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Fate of density waves in the presence of a higher-order van Hove singularity
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Topological transitions in electronic band structures, resulting in van Hove singularities in the density of
states, can considerably affect various types of orderings in quantum materials. Regular topological transitions
(of neck formation or collapse) lead to a logarithmic divergence of the electronic density of states (DOS) as a
function of energy in two dimensions. In addition to the regular van Hove singularities, there are higher-order
van Hove singularities (HOVHS) with a power-law divergence in DOS. By employing renormalization group
techniques, we study the fate of a spin-density wave phase formed by nested parts of the Fermi surface, when a
HOVHS appears in parallel. We find that the phase formation can be boosted by the presence of the singularity,
with the critical temperature increasing by orders of magnitude, under certain conditions. We discuss possible
applications of our findings to a range of quantum materials such as Sr3Ru2O7, Sr2RuO4, and transition metal
dichalcogenides.
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Introduction. Phase transitions, due to spontaneous sym-
metry breaking, with the emergence of an order parameter, are
closely connected to specific features of the electronic band
structure of itinerant systems. For example, various density
waves appear in systems with nesting in the electronic band
structure, i.e., the spectrum of the electronic excitations close
to the Fermi level is characterized by ε(p + Q) ≈ −ε(p),
where the vector Q is the nesting vector. Well-known rep-
resentatives of density waves are the archetypal chromium
[1], cuprates [2], iron pnictides [3,4], organics [5], and tran-
sition metal dichalcogenides [6]. Intriguingly, in a range of
these materials the band structure hosts energetically close-by
singularities in the density of states ν (DOS), which have
been conjectured often to be crucial ingredients stabilizing the
emergent phases [7–12].

Singularities and the associated divergence of DOS are
a signature of the Fermi surface’s topological transitions
[13,14]. The two more well-known cases dealt with by
Lifshitz [15] in his original work were the appearance or col-
lapsing of a neck and the appearance or collapsing of a pocket
in the Fermi surface. The former case was the ordinary van
Hove singularity (VHS), with the Fermi surface locally con-
sisting of a pair of intersecting straight lines. These two types
of Fermi surface topological transitions have been observed
along with their nontrivial consequences due to interactions
in a wide range of quantum materials including cuprates,
iron arsenic and ferromagnetic superconductors, cobaltates,
Sr2RuO4, and heavy fermions [16–30].
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However, higher-order van Hove singularities (HOVHS)
display more exotic Fermi surface topological changes that
lead to even more intriguing properties. They have been asso-
ciated with exotic phenomena such as the nontrivial magnetic
and thermodynamic properties in Sr3Ru2O7 [13], correlated
electron phenomena in twisted bilayer graphene near half
filling [31], the so-called supermetal with diverging suscepti-
bilities in the absence of long range order [32], and unusual
Landau level structure in gated bilayer graphene [14]. Re-
cently, a classification scheme for Fermi surface topological
transitions and their associated DOS divergence was devel-
oped [33,34], as well as a method to detect and analyze them
[35], while the effects of disorder were also studied [36].

Here, we study the general question about the fate of a
spin-density wave (SDW) or a current charge-density wave
(CDW), that is formed due to nesting of two parts of the
Fermi surface when the Fermi energy is tuned so that a Fermi
surface topological transition with HOVHS in the DOS at
nearly the Fermi level emerges. If the degree of nesting is not
significantly changed due to the HOVHS, the density wave
phase, as naively expected, can be suppressed. Surprisingly,
we find that it can get boosted, depending on the strength of
the bare couplings in the Hamiltonian.

Model. We take three patches within the first Brillouin
zone (BZ). Two of them (patches 1 and 2), with DOS ν0 per
spin, are nested both in the presence and absence of patch
3, which is the one associated with the singular DOS. The
dispersion relations are ε1(k) = −ε2(k + Q) = vF (kx − kF ),
where vF is the Fermi velocity and kF is the Fermi momen-
tum of the two nested patches. The dispersion relation of
the third patch with respect to the chemical potential μ is
modeled by ε3(k) = αk2 + γ (k4

x + k4
y − 6k2

x k2
y ) − μ. In the

present work we consider the problem at the quantum critical
point assuming α = 0 for simplicity. This is the form that has
been recently considered for a HOVHS in Sr3Ru2O7 [13]. The
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resulting DOS per spin for patch 3 is then

ν(ε) = A4|ε|−1/2, (1)

where A4 = α4/
√

γ with α4 = 1
16

1
π3/2

�( 1
4 )

�( 3
4 )

≈ 0.033, � is the

gamma function, and γ is measured in units of 1/ν0. Below,
we take 1/γ = 100ν0. We consider all possible short-range

electron-electron interactions allowed by symmetry and obey-
ing the conservation of momenta. We assume Q to be
incommensurate, as such Umklapp processes are not relevant.
Taking into account all possible relevant two-particle inter-
actions involving fermions in the three patches, the effective
Hamiltonian reads

H =
∫

dk
∑

σ=↑,↓

∑
a=1,2,3

εa(k)c†
aσ (k)caσ (k) + g1

∫
{dki}

∑
σσ ′

c†
1σ (k1)c†

2σ ′ (k2)c2σ ′ (k3)c1σ (k4)

+ g2

∫
{dki}

∑
σσ ′

c†
1σ (k1)c†

2σ ′ (k2)c1σ ′ (k3)c2σ (k4) + g3

∫
{dki}

∑
σσ ′

c†
1σ (k1)c†

2σ ′ (k2)c3σ ′ (k3)c3σ (k4)

+ g4

∫
{dki}

∑
σσ ′

c†
3σ (k1)c†

3σ ′ (k2)c3σ ′ (k3)c3σ (k4) + g5

∫
{dki}

∑
σσ ′,a=1,2

c†
aσ (k1)c†

3σ ′ (k2)c3σ ′ (k3)caσ (k4)

+ g6

∫
{dki}

∑
σσ ′,a=1,2

c†
3σ (k1)c†

aσ ′ (k2)c3σ ′ (k3)caσ (k4) + H.c., (2)

where a labels the patches; σ, σ ′ are spin indices; and patches
1 and 2 are the nested ones and are taken as equivalent. The g1
term describes density-density interactions between patches 1
and 2, g2 takes into account exchange interactions between
patches 1 and 2, g3 describes pair transfer between patch
3 and patches 1 and 2, while g4 describes density-density
within patch 3 and g5 and g6 density-density and exchange
interactions, respectively, between patch 3 and each of patches
1 and 2 (Fig. 1). The interactions which are solely within
patch 1 or patch 2 are irrelevant and are not presented in the
Hamiltonian as the particle-particle and particle-hole bubbles
associated with them are small and can be neglected in a
parquet renormalization group (pRG). The conservation of
momentum is assumed. In principle, the effective Hamiltonian
and the relative strength of the interactions can be obtained
starting with a short-range interaction (Hubard and Hund’s
model), when the orbitals that play a dominant role at each
patch are known. We leave the parameters quite general to
account for different possibilities. In the following, we use
dimensionless gi’s with gi = ν0gi.

Particle-particle and particle-hole bubbles. As the
geometry of the system dictates, there are two characteristic
momenta. The first one is the nesting vectors Q, which
connect patch 1 with patch 2. The second one Q̃ connects
patch 1 with patch 3 and patch 2 with patch 3. In the
following, we denote by 	 the particle-hole and by C the
particle-particle noninteracting susceptibilities, respectively.
The particle-hole susceptibility for patches 1 and 2
is 	

(12)
ph (ω = 0, Q) = T

∑
n

∫
dkG1(ωn, k)G2(ωn, Q + k),

where G1,2(ωn, k) = [iωn − ε1,2(k)]−1 are the corresponding
Green’s functions. Similarly, for the particle-particle bubble
C(12)

pp (ω = 0, q = 0) = T
∑

n

∫
dkG1(ωn, k)G2(−ωn,−k).

In the renormalization group (RG) process, the energy
integration over the regions [ε − δε, ε] and [−ε,−ε + δε]
results in

−δ	(12)(ε, Q) = δC(12)(ε, q = 0) = ν0
tanh

(
ε

2T

)
ε

δε. (3)

For patch 3 the leading divergences of free-particle sus-
ceptibilities are associated with the particle-particle C(33) and
particle-hole 	(33) bubbles at zero momentum transfer. More
specifically, the energy integration over the regions [ε − δε, ε]
and [−ε,−ε + δε] leads to [37]

δ	(33)(ε, q = 0) = −ν(ε)

2T
cosh−2 ε

2T
δε, (4)

δC(33)(ε, q = 0) = ν(ε)
tanh

(
ε

2T

)
ε

δε, (5)

where ν(ε) is given by Eq. (1). Comparing Eqs. (3)–(5),
we see three different energy dependencies of the
susceptibilities. At large energies ε � T the slope of the
susceptibilities in particle-particle and particle-hole channels
for patches 1 and 2 are slowly decaying functions of ε as
−δ	(12)/δε = δC(12)/δε ∼ 1/ε, which leads to the standard
ultraviolet log(�) and infrared log(ε) divergences. In contrast,
the susceptibilities for patch 3 decay much faster with ε as
δC(33)/δε ∼ ε−3/2 and δ	(33)/δε ∼ − exp(−ε/T )/(T

√
ε)

when ε � T . If ε < T then δC(33)/δε and δ	(33)/δε scale
as 1/(T

√
ε) with opposite sign. The divergence at the lower

limit is removed by the temperature factor in the case of the
particle-particle channels and it is completely absent in the
case of the particle-hole channel. We have also checked

FIG. 1. Schematically, the interactions of the Hamiltonian Eq. (2).
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the contribution of the susceptibilities C(13)(Q −
Q̃),	(13)(Q − Q̃) (similarly C(23) and 	(23)) and found them
to be negligible in comparison to 	(12),C(12),	(33),C(33).
Therefore, in the next we do not include them. This
simplification allows us to work in energy space.

pRG equations. We employ one loop pRG, which can be
connected to a functional RG (e.g., Ref. [11]) and has been
used successfully, e.g., Refs. [10,38–41]. However, a cutoff
scheme is needed for implementation of the procedure. In this
work we use energy shell RG and the cutoff scheme is

1

iωn − ε(k)
→ 
(|ε(k)| − �)

iωn − ε(k)
,

which interpolates between the zero propagator and the bare
propagator as the cutoff � changes between 0 and ∞,
whereby one obtains the energy shell pRG.

For the RG equations we only include the terms with
the most diverging susceptibilities and redefine the RG flow
parameter L = log( �

�
), where � = 1/ν0 is the bandwidth of

pockets 1 and 2. The resulting set of differential equations has
the following form:

ġ1 = η1g2
1 − η2g2

3 + 2η3g5(g6 − g5)

ġ2 = 2η1
(
g1g2 − g2

2

) − η2g2
3 + η3g2

6

ġ3 = −η2g3g4

ġ4 = (η3 − η2)g2
4

ġ5 = η3g4(g6 − g5)

ġ6 = η3g6g4 (6)

with

η1 = tanh

(
e−L

2ν0T

)
(7)

η2 = α4

(ν0γ )1/2
eL/2 tanh

(
e−L

2ν0T

)
(8)

η3 = α4

(ν0γ )1/2
e−L/2 1

2(ν0T ) cosh2
(

e−L

2ν0T

) . (9)

The functions η1,2,3 determine the low-energy cutoffs at T, for
all bubbles 	(12), C(12), 	(33), and C(33).

pRG analysis. To understand the effect of the singularity,
we compare the flow of g1 and g2, which are responsible for
the formation of DWs, without and in the presence of patch 3.
First we consider patches 1 and 2 without patch 3. Considering
for simplicity T → 0, the expression tanh( ε

2T ) → 1 and

ġ1 = g2
1, ġ2 = 2

(
g1g2 − g2

2

)
. (10)

The solution of system Eq. (10) is

g1 = g0
1

1 − g0
1L

,

g2 = 1

2

g0
1

1 − g0
1L

+ 1

2

u0

1 + u0L
, (11)

where u0 = 2g0
2 − g0

1 and g0
1,2 are the bare values (initial con-

ditions) of g1,2. Following Ref. [38], the SDW and CDW

FIG. 2. The flow of gi’s in the presence of patch 3, for initial
values g0

1 = 0.07, g0
2 = 0.03, g0

3 = 0.03, g0
4 = 0.1, g0

5 = 0.1, and
g0

6 = 0.17 at T = Tc. The critical temperature for the SDW formation
is found now at Tc ∝ 10−5, two orders of magnitude higher than in
the absence of patch 3, where Tc ∝ 10−7. In the inset, � denotes
�SDW or �CDW as calculated from Eq. (12).

vertices read

�SDW = g1(L) = g0
1

1 − g0
1L

�CDW = g1 − 2g2 = − u0

1 + u0L
. (12)

The equations of the gap functions then are

d�λ

dL
= �λ�λ, (13)

where λ = SDW or CDW, with solutions in the absence of
patch 3:

�SDW = �0
SDW

1 − g0
1L

and �CDW = �0
CDW

1 + u0L
.

The important point is that there are two independent channels
leading to SDW and CDW order parameters. SDW is formed
when the critical L → 1/g0

1, while CDW is formed when L →
−1/u0. The presence of patch 3 renormalizes strongly these
critical values at finite temperature.

Returning to the full set of the flow equations Eqs. (6) to
investigate the effect of patch 3, we calculate the critical tem-
perature in the presence and absence of patch 3. The critical
temperature is defined as the temperature of the divergence
of �CDW or �SDW. We fix the bare g0

1 = 0.07 and g0
2 = 0.03

and vary the remaining bare coupling constants. The results
are presented in Figs. 2 and 3. The critical temperature in
the absence of patch 3 is Tc ≈ 7 × 10−7 (the flow of g1, g2

and the vertices are presented in the Supplemental Material
[37]). When patch 3 is present, then the rest of the gi’s come
into play. For the same initial values as before for g1 and g2

and for the same set of initial values of g4 = 0.1, g5 = 0.1,
g6 = 0.17, we present the behavior of the vertices for two
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FIG. 3. The flow of gi’s in the presence of patch 3 for the same
initial values as in Fig. 2 for all g0

i except from g0
3, which is now

g0
3 = 0.15 at T = Tc. The critical temperature now corresponds to

the transitions to CDW and is Tc ∝ 10−5.

cases, g0
3 = 0.03 (Fig. 2) and g0

3 = 0.15 (Fig. 3). In Fig. 2
the Tc of SDW is boosted by two orders of magnitude to
Tc = 4.1 × 10−5, while in Fig. 3 the larger g0

3 promotes the
formation of CDW, with Tc again two orders of magnitude
greater than the Tc of SDW without patch 3. As is evident, the
presence of the singularity, with nonzero gi’s for i = 3, 4, 5, 6,
renormalizes strongly g1 and g2. Depending on the initial
conditions, the effect of the singular patch 3 on the DWs is
summarized by the following statements: for small values, as
physically expected, of the pair-transfer g0

3 (i) the SDW is
destroyed when g0

5 > g0
6, and (ii) if g0

5 < g0
6 it is very much

enhanced (with Tc enhanced by potentially orders of magni-
tude). Otherwise, larger values of g0

3 promote the formation of
current CDW. A full investigation of parameters, in momen-
tum space, will be presented elsewhere.

In the absence of patch 3, the flow equations Eqs. (6)
are such that the repulsive interactions cannot be reverted
to attractive. It is easy to see that in this case g1 can only
grow, while g2 cannot change the sign. The presence of
patch 3 makes it possible for g1 and g2 to change signs
and become negative (attractive) [37], due to the over-
screening effect caused by the HOVHS [38,40,42]. This is
a very interesting feature of the model. For lower tem-
peratures we searched for the possibility g1 and/or g2 to
diverge (signature of superconducting instability), but we con-
cluded that, at low temperature, this is not possible for this
model.

Discussion. In this study we have considered the effect of
a HOVHS on the formation of a density wave (in particular
SDW) due to nesting of other parts of the FS. The scatter-
ing through the patch with the singular DOS can have very
important consequences, depending on the bare values of the
interactions. It can definitely destroy the phase, but surpris-
ingly, it can also amplify the formation of the density wave
and increase the corresponding Tc by orders of magnitude.

The boosting of the DW formation happens as long as the
exchange interactions between patch 3 and each of the nested
patches is greater than the corresponding density-density in-
teractions. In the opposite case, the SDW gets destroyed. We
also find that if the initial value of the pair transfer between
patch 3 and the other two patches is strong enough, a SDW
can be turned to a current CDW. The different bare values
of the interaction mimics material-specific effects such as the
specific geometry in the BZ of the patches and the orbitals
involved, which can be different in nature. One major question
is the feasibility of stronger exchange interactions in compar-
ison to density-density ones. This is possible in multiorbital
systems [12,43].

Recently, many surprising experimental results of
Sr3Ru2O7 [44] were explained assuming the presence of
a HOVHS in a magnetic field [13]. The reason that SDW
phases (A and B) [45] only appear adjacent to a HOVHS
by tuning the external magnetic field, although the same
nesting vector connects the edges of the γ bands as well as
other parts of the FS which respond less drastically to the
magnetic field, was not explained. Although the difference of
the present general theory to the experiments on Sr3Ru2O7

is that the latter is a case of SU(2) symmetry breaking as
HOVHS appears when the minority spins in the γ bands sink
below Fermi energy, the present work can explain in principle
why the SDW was detected only when the HOVHS appeared.
Indeed, there are parts of the FS that can provide the nesting
which are almost insensitive to the applied magnetic field
while the γ bands are strongly affected. These bands are
responsible for the formation of the HOVHS, which in turn
can boost the formation of the SDW to a critical temperature
that is measurable. Therefore, the mechanism presented here
can be the key one to explain the SDW formation through the
effect of the singularity at the center of the γ bands to the
other nested pieces of the BZ. Also importantly, the existence
of an SDW in Sr2RuO4 when it is strained and transverses
a VHS has been established [46,47]. Our work could be
relevant to this finding, but further work is needed.

Our theory could also explain, in principle, the CDW
formation in 1T-VSe2 [48,49] where a VHS is present [50]
and a HOVHS at the � point of the BZ is seen in discrete
Fourier transform (DFT) calculations [51]. This geometry
corresponds to a dispersion relation with a term ∝ k6 cos(6φ)
that can boost the formation of the CDW. The difference is that
the initial setup of the problem should favor a CDW instead
of a SDW formation. We expect this theory to apply to many
different materials in similar situations.
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