white paper region
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Figure 5.16: Test scenario

lacks textures as shown in Fig. 5.17. It is crucial for the drone to avoid entering

the featureless area to prevent VO failures. Notably, the policy is not retrained for

real-world experiments, thanks to the hierarchical scheme and the use of semantic

inputs.

As illustrated in Fig. 5.18, the drone deviates from a straight-line path towards

the goal, opting for a longer trajectory to bypass the paper. The plotted trajectory

represents the visual odometry estimated result, which remains continuous without

failures. Despite the initial crossing of the white region’s edge, the drone, at an

altitude of 0.7m, can still capture the textured floor within its field of view.

Last, The failed VO behaviour is displayed when the drone enters entirely the

white paper region (see the area with red diagonal lines in Fig. 5.19, where no floor
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(a) Floor observation. (b) Feature detected.

Figure 5.17: Features detected on the test scenario

textures can be observed). The drone was holding still initially. However, due to

the lost track of VO, the drone started to rely on the IMU integration for pose

estimation, which caused drifted pose estimation. This explains the drifting of the

pose estimation.

Figure 5.18: Real-world experiment result (red star denotes the goal ).
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Figure 5.19: Odometry drifted while the drone is stationary with poor visual features.

5.5 Conclusion

This work introduces an RL-based method for drone navigation utilizing visual

odometry for localisation, different from other approaches of relying on ground truth

poses as presented in the literature.

The desired behaviour for VO-enabled drones should account for the quality of

visual features, emphasizing the need to avoid feature-poor regions. To address this,

a novel reward space is introduced. Additionally, for improved sim-to-real transfer,

the use of semantic images, instead of raw RGB images, is proposed as inputs.

In terms of control, a hierarchical framework is suggested. The high-level policy

is trained using the PPO algorithm, while the low-level controller employs classical

methods, ensuring safety in theory for reliable motion control.

Evaluation results, both in simulation and real-world environments, demonstrate

that the proposed method outperforms baselines, aligning with the hypothesized

improvements.

The current action space is discretised and fixed to several 1-meter waypoints

manually, which may reduce the manoeuvrability of the drone. Future work could
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explore the use of a continuous action space for waypoint representation to achieve

a smoother trajectory for the drone.
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Chapter 6

Target Tracking for Quadrotors

based on Reinforcement Learning

As discussed in Section 1.1.2, cooperation between UAVs and UGVs can enable

the accomplishment of more complex tasks, with UAVs tracking UGVs being a

fundamental capability for such cooperation.

This chapter introduces a target-tracking control approach for quadrotors, em-

ploying the PPO reinforcement learning algorithm. The algorithm enables a quadro-

tor equipped with an RGBD camera, referred to as ’The Tracker,’ to pursue a moving

object (’The Target’) within a predetermined distance range. The objective is to

control the quadrotor to keep the target centred within the camera’s field of view

while navigating through the environment, ensuring obstacle avoidance throughout

the tracking process.

To accomplish this, a novel reward space is devised for the tracking task. Ad-

ditionally, recognizing the inherent instability challenges of training control policy

neural networks from scratch using depth images for obstacle perception, an inno-

vative approach is introduced. This approach advocates for an alternative teaching

strategy, where a state-based teacher encodes obstacle information using obstacle

positions and their radius relative to the quadrotor, rather than relying solely on
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depth images. This state-based teacher policy enables the depth image-based stu-

dent to effectively acquire tracking and obstacle avoidance capabilities, mitigating

the risk of potential local minima.

To facilitate this teacher-student learning process, a variant algorithm based on

the PPO algorithm is proposed. This modification is tailored to optimise the learning

performance between the teacher and student policies. The proposed control scheme

is end-to-end, simplifying the overall system framework compared with non-learning-

based conventional trajectory planning methods.

This chapter is organised as follows. Section 6.1 makes an introduction to the

topic of this chapter. The proposed method is described in section 6.2, followed by

experiments and results in section 6.3. The conclusions are presented in section 6.4.

6.1 Introduction

The application of autonomous aerial tracking finds extensive utility in various

domains, including environmental surveillance, security, and aerial photography.

Nevertheless, a notable challenge persists in enabling a quadrotor, defined as the

tracker, to autonomously track a moving target in unfamiliar and cluttered environ-

ments [169]. Ensuring safety demands that the drone accurately perceives both the

target and environmental obstacles using onboard sensors and promptly responds to

unforeseen obstacles arising from the unknown environment and the limited field of

view of onboard sensors. This task is particularly challenging for drones constrained

by size, weight, and power (SWaP), which imposes limitations on computing and

sensing resources.

The majority of existing research on autonomous aerial tracking focuses on non-

learning optimisation-based trajectory planning methods. Typically, these methods

decompose the tracking task into various sub-tasks to be executed sequentially, in-

cluding components like sensing, mapping, planning, and trajectory optimisation [9].
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Figure 6.1: A Tracking task example: The tracker follows the target, keeps the target
within the field of view, and avoids obstacles in the environment at the same time.

However, this decomposition of the task has the potential to elevate processing la-

tency, involving time for computation and communication between different com-

ponents. Moreover, it may lead to a complex system that has the potential to

compound errors throughout the pipeline [10].

Therefore, the proposal is to leverage the capabilities of deep neural networks

trained by reinforcement learning algorithms, which demonstrate proficiency in con-

trolling robots to navigate through complex environments based on observations in

an end-to-end way [141]. In an end-to-end control approach, these networks can

directly map quadrotor control signals, such as individual rotor thrusts, from obser-

vations that include depth images and drone states (velocity, attitude, etc.). This

eliminates the need for task decomposition, resulting in a simplified and straight-

forward system. Fig. 6.2 illustrates the comparison between the conventional non-

learning-based system and the proposed learning-based end-to-end system. The

structure of the conventional tracking planner is based on previous research work [9]
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and [169].
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Figure 6.2: The comparison between non-learning-based and learning-based systems

While researchers have extensively employed reinforcement learning algorithms

for drone control, the predominant focus has been on optimising drone maneuver-

ability [152] and navigation [132]. Notably, there is a scarcity of research addressing

the tracking problem utilizing reinforcement learning algorithms.

Hence, a reinforcement learning-based approach is suggested to address the au-

tonomous tracking problem for the quadrotor. This chapter introduces three key

contributions.

Firstly, in alignment with the tracking task requirements, a novel reward space is

formulated. This reward space encompasses multiple components crafted to prompt

the quadrotor to track the target within a designated safe distance range, navigate
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around obstacles, and keep the target positioned close to the field of view (FOV)

centre of the onboard camera without occlusions.

Secondly, handling environmental obstacles information presented through depth

images poses challenges in training deep neural networks with image inputs from

scratch, potentially leading to instability and convergence to local minima. While

pre-training an auto-encoder network to encode depth images and obtain a low-

dimensional state representation is an option, this approach is time-consuming, in-

volving the collection of image samples and subsequent training of the auto-encoder.

Given that the network is trained in simulation environments where obstacle

position information is available, an alternative approach is suggested in this chap-

ter. Specifically, a state-based teacher tracking policy is trained, utilizing scalar

obstacle information in terms of relative positions and the radius of surrounding

obstacles instead of depth images. Training with such low-dimensional and more

effectively presented information proves to be much quicker than training an auto-

encoder. Once a satisfactory teacher policy is obtained, it is employed to guide

the depth image-based student policy during exploration. The trained vision-based

student policy becomes the solution for addressing the proposed tracking problem

for quadrotors equipped with camera sensors in unknown environments.

Thirdly, modifications are introduced to the standard PPO training procedure to

ensure the proper functioning of the teacher-student learning structure. Within the

proposed training framework, a portion of the collected trajectories is produced by

the teacher policy. Attempting to train the vision-based student policy with these

trajectory examples using the standard PPO policy could lead to training collapse.

This issue may arise from the substantial differences between the teacher policy

and the student policy, while the PPO algorithm imposes constraints on policy

differences between two consecutive updates.

To address this challenge and train the policy effectively, a variant PPO policy

is devised, incorporating the importance sampling algorithm. This modification is
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instrumental in mitigating the differences between the teacher and student policies

during the training process.

6.1.1 Summary and contributions

The overall objective is to control a quadrotor in tracking a ground vehicle target

while simultaneously satisfying the following requirements:

1) Visibility: Ensure that the target remains centrally positioned within the

tracker camera images. The camera’s central axis should be aligned directly with the

target, guaranteeing maximum target visibility and accommodating abrupt tracking

attitude changes. In scenarios where the quadrotor relies on visual features for

estimating the relative pose between the tracker and the target, maintaining the

target in the centre of the field of view is crucial.

2) Safe Distance: Maintain a predefined distance from the target to ensure

both visibility and safety.

3) Occlusion Avoidance: Prevent obstacle occlusions by ensuring that no

obstacles intersect with the line of sight from the tracker to the target. Occlusions

have the potential to compromise the quality of relative pose estimation.

4) Collision Avoidance: Avoid collisions with obstacles to ensure the quadro-

tor’s safety and prevent damage.

In summary, the contributions of this chapter can be outlined as follows:

• Introduction of a reinforcement learning-based algorithm, enabling quadrotors

to effectively track moving targets in unfamiliar environments.

• Design of a reward space, specifically tailored to enhance the execution of the

target tracking task.

• Implementation of a teacher-student learning scheme during the training of

the control network.
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• Reconstruction of the standard PPO algorithm using the importance sampling

technique to ensure the convergence of the teacher-student framework toward

a satisfactory result.

6.2 Method

target

Camera

Camera FOV

Quadrotor

Figure 6.3: Example of a tracking task: The tracker’s objective is to pursue the target,
ensuring that the target remains within the field of view, while concurrently navigating
through the environment to avoid obstacles.

The detailed requirements for the tracking task have been outlined in Section 6.1,

covering crucial aspects such as visibility, safe distance, occlusion avoidance, and

collision avoidance. For the sake of simplifying the problem, it is assumed that

obstacles in the environment take the form of spheres.

The problem can be formulated as follows:



150 6.2 Method

min
π(x)
Jo =

∫ T

0

∥Cptarget(x, y, t)∥2dt, (6.1a)

s.t. xt+1 = f(xt, π(xt)), (6.1b)

x0 ∈ X , (6.1c)

p(t) ∈ P , ∀t ∈ [0, T ], (6.1d)

p(t) ∈ Vt, ∀t ∈ [0, T ], (6.1e)

dl ≤ ∥p(t)− ptarget(t)∥ ≤ du, ∀t ∈ [0, T ], (6.1f)

where, x represents the quadrotor states, such as position pt and attitude q. The

notation Cptarget(x, y, t) denotes the x, y position of the target in the quadrotor’s

camera frame at time step t. For clarity, unless specified, representations are under

the world frame.

Visibility requirement can be reconfigured as Eq. 6.1a, which situates the target

at the centre of the x − y plane of the camera frame (refer to Fig. 6.3 for details).

Eq. 6.1b represents the dynamics of the quadrotor, which is discussed in detail in

Eq. 5.1. Here, P denotes the safe area that ensures obstacle collision-free movement

for the quadrotor, aligning with the collision-free requirement. Vt describes the

occlusion-free area at time step t. The lower and upper distance boundaries, dl

and du, respectively, are defined to satisfy the distance constraint, as indicated in

Eq. 6.1f.

6.2.1 Teacher-student RL algorithm

This section will describe the development of a tracking controller through the adap-

tation of the PPO algorithm within the framework of reinforcement learning. The

subsequent sections will first recap the foundational understanding of reinforcement

learning and a detailed overview of the PPO algorithm. Following this, the imple-
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mentation details tailored to address the specific tracking problem will be discussed.

Basic Concepts. General Reinforcement learning algorithms solve problems

under the Markov Decision Process (MDP) framework. Physical processes are de-

scribed by a state transition model p(st+1|st, at) where states s fall in a state space

S and actions are in action A. A reward function Rt(st, at): S ×A→ R is carefully

designed to justify actions at taken at state st according to specific tasks. Strate-

gies for solving tasks can be obtained by maximizing overall discounted rewards

R(τ) =
∑∞

k=0 γ
krt received during the whole process. State-action value functions

Qπ(st,at) = Eτ∼π[R(τ)|st, at] and/or state value function V π(st) = Eτ ∼ π[R(τ)|st]

are usually defined to reshape the objective function, where π: a ∼ π(·|s, θ) es-

tablished by parameters θ represents the policy to be optimised. Also, advantage

functions Aπ(s, a) = Qπ(s, a) − V π(s) are used to describe how much better on

average an action is than others.

PPO (Proximal Policy Optimisation). PPO is a policy gradient algorithm

that directly trains the policy at each update step. It is recognized that the algorithm

may diverge if the newly updated policy deviates excessively from the previous

one. To mitigate this, PPO is designed to constrain the update, ensuring that two

consecutive policies remain close to each other.

For the method discussed in this chapter, PPO-Clip is utilized, incorporating

a designed clipping behaviour in objective functions as opposed to relying on KL-

divergence. This choice is made to ensure that the updated policy remains in prox-

imity to the previous one. The update of PPO-Clip policies follows a specific process:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (6.2)

were L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
(6.3)
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in which ϵ is a small hyperparameter and g(ϵ, A) =

 (1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0.

Orientation

Linear velocity
concat

Relative target position

Target Velocity

Relative position

obstacle radius

State-based Obstacle
information

State-based Teacher Policy

Vision-based Student Policy

Body rate
controller

Rollout
buffer

Update the
vision-based

policyImage encoder

Embedding

New observation

New observation

Selective mode

concat

Depth image-based 
obstacle information

Figure 6.4: Taining the tracking policy follows a teacher-student learning pipeline: A
state-based agent as the expert is pre-trained to guide exploration during the vision-based
agent training procedure. At each time step, the action commands are either from the
state-based expert or from the to-be-trained vision policy by a selection module. This
teacher-student learning can help improve exploration efficiency and escape local minima

State-based Teacher PPO Policy The first phase of the method starts with

the training of a state-based teacher, equipped with ground truth obstacle informa-

tion, including relative positions and sizes of obstacles, as well as other quadrotor

and target states information, as illustrated in Fig. 6.4. This teacher serves as an

expert to guide the training of the vision-based student policy. This approach is

motivated by the time-consuming nature of training neural networks with image

inputs, which may also converge to local minima. The state-based teacher policy

simplifies the training of neural networks, eliminating the need for image inputs.

Additionally, it significantly reduces the overall training time by eliminating the ne-

cessity for rendering depth images and by utilizing relatively small neural networks
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that do not involve CNN networks for image processing. This reduction in train-

ing time facilitates the efficient exploration of various hyperparameters, shared with

vision-based policy training, such as the scale of reward values.

Hence, training a state-based teacher policy is reasonable. The training of the

teacher policy follows the standard PPO policy training procedure, and the neural

network parameter for the teacher policy is nominated as ξ.

Vision-based Student PPO Policy Update. The training procedure for the

vision-based student policy is illustrated in Fig. 6.4. During the phase of collecting

training samples, both the teacher and student policies receive current observations

from the environment and make action decisions based on shared and individual

observation components. The selective module chooses an action from the teacher

policy with a probability of ε. Otherwise, it selects actions from the current student

policy. The action consists of body rates [wx, wy, wz] and a collective thrust fT

command, which is then fed to a body rate controller to control the quadrotor in

the environment. The environment generates a transition [st, at, st+1, rt], which is

stored in the rollout buffer. Once a certain number of transitions are collected, the

algorithm updates the student policy by randomly sampling transition data from

the rollout buffer.

In the training process, all training samples are treated as if they originate from

the teacher’s policy and employ importance sampling to obtain a non-biased esti-

mation of the cost function.

E
s,a∼πθk

[L] =

∫
S

∫
A
ρπθkπθkLdads =

∫
S

∫
A
ρπθkπξ

πθk
πξ
Ldads

= E
s∼ρπθk ,a∼πξ

[
πθk
πξ
L

] (6.4)

Similar to [214] and [215], the state density ratio is ignored as if the states come
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from the behaviour policy πθξ . Hence Eq. 6.3 can be approximated by:

θk+1 = argmax
θ

E
s,a∼πθk

[L] = argmax
θ

E
s∼ρπθk ,a∼πξ

[
πθk
πξ
L

]
≈ argmax

θ
E

s,a∼πξ

[
πθk
πξ
L

] (6.5)

Algorithm 3 Teaching-based Proximal Policy Optimisation

1: Input: teacher policy πξ, initial student policy parameters θ0, initial value func-
tion parameters ϕ0

2: for k = 0, 1, 2, ... do
3: Initialize rollout buffer D
4: for step = 1, ...,m do
5: With probability ε sample an action from π(s, ξ).

otherwise sample from π(s,θk) as proposed in this chapter.
6: Execute action at in the environment and receive reward rt and new state

st+1.
7: Store transition (st, at, rt, st+1)

8: end for
9: Compute rewards-to-go R(t)
10: Compute advantage estimates Ât based on the teacher value function Vξ
11: Update the policy by maximizing the proposed objective:

θk+1 = argmax
θ

1

|D|T
∑
∀τ∈D

T∑
t=0

πθk
πξ
L (6.6)

via stochastic gradient ascent with Adam
12: Fit value function by regression on mean-square error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
∀τ∈D

T∑
t=0

(Vϕ(st)−R(t))2 (6.7)

via gradient descent algorithm
13: end for

6.2.2 RL-based tracking algorithm implementations

The implementation details of the RL-based algorithm proposed in this paper will

be discussed in the following sections.

The target is modelled as a 2D ground vehicle with the capability to move
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freely along the x and y axes. The vehicle’s motion is controlled by adjusting the

acceleration along the respective axes. The altitude z of the target is fixed at 0m

and the ground is situated at −5m. The dynamics of the target are described as

follows:



x(t)

y(t)

vx(t)

vy(t)


=



vx(t− 1) ∗∆T + 1
2ax∆T 2

vy(t− 1) ∗∆T + 1
2ay∆T 2

vx(t− 1) + ax∆T

vy(t− 1) + ay∆T


(6.8)

The target is capable of navigating without colliding with obstacles in the envi-

ronment. The intentional decoupling of movements along the x and y axes of the

target enhances its agility, introducing complexity to the tracking task. This intro-

duced challenge contributes to training a quadrotor with the capability to handle

general tracking tasks.

State Space For the teacher policy, the state consists of three key information

components: the environmental obstacles, the quadrotor state, and the target state.

Thus, the state vector is s = [pobstacle × n, robstacle × n, vtracker, qtracker, ptarget, vtarget],

comprising the relative positions pobstacle and radii robstacle of the n closest obstacles,

the states of the quadrotor, including linear velocity vtracker and attitude qtracker, and

the states of the target, encompassing relative position ptarget and linear velocity

vtarget.

In practical scenarios, obtaining low-dimensional state-based obstacle informa-

tion [pobstacle × n, robstacle × n] directly may not be feasible. Instead, depth images

Odepth are provided to capture environmental obstacle information eliminating the

availability of pobstacle and robstacle. Therefore, the state for the vision-based student

policy is defined as s = [Odepth, vtracker, qtracker, ptarget, vtarget].

Action Space Design Both the teacher policy and the student policy op-
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erate within the same action space, utilizing body-rate signal denoted as a =

[fT , wx, wy, wz]. This control scheme, as proposed in [152], enables agile flying. The

specified action command is executed by a body-rate controller, which calculates

individual propeller thrusts to control the quadrotor. It is worth noting that using

low-level control signals as the action space, such as individual propeller thrusts,

might pose safety concerns and encounter challenges in sim-to-real applications, as

indicated in [151].

Reward Space Design The reward function is designed to encourage the

quadrotor to track the 2D target while adhering to the constraints outlined in Eq. 6.1.

The reward function is constructed with multiple components, each serving a dis-

tinct purpose aligned with the requirements of visibility, safe distance, occlusion

avoidance, and collision avoidance. These components are described below:

R = Rvisibility +Rsafe distance +Rocclusion +Rcollision (6.9)

Target

Camera
Center

Target

Camera
Center

Horizontal View Vertical View

Figure 6.5: Relative angles between the target and the camera in horizontal and vertical
views. z is the camera looking direction

The visibility reward component Rvisibility is to punish the angle of the target to

the camera centre vector in the camera frame deviating away from the camera z

axis. Fig. 6.5 describes the relative angles where α and β are the horizontal and

vertical FOV constraints respectively. w is the weight factor.

Rvisibility = w(Rhorizontal +Rvertical) (6.10)
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The horizontal view is controlled by the quadrotor yaw which can be decoupled

from the control of the target pose. Thus it can be constructed as a strict constraint

:

Rhorizontal = −0.2(e|γ|−α/2 − e−α/2) (6.11)

The vertical angle deviation cannot always be guaranteed to be zero, as it is

controlled by the pitch of the quadrotor. Therefore, the agent pitch behaviour is

penalized only when the relative vertical angle exceeds half of the vertical field of

view, leading to the target disappearing from the image:

Rvertical =


−0.2e|ψ|−β/2 ψ ≥ β/2

0 otherwise

(6.12)

The second reward component Rsafe distance is to encourage a reasonable distance

between the quadrotor and the target:

Rsafe distance =


0 dl ≤ ∥ptracker − ptarget∥ ≤ du

−10 otherwise

(6.13)

Rcollision is activated when the distance between the quadrotor and an obstacle

is smaller than the sum of the obstacle radius and the quadrotor radius. When a

collision happens, the episode will terminate.

Rcollision =


0 diobstacle > ri + rquadrotor|i = 0, ..., N

−10 otherwise

(6.14)

The reward term Rocclusion is configured to prevent occlusion, a situation arising

when obstacles intersect with the line of sight connecting the tracker and the target.

This is ensured by necessitating that the distance between the obstacle and the

line of sight is greater than the obstacle radius. Alternatively, the condition is met
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if the closest point from the line of sight to the obstacle centre is located behind

the camera. To enhance robustness in tracking occlusion avoidance, the obstacle

occlusion radius is increased from r1 to rinflate, as illustrated in Fig. 6.6.

Rocclusion =


0 di > rinflate or

−−→
Opt
−−−−→
Opocc,i < 0|i = 0, ..., N

−1 otherwise

(6.15)

Target Target Trajectory

FOV Line of sight

Obstacle Inflated Obstacle

a) b)

c) d)

Figure 6.6: Occlusion description

6.3 Evaluation

6.3.1 Experiments setup

The algorithm is evaluated in simulated environments using a quadrotor simula-

tor named Flightmare [195]. Flightmare is built on the Unity game engine, which

handles both physical dynamics simulation and image rendering. Examples of ob-



6.3 Evaluation 159

(a) RGB image

(b) Depth observation

Figure 6.7: Observation example

servations are depicted in Fig. 6.7.

State-based RL Agent (teacher) Initially, the algorithm firstly trains an end-

to-end state-based agent using a standard PPO algorithm, which subsequently serves

as the teacher policy to guide the vision-based agent. Given that the observation

s = [pobstacle × n, robstacle × n, vtracker, qtracker, ptarget, vtarget] at each time step is a

vector, both the policy network and the value network can be simply constructed

using multiple fully connected (FC) layers.

Vision-based RL Agent As per the provided instructions, depth images are
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Figure 6.8: Vision-based value and action networks

employed to convey environmental obstacle information for the vision-based agent.

The network architecture for the vision agent is illustrated in Fig. 6.8. The depth

image, containing high-dimensional information, undergoes processing through the

feature extractor module. This module is constructed with three Convolutional

Neural Network (CNN) layers and a linear Fully Connected (FC) layer to pro-

duce a low-dimensional latent feature vector. Notably, the feature extractor is

shared between both the value (critic) and the policy (actor) networks. Subse-

quently, the latent feature vector is concatenated with the additional information

[vtracker, qtracker, ptarget, vtarget], serving as inputs for the remaining FC layers in both

the value network and the policy network.

An environment example can be seen from a top-down figure (Fig. 6.9). To fa-

cilitate the training of PPO agents, each episode starts spawning the target at a

fixed position, and the target intends to navigate to a randomly assigned goal posi-

tion. The quadrotor is initially spawned 2m away from the target at the episode’s

beginning. At each time step, the agent generates a body-rate control command

based on received observations, aiming to control the quadrotor to follow the target

and adhere to visibility, safety, occlusion, and collision constraints as previously out-

lined. The episode is terminated and restarted when any of the following situations

occur: 1) the target reaches the goal; 2) the quadrotor collides with obstacles; 3)

the quadrotor is too close or too far from the target; 4) the altitude of the quadrotor
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is too high or too low; or 5) the maximum time steps of one episode are reached.

Obstacles are randomly distributed in a 2D plane at the same altitude as the target.

During the training of the vision-based agent, It is observed that the optimisation

process tends to converge to a local minimum when employing the standard PPO

algorithm to train the vision-based agent. To address this challenge, The algorithm

advocates for a teacher-student PPO training procedure, as discussed in Section 6.2.

For ease of reference, the vision agent trained with the standard PPO algorithm is

labelled as Vision-standard, while the agent trained using the proposed algorithm

is denoted as Vision-student.

Table 6.1: State-based agent training progress

Training states Stage 1 Stage 2 Stage 3

Training time steps 7.5× 105 2.25× 106 5× 107

Average episode length 41.34 306.90 473.80

Average reward −11.47 −14.89 −1.27

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
4

2

0

2

4

6

x 
/ m

Target
Tracker
FOV
Camera center

Figure 6.9: An environment example: red circles are the obstacles and the green circle is
the navigation destination of the target. Black thin diamonds are the starting points for
the target and the quadrotor.
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Figure 6.10: Average training reward of state-based agent

6.3.2 PPO training results

The results will be analysed according to three different agents: state-based, Vision-

standard, and Vision-student.

State-based agent Fig. 6.10 illustrates the training results of the state-based

agent’s tracking policy, while Table 6.1 details the training progress across three

distinct stages. In the initial stage (Stage 1 in Table 6.1), the average reward is

around −11 since the agent does not know how to control the quadrotor at the very

beginning. The episode will be terminated quickly as a result of violations of the

safe distance or collision avoidance constraints. Under both situations, the agent

will be punished with −10 rewards. The episode terminates shortly after an average

of 60-time steps. The visibility and occlusion punishment will not accumulate to

a noticeable scale in such short episodes. As the training time steps increase, the

average reward decreases to −14 (Stage 2 in Table 6.1). The reason is that the

agent starts learning to roughly control the quadrotor. The quadrotor stays alive
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Figure 6.11: An tracking example of the State-based agent after training: the quadrotor
can follow the target closely.
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Figure 6.12: Relative angles between the target and the camera-looking direction: both
angles are around zero, indicating the target is located in the image centre. (State-based)

a bit longer. In addition to the safe distance and collision avoidance punishment,

the visibility punishment accumulates as the average duration of the episode reaches

around 300 time steps. After a long period of training 5 × 107 time steps (Stage
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3 in Table 6.1), the average reward converges to −1.5, this indicates a very good

tracking performance where nearly all constraints are consistently met. This can be

observed from Fig. 6.11 and Fig. 6.12.

Vision-standard agent The training results of Vision-standard agents are de-

picted in Fig. 6.13. As it shows, the average reward of the Vision-standard agent

remains around −10 without change after a period of training. This suggests that

the training converges to a local minimum which will be explained in detail in the

subsequent analysis.

Table 6.2: Vision-standard agent training progress

Training stages Stage 1 Stage 2 Stage 3

Training time steps 0.425× 106 0.7× 106 2× 106

Average episode length 37.5 128.04 16.84

Average reward −12.25 −18.53 −10.05
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Figure 6.13: Average training reward of vision-based agents

At the early training stage (Stage 1 in Table 6.2), the Vision-standard agent

is only capable of stabilizing the quadrotor in mid-air, attempting to follow the

target at a slow speed. However, the target moves quickly toward its goal position,



6.3 Evaluation 165

14 12 10 8 6 4 2 0

1

0

1

2

3

4
x 

/ m
Target
Tracker

14 12 10 8 6 4 2 0
y / m

0.3

0.2

0.1

0.0

z /
 m

Figure 6.14: An tracking example of the Vision-standard agent at Stage 1: The trajectory
is short as the target escapes the tracking range rapidly.
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Figure 6.15: Velocity comparison of the quadrotor and the target at Stage 1: the quadrotor
can not match the velocity of the target. (Vision-standard)

causing the distance between the quadrotor and the target to surpass the defined

upper bound rapidly. Consequently, the episode length becomes very short. An
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illustrative example of the tracking trajectory is presented in Fig. 6.14, while the

velocity comparison between the quadrotor and the target is depicted in Fig. 6.15.

The figure indicates that, during this early training stage, the agent moves at a

relatively low speed compared to the target’s velocity. This behaviour may stem from

the agent’s limited proficiency in controlling the quadrotor’s movement, primarily

focusing on stabilization at its initial position.

As the agent receives punishment when the target exceeds the tracking range,

there is a motivation for the agent to enhance control over the quadrotor’s movement,

resulting in increased speed during the next learning stage ((Stage 2 in Table 6.2)).

An illustrative trajectory is depicted in Fig. 6.16.
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Figure 6.16: An tracking example of the Vision-standard agent at Stage 2: The quadrotor
can follow the target to some extent.

During this stage, the quadrotor exhibits erratic behaviour, reflecting the agent’s
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lack of proficiency in controlling the high-speed movements of the quadrotor. The

velocity comparison of agents in the trajectory depicted in Fig. 6.16 is illustrated in

Fig. 6.17. The figure shows that the quadrotor velocity fluctuates around the target

velocity, indicating the agent’s efforts to learn and match the target’s speed.
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Figure 6.17: Velocity comparison of the quadrotor and the target at Stage 2. (Vision-
standard)
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Figure 6.18: Abrupt change of the quadrotor attitude at Stage 2 (Vision-standard)

This fluctuation is also evident in the attitude change of the quadrotor, as de-



168 6.3 Evaluation

picted in Fig. 6.18. The violent changes in the quadrotor’s roll and pitch angles con-

tribute to an unstable-looking orientation of the quadrotor camera. Consequently,

the target fails to remain in the camera centre as required. This deviation is notice-

able in the plot of relative angles between the target and the quadrotor camera centre

in Fig. 6.19. Here, γ and ψ represent the horizontal and vertical angles away from

the camera-looking direction, respectively, as defined in Fig. 6.5. At certain time

steps, the target may fall outside the camera’s field of view (FOV). Such behaviour

receives penalties through Eq. 6.11 and Eq. 6.12. The average episode reward during

this stage jumped to around −18.53.
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Figure 6.19: Relative angles between the target and the camera looking direction at Stage
2: The target may even be out of camera FOV (Vision-standard)

However, imposing such a high penalty leads to unexpected training outcomes.

The agent strategically attempts to avoid these penalties by quickly destroying itself.

This is accomplished by flying away from the target at an exceptionally high velocity

(Stage 3 in Table 6.2). This behaviour is shown in Fig. 6.20 and Fig. 6.21. Through

this strategy, the agent receives only a punishment of −10, significantly lower than

the previously observed −18.53.

From an optimisation standpoint, this behaviour signifies a local minimum. Ef-

forts to mitigate this issue by reducing the visibility punishment (using a smaller
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Figure 6.20: An tracking example of the Vision-standard agent at Stage 3: The agent flies
away from the target as quickly as possible.
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Figure 6.21: Velocity comparison of the quadrotor and the target (Vision-standard at
Stage 3)

weight factor w as shown in Eq. 6.10, reduced from 1 to 0.1) were also made in

training another vision-standard agent. However, this adjustment resulted in en-

countering the same local minimum (Vision-standard 2 in Fig. 6.13). To overcome
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this local minimum, training examples collected from the state-based policy are

utilized to enhance exploration in the action space for vision-based policies. The ac-

tion demonstrations from the state-based teacher policy will guide the vision-based

student policy out of the local minimum.
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Figure 6.22: An tracking example of the Vision-student agent: The agent can follow the
target and avoid obstacles.

Vision-student RL Agent To mitigate the local minima encountered during

training of the vision-based agent, the proposed algorithm of this chapter leverages

insights from the state-based agent, as discussed in Section 6.2 and illustrated in

Fig. 6.4. Fig. 6.13 demonstrates that the average rewards of the vision-student agent

converge to approximately -1.5, indicating robust tracking performance. Examin-

ing a tracking trajectory example in Fig. 6.22 and the associated velocity profile in

Fig. 6.23, it is evident that the quadrotor effectively follows the target, matching

its velocity while avoiding obstacles. The smooth and delicate changes in quadro-

tor attitude, as depicted in Fig. 6.24, further affirm the agent’s proficient control

capabilities.

The effectiveness of visibility performance can be assessed by examining relative

horizontal and vertical angles between the target and the camera-looking direction
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throughout the tracking procedure, as illustrated in Fig. 6.25. The plots reveal that

the relative angles remain small and consistently within the camera FOV ranges,

affirming the agent’s capability to maintain target visibility.
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Figure 6.23: Velocity comparison of the quadrotor and the target (Vision-student)
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Figure 6.24: Delicate change of the quadrotor attitude (Vision-student)
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Figure 6.25: Relative angles between the target and the camera looking direction: both
angles are small and always safisfy the FOV limitations (Vision-student)

6.3.3 Computation time

As discussed in Section 6.1 and illustrated in Fig. 6.2, traditional planning-based

algorithms typically involve multiple sequential components. A comparison of com-

putation times between the proposed end-to-end algorithm and three state-of-the-art

planning-based algorithms, based on information from the work [170], is presented

in Table 6.3. The proposed algorithm was tested on a desktop with an Intel Core

i7-6700 CPU, identical to the setup in [170]. The table indicates that the net-

work’s forward step without GPU acceleration has a competitively low computation

time compared to state-of-the-art path-planning-based algorithms. The conven-

tional planning-based algorithms may also have communication costs between dif-

ferent components which the proposed method does not have. Additionally, it has

been discussed in [135] that with a neural network policy for drone control coded

with the Eigen library, the evaluation of the policy takes only 7 µs per time step, in-

dicating the potential for computation time optimisation. Enabling GPU processing
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further reduces the computation time, and GPUs are accessible when the quadrotor

is controlled with a ground station computer. Additionally, many onboard com-

puters, such as NVIDIA Jetson TX1 and TX2, Qualcomm Snapdragon, Odroid,

etc., are designed to support GPU features, as highlighted in [216]. Therefore, the

end-to-end algorithm shows significant potential for future drone applications.

Table 6.3: Computation time comparison

Method
Component(ms)

tpath tcorridor tESDF toptimze tNetwork ttotal

[217] 10.5 4.62 \ 0.44 \ 15.56

[169] 0.54 \ 6.43 5.7 \ 12.67

[170] 1.31 1.02 \ 2.87 \ 5.2

Vision-student (CPU) \ \ \ \ 7.4 7.4

Vision-student (GPU) \ \ \ \ 4.5 4.5

6.4 Conclusion

This chapter has established an end-to-end control framework for a drone engaged

in a mobile target-tracking task, equipped with a forward-looking depth camera for

perception (vision-based). Through the proposed training method, the vision-based

drone can adeptly keep the mobile target within the centre of the image, ensuring

maximum visibility and preventing occlusion from obstacles. Simultaneously, the

drone can effectively avoid environmental obstacles.

The proposed method adopts a teacher-student training approach. Experimental

findings show that training the policy network from scratch using depth image inputs

leads to convergence challenges, resulting in a local minimum. To address this issue,

a state-based teacher policy is trained as an expert to guide the vision-based pol-

icy. The input to the state-based teacher comprises low-dimensional data, including

relative coordinates and radius of nearby obstacles, rather than high-dimensional im-

age data. This low-dimensional input facilitates the state-based policy in achieving
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satisfactory tracking performance post-training. During the training of the vision-

based student policy, the state-based policy offers demonstrations. An adapted RL

algorithm is introduced to leverage these demonstrations for effective training of the

vision-based agent. This training pipeline ensures the successful accomplishment of

the tracking task by the vision-based policy.

The proposed method, however, is exclusively tested in simulated environments,

assuming obstacles are spherical in shape. Future work could broaden the algo-

rithm’s applicability to environments with diverse obstacle shapes. Additionally,

the current output of the policy network consists of body-rate control signals, which

might be too hazardous for direct drone control. A potential enhancement involves

modifying the output to parameters that form a reference trajectory, such as con-

trol points for B-spline trajectories. This trajectory can then be forwarded to the

controller for tracking, aligning with approaches found in [10].
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Chapter 7

Conclusion and future work

This chapter concludes the study undertaken in this work. The main conclusions

of this thesis will be highlighted in Section 7.1, while recommendations for future

research directions are discussed in Section 7.2.

7.1 Conclusions

In conclusion, this thesis contributes to the development of navigation algorithms

addressing the impact of practical pose estimation algorithms during mobile robot

navigation. It also introduces an end-to-end tracking algorithm for autonomous

UAV control, allowing it to follow a mobile target while simultaneously avoiding en-

vironmental obstacles. The successful tracking is achieved by designing an effective

reward space and a novel teacher-student training scheme. Combining the capabili-

ties of localisation-safe navigation and tracking, ground vehicles and aerial vehicles

hold the potential to cooperatively execute complex tasks in unknown environments,

such as search and rescue missions, in the future.
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Ground Robot Navigation:

• This thesis enhances the mapless navigation capability for ground vehicles

by reconfiguring the problem from a POMDP to an MDP setting. A novel

approach is developed, which involves terminating training episodes early when

localisation algorithms diverge, and reconstructing the state using historical

information embeddings from an LSTM module.

• A unique reward component is introduced to penalise mobile robots in the

event of localisation failure, a critical aspect previously overlooked in the ex-

isting literature.

• Furthermore, a novel training strategy is formulated, which trains navigation

algorithms not only to reach destinations with minimal time cost but also to

avoid regions where localisation algorithms are prone to failure.

Vision-based UAV Navigation:

• Addressing the challenge of vision-based navigation, a hierarchical navigation

system is suggested for UAVs, combining an RL-based high-level policy with a

conventional low-level policy. This hybrid structure leverages the strengths of

neural networks in comprehending high-level information while ensuring safety

and stability through conventional controllers.

• Moreover, this thesis proposes the use of semantic images as inputs for high-

level policies rather than raw RGB images. This suggestion mitigates the

sim-to-real problem encountered when unrealistic RGB images generated by

simulators are used for training.

• Importantly, the proposed structure and input enable seamless transfer of

control policies trained in simulations to achieve VO-safe navigation in real-

world applications, eliminating the need for retraining.
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UAV Tracking of a Moving Target:

• For the task of UAV tracking moving targets, a novel reward space is designed

to guide the UAV’s behaviour, particularly penalising instances where the

target is occluded or positioned at the edge of the observation image.

• To tackle challenges in training vision-based tracking policies, a novel teacher-

student training strategy for the tracking policy is developed. This strategy

leverages experience data from a state-based teacher policy, effectively guiding

the vision-based student policy away from a local minimum during training.

7.2 Future work

The proposed navigation strategy has been tested in relatively simple simulation

environments without dense obstacles or dynamic objects. Future work could con-

centrate on evaluating the algorithm in more realistic and complex indoor and out-

door settings. Additionally, testing the algorithm with real-world robots and sensors

presents an avenue for future research, requiring the development of techniques to

address the sim-to-real transfer problem. Also, the proposed navigation and tracking

algorithms are tested separately. In future work, these algorithms can be evaluated

jointly as a whole system to accomplish more complex tasks.

The current tracking algorithm assumes the availability of relative poses between

the UAV and UGV. However, this assumption may oversimplify real-world imple-

mentations. In crowded environments, UAVs may lose sight of the ground vehicle

for several time steps. To address this, the tracking could be enhanced by having

the UAV learn to predict the vehicle’s moving intention by observing the vehicle’s

operating environment and historical behaviours in future work.

Another focus could involve exploring one step beyond tracking, specifically de-

signing landing algorithms for UAVs on moving UGVs. The complex aerodynamics

during UAV landing, which poses challenges for achieving steady landings, has not
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been extensively discussed. Potential approaches include model-based learning algo-

rithms that utilise neural networks to model complex dynamics and use the neural

model for landing planning. Alternatively, model-free methods could be explored,

training a landing policy following an end-to-end pipeline

Cooperative landing strategies between the UAV and UGV can also be explored.

For example, UAVs, with their superior traffic views, could be assigned more author-

ity to decide the landing location. Alternatively, when the UAV is close to running

out of power and has limited manoeuvrability, the UGV could take a more active

role in catching the UAVs. This intelligent workload distribution could potentially

be learned through interaction during training.
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based navigation using deep reinforcement learning. In 2019 european confer-

ence on mobile robots (ECMR), pages 1–8. IEEE, 2019.



BIBLIOGRAPHY 187

[59] Shih-Hsi Hsu, Shao-Hung Chan, Ping-Tsang Wu, Kun Xiao, and Li-Chen Fu.

Distributed deep reinforcement learning based indoor visual navigation. In

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2532–2537. IEEE, 2018.

[60] Marvin Chancán and Michael Milford. Citylearn: Diverse real-world environ-

ments for sample-efficient navigation policy learning. In 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 1697–1704.

IEEE, 2020.

[61] Raphael Druon, Yusuke Yoshiyasu, Asako Kanezaki, and Alassane Watt. Vi-

sual object search by learning spatial context. IEEE Robotics and Automation

Letters, 5(2):1279–1286, 2020.
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Koltun, and Davide Scaramuzza. Deep drone racing: From simulation to

reality with domain randomization. IEEE Transactions on Robotics, 36(1):1–

14, 2019.

[143] Jiaxu Xing, Leonard Bauersfeld, Yunlong Song, Chunwei Xing, and Davide

Scaramuzza. Contrastive learning for enhancing robust scene transfer in vision-

based agile flight. arXiv preprint arXiv:2309.09865, 2023.



BIBLIOGRAPHY 199

[144] Tianqi Wang and Dong Eui Chang. Robust navigation for racing drones based

on imitation learning and modularization. In 2021 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 13724–13730. IEEE, 2021.

[145] Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-critic model

predictive control. arXiv preprint arXiv:2306.09852, 2023.

[146] Yunlong Song and Davide Scaramuzza. Policy search for model predictive

control with application to agile drone flight. IEEE Transactions on Robotics,

38(4):2114–2130, 2022.

[147] Angel Romero, Shreedhar Govil, Gonca Yilmaz, Yunlong Song, and Davide

Scaramuzza. Weighted maximum likelihood for controller tuning. In 2023

IEEE International Conference on Robotics and Automation (ICRA), pages

1334–1341. IEEE, 2023.

[148] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide

Scaramuzza, and Markus Ryll. Real-time neural mpc: Deep learning model

predictive control for quadrotors and agile robotic platforms. IEEE Robotics

and Automation Letters, 8(4):2397–2404, 2023.
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