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Abstract
In multiple-choice exams, students select one answer from among typically four choices and can explain
why they made that particular choice. Students are good at understanding natural language questions
and based on their domain knowledge can easily infer the question’s answer by “connecting the dots”
across various pertinent facts. Considering automated reasoning for elementary science question answer-
ing, we address the novel task of generating explanations for answers from human-authored facts. For
this, we examine the practically scalable framework of feature-rich support vector machines leveraging
domain-targeted, hand-crafted features. Explanations are created from a human-annotated set of nearly
5000 candidate facts in the WorldTree corpus. Our aim is to obtain better matches for valid facts of an
explanation for the correct answer of a question over the available fact candidates. To this end, our fea-
tures offer a comprehensive linguistic and semantic unification paradigm. The machine learning problem
is the preference ordering of facts, for which we test pointwise regression versus pairwise learning-to-
rank. Our contributions, originating from comprehensive evaluations against nine existing systems, are
(1) a case study in which two preference ordering approaches are systematically compared, and where the
pointwise approach is shown to outperform the pairwise approach, thus adding to the existing survey of
observations on this topic; (2) since our system outperforms a highly-effective TF-IDF-based IR technique
by 3.5 and 4.9 points on the development and test sets, respectively, it demonstrates some of the further
task improvement possibilities (e.g., in terms of an efficient learning algorithm, semantic features) on this
task; (3) it is a practically competent approach that can outperform some variants of BERT-based rerank-
ing models; and (4) the human-engineered features make it an interpretable machine learning model for
the task.

Keywords: Information extraction; Machine learning; Semantics; Statistical methods; Explanation generation

1. Introduction
There is an emerging trend in AI surrounding explanation generation which aims to improve
the interpretability of the machine learning process (i.e., to reveal how the system arrives at the
prediction) (Lundberg and Lee 2017; Paul and Frank 2019), or trustworthiness of the result (i.e.,
to make the prediction more believable as correct by justifying it) (Ribeiro, Singh, and Guestrin
2016; Jansen et al. 2018). On the one hand, interpretability enables better comprehension of the
so-called black box machine learning, while on the other hand, trustworthiness determines use-
fulness of the technology in decision critical domains such as in medicine and law. In other
words, machine learning predictions cannot be acted upon in such domains without additional
supporting evidence, as the consequences may be dramatic.
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Concerning interpretability, it is debatable whether it is possible in reality to generate complete
descriptions of complex systems as explanations, where the explanations would most likely only
describe a simplified version of the actual system (Mittelstadt, Russell, and Wachter 2019). In a
sense, interpretability subsumes trustworthiness, but not completely, since trustworthiness can
be concerned to a lesser extend with why the model made the decision but rather with why the
decision is true using additional world and commonsense knowledge (Bauer, Wang, and Bansal
2018). This view of enabling better trustworthiness of a machine learned result via explanations is
the focus of this work, which we apply to the domain of elementary science question answering
(QA) over standardized tests. Our task is given a corpus of elementary science question and cor-
rect answer pairs (“QA pairs” hence) taken from standardized tests, to automatically justify the
correct answer with an explanation generated from science and commonsense facts. An exam-
ple of a QA pair and its explanation is illustrated in Table 1. We generate these explanations
from facts taken from the WorldTree Corpus (Jansen et al. 2018) – a newly released, manually
authored knowledge base of semi-structured tables (also called “a tablestore”) containing nearly
5000 elementary science and commonsense facts.

The introduction of the WorldTree corpus (2018) presents a new direction for evaluating
machine intelligence. In the task defined by the corpus, systems can be evaluated w.r.t. their
language understanding, reasoning, and use of common-sense knowledge capacities via the gen-
erated explanations. These are new opportunities to advance the state-of-the-art in machine
intelligence w.r.t. natural language understanding in a similar vein to the Turing test (Turing
2009).

Testing machine intelligence in natural language inference tasks over standardized tests was
first initiated by the AI2 ARC challenge (2018) that originally released just the QA part of the
corpus. This challenge has helped to move forward the reasoning abilities of natural language
inference systems on tasks that children can accomplish, while (ideally) increasing their ability to
explain their reasoning. Progress largely stalled in the fifty percent accuracy for years with some
notable exceptions (Parikh et al. 2016; Seo et al. 2016; Khot, Sabharwal, and Clark 2018), and then
large language models were shown to reach >90% performance (Clark et al. 2019), but did so
without producing explanations. TheWorldTree corpus (2018) fills the gap by providing a way of
explicitly measuring the explanation-generation ability of a model on the ARC corpus, as well as
training the models to perform the many-fact explanation-generation task.

Generally, in multiple-choice QA exams, a student selects one answer to each question from
among typically four choices and can explain why they made that particular choice based on their
world and commonsense knowledge. For a machine, on the other hand, constructing an explana-
tion for the correct answer can be challenging for the following reasons: (1) It can be a multistep
process since some facts may directly relate to the question and correct answer, but there may be
others that build on the earlier facts provided as explanation. Consider in Table 2, facts f1 and f2
directly relate to the question and correct answer; however, fact f3 is an elaboration for f2. This
phenomenon is even more prevalent in longer explanations. Consider the example in Table 1,
where facts f6 to f14 are indirectly related to the question or correct answer, nonetheless are essen-
tial to the logical sequence of facts to explain the phenomenon of “heating of water caused by
the pot on the burner.” And (2) this multistep inference is highly amenable to the phenomena of
semantic drift, that is, the tendency of composing spurious inference chains leading to wrong con-
clusions (Fried et al. 2015; Khashabi et al. 2019). This is depicted by the facts in red in Table 2, that
on the surface are linguistically related to the question and correct answer, but are not semantically
relevant to the explanation for the correct answer.

In this work, we address the aforementioned machine learning challenges by simultaneously
expanding both the linguistic and conceptual vocabulary of the question, correct answer, and
explanation fact words, in a domain-targetedmanner as features formachine learning. By expand-
ing the vocabulary, we aimed to obtain greater number of lexical matches between the QA pair and
explanation facts. In this way, we also indirectly aimed to facilitate improved semantic relatedness
between the QA pair and their explanation facts via their expected greater number of lexical
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Table 1. Example Instance in the WorldTree Corpus (Jansen et al. 2018). A Question and Correct Answer pair (QA
pair) with its Explanation comprising 21 logically ordered facts (f1, f2, . . ., f21). In the WorldTree, explanation
lengths vary between 1 and 21 facts. This selected example Explanation with 21 facts is the longest in the cor-
pus. Characteristic of the data design, facts in explanations lexically overlap (shown as underlined words) with the
question or answer or other facts

Question A student put 200 milliliters (mL) of water into a pot, sets the pot on a burner, and heats the water to boil.
When the pot is taken off the burner, it contains only 180 milliliters (mL) of water. What happened to the rest of the
water?

Answer it turned into water vapor

Explanation

(f1) to turn means to change

(f2) water is in the gas state, called water vapor, for temperatures between 373 or 212 or 100 and 100000000000 k
or f or c

(f3) boiling or evaporation means change from a liquid into a gas by adding heat energy

(f4) water is a kind of liquid

(f5) evaporation causes amount of water to decrease

(f6) a burner is made of metal

(f7) a burner is a part of a stove

(f8) a stove generates heat for cooking usually

(f9) pot or pan or frying pan is made of metal for cooking

(f10) metal is a thermal or thermal energy conductor

(f11) a thermal energy conductor transfers heat fromwarmer objects or hotter objects to cooler objects

(f12) if a thermal conductor or an object is exposed to a source of heat then that conductor or that object may
become hot or warm

(f13) a source of something emits or produces or generates that something

(f14) if one surface or one substance or one object touches something then one is exposed to that something

(f15) being on something or placed in something or placed over something means touching that something

(f16) heat energy is synonymous with thermal energy

(f17) transferring is similar to adding

(f18) conductivity is a property of a material or substance

(f19) if an object is made of a material then that object has the properties of that material

(f20) metal is a kind of material

(f21) a burner is a kind of object or surface

Table 2. Example depicting lexical hop between Question and Correct Answer pair not just with correct facts,
but also with incorrect fact candidates

Question Granite is a hard material and forms from cooling magma. Granite is a type of

Answer igneous rock

Explanation

(f1) igneous rocks or minerals are formed frommagma or lava cooling;

(f2) igneous is a kind of rock;

(f3) a type is synonymous with a kind;

rock is hard;

to cause the formation of means to form;

metamorphic rock is a kind of rock;

cooling or colder means removing or reducing or decreasing heat or temperature;
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matches. Overall, six differing and novel information categories were leveraged to represent the
instances for learning. While in an earlier system (D’Souza, Mulang, and Auer 2019), we have
similarly employed a feature-based approach for this task, in our new version presented in this
article, the generic features of that system are replaced by a domain-targeted set.

With respect to the machine learning strategy, we adopt the learning how to order problem
formulation since the annotated explanations in the WorldTree corpus (2018) are made up of
logically ordered facts in discourse. Specifically, in the context of the WorldTree, the automatic
task entails learning and predicting preferences over candidate facts per QA pair explanation.
Generally, learning a preference function involves ranking facts from a candidate set, that is the
relevant facts before the irrelevant facts, and the relevant facts in order w.r.t. each other. Further, it
also includes an implicit “abstaining” frommaking ranking decisions between the irrelevant facts.
Then during testing, new QA pair explanations are generated by predicting the order for the facts
using the trained preference function. Since the problem does not involve a total ordering of all
facts in the tablestore for the explanations, but only the relevant facts, we adopt the preference
learning approach (Fürnkranz and Hüllermeier 2010; Kamishima et al. 2010) rather than a rank-
ing approach, where the latter entails a total ordering. Nevertheless, preference ranking is a class of
problems that subsume ranking functions. In fact, among the problems in the realm of preference
learning, the task of “learning to rank” has probably received the most attention in the literature
so far, and a number of different ranking problems have already been introduced. In this work, we
compare a pointwise preference learning approach versus the pairwise ranking approach. Further,
the scoring and loss functions for both pointwise and pairwise ranking are from the support vector
machine class of learning algorithms. Support vector machines are preferred by many as a strong
classifier needing less computation power than neural models. Although we are not the first to
contrast pointwise and pairwise learning, our study offers new observations on the comparison
of these two techniques on a new problem, that is the ranking of facts to construct explanations.
In this way, we build on our earlier system (2019) that tested only the pairwise ranking approach
with its generic features set.

We conduct extensive empirical evaluations of our proposed approach with nine existing
systems. Our main contributions are as follows:

• Insights into the comparison between a pointwise and a pairwise machine learning tech-
nique for constructing explanations as a preference learning problem, thus presenting a
new observation complementing existing studies (Kamishima, Kazawa, and Akaho 2005;
Kamishima et al. 2010; Melnikov et al. 2016) in this field;

• A domain-targeted space of representative features of world and commonsense knowledge
to associate a QA pair and candidate explanation facts both linguistically and semantically.
Consequently, our feature-based model is human interpretable. Further, empirical evalua-
tions show that our model effectively outperforms standardized BERT-based (Devlin et al.
2018) neural techniques, that in contrast to ours, are seen as uninterpretable black-box
models.

The rest of the article is structured as follows. We first describe the corpus we use (Section 2)
and the task (Section 3). After that, we describe the related work (Section 4). Section 5 details our
approach followed by a discussion on the features in our feature-rich approach in Section 6. Our
experimental results and analysis are then presented (Section 7). Finally, we conclude with future
directions in Section 8.

2. Corpus
The data used in this study come from the WorldTree corpusa (Jansen et al. 2018). It comprises
a portion of the standardized elementary science exam questions, 3rd to 5th grades, drawn from

aWe use the TextGraphs2019 Explanation Reconstruction Shared Task Data Release available at http://cognitiveai.org/
explanationbank/.
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Figure 1. Facts in explanations per question-answer pair in the training and development datasets.

the Aristo Reasoning Challenge (ARC) corpus (Clark et al. 2018). The questions have multiple
choice answers with the correct answer known. Each question-correct answer pair (QA pair) in
the WorldTree corpus (2018) has detailed human-annotated explanations, consisting of between
1 to 21 facts that are arranged in logical discourse order w.r.t. each other. The QA pair instances
are divided in the standard ARC train, development, and test sets. The WorldTree corpus then
is provided as 1190 training, 264 development, and 1248 test instances where each instance is a
QA pair and its explanation. In all, 14.4% of the training fold facts, 40.4% of the development fold
facts, and 22.5% of test fold facts are overlapping.

2.1 Explanations for correct answers to elementary science questions
As alluded to above, QA pairs in the WorldTree corpus (2018) are annotated with explanations
of up to 21 facts (see in Figure 1 the distribution of facts in the explanations in the training and
development sets).

Based on corpus design decisions, the inclusion criteria for facts in explanations were: lexical
overlap—facts lexically overlap with the question or answer, or with other facts in the explanation;
and coherency—the explanation facts form a logically coherent discourse fragment. As a conse-
quence of the lexical overlap characteristic, a traversal path can be traced between each QA pair
and its explanation facts via multiple lexical hops (depicted in Tables 1 and 2 via the underlined
words). Further, as an additional annotation layer, facts in each training and development set
explanation were categorized as one of three classes. These classes were determined by the role
played by the fact in the explanation. Specifically, the classes were Central, Grounding and Lexical
Glue. Central facts were defined as core scientific facts relevant to answering the question. For
example, facts such as “as the amount of rainfall increases in an area, the amount of available
water in that area will increase.” Grounding facts were those which connected to other core scien-
tific facts present in the explanation. For example, “rain is a kind of water” would connect “rain”
and “water” present across two or more Central facts in the explanation. Finally, lexical glue facts
expressed synonymy or definitional relationships. For example, “rainfall is the amount of rain an
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Table 3. Corpus statistics for QA pairs w.r.t. their
explanation facts from theWorldTree (2018) train-
ing and development corpora combined

Total QA pairs 1213
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total facts used 7448
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Facts per QA pair 6.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Central Total facts used 3705
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Facts per QA pair 3.05
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grounding Total facts used 2131
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Facts per QA pair 1.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lexical Glue Total facts used 1612
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Facts per QA pair 1.32

Table 4. Percentage occurrences of facts from 21 table types (of 65 total) that participated in at least 1% of the
training and development explanations. The numbers in parenthesis are the table sizes in terms of facts

KINDOF (1120) 25.22 REQUIRES (122) 2.87 ATTRIBUTE-VALUE-RANGE (70) 1.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SYNONYMY (636) 14.27 PARTOF (149) 2.74 CHANGE (63) 1.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACTION (260) 6.48 COUPLEDRELATIONSHIP (127) 2.67 CHANGE-VEC (63) 1.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IF-THEN (230) 5.31 SOURCEOF (82) 1.89 EXAMPLES (59) 1.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CAUSE (184) 4.17 CONTAINS (76) 1.79 PROPERTIES-GENERIC (47) 1.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USEDFOR (192) 4.17 AFFECT (78) 1.73 TRANSFER (47) 1.11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PROPERTIES-THINGS (174) 3.58 MADEOF (73) 1.69 AFFORDANCES (49) 1.08

area receives.” Table 3 offers statistics on the overall prevalence of explanation facts across QA
pairs in the training and development sets, and also per explanation fact category.

We now elaborate on the facts’ tablestore that formed the reference set for constructing the
explanations per QA pair. The tablestore facts were authored based on the elementary science
themes of the ARC question-answering data. They are organized in 65 tables representing relation
predicates such as kind of (e.g., an acorn is a kind of seed), part of (e.g., bark is a part of a tree),
cause (e.g., drought may cause wildfires); or the actions of organisms (e.g., some adult animals
lay eggs); or the properties of things (e.g., an acid is acidic); or if-then conditions (e.g., when an
animal sheds its fur, its fur becomes less dense). In Table 4, we depict the table types whose facts
belonged to at least 1% of the explanations in the training and development sets. We see that
only 21 tables from 65 in total were represented in at least 1% of the training and development
explanations. Of the 44 remaining least frequently selected tables, in Table 5, we show only nine
selected ones as examples. Based on the table sizes, the least frequently occurring tables have fewer
facts than most of the 21 frequently selected tables; however, there are one or two exceptions (e.g,
the COUNTRY-HEMISPHERE table with 269 facts).

Figure 2 depicts the top six of the 21 frequently selected table types for their fact rankings in
the explanations. The six tables are KINDOF, SYNONYMY, ACTION, IF_THEN, CAUSE, and
USED-FOR. For these tables, we explicitly show the proportions of their facts at ranks 1 to 10 in

https://doi.org/10.1017/S1351324921000358 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000358


234 J D’Souza et al.

Table 5. Nine randomly chosen tables as examples with less than 1% percentage fact occurrences (of 44 in all) in
the training and development explanations. The numbers in parenthesis are the table sizes in terms of facts

OPPOSITES (36) 0.978 DURING (31) 0.684 PREDATOR-PREY (3) 0.065
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LOCATIONS (48) 0.912 MEASUREMENTS (24) 0.587 COUNTRY-HEMISPHERE (269) 0.065
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FORMEDBY (41) 0.782 CONVERSIONS (4) 0.098 PERCEPTIONS (13) 0.033

(a) (b) (c)

(d) (e) (f)

Figure 2. Ranked proportions of a subset of facts from the training and development set explanations. These facts are only
those in the top 6 most frequently selected fact table types (shown as Figures 2(a)–(f), respectively). Each pie chart depicts
the respective % proportion of occurrences of facts for ranks 1 to 10 explicitly, with one additional unlabeled category for
the ranks after 10.

the explanations and aggregate the remaining lower-ranked facts in a single proportion. In the
figure, we can see that except for SYNONYMY, all the remaining tables have a major proportion
of their selected facts appear between ranks 1 and 5. For SYNONYMY, however, we see that only
5% of its facts appear at rank 1. This comparatively low proportion is meaningful in the context of
the role played by its facts in the explanations—more often than not, they supplement the infor-
mation of a previous fact. For example, an explanation has the fact “the moon orbiting the Earth
approximately occurs 13 times per year” at rank 1 which is supplemented by the SYNONYMY
fact “approximately means about” at rank 2.
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3. The explanation regeneration task description
Our task is defined after the TextGraph-19 Shared Task on Explanation Regeneration (Jansen and
Ustalov 2019) where the WorldTree corpus (2018) was leveraged for the first time to facilitate
machine learning system development. It was posited as an ordering task as follows.

For a QA pair, given an unordered collection of facts (in our case, the 4789 tablestore of facts),
the task objective is to order the given collection (as shown in Tables 1 and 2), such that the
relevant facts will be top-ranked w.r.t. the irrelevant facts; and, further, the top-ranked relevant
facts will be in a logical discourse order w.r.t. each other. Note that the irrelevant facts will also
be returned; however, for the task it is sufficient that they are lower ranked than the relevant
ones. Formally, given a question “q,” its known correct answer “a,” and an unordered collection
of facts Funo, the ordering objective is to (1) determine all facts ∈ Funo that are relevant to the
(q, a) pair and (2) order the relevant facts to form a logically ordered discourse fragment thus
producing a partially rank-ordered collection Fpo. The resulting collection is seen as partially rank
ordered since only the ordering for the relevant “k” facts to the QA pair is a meaningful result; the
remaining “|Fpo|-k” facts that are consequently ordered as a result of applying the learned function
to the full facts’ tablestore remain irrelevant to the given QA pair. Thus, at a high level, the task
can be viewed as explanation regeneration since each QA pair initially gets the entire collection of
facts as an explanation which it then must order by preference for relevance and discourse.

4. Background and related work
Reasoning in Elementary Science QA entailing various knowledge sources
Clark, Harrison, and Balasubramanian (2013) and Jansen et al. (2016) in their respective studies
found three main question categories in Elementary Science QA: (1) retrieval questions relying on
taxonomic, definitional, or property knowledge; (2) inference questions tapping into knowledge
of causality, processes, or specific instances of occurrences; and (3) domain-specific questions.

Thus, to cater to the different question categories, reasoning in Elementary Science QA entails
reliance on various knowledge sources extending the linguistic information of the QA strings
themselves. To this end, our proposed system employs lexical, grammatical, and semantic fea-
ture categories that, respectively, facilitate addressing the QA types found in the aforementioned
studies. For instance, we employ lexical features that expand the given word vocabulary and gram-
matical features as an abstraction of the role of words in a sentence. The expanded vocabulary
facilitates matches between synonyms and word types which we observed as a characteristic of
many of the retrieval questions in our corpus—they do not match directly with a relevant expla-
nation fact but indirectly via synonyms. Our semantic feature category including commonsense
and knowledge embeddings ensures semantic coherence, beyond simple lexical matching between
explanation sentences addressing taxonomic, definitional, or property knowledge, relevant also in
inference or domain-specific questions.

Commonsense Knowledge for Explanations
ConceptNet (Speer, Chin, andHavasi 2017) as a commonsense knowledge source was employed in
two recent systems (Bauer et al. 2018; Paul and Frank 2019) addressing inference tasks involving
either explanation construction or narrative generation. Paul and Frank’s (2019) system traced
multihop paths across ConceptNet’s entities as features to boost performance of predicting human
need categories, and in turn the paths when traced seemed a reasonable explanation for the result
inmost cases Bauer et al. (2018). For a narrative QA task, employedmultistep reasoning by tracing
a path via ConceptNet between entities in the question and entities in a given context where the
selected contextual sentences were then posited as the question’s answer in narrative form.

Relatedly, our data domain, that is Elementary Science QA, poses questions on entities
like “sun,” “fire,” “friction,” etc.—themes of varying degrees of abstraction that are often
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non-named entities. By leveraging ConceptNet, we were interested in obtaining additional qual-
ifying information about these terms thereby to better match a QA with its related explanation
facts. For example, a “sun” is a type of a “star.” Unlike earlier works (2018, 2019) that gathered
information from paths traced through the ConceptNet graph, for our data domain and purpose,
we queried just for additional qualifying commonsense information about the terms in the QA
and the explanation facts themselves, which were then checked for matches. These qualifying fea-
tures, in turn, served as the conceptual glue between disparate units of information. Additionally,
a path traced through the ConceptNet graph between QA and explanation fact terms could have
been a viable feature, but we have not tried it as the term pair combinations between the QA and
the explanation facts could have made the computation of our features forbiddingly complex.

Generating Explanations for Elementary Science QA
Initial attempts in creating explanations for the correct answers to elementary science exam ques-
tions by Jansen et al. (2017) addressed answer extraction and explanation creation as a joint task.
They like Paul and Frank (2019) extract a short linguistically highlighted path based on their algo-
rithm features through a number of textual knowledge bases such as study guides and science
dictionaries and examine the facts in the traversed path as valid explanation candidates or not.
This early approach adopted an open world assumption of generating explanations for a QA
pair where the knowledge store for explanation candidate facts was not fixed. Thus, any natu-
ral language text or book or even the web could be thought of as a source of candidate facts for
explanations. This meant that explanation generation itself could not be realistically quantitatively
evaluated across systems in such settings.

In contrast, the newly introduced WorldTree corpus (2018) adopted a closed-world assump-
tion with QA pair explanations defined in terms of human-coded facts, similar to human-coded
knowledge for declarative QA such as in LifeCycleQA (Mitra et al. 2019), or in the form of rules
encoding the fundamental assumption about puzzles in the puzzle solving domain (Mitra and
Baral 2015). In other words, explanation knowledge became confined to a fixed smaller set of
about 4700 human-annotated facts. This facilitated quantitative evaluations for approaches on
the task based on the availability of a benchmark human-annotated test set. Thus far, via the
TextGraph-19 Explanation Regeneration Shared Task (Jansen and Ustalov 2019), four known
systems (Das et al. 2019; Chia et al. 2019; Banerjee 2019; D’Souza et al. 2019) have been developed
on the WorldTree corpus. They demonstrated a diverse range of performances from 56.3%
mAP (Mean Average Precision) to 39.4% mAP. Systems by Das et al. (2019), Chia et al. (2019),
and Banerjee (2019) had two facets in common: BERT-based neural models; and a reranking
paradigm, that is the tablestore of facts were first ordered by one approach, following which
the ordered facts were then reranked by a different approach. Our system (D’Souza et al. 2019)
differed from the rest in that it leveraged a non-neural-network machine learning paradigm.
In it, the core system was a traditional hand-crafted feature-based SVM ranker. It was inte-
grated in a hybrid framework that additionally employed a set of rules to correct for obvious
machine learning prediction errors. The features in the machine learning system were mostly
generically oriented, including knowledge sources such as Wiktionary categories and page titles,
and FrameNet predicates and arguments (Swayamdipta et al. 2017). The generic features may
have been a system limitation since they most likely functioned as undesirable distractors in the
machine learning task causing low system performance.

Thus, while our hybrid system at 39.4% was significantly better than the basic TF-IDF system
at 29.6%, and on par with Banerjee (2019)’s BERT-based system at 41.3%, it showed much lower
performance compared to the top-ranked BERT-based ensemble at 56.3%.

In the new version of our system described in this paper, we re-engineer our earlier system
(2019) on two criteria: (1) we train a more effective learning technique as pointwise predictions
from an SVM regressor for the task, differing from our earlier pairwise learning-to-rank approach
and (2) we replace the generic set of features with a targeted set of knowledge sources for the
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task dropping information sources that did not prove informative (e.g., Wiktionary features and
predicate-argument frame features); and adding domain-targeted sources such as IR-based opti-
mized TF-IDF facts’ rankings, multihop inference targeted features, and BERT-based semantic
abstraction features. This system achieves>10 points boost inmAP over our shared task system at
53.2% on the development set and 50.7% on the test set. Further, even the learning-to-rank system
attains a 3 points boost with better task-specific set of features at 45.9% and 43.3% on the develop-
ment and test sets, respectively, without having to rely on rules. Our new approach outperforms
all existing BERT-based (Devlin et al. 2018) neural systems except the top-ranked computation-
ally intensive approach by Das et al. (2019) which we describe in detail in the experimental section
(see Section 7.2).

Finally, we conclude our discussion on the related work by situating our system in the context
of two different extended tasks: (1) to implement feedback between explanation generation and
question answering to mutually improve the tasks’ performances and (2) to compose knowledge
from facts.

Answering Multi-Choice Questions by Ranking Supporting Facts
Pirtoaca, Rebedea, and Ruseti (2019) leverageWikipedia as a source of supporting facts to improve
question answering on the ARC corpus. Thus, they considered Wikipedia as the facts knowledge
base. Their system introduced a self-attention-based neural network that latently learns to rank
sentences by their importance related to a given question, whilst optimizing the objective of pre-
dicting the correct answer. Their work, which was performed independently of the release of the
WorldTree corpus (2018), took the open-world assumption for Wikipedia sources of supporting
factual evidence. The release of the human-annotated explanation facts in the WorldTree corpus,
however, alleviates such settings in which no supporting facts are explicitly provided and, being
specifically human designed, could potentially boost QA performance better. While in our sys-
tem described in this paper, we are solely addressing the problem of explanation fact ranking and
not facts ranking to improve multiple-choice question answering, the latter task is relegated as
follow-up work.

Knowledge Composition from Facts
Khot et al. (2020) define the Question Answering via Sentence Composition (QASC) corpus, in
which they present for the first time the knowledge composition task. For example, combining
two different facts, that is “Differential heating of air produces wind” and “Wind is used for pro-
ducing electricity” into a single knowledge sentence “Differential heating of air can be harnessed
for electricity production.” The QASC corpus involves both elementary and middle-school sci-
ence domains. A small subset of the composition facts were taken from the WorldTree corpus
(2018). This new task is considered useful since such composed knowledge was shown to be a
useful signal to boost QA performance (Khot et al. 2020).

Essentially, IR systems on this data set would need to introduce new concepts or relations
in order to discover relevant facts. Further, they must then learn to identify valid compositions
of these retrieved facts using commonsense reasoning—functions that are ingrained in our
system. Thus, our system, with some task-specific modifications, could also be leveraged for facts
composition as future work.

This concludes our discussion on related work. In the next section, we provide details of our
approach w.r.t. the task in the WorldTree corpus (2018).

5. Approach
As described in Section 3, explanation regeneration for Elementary ScienceQA pairs is posited as a
ranking task given a collection of candidate facts, where for each QA pair explanation, the number
of valid facts can vary up to 21 and the desired result is to have all the valid facts top-ranked.
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Formally, let (q, ca, f ) be a triplet consisting of a question q, its correct answer ca, and a candidate
explanation fact f that is a valid or invalid candidate from the given unordered facts tablestore
Funo. Our task is, for each (q, ca) given Funo, to rank the generated (q, ca, f ) triplets such that the
group (q, ca, f c) is top ranked to produce an ordered tablestore Fo, where f c stands for the group
of relevant facts in the explanation and f c ⊆ Funo.

Within a preference-based object ordering formalism (Melnikov et al. 2016), the candidate facts
Funo comprise the reference set of objects. Training data consist of a set of rankings {O1, ...,ON}
of facts for N (q, ca) training instances, respectively, where for (q, ca)i, the ordering is

Oi : f ca � f cb � ...� f cg (1)

such thatOi is an ordering of only the valid facts f ci for a (q, ca)i instance where |Oi| < |Funo|. The
order relation � is interpreted in terms of preferences, that is, fa � fb suggests that fa is preferred
to fb in terms of logical discourse. And the remaining Funo \ f ci are assigned a uniform least rank.

The next natural question is which functions do we choose to learn the set of orderings for
(q, ca) pairs. In particular, two such approaches are prevailing in the literature. The first one
reduces the original ordering problem to regression: it seeks a model that assigns appropriate
scores to individual items and hence is referred to as the pointwise approach. The second idea
reduces the problem to binary classification; the focus is on pairs of items, which is why the
approach is also called the pairwise approach. Next, we briefly introduce these models in the
context of the support vector machine (SVM) class of algorithms and describe how we train them.

At a high level, the objective of the SVM is to find the optimal separating hyperplane in an
N-dimensional space (where “N” is the number of features), which maximizes the margin of clas-
sification error on the training data. The margin is defined in terms of certain select training data
points that influence the position and the orientation of the hyperplane such that it is at maximal
separating distance from the data points in the various classes. These points then constitute the
support vectors of the trained SVM. The support vectors lie on boundary lines that run parallel
to the classification hyperplane but at the maximal computable distance. Obtaining a maximal
margin produces a more generalizable classifier to unseen data instances. Note also that in real-
world problems, the boundary lines are more practically considered soft boundaries with an error
allowance defined by a slack variable ξ that allows classifications to fall somewhere within the
boundary margin from the classification hyperplane. Formally, as an optimization problem, the
SVM classification objective is to

min
w, b, ξ

1
2
wTw+ C

N∑

i=1
ξi

s.t. yi −w · φ(xi)− b≤ ξi

w · φ(xi)+ b− yi ≤ ξi

ξi ≥ 0

(2)

where i= 1, ...,N for N training instances, φ is a feature transformation function for input xi, w
is the features’ weight vector over all instances, and yi is either +1 or –1. The constant C > 0
determines the tradeoff between the norm of the weight vector and error margin defined by slack
variable ξ .

5.1 Pairwise Learning-to-Rank (LTR) for preference ordering
The next question is how can our preference ordering problem be formulated in terms of binary
classification. This is possible by the pairwise LTR transformation. Vaguely, this is done by mod-
eling: (1) whether a candidate fact is a valid candidate or not and (2) for the collection of valid
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explanation facts, the logical precedence of one fact over another. Thus, these decisions are iden-
tified in a relative sense, that is to say, by determining the pairwise preferences between facts in
the explanation compared w.r.t. each other and w.r.t. the remaining facts in the tablestore.

Our data set originally is

S= {xij, yij} where xij = φ((qi, cai), fj)

(qi, cai) is the ith QA pair instance, fj is the jth explanation fact from the tablestore where the
ordering between facts is known during training and is unknown during development and test-
ing. φ is a feature transformation function, and yij ∈ {1, 2, 3, ...K} denotes an order between the
(qi, cai) pair and the explanation fact fj as a graded order w.r.t. the other relevant and irrelevant
explanation fact candidates.

By the pairwise LTR transformation, our original data set S then becomes:

S’= {(xij − xil), (yijθyil)}
where θ is the rank difference so that (yijθyil)= 1 if yij > yil and –1 otherwise, resulting as a binary
classification task. The goal of the LTR algorithm is to acquire a ranker that minimizes the number
of violations of pairwise rankings provided in the training set which is attempted as the above
classification problem.

Essentially, since pairwise LTR only considers the labels where yij > yil between relevant can-
didates and yil > yij between relevant and irrelevant candidate pairs, respectively, we assign
(a) higher ranks to the relevant facts to indicate precedence and (b) equal ranks of 1 to all irrele-
vant facts. Thus, for consecutive relevant instances, we offset the ranks by 1. That is, for a given xi,
if there are ni correct facts in the explanation, then the first fact in the correct ordering receives a
rank of |ni| + 1, the second is ranked as |ni|, and so on; the last correct fact receives rank 2, and all
irrelevant facts have rank 1.

5.1.1 Training LTR for QA pair explanation fact(s) preference ordering
We use the SVM LTR learning algorithm as implemented in the SVMrank software package
(Joachims 2006). To optimize ranker performance, we tune the regularization parameter C (which
establishes the balance between generalizing and overfitting the rankermodel to the training data).
However, we noticed that a ranker trained on the entire tablestore set of facts is not able to learn a
meaningful discriminative model at all owing to the large bias in the negative examples outweigh-
ing the positive examples (consider that the number of relevant explanation facts range between
1 and 21, whereas there are 4789 available candidate facts in the tablestore). To overcome the
class imbalance, we tune an additional parameter: the number of negative facts for training. Every
(q, ca) training instance is assigned 1000 randomly selected irrelevant explanation facts. We then
tune the selection of the number of irrelevant explanation facts ranging between 500 and 1000 in
increments of 100.

Both the regularization parameter and the number of negative explanation facts are tuned
to maximize performance on development data. Note, however, that our development data are
created to emulate the testing scenario. So every (q, ca) instance during development is given all
4789 facts to obtain results for the overall ordering task.

5.1.2 Testing LTR for QA pair explanation fact(s) preference ordering
During testing time, all facts in the tablestore are, respectively, paired with a (q, ca) test instance.
Each instance is then represented by the features defined in our system before being fed as input
to the SVM-LTR trained model. The trained model then predicts ranking scores for each data
instance, where the scores are then used to order the facts as the regenerated explanation for the
given (q, ca) test instance.
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5.2 Pointwise preference ordering by regression
SVM regression differs from the SVM classification objective in that instead of optimizing over
binary targets, the optimization is performed for real-valued targets. To facilitate this, regression
is then defined in terms of an ε-precision objective. In other words, we do not care about training
errors as long as they are less than ε. Further, as in the classification objective with soft decision
boundaries, similar allowances are made with slack variables in the regression context, but defined
over targeted regression precision. Formally, the regression optimization problem is defined as
follows:

min
w, b, ξ , ξ∗

1
2
wTw+ C

N∑

i=1
(ξi + ξ∗

i )

s.t. yi −w · φ(xi)− b≤ ε + ξi

w · φ(xi)+ b− yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0

(3)

where i= 1, ...,N for N training instances, φ is a feature transformation function for input xi, w
is the features’ weight vector over all instances, yi is a real-valued target, and ε is the regression
targeted precision. The constant C > 0 determines the tradeoff between the norm of the weight
vector and error margin defined by slack variables ξ , ξ∗.

Next, an important question is, how to represent our ordering problem in terms of a regression
objective. We do this by defining regression targets in terms of the preference ordering expecta-
tions (Kamishima et al. 2005, 2010) rather than true regression quantifications. In our data set
S= {xij, yij} where xij = φ((qi, cai), fj), the label yij for the correct candidate explanation facts is
indicated as unit graded relevance in order of their preference, while all the incorrect candidates
are relegated to a uniform least rank. The facts are assigned ranks in exactly the same manner as
the pairwise LTR setting.

By using regression for the preference ordering of facts in explanations, we make the assump-
tion that all facts can be treated independently w.r.t. each other. Such assumptions are highly
contingent on the properties of the underlying data set and may not apply in all preference order-
ing or ranking scenarios. In contrast to the regression setting, the pairwise LTR is, in principle,
applicable in any ordering scenario. Evidently, in the WorldTree corpus (2018), the order of facts
in the explanations are based on logical precedence rather than discourse, wherein the discourse
linguistic cues are not readily apparent in most explanations (consider the example depicted in
Table 1). Thus, from the perspective that considers a pure logical precedence between the expla-
nations’ facts, a regression setting that predicts logical precedence weights as target values for the
facts is nonetheless relevant and a sound modeling of the task.

5.2.1 Training SVR for QA pair explanation fact(s) preference ordering
We use the SVR learning algorithm (Vapnik 1999) as implemented in the SVMlight software pack-
age (Joachims 2002) (hence called SVMreg since we employ its regression setting). Similar to the
ranker system, to optimize regression performance, we tune the regularization parameter C on
the development set with all the other parameters at their default values. Again like in the ranking
training set-up, we randomly select a smaller set of irrelevant explanation facts to learn a mean-
ingful discriminative model which are tuned on the development set to range between 500 and
1000 in increments of 100.

Note that our development data are created as usual to emulate the testing scenario given Funo.
So every QA pair instance during development is given all 4789 candidate facts for regression
predictions.

https://doi.org/10.1017/S1351324921000358 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000358


Natural Language Engineering 241

5.2.2 Testing SVR for QA pair explanation fact(s) preference ordering
The testing scenario is identical to the pairwise LTR model w.r.t. data input instance generation.
In this case, however, a trained SVR model predicts regression target values which are then used
to rank the explanation facts.

6. Features for the explanation regeneration task
In this section, we elaborate on our feature function φ introduced with our formal models used to
transform a (q, ca, f ) triplet to a one-hot encoded feature vector x as data instances for the learning
algorithms.

Our motivation in selecting these features was to encode linguistically the necessary world and
commonsense knowledge required for unifying facts as explanations to Elementary Science QA.
There are six main feature groups that are described next.

6.1 Bags of lexical features (70,949 total features)
This feature group most generically encodes the lexical overlap criteria by including features as
lemmas of q/ca/f ; lemmas shared by q and f , ca and f , and q, ca and f ; 5-, 4-, and 3-gram prefixes
and suffixes of q/ca/f ; 5-, 4-, and 3-gram prefixes and suffixes shared by q, ca, and f ; and f ’s table
type from the provided annotated tablestore data. The lemma and n-gram features are filtered for
common pronoun and prepositional stop words.

6.2 ConceptNet (294,249 total features)
We hypothesize that semantic features, in particular commonsense knowledge, could be useful for
the explanations to elementary science QA pairs. Since elementary science questions query general
knowledge about common nouns like animals, planets, occupations, etc., we find that ConceptNet
(Speer et al. 2017) as a resource with its focus on the general meanings of all words, whether they
be nouns, verbs, adjectives, or adverbs, and less on named entities, is perfectly suited to our task.
Let us illustrate with an example.

QuestionWhich animal eats only plants?

Answer Rabbit

Explanation

herbivores only eat plants;

a rabbit is a kind of herbivore;

a rabbit is a kind of animal;

ConceptNet conceptualizations for “rabbit”

animal, herbivore

In this example, ConceptNet tells us that the answer “rabbit” is an “animal” and a “herbivore”,
among other things. Extending the answer with this knowledge enables better semantic connec-
tion between the q, ca, and all three explanation facts, in the absence of which, the ranking could
experience a semantic drift toward irrelevant explanation facts such as “long ears are a part of a
rabbit” or “a jackrabbit is a kind of rabbit”.

Given the potential usefulness of ConceptNet for our task, we create conceptualization features
as follows. The top 50 conceptualizations of q/ca/f words; top 50 conceptualizations shared by q
and f , ca and f , and q, ca and f words; and the relation names that q/ca/f words as ConceptNet
facts participate in such as FormOf, IsA, HasContext, etc. For example, for word “tea” in q/ca/f ,
the ConceptNet facts are “tea ReceivesAction brewed”, “tea HasA caffeine”, “teaIsA beverage”,
etc., from which the features are “ReceivesAction_brewed”, “HasA_caffeine”, and ‘IsA_beverage’.
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Note, since ConceptNet returns an ordered list of conceptualizations for queried terms ordered
w.r.t. precision as most precise to generic, therefore, by selecting only the top 50 for the first two
features, we control for genericity of the conceptualizations in the features considered.

6.3 OpenIE relations (36,989 total features)
We introduce features computed as open information extraction relation triples using the OpenIE
tool (Angeli, Premkumar, and Manning 2015). We observed that within the triple representations
of the question, correct answer, and explanation fact sentences were the content words that were
needed to link across other feature groups (e.g., ConceptNet). This linkage also enabled indirect
connections between (q, ca) and f . Let us illustrate with an example:

QuestionWhich of the following properties provides the BEST way to identify a mineral?

Answer Hardness

Explanation

hardness is a property of a material or an object and includes ordered values of malleable or rigid;

In the example, the given fact is top-ranked in the explanation. For it, from OpenIE we get
the relation triple (hardness → is a property of → material). Further, ConceptNet tells us that
the answer Hardness is related to concepts “property,” “material property,” etc. We see how
pooling these information units together enables a unified word cloud involving the question, cor-
rect answer, and explanation fact for the terms “hardness,” “property,” and “material.” Features
that enable grounding externally computed terms to the lexical items given in the QA pair or
explanation facts create a tighter overlap improving task performance.

Given the potential usefulness of intersentence OpenIE triples for explanation generation, we
create features as follows. For each triple produced by the parser, the features are the q/ca/f lem-
mas in the relation subject role; shared q, ca, and f subject lemmas; q/ca/f lemmas in the relation
object role; shared q, ca, and f object lemmas; and q/ca/f lemma as the relation predicate.

6.4 Multihop inference specific features (2,620 total features)
These features are a more selective bag of lexical features for obtaining matches with a positional
emphasis. We find that adding positional information for lexical matches is a useful heuristic
to identify the concepts that are the focus of the (q, ca) and explanation facts. Consider the
underlined words in the two subsequent examples in this section.

As shown in the examples, often the focus word of the (q, ca) are at the start or end and also
at the start and end of the f . Further, for one- or two-word ca, we can directly infer it as a focus
concept, in which case we try to find a match with f where they are the first or last word. And for
focus words that are verbs, they tend to occur in the middle.

Question There are different types of desert. What do they all have in common?

Answer low rainfall

Explanation

a desert environment has low rainfall

Question Sonar helps people find which information about an object?

Answer Location

Explanation

sonar is used to find the location of an object;

the location of an object can be used to describe that object;
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The following features are considered in this group: length of q and ca; positions of q/ca verbs
in the phrase (as 0 if it is the first word, 1 if it is the second word, and so on); of the verbs shared
by q and f do they occur among the first few words or middle or last words.b; if ca is a uni- or
bigram, does f contain all its words/lemmas?; does f contain the last q lemma/word?; is the last q
lemma/word in the first position of f ?, is it in the last position of f ?; is the first q lemma/word in
the first position of f ?

Notably, the positional emphasis observations made for the features in this category are con-
tingent on the language of the corpus. For example, we observe verbs as focus words occurring
in the middle of the sentence because the WorldTree corpus is annotated for English sentences
which follow the subject-verb-object (SVO) sentence structure. Thus, it is necessary to highlight
that if the WorldTree corpus was annotated for a language with a different sentence structure,
For example, Persian which follows the SOV order, the verbs would be expected at the end of the
sentence and our “multihop inference specific features” would need to be accordingly adapted.
Further, since the WorldTree corpus handles the Elementary Science level, it contains fairly short
atomic sentences and this accounts for us finding focus nouns at specific locations as the sentence
start or end and the focus verbs in the middle. A worthwhile consideration then is that for higher
scientific levels the positions of the focus words could be different and harder to pin down as a
fixed location as was possible in our case for the WorldTree corpus.

6.5 TF-IDF ranking (750,283 total features)
The explanation regeneration task performance via ranking based on cosine similarities between
TF-IDFweighted (q, ca) appended text and each fact candidate proves surprisingly effective for the
task (see scores in Evaluation section). We use the TF-IDF Iterated variant by Chia et al. (2019)
to encode the text. The ranks obtained by cosine similarity on these instances are then used as
features for the SVM learner. We hypothesize that employing the TF-IDF-based cosine similarity
ranks as features will provide a baseline ordering signal to the learning algorithm.

Our TF-IDF features per (q, ca, f ) are the following: f ’s rank; f ’s binned rank in bins of 50; f ’s
binned rank in bins of 100; whether f is in top 100 or 500 or 1000?

6.6 BERT embeddings
BERT-based (Devlin et al. 2018) context embeddings are our last features category. The out-of-
box BERT model is pretrained on millions of words from Wikipedia which as a commonsense
knowledge source is already pertinent to elementary science QA. Thus, we simply query the BERT
embeddings from the pretrained model using the bert-as-a-service library. Thus, for each data
instance word, we extract their BERT embedding features that can easily can be combined with
the other linguistic features. This can be viewed as a semantic projection of an elementary science
concept in the Wikipedia encyclopedia space. Specifically, we query the BertBase Uncased English
model: 12 layers, 768 hidden units, 12 heads, with 110M parameters that outputs a 768 dimen-
sional vector for a given input text. We treat each dimension of this context vector as a separate
feature for representing the instance.

While the earlier five feature categories enabled extending the (q, ca, f ) vocabulary beyond the
given words both lexically and conceptually, with BERT embeddings we aim to leverage semantic
abstractions as features.We hypothesize such features would be useful in creating semantic associ-
ations between the elements in the (q, ca, f ) triple, which are topically similar based on knowledge
fromWikipedia. As in the following example.

bFor first, middle, and last words, using a window 1/4 the size of the total words, centered on the middle, we find the middle
portion of the sentence, at its LHS, the first portion, and at the RHS, the last portion of the sentence.
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Question Diamonds are formed when carbon is placed under extreme heat and pressure. This process occurs

Answer beneath the surface of Earth.

Explanation

the formation of rock is a kind of process;

diamond is a kind of mineral;

rock is made of minerals;

the formation of diamonds occurs beneath the surface of the Earth by carbon being heated and pressured

In the example, considering the focus words “diamonds,” “earth,” and “minerals” that reflect
the topics of the QA pair, the word “minerals” in the fact is neither present in the q or ca, but is
relevant to the semantic topic of the (q, ca). We hypothesize that BERT features will help capture
such topicalized semantic abstractions of similarity.

We tested two ways of obtaining BERT features for (q, ca, f ) triples: (i) query BERT sepa-
rately for the question, correct answer, and fact embeddings, respectively, obtaining three 768
dimensional feature sets and resulting in 2304 additional features from BERT per instance and
(ii) query BERT for aggregate 768-dimensional embedding features for the (q, ca, f ) triple. In this
configuration, we use the special [SEP] token to demarcate the q, ca and f segments. The start-
of-the-sequence [CLS] token then learns the encoding for the entire input sequence. Experiments
indicated that the latter method is a better-suited representation for the task, while the former
method is ineffective. This can be attributed to two reasons: (1) The second approach allows the
model to capture not only the representations of the sequences but also the proximity between the
input segments. Thus, the [CLS] token in this case is a latent similarity vector for the q, ca, and f .
In the first case, it merely represented the sequences separately. And (2) the length of the vectors
produced in case (i) is three times the length of the vectors produced in case (ii). This results in
sparse features which in turn limits the performance of the SVM classifier.

Thus, all six feature categories used to represent (q, ca, f ) triples, when taken together, should
readily address the multistep inference process between (q, ca) and f candidates. This is since we
have features extending the given information in the (q, ca) with world knowledge generically
(e.g., ConceptNet, BERT) with other features providing lexical glue (at generic and task-specific
levels) enabling traversing the (q, ca, f ) via multiple hops (e.g., multihop inference lexical features,
OpenIE relations). Therefore, for themes such as about vehicles, as an example from Jansen et al.
(2016), describing its mechanisms, its purpose, its needs, and its functions, our various feature
groups can take into account such diverse aspects of the real world.

Finally, in Figure 3, we depict our overall approach including the feature modules and the two
SVM-based machine learners we employed.

7. Evaluation
7.1 Experimental setup
Dataset
The experimental corpus of this study is the Worldtree corpus (2018), introduced in detail in
Section 2. In our experiments, we maintain the same data set fold splits as provided by the data
set creator.

Evaluation Metrics
We report one set of results in terms of the mean average precision mAP metric which is a stan-
dard in IR ranking tasks. With themAPmetric score, we see to what extent our system returns the
relevant explanation facts as top ranked. To evaluate our system for ordering the relevant expla-
nation facts w.r.t. each other, we employ the Precision@k and Recall@k metrics, where k is the
group of top-ranked facts ranging between 2 and 50 facts in increments of 2. Note that for these
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Figure 3. Overall representation of our approach. For representing (q, ca, f ) triples, the feature categories used include Lex
(lexical features), TF-IDF (information retrieval features), andBERT-based features amongothers. The data instances are then
represented as a features matrix, separately as training data, development data, and testing data. Two variations of the SVM
algorithm (SVMRank and SVMReg) are then used to learn Explanation Regeneration models.

latter metrics, a correct score is considered for each fact returned at its exact given position in the
ordered facts in the explanation. For instance, to get a score of 1.0 by the Precision@2 metric, the
predicted top-scoring fact should be the top-ranked fact and the predicted second top-scoring fact
should be the second ranked fact in the gold data. These latter evaluations are a closer test of our
system as satisfying the task defined in the WorldTree corpus (2018), in other words, to see if it
logically orders the relevant facts at all.

Parameter Tuning
For the SVMrank and the SVMreg systems, we jointly tune the C and the number of negative
training instances parameters on development data. Our best SVMrank model when evaluated
on development data was obtained with C= 0.8 and 1000 negative training instances, while our
best SVMreg model was obtained with C= 0.005 and 900 negative training instances.c

We compare our models with nine existing systems as reference performances, where the
systems we compare with have varying degrees of complexity from simple IR approaches to
neural-based machine learning approaches. Further, as we show in the results eventually, the
systems also have varying degrees of performances not necessarily correlated with the system
complexity—TF-IDF approaches prove surprisingly effective on this task. In the following section,
the nine systems we evaluate against are briefly described.

7.2 Nine reference evaluations
TF-IDF Baseline
Facts are ranked by cosine similarity of their TF-IDF representation with the TF-IDF representa-
tion of the query string composed of the question and all the available answer choices.

TF-IDF Baseline features + SVMrank (Jansen and Ustalov 2019)
For each data instance, two cosine similarity scores were computed: one between the question
TF-IDF vector and the candidate explanation fact vector and another between the correct answer
and the candidate fact vectors. These scores were used as features within an SVMrank (Joachims
2006) setting and a ranked list of facts were predicted.

cFor parameter tuning, C is chosen from the set {0.005,0.05,0.1, 1,10,50,100}, and the number of negative training instances
is chosen from the set {500,600,700,800,900,1000}.
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Generic Feature-rich SVMrank (D’Souza et al. 2019)
Our previous system had five main feature categories including OpenIE (Angeli et al. 2015),
ConceptNet (Liu and Singh 2004), Wiktionary, and FrameNet (Swayamdipta et al. 2017) rep-
resentations for each (q, ca, f ) triple are employed, which are then ranked by SVMrank (Joachims
2006).

Rules + Generic Feature-rich SVMrank (D’Souza et al. 2019)
In this hybrid model, the Generic Feature-rich SVMrank system output is corrected for obvious
errors by a set of 11 re-ranking rules applied sequentially, pipelined to the SVM system output. As
an example of a rule consider: all facts that contain the bigram or unigram correct answer word
are to be top-ranked.

BERT Iterative Re-ranking (Banerjee 2019)
The system models explanation regeneration using a re-ranking paradigm, where BERT (Devlin
et al. 2018) transformer models are used to provide an initial ranking, and the top-15 facts output
by the BERT model are re-ranked using a custom-designed relevance ranker to improve overall
performance. Note that in comparison with the top-performing BERT-based model (Das et al.
2019), described last in this section, this system is run in a BERT out-of-box configuration.

Optimized TF-IDF (Chia et al. 2019)
This system differs from TF-IDF Baseline in the following ways: all incorrect answer choices are
dropped from the query string; the query and the fact strings are additionally preprocessed by
lemmatization and the removal of their stopwords.

Iterated TF-IDF (Chia et al. 2019)
Where in the Optimized TF-IDF system, the query string consists of only the question and the
correct answer; in this system, the query string is iteratively expanded to include the top-ranked
fact. After each expansion step, cosine similarity is rerun on the remaining facts to obtain the next
top-ranked fact. This process is iteratively repeated until all facts are ranked.

BERT Re-ranking with Iterated TF-IDF scores (Chia et al. 2019)
A BERT regression module is trained to predict the relevance score for each (q+ ca, f ) pair, where
the relevance score is the Iterated TF-IDF system rankings; and in the interest of lowering the
computational complexity and runtime, the model is trained and tested to rerank only the top 64
of the Iterated TF-IDF system output.

BERT Re-ranking with inference chains (Das et al. 2019)
It is an ensemble model composed of BERT-based path ranker and a more advanced reranking
system (Nogueira and Cho 2019) which they employ as a ranker. The BERT-based path ranker
uses a sophisticated multistep design. The initial step involves obtaining the top 50 facts based on
TF-IDF similarity with (q, ca) query. In the next step, 1-hop lexical similarity paths are traced from
each fact in the retrieved 50 facts list to the remaining facts in the tablestore. Finally, the BERT
path ranker is trained on pairwise fact instances. Instances are formed by exhaustively pairing
each fact in the top 50 TF-IDF list with all the corresponding retrieved facts at a 1-hop lexical
distance from it such that the pairs where both facts constitute the explanation for the given query
are a true instance for the BERT path ranker, and others are false. The overall ensemble system
then relies on this BERT-based path ranker output for a score threshold of above 0.5, else it uses a
reranker (Nogueira and Cho 2019).

With its chaining of facts, this system models a vital aspect of the corpus: that is, some valid
explanation facts directly lexically overlap with the QA pair, and others lexically overlap with other
valid facts. As we will see next, this system has the overall best performance and is the only system
we do not outperform. We note, however, that it also presents a high degree of computational
complexity. Consider in our system, during training, each QA pair is linked with only roughly
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Table 6. Mean Average Precision (mAP) percentage scores for Elementary Science Q&CA Explanation
Regeneration by our systems (last two rows) compared with nine reference systems on testing (Test)
and development (Dev) data sets, respectively

Approach mAP

Test Dev
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 BERT Re-ranking with inference chains (Das et al. 2019) 56.3 58.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 BERT Re-ranking with Iterated TF-IDF scores (Chia et al. 2019) 47.7 50.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Iterated TF-IDF (Chia et al. 2019) 45.8 49.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Optimized TF-IDF (Chia et al. 2019) 42.7 45.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 BERT iterative re-ranking (Banerjee 2019) 41.3 42.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Rules+ Generic Feature-rich SVM rank (D’Souza et al. 2019) 39.4 44.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Generic Feature-rich SVM rank (D’Souza et al. 2019) 34.1 37.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 TF-IDF Baseline features+ SVM rank (Jansen and Ustalov 2019) 29.6 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 TF-IDF Baseline 24.8 24.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Targeted Feature-rich SVMrank (Ours) 43.3 45.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Targeted Feature-rich SVMreg (Ours) 50.7 53.2

1000 explanation facts; whereas the Das et al. systemwould construct training instances as follows:
for each QA pair, given top-50 ranked facts, assuming each fact has a 1-hop chain to at most
200 other facts, this would result in nearly 10,000 instances. A larger training data set generally
implies a larger training time—a fact that is particularly true in the case of BERT models as the
Das et al. system, while also true for SVMs, although in the SVM case, the number of features
would also matter. Further, in the test scenario, while the Das et al. system would still evaluate
for 10,000+ odd chains, we would merely check for all the facts in tablestore which presently is
about 5000. Thus, the Das et al. (2019) system is the most effective and at the same time the most
computationally intensive of all the systems including ours.

7.3 Results and discussion
Table 6 shows the elementary scienceQA pair explanation fact preference ordering results in terms
ofmAP with best results from the reference system and ours (last two rows) in bold.

Between our models, we find that SVMreg is significantly betterd than SVM rank by applying the
paired t-test to their adjacent scores in the table. Thus, given our underlying data set, a pointwise
learning approach proves better suited to it than a pairwise learning approach. Nevertheless, the
latter is still a valid model, in principle, for the task as it does not rely on the strong, and seeming
unrealistic, independence assumption between instances made by the SVM reg model. However,
since SVM reg significantly outperforms SVM rank at p< 0.05, it proves practically better suited
on this data set implying that the nonindependence assumption between facts by SVM rank is not
a crucial factor in learning the task defined in the data.

Compared with the nine reference systems, our SVMreg approach significantly outperforms
eight of the models. This set of systems also includes the neural ranking model by Banerjee (2019),
which our system surpasses by +9.4/+10.9 points in mAP, as well as a neural re-ranking model
by Chia et al. (2019) which we surpass by +3 mAP. Although we observe lower performance

dUnless otherwise stated, all statistical significance tests are paired t-tests with p< 0.05.

https://doi.org/10.1017/S1351324921000358 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000358


248 J D’Souza et al.

(a) (b)

Figure 4. Fact ordering evaluations of our system for top-ranked explanation facts in terms of Precision Rate @ k (a) and
Recall Rate @ k (b) on the test data.

when compared to the best-performing approach (–5.6/–5.3) by Das et al. (2019), theirs is a sig-
nificantly computationally complex system than ours as explained earlier (Section 7.2). Finally, in
terms of scalability, next to our feature-rich SVMreg are the Iterated TF-IDF or Optimized TF-IDF
models by Chia et al. (2019). Where the simplistic Optimized TF-IDF system, as expected, sig-
nificantly underperforms feature-rich systems, nevertheless its ranking output as features in our
system proves effective as we will see in the ablation analysis results (Section 7.3.1).

With our re-engineered system leveraging domain-targeted features, we have significantly out-
performed our earlier system that was based on generic linguistic features (2019). Our SVMrank is
at+9.2/+8.8 compared to the system without rules and at+3.9/+1.5 compared to the hybrid sys-
tem, and our SVMreg is at +16.6/+16.1 to the without-rules system and +11.3/+8.8 to the hybrid
system. Thus, we see in contrast the task impact obtained from an effective learning algorithm
and a set of features that specifically models the domain in our new system version.

In the preceding paragraphs, we have discussed the performance of our system for producing
top-ranked relevant facts. Next, we briefly examine the performance of our system for ordering
relevant facts w.r.t. each other among the top-ranked. This is presented by the Precision@k and
Recall@k evaluations depicted in Figure 4. We see that at low values of k (i.e., ≤26), the ordering
performance of SVMreg is distinctly better than SVMrank in terms of both precision and recall.
However, beyond 26 facts there is no evident difference between them. At k= 2, SVMreg has a
recall rate of 0.42 at a precision rate of roughly 0.38. This indicates how often the top two auto-
matically ranked facts are correct and in the top two order. At k= 26, we see that 75% of the facts
are retrieved (recall rate of 0.75), however, at low precision of 16% (precision rate of 0.16). Part
of the low precision score can be attributed to retrieving also the irrelevant facts for explanations
with less than 26 facts; nonetheless, these standard metrics are not modifiable for cases when all
the relevant facts are already retrieved within the 26 for such explanations. Aside from the spike
in the precision score at k= 4 for SVMrank, both SVMreg and SVMrank show fairly stable precision
and recall rates with steady expected decline and climb rates, respectively.

As a summary statement for our results presented in this section, we see that at 50.7% mAP of
ranking the valid facts as top-ranked, only a small proportion of the predictions are in exact order
based on the gold standard.

7.3.1 Feature ablation results
To provide further insights on the impact of adding different feature groups, we show ablation
analysis results in Table 7. Our ablation analysis strategy is to append each of the six feature groups,
one at a time, to the baseline features as individual ablation experiments.

From the reported scores in the table, we observe that on both the SVMrank and SVMreg learn-
ers, respectively, that TF-IDF and BERT features show highest impact; multihop and ConceptNet
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Table 7. Ablation results of SVM rank and SVM reg on the dev and test sets, respectively, in terms of percentage
mAPwith feature groups (from six feature types considered) added one at a time to the bag of lexical features.
TF-IDF and BERT features have highest impact

Feature type SVMrank mAP SVMreg mAP

Dev Test Dev Test

1 Bag_of_Lex 34.01 30.44 39.57 37.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Bag_of_Lex+ConceptNet 36.10 32.72 41.47 39.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Bag_of_Lex+OpenIE 32.61 30.59 39.83 37.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Bag_of_Lex+Multihop 35.33 32.46 41.90 39.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Bag_of_Lex+TF-IDF 40.53 38.18 51.24 46.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Bag_of_Lex+BERT 40.90 39.89 47.89 46.93

features were the second most impactful feature types. And the least impact was from the OpenIE
features that showed no improvement with SVMreg and a minor improvement with SVMrank.
Nonetheless, we retain this feature group since its ablation analysis does not show a negative
impact on system performance.

Next, we select a development set example for two of the most impactful feature groups, that is
ConceptNet and BERT features, for qualitative analysis. The rest of our features can be similarly
justified. In both examples, rp is the predicted rank, and rg is the gold rank.

First, considering the ConceptNet features, a qualitative examination of our results showed that
its added commonsense world knowledge prevented semantic drift in several cases. We explain
this with the help of the selected example below. In the example, the concepts “tree,” “photo-
synthesis,” and “leaves” are the content concepts in the question and the correct answer. These
three concepts are also the content concepts in the three gold explanation facts taken together;
however, “plant” is an additional content concept in the explanation facts. The task then is to
link the facts with the “plant” concept better with the question and the correct answer so that
they can be ranked higher. In this respect, from ConceptNet we have the information that the
“plant” entity has a class “photosynthetic organism.” Our hypothesis was that this additional
information should help boost the ranks for the 2nd and the 3rd gold facts. As we can see in
the example, adding the ConceptNet feature has indeed helped boost the ranks for the 2nd and
3rd gold explanation facts since it linked “plant” with a focus concept from the question, that is
“photosynthesis.” Further, comparing the BEFORE and AFTER sets, we can see that the seman-
tic coherence from ConceptNet lower-ranked facts with concepts as “fruit,” “eating,” “digestion,”
“animals,” and “consumers.”

In the second example, we qualitatively depict the impact of adding BERT features. We glean
the theme of the QA pair as “falling under gravity.” While the dotted phrases “gravitational force,”
“fall,” and “falling” encompass the theme, they are not directly present in the (q, ca) pair unlike the
underlined phrases. The third fact, that is “come down is similar to falling,” that contains one of
the (q, ca) absent thematic phrases, viz. “falling,” after adding BERT features, attains a significant
performance boost by 7 ranks shown in AFTER ranked collection. We posit this is by the better
abstract theme modeled by BERT features. As a consequence, several of the unrelated facts were
then ranked lower. Consider the facts such as “rubber is a kind of material,” “to bounce back
means to reflect,” “objects are made of materials or substances or matter” that were no longer
intervening in the returned AFTER result collection.
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Question In which part of a tree does photosynthesis most likely take place?

Answer leaves

Before

[rp 1 & rg 1] a leaf performs photosynthesis or gas exchange

[rp 2 & rg na] a leaf is a part of a tree

[rp 3 & rg na] a leaf absorbs sunlight to perform photosynthesis

[rp 4 & rg na] fruit is a part of a plant or tree

[rp 5 & rg 2] a leaf is a part of a green plant

[rp 6 & rg na] if a leaf falls off of a tree then that leaf is dead

[rp 7 & rg na] eating or digestion is when an organism takes in nutrients from food into itself by eating

[rp 8 & rg na] a tree is a kind of living thing

[rp 9 & rg na] green plants provide food for themselves or animals or consumers by performing photosynthesis

[rp 10 & rg 3] a tree is a kind of plant

After

[rp 1 & rg 1] a leaf performs photosynthesis or gas exchange

[rp 2 & rg na] a leaf is a part of a tree

[rp 3 & rg 2] a leaf is a part of a green plant

[rp 4 & rg na] take place means happen

[rp 5 & rg na] fruit is a part of a plant or tree

[rp 6 & rg na] a leaf absorbs sunlight to perform photosynthesis

[rp 7 & rg 3] a tree is a kind of plant

Question If you bounce a rubber ball on the floor, it goes up and then comes down. What causes the ball to come down?

Answer gravity

Before

[rp 2 & rg 1] gravity or gravitational force causes objects that have mass or substances to be pulled down or to fall on a
planet

[rp 1 & rg 2] a ball is a kind of object

[rp 3 & rg na] the floor is a kind of object

[rp 4 & rg na] rubber is a kind of material

[rp 5 & rg na] gravity means gravitational pull or gravitational energy

[rp 6 & rg na] gravity is a kind of force

[rp 7 & rg na] to bounce back means to reflect

[rp 8 & rg na] objects are made of materials or substances or matter

[rp 9 & rg na]where something comes from is a source of that something

[rp 10 & rg na] gravity pulls objects towards planets

[rp 11 & rg na] a container contains objects or material or substances

[rp 12 & rg 3] come down is similar to falling

After

[rp 2 & rg 1] gravity or gravitational force causes objects that have mass or substances to be pulled down or to fall on a
planet

[rp 1 & rg 2] a ball is a kind of object

[rp 3 & rg na] the floor is a kind of object

[rp 4 & rg na] gravity means gravitational pull or gravitational energy

[rp 5 & rg 3] come down is similar to falling
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Figure 5. PercentagemAP of the SVMreg systemonDevelopment data (in light gray) and Test data (in dark gray), respectively,
on different length explanation sentences.

7.3.2 Evaluating SVM reg for multihop inference
In this section, we present our best system performance, that is the SVMreg system with all six fea-
tures’ categories, for multihop inference as a function of explanation lengths, that is the number of
facts. Presumably, the more the facts in the explanation the greater the implication of the presence
of the multihop phenomenon, that is lexical hops across explanation facts to attain shared lexical
matches with other explanation facts and the other explanation facts then with the (q, ca) pair.
This result is depicted in Figure 5.

8. Conclusion
In this work, we have investigated a knowledge-rich feature-based approach for preference
ordering of facts to explain the correct answer to elementary science questions. With the goal
of creating meaningful unifications of (q, ca, f ) triples, we have investigated six different feature
categories targeted to the domain at hand at varying lexical and semantic information represen-
tations. Further, our evaluations of regression versus learning-to-rank machine learning systems
for preference ordering offer a new observation of the applicability of pointwise versus pairwise
approaches (Kamishima et al. 2005, 2010; Fürnkranz and Hüllermeier 2010; Melnikov et al. 2016).

Further, we have reported a detailed empirical analysis of our system on the task of explana-
tion regeneration against nine existing reference systems.We have found that when provided with
domain-targeted features, SVMs can outperform BERT-based neural approaches (Banerjee 2019).
However, neural model variants applied in computationally complex task formulations (Das et al.
2019) can far surpass our system performance. Deep learning models generally report the best
performances in NLP tasks (Manning 2015), with the limitation that their computationally com-
plex task formulations are not practically suited. Nevertheless, they have long since consistently
proven better than SVMs, w.r.t. both task performance and practicality in many cases. Our results
obtained with SVMs then, in light of the general deep learning success phenomenon, seem partic-
ularly interesting—it offers a renewed empirical perspective on SVMs for the task defined in the
WorldTree corpus that aligns better with symbolic problem formulations. While hand-crafting
features for SVMs require the linguistic insights of the practitioner to model the data set well, they
are avoided in light of recent performance boosts obtained from the black-box neural models. Our
work sheds light on the fact that systems based on explicit feature modeling can still contend with
neural approaches.
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Overall, in this work, we have revisited a more traditional natural language engineering
approach of leveraging linguistic features that are human designed at multiple levels of the text
data including syntax, semantics, and context. Given that our model, which can outperform the
state-of-the-art BERT-based models, is fairly explainable, our paper offers insights for promis-
ing directions for further task improvements or for task engineering directions based on highly
informative features.
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