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Abstract. Biological data and knowledge bases increasingly rely on
Semantic Web technologies and the use of knowledge graphs for data
integration, retrieval and federated queries. We propose a solution for
automatically semantifying biological assays. Our solution contrasts the
problem of automated semantification as labeling versus clustering where
the two methods are on opposite ends of the method complexity spec-
trum. Characteristically modeling our problem, we find the clustering
solution significantly outperforms a deep neural network state-of-the-art
labeling approach. This novel contribution is based on two factors: 1) a
learning objective closely modeled after the data outperforms an alter-
native approach with sophisticated semantic modeling; 2) automatically
semantifying biological assays achieves a high performance F1 of nearly
83%, which to our knowledge is the first reported standardized evaluation
of the task offering a strong benchmark model.

Keywords: Open Research Knowledge Graph · Open Science Graphs
· Unsupervised learning · Clustering · supervised learning · Labeling ·
Automatic semantification · Bioassays

1 Introduction

Semantifying scholarly communication within the next-generation Knowledge-
Graph-based Scholarly Digital Libraries, such as the Open Research Knowl-
edge Graph4 (ORKG) [5], relies on core semantic techniques such as ontologized
formalizations and Web resource identifiers [8]. This supports the mainstream
Knowledge representation and reasoning vision in AI. Further, semantified data
can enable knowledge-based interoperability between multiple databases simply
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812968).
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by reusing identifiers and utilizing no-SQL query languages such as SPARQL [33]
that can perform distributed queries over the various data sources. Obtaining
improved machine interpretability of scientific findings has seen keen interest
in the Life Sciences [23] domain. Many major bioinformatics databases such
as UniProt [11], KEGG [22], REACTOME [20] and the NCBI database [35]
which includes the PubChem BioAssay database now make their data available
as Linked Data in which both biological entities and connections between them
are ontologized with standardized relations and are identified through a unique
identifier (an Internationalized Resource Identifier or IRI). In a parallel Com-
putational Linguistics ecosphere, many recent interdisciplinary data collection
and annotation efforts [24,25,31,26] are focused on the shallow semantic struc-
turing of unstructured text based on the Life Sciences ontologies. E.g., instruc-
tional content in lab protocols, descriptions of chemical synthesis reactions, or
bioassays. Thus information described otherwise in ad hoc ways within scholarly
documents attain machine-actionable, structured representations. Such datasets
inadvertently facilitate the development of automated machine readers.

In this work, we take up the problem of the automated semantification of Bio-
logical Assays (Bioassays). This problem has both Life Science-specific solutions
as the Bioassay Ontology [43] and Computational Linguistics-based semantified
unstructured text annotations [37,42,10]. A bioassay is, by definition, a standard
biochemical test procedure used to determine the concentration or potency of
a stimulus (physical, chemical, or biological) by its effect on living cells or tis-
sues [18,19]. It is described with relevant information on basic procedures such as
determining the signal that indicates biological activity, determining doses used
during the test, calculation methods etc. Also, bioassays are always qualified and
validated [41] to highlight their accuracy, repeatability, and adequacy for use in
the measurement of relative potency. Thus, a semantic description of the assay
represented as logical annotations consisting of property and value pairs is the
semantic equivalent of the unstructured bioassay text. They would enable their
large-scale analysis in diverse systems. Bioassay texts are semantified based on
the BioAssay Ontology (BAO) [43,1]. The BAO describes chemical and biolog-
ical screening assays and their related results to facilitate their categorization
and data analysis. On the BioPortal5 where the BAO is hosted, the BAO showed
7513 classes and 227 properties dated June 3, 2021. Thus the semantification of
an assay is a tedious human annotation task since they have to: 1) decide which
ontologized class relation pair applies to a biossay; and 2) given a sentence from
the bioassay text, decide whether it is expressible as a logical statement by the
BAO. This results in a large decision space for the human annotator making it a
time-consuming endeavor. Computational techniques fitted appropriately with
the problem semantics can fully alleviate the tedious human annotation task.

In this paper, we examine the computational aspects of the automated se-
mantification of biological assays (bioassays) in light of two different approaches
and their evaluations. We first formulate a labeling objective for bioassay se-
mantification. This we recently proposed as a work-in-progress idea leveraging

5 https://bioportal.bioontology.org/
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Fig. 1: Illustration of labeling versus clustering to aggregate data points

a transformer-based supervised classifier [3,4]. Herein, we carry out in detail
the experiments we began and further examine a novel clustering objective to
bioassays semantification. Labeling and clustering are two methods of pattern
identification used in machine learning. Although both techniques have certain
similarities, the difference lies in the fact that labeling relies on a predefined
set of labels assigned to objects, while clustering identifies similarities between
objects, which it groups according to those characteristics in common and which
differentiate them from other groups of objects. This is illustrated in Figure 1.
On the one hand, we identify each logical statement of a semantified bioassay
as a potential label. On the other hand, we observed that bioassays with similar
text descriptions also had similar semantic representations. Thus a fine-grained
clustering of the assays themselves could mean a cluster as a whole can be se-
mantified by a standard set of labels. If it takes a classifier multiple passes to
fully label an assay, it takes a clustering model just one pass over the data to se-
mantify clusters. Via our experiments, we observed that labeling and clustering
have contrasting score and time footprints. As a surprising result, the powerful
transformer-based labeling method proves to be less accurate than a cluster-
ing solution at 54% F1 vs. 83% F1; and labeling with a large labels set has a
significantly longer prediction time accounting for per-label classifications.

In summary, the contributions of our work are:

1. we formalize two machine learning objectives, i.e. labels classification and
clustering, for the automated semantification of bioassays. Relatedly, we dis-
cuss the dataset characteristics and its adaptations. To our knowledge, these
standardized machine learning tasks over a corpus of bioassays are discussed
for the first time.

2. we empirically evaluate the approaches and report unconventional findings
that favor k-means clustering over the more resource-intensive transformers;

3. we present an application of bioassay semantification within the Open Re-
search Knowledge Graph scholarly contributions knowledge digitalization
platform. The workflow allows scientists to upload bioassays, obtain auto-
mated semantified bioassays as results, and curate the semantic annotations.

2 A Motivating Example for Bioassay Semantification

Assay ID 1960 An example sentence from the assay is ‘Finally, fluorescence
polarization can be used to effectively monitor the in vitro RNA-binding activity
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of both proteins using a standard fluorescence plate reader.’ This sentence as it is
is not computable. In other words, the terms ‘fluorescence polarization’, ‘in vitro
RNA-binding activity’ or ‘standard fluorescence plate reader’ in the unstructured
text have no semantic interpretation to a computer. However, in the context of
the standardized Bioassay terminology, the sentence is annotated with the fol-
lowing logical statement: ‘has detection method’ → ‘fluorescence polarization’
from the BioAssay ontology [43] grounded to the identifiers (bao:BAO 0000207,
bao:BAO 0000003). This semantic annotation is now computable by machines,
e.g., within reasoning tasks. But these annotations need to be manually curated
by an expert who reads from context information in the phrase ‘Finally, fluores-
cence polarization can be used to effectively monitor’ and is also familiar with
the experimental setting of the assay. To semantify the above statement, the
expert deduces that ‘high polarization’ in ‘protein-probe complex’ was detected
by the method ‘fluorescence polarization.’ However, making such decisions is an
expensive human annotation task and nearly impossible at scale. Nevertheless,
if such logical statements are annotated for a small set of bioassays, they can be
easily annotated at scale via machine learning which is the focus of this work.

3 Related Work

3.1 Corpora of Semantified Life Science Publications

Increasingly, text mining initiatives are seeking out recipes or formulaic se-
mantic patterns to automatically mine machine-actionable information from
scholarly articles [24,25,31,26]. In [25], they annotate wet lab protocols, cov-
ering a large spectrum of experimental biology, including neurology, epigenet-
ics, metabolomics, cancer and stem cell biology, with actions corresponding to
lab procedures and their attributes including materials, instruments and de-
vices used to perform specific actions. Thereby the protocols then constituted a
prespecified machine-readable format as opposed to the ad hoc documentation
norm. Kulkarni et al. [25] release a large human-annotated corpus of semantified
wet lab protocols to facilitate machine learning of such shallow semantic pars-
ing over natural language instructions. Within scholarly articles, such instruc-
tions are typically published in the Materials and Method section in Biology and
Chemistry fields. Along similar lines, inorganic materials synthesis reactions and
procedures continue to reside as natural language descriptions in the text of jour-
nal articles. There is a growing need in such fields to find ways to systematically
reduce the time and effort required to synthesize novel materials that presently
remains one of the grand challenges in the field. In [24,31], to facilitate machine
learning models for automatic extraction of materials syntheses from text, they
present datasets of synthesis procedures annotated with semantic structure by
domain experts in Materials Science. The types of information captured include
synthesis operations (i.e. predicates), and the materials, conditions, apparatus
and other entities participating in each synthesis step.

In this work, we leverage a similar semantically annotated corpus in the Life
Science domain, but the knowledge theme tackled in our corpus is that of se-
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has participant → DMSO
has assay phase characteristic → homogeneous phase
has temperature value → 25 degree celsius
has incubation time value → 20 minute

Table 1: Four example logical statements (from 50 total) for the semantified PubChem
Assay with ID 360 (https://pubchem.ncbi.nlm.nih.gov/bioassay/360). Note, these
statements are triples with subject ‘Bioassay.’

mantifying bioassays [43]. Normally, bioassays can be stored and accessed on
PubChem [46,45] which now contains more than 1.3M bioassays (22-06-2021).
Only considering the period between 2015 and 2021, 389,835 new bioassays have
been added to PubChem. To semantify a single bioassay is expert-specific and
time-consuming. However, the process is not scalable for large-scale analyses,
e.g. searching databases for related assays and comparisons or clustering similar
entries. This requires the creation of new approaches to favor bioassays seman-
tification, analysis, comparison and facilitate knowledge sharing. The ultimate
goal would be to obtain a fully-automated software that can easily transform a
human-friendly unstructured bioassay text report to a computer-friendly version
as their semantic equivalent in the form of a set of logical statements.

3.2 AI-based Scholarly Knowledge Graph Construction

Early scholarly knowledge graph (SKG) construction initiatives were based on
the sentences’ information granularity. For this, ontologies and vocabularies were
created [40,38,12,32] from diverse aspects of the publication including discourse
and specific themes as experiments; corpora were annotated [28,16], and symbolic
features-based ML techniques were implemented [27]. Recent scientific search
technology led to new annotated corpora focusing on phrases with three or six
types of generic scientific concepts in articles across up to ten different schol-
arly disciplines [15,34,30], for which neural systems were developed [9,2,13]. In
SKG creation, relation extraction has also raised keen interest, thanks also to
community challenges such as ScienceIE 2017 [6], SemEval 2018 Task 7 [17] and
NlpContributionGraph 2021 [14], where participants tackled the problem of de-
tecting semantic relations; newer advanced methods employed attention-based
bidirectional long short-term memory networks (BiLSTM) [47] or used dynamic
span graph framework based on BiLSTMs [44]. Recently, strategically designed
neural-symbolic hybrid approaches have proven effective [29].

For the scholarly knowledge theme of structuring Bioassays, specifically,
the only prior machine learning approach was a morpho-syntactic features-
based Bayes classifier [10]. This early system, however, had unreplicable human-
engineered aspects and non-standard evaluations. We focus on machine learning
that entails no additional hand-engineering and report standardized evaluations.

https://pubchem.ncbi.nlm.nih.gov/bioassay/360
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4 Materials and Methods

4.1 An Expert-Annotated Semantified Bioassays Corpus

To develop our automated semantifiers, we leverage a corpus comprising an
expert-annotated collection of 983 semantified bioassays [37,42]. In Table 1, we
show four logical statements of a semantified bioassay (ID 360 in PubChem) as
an example. Each logical statement is expressed as a predicate and value pair.
In the chosen example, the first two statements are ontologized statements, i.e.
the predicate and value pair are in the Bioassay Ontology (BAO) [43]. These
annotations are made by a domain expert based on comprehensive knowledge of
the BAO which contains thousands of predicate value pairs as semantification
candidates. The next two statements are partially ontologized, i.e. their predi-
cates can be found in the BAO but the values are directly from the bioassay
text description and hence are bioassay-specific. These statements report the
various specific measurements made in the course of the bioassay. Semantified
Bioassays contain both ontologized and partially ontologized statements. For the
semantification task addressed in this paper, we restrict ourselves only to the on-
tologized statements of each semantified bioassay. For this, we prune all partially
ontologized statements from each semantified assay. In Table 2, we summarize
the dataset statistics for the original corpus with all the statements and the cor-
pus we use after pruning. We can see that prior to pruning, the original corpus
had 5524 total unique statements overall, which after pruning are reduced to
1906 statements. In the pruned corpus, bioassays have between 2 minimum and
87 maximum statements at an average of 37 statements. Considering only the
predicates in these 1906 total statements, some predicates apply to semantify a
bioassay more commonly than others. This is shown via the predicates statistics
reported in Table 3. In particular, 94% of the semantic statements comprise only
the 40 most commonly occurring predicates from a total of 80 unique predicates.
Note this labels repetition detail of the corpus is critical since the labeling of
bioassays with semantic statements are only among those observed in the data.

Corpus Formalization. Let B be the overall semantified bioassays collection.
A bioassay b from B is semantified with a set of ontologized logical statements sls
(or semantic statements) which is sls = {ls1, ls2, ls3, ..., lsk} where lsx is a logical
statement ∈ LS such that LS is the collection of all the distinct ontologized
logical statements used for semantification seen in the training data. And sls
has k different statements when taken together form the semantic equivalent
of bioassay b. Across bioassays, their corresponding sls sizes vary. As shown in
Table 2, the corpus we use has |LS| = 1906 unique statements (after pruning
the partially ontologized statements).

Two semantification machine learning objectives are contrasted next.

4.2 Labeling Task Definition for Bioassay Semantification

Bioassays semantification can be addressed as a labeling problem. In this sce-
nario, each logical statement can be treated within a binary classification task
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AVERAGE MINIMUM MAXIMUM TOTAL

original 56 7 162 5524
pruned 37 2 87 1906

Table 2: Semantified bioassays corpus statistics shown before (‘original’ row) and
after (‘pruned’ row) pruning its partially ontologized statements. Note the corpus
used for the work in this paper is the ‘pruned’ version.

top 10 top 20 top 30 top 40 top 50 top 60 top 70 top 80

795 959 1492 1804 1866 1879 1896 1906
(41.7) (50.3) (78.3) (94.6) (97.9) (98.6) (99.5) (100.0)

Table 3: Fine-grained pruned semantified corpus statistics in terms of the top
10, 20, 30, etc., most common predicates seen in the statements. E.g., the top 10
column contains the ten most frequently occurring predicates in the 1906 state-
ments. Note the last column (‘top 80’) reflects the total unique predicates in
the corpus. The rows show the number of the unique statements with the corre-
sponding frequent predicates. The parenthesized numbers show the statements’
proportion in the overall corpus.

as applicable or not. On average in our data, a bioassay could then have around
37 applicable logical statements from LS. The task can be formalized as follows.

Task Formalism. Each input data instance is the pair (b, ls; c) where c ∈
{true, false} is the classification of the label ls. Thus, specifically, our semantifi-
cation problem entails classifying labels: (b, ls) is true if ls ∈ logical statements
set of b, else false. The false instances are formed by pairing b with any other
label not in the logical statements set sls of b.

Intuitively, this task formulation is meaningful because it emulates the way
the human expert annotates the data. Basically, the expert, from their memory
of all logical statements LS, simply assigns ls to a given b if they deem it as
true; irrelevant statements are not considered, thus implicitly deemed false.

Task Model. Our machine learning system is the state-of-the-art, bidirectional
transformer-based SciBERT [7], pre-trained on millions of scientific articles. For
bioassay semantification, we use the SciBERT classification architecture. In each
data instance (b, ls; c), the classifier input representation for the pair ‘b, ls’ is the
standard SciBERT format, treating them as sentence pairs separated by the
special [SEP] token; the special classification token ([CLS]) remains the first
token of every instance. Its final hidden state is used as the aggregate sequence
representation for classification and is fed into a linear classification layer.
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4.3 Clustering Task Definition for Bioassay Semantification

We define clustering as the second machine learning strategy. This is from corpus
observations wherein bioassays with similar text descriptions were semantified
with similar sets of logical statements. Thus, bioassays could be clustered based
on their text descriptions into semantic groups and each cluster group could be
collectively semantified for its bioassays. This task formalism is as follows.

Task Formalism. Let K be the total number of clusters of bioassays repre-
sented by the set C = {c1, c2, ..., cK}. Btrain = {b1, b2, ..., bn} corresponds to the
total bioassays in the training set used to obtain optimal cluster centroids; and
Vtrain = {v1, v2, ..., vn} is the vectorized representation of each bioassay to fit
the clustering model. Note, K < n. Further, each cluster cx is associated with all
the distinct logical statements of the bioassays in the respective cluster group.
If cluster cx is fitted with two bioassays bp and bq in the training set, then cx
is associated with slscx = slsbp ∩ slsbq . Thus, new logical statements sets are
formed as {lsc1 , lsc2 , ..., lscK} associated with the K clusters. After the clustering
semantification model is fitted with Vtrain, semantification is performed. Each
new bioassay btest is assigned based on vtest to its closest cluster and semantified
with the logical statements set of that cluster.

Clustering has the following alternative semantification task intuition. The
domain expert tries to repeat their semantification decisions as much as possible
based on similar bioassays they already annotated. In other words, for a new
bioassay, they would copy as many logical statements from a similar already se-
mantified bioassay and then decide if additional logical statements were needed.
While this latter aspect is not modeled within the clustering problem, our re-
sults show that just copying the logical statements between similar bioassays is
a significantly accurate automatic semantification strategy.

Task Model. Each bioassay text is represented based on the TF-IDF [36]
vectorized format. The clustering approach we employ is the K-means algo-
rithm [21]. To determine the optimal clusters K, we employ the elbow optimiza-
tion strategy that tries to select the smallest number of clusters accounting for
the largest amount of variation in the data [39].6

5 Bioassay Semantification Experiments

5.1 Experimental Setup

1. Labeling Task-specific Settings. Unlike clustering, the labeling task en-
tails defining false logical statement semantification candidates as well. Since
each assay had on average 37 true logical statements, we experimented with a

6 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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P R F1

160RF 0.33 0.94 0.49
170RF 0.37 0.94 0.54
180RF 0.35 0.94 0.51

Table 4: Bioassay semantification results by SciBERT-based labels classification.
The first column shows the number of false statements (RF) that each bioassay
was labeled with—the rows report 3 different experiments (170RF as optimal).

top10 top20 top30 top40 top50 top60 top70 full

TPU 34s 38s 42s 1m 10s 1m 24s 1m 22s 1m 12s 1m 20s
CPU 28m 10s 29m 15s 34m 7s 58m 3s 1h 6m 1h 6m 14s 1h 6m 4s 1h 6m 8s

Table 5: Rate of semantifying bioassays on various corpus subsets using SciBERT

predicates P R F1 predicates P R F1

top 10 0.53 0.94 0.67 top 50 0.36 0.95 0.52
top 20 0.50 0.89 0.64 top 60 0.41 0.92 0.57
top 30 0.45 0.95 0.61 top 70 0.32 0.95 0.48
top 40 0.37 0.94 0.52 all 80 0.37 0.94 0.54

Table 6: SciBERT-based bioassay semantification on corpus subsets starting with
only the statements containing the 10 most common predicates (top 10 row) until
the full corpus (all 80 row). In these experiments, the optimal 170RF was used.

random set of false (RF) statements in the range between 100 and 200 in in-
crements of 10. The values were set to avoid biasing the classifier on only false
inferences but also to be sufficiently representative. 2. Three-fold Cross Val-
idation. For both labeling and clustering, we performed 3-fold cross validation
experiments with a training/test set distribution of 600 and 300 assays, respec-
tively. The test set assays were selected such that they were unique between the
folds. 3. Evaluation Metrics. We measure the standard precision, recall, and
F1 scores for bioassay semantification per fold experiment. The final scores are
then averaged over the three folds.

5.2 Experimental Results

SciBERT-based Semantification. Given the results in Table 4, we examine
the RQ: is the proposed transformer-based neural method effective at seman-
tifying bioassays? A score of 0.54 F1 tells us, suprisingly, that our attempted
neural-based method is not an effective solution to the problem which is a sur-
prising result since it is the state-of-the-art in classification tasks over scientific
data [7]. Further, it proves practically inefficient, since, given the full corpus of
statements, each test assay is semantified at a rate of 1 hour on the CPU (see
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Num. of
Clusters

Labels freq ≥ 5 Labels freq ≥ 4 Labels freq ≥ 3 Labels freq ≥ 2 Labels freq ≥ 1
P R F1 P R F1 P R F1 P R F1 P R F1

50 0.54 0.75 0.63 0.48 0.80 0.60 0.40 0.84 0.54 0.32 0.89 0.47 0.19 0.94 0.31
100 0.69 0.59 0.63 0.66 0.66 0.66 ↑ 0.62 0.76 0.68 ↑ 0.53 0.85 0.66 ↑ 0.32 0.92 0.47 ↑
150 0.83 0.40 0.54 ↓ 0.80 0.49 0.61 ↓ 0.76 0.63 0.69 ↑ 0.70 0.79 0.74 ↑ 0.54 0.90 0.68 ↑
200 0.86 0.34 0.49 ↓ 0.83 0.43 0.56 ↓ 0.80 0.56 0.66 ↓ 0.76 0.72 0.74 0.66 0.89 0.75 ↑
250 0.88 0.22 0.36 ↓ 0.86 0.31 0.45 ↓ 0.85 0.44 0.58 ↓ 0.79 0.65 0.72 ↓ 0.71 0.88 0.79 ↑
300 0.91 0.18 0.30 ↓ 0.88 0.24 0.37 ↓ 0.86 0.35 0.50 ↓ 0.81 0.56 0.66 ↓ 0.75 0.86 0.80 ↑
350 0.94 0.10 0.17 ↓ 0.90 0.15 0.25 ↓ 0.88 0.27 0.41 ↓ 0.84 0.47 0.60 ↓ 0.78 0.86 0.82 ↑
400 0.93 0.06 0.11 ↓ 0.93 0.09 0.17 ↓ 0.91 0.20 0.32 ↓ 0.86 0.38 0.53 ↓ 0.80 0.85 0.82
450 0.95 0.05 0.10 ↓ 0.94 0.08 0.14 ↓ 0.93 0.12 0.22 ↓ 0.86 0.27 0.41 ↓ 0.81 0.85 0.83 ↑
500 0.95 0.03 0.06 ↓ 0.94 0.05 0.09 ↓ 0.93 0.08 0.15 ↓ 0.88 0.17 0.28 ↓ 0.82 0.85 0.83
550 0.95 0.03 0.06 ↓ 0.95 0.03 0.06 ↓ 0.94 0.04 0.08 ↓ 0.89 0.09 0.17 ↓ 0.82 0.84 0.83
600 1.0 0.02 0.05 ↓ 0.95 0.02 0.05 ↓ 0.96 0.03 0.06 ↓ 0.94 0.04 0.07 ↓ 0.83 0.84 0.83

Table 7: Bioassay semantification results by K-means clustering

Table 5). On smaller subsets of the statement labels, the time is indeed faster
and the scores are better (see Table 6), however, time performance rate of 28
minutes on the smallest subset is still impractical.

K-means Clustering-based Semantification. Detailed results with their
performance rise and fall trends are shown in Table 7 for different cluster sizes
and labels frequency thresholds within the clusters. E.g., the ‘Labels freq ≥ 5’
column evaluates only the statements that appeared 5 or more times within the
cluster groups when the semantic statements from the various bioassays were
aggregated. As the labels frequency threshold is lowered, the semantification
score rises. The best scores are obtained when all the statements are considered
(the ‘Labels freq ≥ 1’ column). This method obtains a high semantification score
of 0.83 F1. This result when compared with the SciBERT-based neural model
frustrates common expectations. Furthermore, this method is effective even w.r.t.
the rate of semantification, since bioassays can be semantified in microseconds.

6 Digital Library Bioassay Semantification Workflows

We now describe the bioassay semantifier as an AI service application powering
the structuring of scholarly knowledge in a real-world digital library (DL). The
semantifier is importable within any DL that aim to establish knowledge-based
information flows as the standard format for reporting and publishing research
findings, aka contributions. The high-level workflow is a distributed, decentral-
ized, and collaborative creation and development model comprising information
templates, vocabularies, and ontologies (e.g., OBO foundry, Medline, MESH tax-
onomies, BAO in the Biomedical/Life Sciences domains). We discuss the service
as implemented in TIB’s Open Research Knowledge Graph (ORKG) platform
(https://www.orkg.org/) [5]. The online semantification workflow will be a

https://www.orkg.org/
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Fig. 2: (1) General - add publication metadata; (2) Research field - select
a research field from a taxonomy https://gitlab.com/TIBHannover/orkg/
orkg-backend/-/blob/master/scripts/ResearchFields.json; and (3) Con-
tributions - either structure an articles’ contribution as method, material and
results, or add a bioassay text description by clicking ‘Add Bioassay.’ Note the
‘Add Bioassay’ button is activated only for some research fields in the Life Sciences.

synergistic combination of automated and manual processes involving the ex-
traction of new ontologized entity types from literature (e.g., target, assay type,
experimental conditions in bioassays publications), open access data generation
in accord with the FAIR principles thus easily reusable by anyone, and curation
support tools for semantified data curation. Figures 2, 3, and 4 depict the work-
flow. It is pragmatically designed as a hybrid of automatic semantification linked
to the BAO (http://bioassayontology.org/) and a simplified user interface
to help scientists curate their data with minimum effort. This offers a highly
accurate semantification model without placing unrealistic expectations on sci-
entists to semantify their assays from scratch. In general, by thus drastically
reducing the time required for scientists to annotate their contributions, we can
realistically advocate for semantified contributions to become a standard part
of the publication process. On such digitalized data, the ORKG additionally
supports advanced data interlinking, integration, visualization, and search.

https://gitlab.com/TIBHannover/orkg/orkg-backend/-/blob/master/scripts/ResearchFields.json
https://gitlab.com/TIBHannover/orkg/orkg-backend/-/blob/master/scripts/ResearchFields.json
http://bioassayontology.org/
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Fig. 3: A popup pane to either upload or copy-paste a bioassay text description

Fig. 4: An automatically semantified bioassay based on submitted text with an
interaction button to delete statements that the domain expert judges invalid

7 Conclusion

In this work, we have presented an end-to-end model to semantify bioassays
descriptions in the context of knowledge-based digital libraries as the ORKG. As
a result, we have implemented a highly accurate semantification machine learning
method based on clustering. Our code is open source https://gitlab.com/

TIBHannover/orkg/orkg-bioassays-semantification. Finally, we report an
unconventional finding that resource-light clustering problem formulation can
better support bioassay semantification than a state-of-the-art neural approach.

https://gitlab.com/TIBHannover/orkg/orkg-bioassays-semantification
https://gitlab.com/TIBHannover/orkg/orkg-bioassays-semantification


Easy Semantification of Bioassays 13

References
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S.C.: BioAssay ontology (BAO): a semantic description of bioassays and high-
throughput screening results. BMC Bioinformatics 12(1), 257 (2011)

44. Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event ex-
traction with contextualized span representations. ArXiv abs/1909.03546 (2019)

45. Wang, Y., Bryant, S.H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B.A.,
Thiessen, P.A., He, S., Zhang, J.: PubChem BioAssay: 2017 update. Nucleic Acids
Research 45(D1), D955–D963 (Nov 2016)

46. Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Zhou, Z., Han, L., Kara-
petyan, K., Dracheva, S., Shoemaker, B.A., Bolton, E., Gindulyte, A., Bryant, S.H.:
PubChem’s BioAssay Database. Nucleic Acids Research 40(D1), D400–D412 (12
2011)

47. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based
bidirectional long short-term memory networks for relation classification. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). pp. 207–212. Association for Computational
Linguistics, Berlin, Germany (Aug 2016). https://doi.org/10.18653/v1/P16-2034,
https://aclanthology.org/P16-2034

https://doi.org/10.1098/rsif.2006.0134
https://doi.org/10.1098/rsif.2006.0134
https://doi.org/10.1098/rsif.2006.0134
https://aclanthology.org/E99-1015
https://aclanthology.org/E99-1015
https://doi.org/10.18653/v1/P16-2034
https://aclanthology.org/P16-2034


Easy Semantification of Bioassays 17

A A Second Motivating Example for Bioassay
Semantification

Assay ID 1061 As another example sentence, we consider ‘The G-protein
coupled formylpeptide receptor (FPR) was one of the originating members of
the chemoattractant receptor superfamily. The present assay was undertaken
to identify which of the 5 test compounds active in dose-response assays were
FPRL1 antagonists.’ While the sentence with various buried information units is
not in a computable form, the logical statements ‘has participant’ → ‘G protein
coupled receptor’ and ‘has role’ → ‘target’ about G-protein coupled formylpep-
tide receptor are as the semantic equivalent of information buried in the text.
Generally, in semantified bioassays, the predicates ‘has participant’ and ‘has
role’ occur frequently as a related logical statement sequences. The label ‘has
participant’ often refers to a specific molecule participating in the bioassay, while
the label ‘has role’ refers to the role of the participating molecule in the experi-
mental process. In the case of the discussed example, it means the bioassay has
a ‘G protein coupled receptor’ as a participant which is the target molecule in
the experiment. Note, similar to our previous example, this information is not
explicitly found in the text and would rely on a human annotator observing
context and their background knowledge of the experiment. In this paper our
aim is to expedite the annotation process with the help of machine learning over
representative annotated examples.

B Comparison of Reported Results with our Prior Work

The dataset considered in this study has been created with a refined set of
heuristics. Thus this dataset differs from the dataset in our earlier work. Note,
our previous dataset had |S| = 1756 unique statements (after filtering for non-
informative ones), however, this dataset has 1906 unique statements. In the
following lines, we describe the differences in our datasets and thus explain the
new results reported in this paper.

1. The ignored classes differ as shown in Table 8. In addition in the old dataset
we removed three specific labels: ’has function − > aggregated’, ‘has partic-
ipant − > Calcium’, ‘has participant − > 7-amino-4-methylcoumarin’.

2. In the dataset that we use in the present study, we have combined all oc-
currences of the ‘has role’ tag with its related tag pair. E.g. ‘has inducer
# has role − > Tetracycline # inducer’, ‘has participant # has role − >
Propionaldehyde # substrate’.

3. previously we were including just the one with a BAO mapping ; here we have
also other labels that are suitable for SciBert classification but are not in the
BAO by checking the left hand manually and decided what to keep E.g. map-
ping: ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#type − > ‘10% fetal
bovine serum’, label: ‘material entity culture serum’ − > ‘10% fetal bovine
serum’.
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Unique Statements LH Old New

‘has repetition point-number’ x x
‘has concentration-point number’ x x
‘has concentration value’ x x
‘has endpoint’ x x
‘has assay title’ x x
‘has quality’ x
‘has mode of action’ x
‘has concentration unit’ x
‘has response unit’ x
‘has inducer’ x
‘antibody’ x
‘has substrate’ x
‘screening campaign name’ x
‘has transcription factor’ x
‘material entity assay serum’ x
‘material entity culture medium’ x
‘material entity culture serum’ x
‘protein-protein’ x
‘screening campaign name’ x
‘Annotated by’ x
‘DMSO’ x
‘NCBI taxonomy ID’ x
‘PubChem TID’ x
‘absorbance wavelength’ x
‘cell modification temperature’ x
‘cell modification time’ x
‘construct DNA vector’ x
‘construct artificial regulatory region copy number’ x
‘construct gene ID’ x
‘construct organism’ x
‘enzyme reaction time’ x
‘gene ID’ x
‘gene mutation’ x
‘has assay medium’ x
‘absorbance wavelength’ x
‘has emission wavelength value’ x
‘has excitation wavelength value’ x
‘has incubation time value’ x
‘has signal direction’ x
‘has summary assay’ x
‘has temperature value’ x
‘is alternate confirmatory assay of’ x
‘is confirmatory assay of’ x
‘is counter assay of’ x
‘is identical assay of’ x
‘is lead optimization assay of’ x
‘is primary assay of’ x
‘is selectivity assay of’ x
‘positive control concentration’ x
‘substrate incubation temperature’ x
‘substrate incubation time’ x
‘uniprot ID’ x
‘material entity assay provider’ x

Table 8: Comparison among the old and the newly refined dataset. The Left-
Hand parts of the labels are indicated.
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false
labels

P R F1

100 0.517 0.968 0.674
... ... ... ...
160 0.549 0.931 0.688
170 0.600 0.939 0.729
180 0.573 0.945 0.711
... ... ... ...
300 0.471 0.674 0.551

Table 9: Bioassay semantification re-
sults from five training optimization
with different false classification in-
stances (full table in appendix)

test set P R F1

1st fold 0.600 0.939 0.729
2nd fold 0.573 0.956 0.713
3rd fold 0.589 0.936 0.719
Avg. 0.588 0.944 0.720

Table 10: Automatic bioassay seman-
tification results from 3-fold cross val-
idation with the optimal number of
false classification labels (170).

C Classification Bioassay Results

P R F1

top 10, 170RF 0.53 0.94 0.67
top 20, 170RF 0.50 0.89 0.64
top 30, 170RF 0.45 0.95 0.61
top 40, 170RF 0.37 0.94 0.52
top 50, 170RF 0.36 0.95 0.52
top 60, 170RF 0.41 0.92 0.57
top 70, 170RF 0.32 0.95 0.48
full dataset, 170RF 0.37 0.94 0.54

top 10, 180RF 0.56 0.93 0.70
top 20, 180RF 0.50 0.93 0.64
top 30, 180RF 0.49 0.94 0.65
top 40, 180RF 0.35 0.96 0.51
top 50, 180RF 0.39 0.94 0.55
top 60, 180RF 0.40 0.95 0.56
top 70, 180RF 0.37 0.95 0.53
full dataset, 180RF 0.35 0.94 0.51

Table 11: SCIBERT-based predictor results; 3-Fold CV on different subsets. The
first column contains the number of Random False (RF) or false classification
labels used in each bioassay for the analysed subsets (top 10, ..., full dataset)
where each subset (e.g. top X) refers to the X most occurring Left-Hand (LH)
part of a unique statement (e.g. top 10 contains the 10 most occurring LH of
each unique statement). All the subsets where tested with 170 and 180 false
classification labels.
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D Elbow Optimization for K

Fig. 5
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