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ABSTRACT
Previous work on murine models and humans demonstrated global as well as tissue-specific molecular 
ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal 
transfer of genetic information between different tissues. We sequenced small regulatory RNAs 
(sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2–18 months: (1) 
sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). 
Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA 
fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited 
inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was 
exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. 
Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 
27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation 
that we validated in a third cohort by RT-qPCR.
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Introduction

Understanding and controlling the molecular hallmarks of 
age-related processes in higher organisms promises to greatly 
improve the quality of life [1]. For humans, ageing is fre-
quently studied using easily accessible biospecimens such as 
blood, serum, or urine. Consequently, the scientific commu-
nity generated models for a broad spectrum of molecular 
physiological and pathophysiological processes from different 
molecular types. For example, studies rely on long-lived indi-
viduals [2], serum proteomic profiling [3], small RNA pat-
terns in blood cells [4,5], or the exploration of epigenetic 
control of ageing clocks [6]. Likewise, deeper profiles, such 
as gene expression fingerprints, are available for different 
tissues [7]. Murine models facilitate the analysis of such 
processes thanks to their restricted influence of genetic back-
ground and varying lifestyles compared to humans. In mouse 
models, the aged immune system drives senescence and 

ageing of solid organs [8]. Further, organism-wide RNA- 
sequencing data of major organs and cell types across the 
mouse lifespan provide an important resource to study ageing 
[9,10]. The available data suggest complex ageing patterns, 
including both linear and non-linear effects that are either 
specific for organs or follow global organism-wide trajectories. 
Ageing and parabiosis-mediated rejuvenation suggest an 
almost universal loss of gene expression with age that is 
largely mimicked by heterochronic parabiosis: aged blood 
reduces global gene expression, and young blood restores it 
in select cell types [11]. In the same direction, Sahu and co- 
workers demonstrated that a beneficial effect of young blood 
on aged muscle regeneration was diminished when serum was 
depleted of extracellular vesicles (EVs), indicating the impor-
tant role of EVs in ageing and rejuvenation [12]. In addition 
to blood, also young CSF has a beneficial effect by restoring 
oligodendrogenesis and memory in aged mice [13].
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These observations indicate a systemic and orchestrated 
exchange of information and molecules between organs. For 
example, extracellular vesicles (EVs) are membrane vesicles 
mediating the horizontal transfer of genetic information 
between different cell types. Specifically, EVs are postulated 
to play an important role [14,15] in, e.g. hypothalamic stem 
cells seem to control ageing through EV miRNAs [16]. 
Recently, targeted intervention of EV-mediated transfer of 
miRNAs from osteoclasts to chondrocytes was described as 
a promising method to slow or even inhibit osteoarthritis in 
mice [17]. Furthermore, several studies have addressed the 
relationship of EVs with ageing in a systematic manner [18– 
21]. Complementary studies have investigated the change in 
EV-bound noncoding RNAs depending on (treatment) inter-
ventions such as caloric restriction [22]. However, these are 
limited in their analysis scope by considering only one small 
RNA class at a time, often even to a subset of well- 
characterized representatives. Moreover, an inherent restric-
tion is the limited sample volume, frequently leading to pool-
ing of biosamples and blurring of fine-grained signals.

These and other issues complicate the analysis of EVs and 
their molecular cargos. Especially in the context of EVs in 
cancer, common pitfalls in purification have been summar-
ized by Schekman and co-workers [23], with the correct 
nomenclature of EVs, purification and other aspects eluci-
dated in great detail. Considering these inconsistencies, we 
use the term ‘extracellular vesicles’ (EVs) throughout the 
manuscript as recommended by the International Society for 
EVs. EV means the full fraction of vesicles up to 400 nm in 
diameter irrespective of their origin and biogenesis.

The main aim of our study was to provide a data resource 
of small non-coding RNAs included in EV cargo and freely 
circulating in plasma (fc-RNAs) in mice of different ages and 
to identify differences between the molecular information in 
these fractions associated with ageing that might advance our 
understanding of the systemic ageing process. Therefore, 
plasma fc-RNA and EV-RNA of individual mice were 
sequenced for noncoding RNA profiling and contrasted by 
computational approaches. To demonstrate the use of this 
resource, we conducted pathway and comparative analyses 
using original Tabula Muris senis (TMS) data [9,10] and 
performed sequencing of small RNAs from TMS as an inde-
pendent cohort. Finally, we validated the core findings by RT- 
qPCR in a third cohort of aged mice (Figure 1a).

Results

Noncoding RNAs are modulated specifically upon ageing 
in EV- and fc-RNA samples

To uncover age-related dynamic processes and to model the 
information exchange involved, we sequenced both non- 
coding fc-RNAs and non-coding EV-RNAs from individual 
mice. The molecular profiles are available at five time points 
across the average lifespan between two and 18 months in two 
to four replicates per age group and biospecimen type 
(Supplementary Table S1). For the fc- and EV-RNA samples, 
we sequenced an average of 38 million reads per sample and 
mapped them to ten different noncoding RNA classes. Our 

analysis covered a total of 80,688 different noncoding RNAs, 
with piRNAs, circRNAs, lincRNAs and miRNAs being the 
classes with the highest number of different features 
(Figure 1b). The first aspect of the analysis encompassed the 
distribution of molecules from the different RNA classes. 
While tRNA fragments were highly represented both in EV- 
and fc-fractions, piRNAs showed sharply lower levels in both 
specimen types (Figure 1c). However, varying amounts of 
circRNAs and rRNAs were predominantly observed in the 
EV- and fc-fractions. Notably, this analysis has 
a quantitative and RNA class-centric view but does not yet 
consider whether the representatives within the classes match 
across sample types. For example, only a small number of 
piRNAs were present in both the EV and fc fractions, even 
though the general abundance was high. Considering the 
sample type overlap for each class, the most significant dif-
ference was indeed observed between fc- and EV-bound 
piRNAs (Figure 1d). Similarly, we report large differences in 
the content of RNA molecules from snRNAs, snoRNAs, and 
scaRNAs. In contrast, detected tRNA fragments, lincRNAs, 
rRNAs and circRNAs are often shared between the two frac-
tions. In summary, our data argue for type-specific expression 
patterns that differ significantly between noncoding RNA 
classes both in a quantitative and qualitative manner.

We thus asked whether unique ageing trajectories within 
and between noncoding RNA classes exist, either enclosed 
into/bound to EVs or freely circulating in plasma. One indi-
cator is the proportion of variance in the RNA counts that can 
be explained by available sample covariates, i.e. either by age 
of the mice, the specimen type and donor mice identity, or 
linear combinations of such. Depending on the RNA class we 
observe varying results with respect to the separation in the 
fc- and EV-fraction in a 2-dimensional UMAP embedding, 
with a clear segregation in the scaRNAs (Supplementary 
Figure S1). Compared to the other RNA classes, tRNA frag-
ments and miRNAs however showed the highest fraction of 
variance explained by age (Figure 1e). In comparison, the 
lowest variation with respect to age was observed for 
scaRNAs and rRNAs. Importantly, the individuality factor of 
each donor mouse used for this study was comparably small 
and independent of the RNA class. To uncover a potential 
relationship between each RNA class and mouse age, we used 
the expression at month 2 as baseline and modelled whether it 
increases or decreases over time for EV-RNA and fc-RNA 
separately but observed similar dynamics of change.

The largest age-related differences appear for rRNAs, 
where the overall amount increases for free circulating mole-
cules with ageing but the EV loading of rRNAs decreases. This 
notable difference in the specimen types also explains the high 
proportion of variance attributed to the sample type annota-
tion (Supplementary Figure S2). Our data further indicate 
a strong ageing signal in EV-and fc fractions, with varying 
strengths, again depending on the RNA class (Figure 1f). As 
our previous analyses emphasized the role of tRNA fragments, 
we investigated the expression profiles in an unbiased manner 
and performed a classification into three age groups (young, 2  
months; middle aged, 6–8 months; old, 12–18 months). We 
modelled this classification task as an optimization problem 
through nonnegative matrix factorization, computing

RNA BIOLOGY 483



Figure 1. Distribution of sequencing reads into their mapped noncoding RNA classes and their relation to ageing across the mouse lifespan. (a) Study setup. We 
profiled EV- and fc fraction vesicle and plasma samples from mice in five age groups, sequenced 80,668 noncoding RNAs from 10 classes (1), sequenced fat tissue 
specimens from TMS as an independent cohort (2) and validated the key findings using RT-Qpcr in another independent cohort (3). (b) Overall distribution of 
molecules to the 10 noncoding RNA classes under investigation. (c) Fraction of representatives per RNA class (y-axis) exceeding the expression threshold (x-axis; 
normalized counts). The RNA class is presented as solid line in the foreground. Dashed with lines indicate the fc fraction and solid lines the EV fraction. (d) Overlap of 
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probabilities for each sample to belong to each of the three 
groups. We then assigned each sample to the age group with 
the highest probability. For both fc- and EVs, we computed 
varying prediction accuracies, once more with the best results 
obtained for tRNA fragments with a remarkable accuracy of 
86% (Figure 1g).

Taken together, our analyses suggest that non-coding 
RNAs exhibit specific age trajectories, both qualitatively and 
quantitatively. Moreover, the data pinpointed substantial dif-
ferences in the case of fc-RNAs and EV-RNAs, where the 
highest correlation with age was observed for tRNA frag-
ments. This poses the question of whether loading of EVs 
follows biologically relevant environmental mechanisms. To 
potentially discover such patterns, we next performed a fine- 
granular and molecule-centric analysis.

Ageing patterns deviate within specific RNA classes

Of the 80,668 unique noncoding RNA molecules in Mus 
musculus included in our analysis, 23052 (28.6%) were 
stably present in the EV- and fc-fractions (Supplementary 
Table S2). We then computed the linear Pearson correla-
tion as well as the nonlinear distance correlation for each of 
the investigated RNAs. While making conclusions on the 
correlations of single RNA features can be challenging in 
terms of type-I errors, comparing the different RNA classes 
and the fc- and EV-fractions globally can support an 
understanding of linear and non-linear ageing effects. We 
thus computed an estimate for each RNA whether it was 
linearly correlated with age, nonlinearly correlated with age, 
or not correlated with age at all for EV-and fc-fractions 
separately. Because of the large number of non-coding RNA 
features included in the study we are potentially facing an 
overplotting issue and thus computed a density estimation 
for the two correlation schemes. For both sample types, fc- 
(Figure 2a) and EV- (Figure 2b), the linear component was 
dominant, and only a few exceptions with nonlinear trajec-
tories occurred. Those are characterized by a distance of at 
least 0.15 from a spline with eight degrees of freedom. The 
amplitude and frequency of nonlinear RNAs were both 
slightly enriched in EVs. Interestingly, we also observed 
a pattern towards a slightly negative correlation in EVs as 
compared to a positive correlation (average of 0.106) in the 
fc fraction. To test whether the average of 0.106 is the 
result of a random effect we performed permutation tests. 
Here, we reached an average correlation of −0.0003, mark-
ing a statistically significant difference (p < 10−16). Of note, 
most of the correlation values observed in our study are not 
significant. Generally, linear correlation coefficients above 
0.5 and −0.5 in our study roughly corresponded to p-values 
with nominal significance at an alpha level of 0.05 
(Supplementary Table S2).

Having observed noncoding RNAs that are either positively 
and negatively correlated with age in EV and fc fractions further 
called for exploring whether the up- and downregulated candi-
dates show similar compositions in the two specimen types. In 
total, 27% and 22% increased and decreased with age in the EV 
fraction and fc fraction, respectively, slightly differing from 
what would be expected by a random distribution. However, 
39% of the 23,052 expressed noncoding RNAs were negatively 
correlated with age in EVs but positively correlated in the fc 
fraction while only 12% presented the opposite behaviour, i.e. 
were negatively correlated with age in the fc- fraction and 
positively correlated with age in the EV-fraction (Figure 2c, 
Supplementary Table S2). To seek common patterns for the 
increasing and decreasing expression of non-coding RNAs, we 
clustered the expression in EV-and fc-fractions separately and 
extracted RNA clusters from the dendrogram. For each cluster, 
we then computed the average linear and nonlinear correlation 
with ageing and finally calculated the overlap of the sample 
types. Our analysis confirmed a strong decrease in the correla-
tion with age in the EV fraction compared to the fc fraction 
(Figure 2d). The EV clusters are enriched in the lower left 
corner, indicating a significant trend towards a negative correla-
tion with age in EVs. Furthermore, the data reveal an age- 
related loss in linear correlation compared to non-linear corre-
lation. To validate the origin of these signals, we inspected all 
concordant and discordant noncoding RNAs and provide spe-
cific examples for markers clearly increasing and decreasing 
with age in both EV and fc fractions (miR-466i-5p, Figure 2e 
and Gm16701, Figure 2f, respectively), decreasing with age in the 
EV fraction but increasing in the fc fraction (Gm20756, 
Figure 2g), and finally increasing with age in the EV fraction 
but decreasing in the fc fraction (miR-690, Figure 2h). We 
further examined whether the patterns hold for all 10 noncod-
ing RNA classes or if they are rather class specific. Here, the 
specificity of patterns for the different non-coding RNA classes 
was astonishing. For example, 94% of tRNA fragments 
increased with age in both the EV and fc fractions. 
Additionally, 54% of rRNAs decreased with age in the fc frac-
tion but increased with age if EV-bound. Conversely, 42% of 
circRNAs increased with age in the fc fraction but decreased 
with age if EV-bound (in- or outside). Additionally, other RNA 
classes revealed distribution patterns significantly deviating 
from the 25% per group as expected by chance. Finally, 82% 
of miRNAs increased with age in the EV fraction (Figure 2i).

The miR-29 family controls ageing-related processes in 
fat tissues

In light of the regulatory role of miRNAs typically repressing 
gene expression [24] and further knowing that mRNA levels 
tend to decrease with age, we chose this particular class of 
noncoding RNAs to reveal further potential of our data

expressed RNAs in EVs and in the fc fraction as area proportional Venn diagrams. (e) Percent of total data variance attributed to different parameters, such as age 
(month), individual mice or specimen type (source). Columns are sorted according to decreasing fraction of variance attributed to age. (f) Relative expression of the 
different RNA classes per time point and sample type compared to the baseline (2 months). Green indicates higher expression, and purple indicates lower expression. 
The upper row per RNA class shows the fc fraction, and the lower row shows the EV fraction. (g) Prediction of age by nonnegative matrix factorization. The colour 
code represents the probability (trust) in the prediction, the x-axis represents the true age group, and the y-axis represents the predictions.
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Figure 2. Correlation of noncoding RNAs with ageing in fc- and EV fractions. (a) for each noncoding RNA, the x-axis represents the Pearson correlation, and the y-axis 
represents the distance correlation with age in the fc fraction. The colour gradient in the background represents the density of non-coding RNA representatives with 
respective linear and non-linear correlation. The red line is a smoothed spline. The coloured dots (green, negatively; red, positively) are correlated with age in 
a predominantly nonlinear manner, i.e. those points are with a distance of at least 0.15 away from the spline. (b) the same information as in panel (a) but for EVs. (c) 
Scatter plot showing the Pearson correlation in EVs (x-axis) in relation to the Pearson correlation in the fc fraction (y-axis). Orange numbers represent the percentage 
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resource. We first asked whether the miRNAs increasing or 
decreasing with age in EV- and fc-fractions exhibit distinct 
functions in a pathway-specific manner. For each gene ontol-
ogy category [25], we computed an enrichment score for the 
miRNAs in EVs and in the fc fraction. In more detail, we used 
the list of miRNAs sorted by their correlation with age to 
perform cut-off-free miRNA set enrichment analysis using 
miEAA [26,27] for all miRNAs instead of selecting only 
a subset of miRNAs. The gene ontology categories were 
extracted from the miEAA tool using annotations from the 
miRTarBase (Supplementary Table S3). A direct comparison 
provided strong evidence supporting the notion that miRNAs 
correlating with age in EVs are significantly enriched in 
biochemical categories compared to those in the fc fraction 
of plasma (Figure 3a). This finding argues further towards our 
initial hypothesis that EVs may specifically be loaded with 
noncoding RNAs that exert biological processes in remote 
sensing cells. To understand the nature of these processes, 
we compared the 16 categories that are at least three orders of 
magnitude more significant in EVs compared to the fc frac-
tion to the two being at least three orders of magnitude more 
significant in the fc fraction compared to EVs. In the former, 
the strongest enrichment was found for protein heterodimer-
ization activity, neural crest cell migration, negative regulation 
of inflammatory response, receptor internalization, positive 
regulation of neuroblast proliferation, the mitochondrial 
envelope, the positive regulation of DNA-templated transcrip-
tion and the TORC2 complex. All categories were significant 
at an alpha level of 0.05 following Benjamini-Hochberg FDR 
adjustment in the EV fraction and none of the categories 
remained significant after adjustment for multiple testing in 
the fc fraction. As an example, we present the enrichment 
plots for the protein heterodimerization activity for both 
fractions (Figure 3b). Here, the original running sum curve 
for the EV fraction clearly exceeds the random background 
distribution while for the fc fraction random distributions 
reach the original one. The categories with higher significance 
in the fc fraction included cellular response to BMP stimulus 
(p = 6×10−5 vs. 0.11) and negative regulation of myotube 
differentiation (p = 6×10−7). Here, both categories were sig-
nificant following adjustment for multiple testing for the fc 
fraction, in the EV fraction the negative regulation of myo-
tube differentiation remained significant following adjustment 
for multiple testing. This case indeed indicates that pathways 
can be significant in both, the fc and EV fraction. Especially 
one category was highly significant in both: ‘response to 
hypoxia’ reached a p-value of 4.3 × 10−5 in the fc fraction 
and of 9.4 × 10−6 in the EV fraction (Figure 3c, 
Supplementary Table S3). Distinct pathways specifically 

enriched in the EV fraction open the question of potential 
effects on gene regulation in different tissues.

The core hypothesis of our work stipulates specific loading 
of EVs, notably considering both possibilities, in- and outside- 
bound, with non-coding RNAs, first and foremost miRNAs, 
enabling the control of specific cellular functions and gene 
regulation in remote cells. To identify tissues most likely 
affected by the EV- and fc-RNA cargo, we next combined 
the miRNA data generated in this study with our previously 
established bulk- and single-cell murine tissue-ageing atlas, 
TMS [9,10]. In these studies, we reported both linear and 
nonlinear ageing trajectories in gene expression signals. Like 
the findings on noncoding RNAs observed here, the asso-
ciated genes cluster with coherent biological functions, includ-
ing extracellular matrix regulation, unfolded protein binding, 
mitochondrial function, and inflammatory and immune 
responses. The expression patterns are consistent across tis-
sues, differing only in the amplitude and age of onset. In 
particular, fat tissues showed early ageing signals of biochem-
ical pathways similar to those observed in the miRNA path-
way analysis described above. It was previously shown that 
miRNAs target genes in a pathway-specific manner [28–30]. 
Thus, for miRNAs associated with age in the EV- or fc-RNA 
in the current work, we extracted the experimentally validated 
target genes from miRTarBase [31] and evaluated the correla-
tion of these target genes with age in all tissues from TMS. 
Remarkably, the analysis was limited to miRNA-gene pairs 
with strong evidence of functional interactions, such as from 
reporter assays. In this context, the expected pattern is 
a negative correlation of target genes with age, where 
miRNAs show a positive correlation with age and vice versa. 
In particular, mesenteric fat, gonadal fat, the brain, white 
blood cells and brown fat fulfill this expectation (Figure 3d). 
This result is also in line with recent parabiose-mediated 
rejuvenation experiments, suggesting a loss of gene expression 
with age that is largely mimicked by rejuvenation. Likewise, 
the observed tissue-independent ageing patterns matched our 
previous results. While fat tissues generally showed the best 
concordance, other tissues, such as the lung or pancreas, did 
not. The target gene correlation for mesenteric and gonadal 
fat verified the increased correlation with age for miRNAs 
decreasing with age and vice versa (Figure 3e and 3f). This 
effect was more pronounced for gonadal fat in EV-miRNAs. 
Translating the miRNAs and genes to a target gene network 
identified eight core genes: Notch1, Bace1, Hdac4, Igf1, Eln, 
Cav2, Insig1, and Scap (Figure 3g, Supplementary Table S4), 
possibly reflecting physiological relevance for both signalling 
networks and epigenetic processes. All but Notch1 are experi-
mentally validated target genes of specific members of the

of points in each of the four quarters. The data suggest a shift to a negative correlation with age in EVs. Numbers are rounded to integers. (d) Noncoding RNAs in the 
fc- and EV fractions were clustered, and the resulting clusters were attributed to the average linear and nonlinear correlation. Solid lines represent a match of 
noncoding RNAs; the thicker the line is, the more noncoding RNAs match between an fc and EV clusters. The diameter of the points represents the cluster size. Most 
EV clusters accumulate in the lower left corner. (e-h) Examples of noncoding RNAs that increase or decrease with age. The x-axis represents the age, and the y-axis 
represents the expression of the selected noncoding RNA (orange, EV fraction; blue, fc). Colored boxes span the first to the third quartile, with the line inside the box 
representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below or above the first or 
third quartile if outliers are present. (i) Confusion matrix scatter plots (see also panel (c)) split by the RNA classes.
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Figure 3. Pathway results and miRNA-target regulation networks. (a) miRNA pathway enrichment for age-related miRnas in the fc fraction (x-axis) and EVs (y-axis). 
Each dot is one pathway, and the size represents the number of miRnas associated with the pathway. The red dashed line is the bisector, and the green lines indicate 
two orders of magnitude higher significance in the fc fraction and in EVs. The pathways with at least a three orders of magnitude difference are listed on the right. 
(b) Enrichment plots for the category protein heterodimerization activity in the EV and fc fraction. The solid blue line denotes the enrichment for the miRnas sorted 
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miR-29 family (miR-29a, -b or -c), pointing at an inherent 
regulatory role of this miRNA family in fat tissue. Among the 
gene nodes, Nanog could be distinguished by a positive cor-
relation with age. This gene is targeted by mmu-miR-296-5p, 
which is negatively correlated with age.

Of note, the correlation presented in this analysis was 
indirect. The fc-RNA and EV-RNA fractions were 
sequenced from another cohort of mice and compared 
to the gene expression profiles in tissues. To test whether 
increased levels of these miRNAs have also been detected 
in gonadal fat tissue of aged mice, we used small RNA 
sequencing data from gonadal fat tissues from TMS [32]. 
Specifically, we examined identical tissue specimens that 
were used for sequencing the RNA expression atlas. For 
the microRNAs from the network (Figure 3h), we 
observed in most cases a mixed pattern of up- and down-
regulation of the targets for those miRNAs. Nevertheless, 
members of the miR-29 family (namely, miR-29b-3p and 
miR-29a-3p) showed downregulation across all target 
genes in gonadal fat.

Due to a limited cohort size and potential challenges in 
using high-throughput screening based on NGS, we per-
formed a further validation experiment. To this end, we 
investigated a third independent cohort of mice and ana-
lysed the relative expression of miR-29 family members 
along with other dysregulated miRNAs from the network 
(miR-455-5p, miR-139-5p, miR-146-5p, miR-1-3p, miR- 
34a-5p, and miR-706) in the EV-RNA of four young and 
two old mice using real-time quantitative PCR (RT-qPCR). 
The RT-qPCR results for the miR-29 family support the 
sequencing data and provide evidence for an increased 
abundance of miR-29a/b/c-3p in EV-RNA of old mice 
(Figure 3i). Additionally, in the gonadal fat samples of the 
same mice, a – however less pronounced – upregulation 
was confirmed upon ageing. miR-146-5p showed a similar 
trend and also miR-1-3p was slightly increased in the EV- 
fraction and GAT tissue. In contrast, miR-455-5p was 
down-regulated in the EV fraction and in GAT tissue. For 
miR-139-5p no dysregulation was observed and for miR- 
34a-5p and miR-706 the dysregulation in the EV-fraction 
and GAT tissue did not match. The strongest effects overall 
occurred in the miR-29 family.

In summary, the data presented here provide a valuable 
resource that can be used as a starting point to study the 
biology of circulating noncoding RNAs in the context of 
ageing in general. Especially in combination with published 

tissue-specific gene expression atlases, these data enable the 
community to formulate novel hypotheses on distant cell- 
cell communication and affected tissues during ageing, 
which serves as a basis for functional studies in the future. 
At the same time, our analysis suggests a major role of fat 
in ageing processes, with EV-bound miRNAs of the miR-29 
family performing important regulatory events.

Discussion

While our study presents intriguing new insights into the correla-
tion of EV-and fc fractions and the molecular loading of EVs with 
noncoding RNAs in the context of ageing, it is important to 
mention the limitations and how they could be addressed. First, 
the purification of EVs is challenging and has many pitfalls [23]. 
Generally, the more purification steps that are applied, the less 
material is left, eventually requiring a pooling of samples. We 
decided to achieve the maximal possible purity while still leaving 
sufficient material for high-throughput sequencing of small 
RNAs, avoiding any pooling. As stated by Schekman et al. [23], 
healthy scepticism concerning the possible connection between 
EV-miRNAs and control of gene expression in target cells should 
remain until functional cell culture and animal studies are con-
ducted with EVs purified by rigorous and quantitatively docu-
mented procedures, allowing depletion of lipoproteins and other 
non-EV contaminants and quantification and characterization of 
pure EVs. Similar concerns hold for the RNA molecules detected 
in the EV pellets, which may include RNAs that are inside the 
EVs, outside the EVs, or pelleted together with EVs within larger 
complexes. While NTA and cryo-EM do not replace purification, 
they verify the presence of vesicles in the samples used 
(Supplementary Figure S3). A second limitation comes down to 
the molecular measurement and annotation of the molecules. 
Having reached a high sequencing depth from low input volumes, 
the data were mapped to the standard reference databases. 
Whether read molecules, e.g. mapping to piRNAs represent func-
tional piRNAs and not fragments or reads mapping to miRNAs 
annotated in miRBase represent functional miRNAs, is only par-
tially known, calling for further functional validation experiments. 
Another challenge is the normalization of data, which in our case 
relies on global normalization. Nevertheless, differences between 
the fc-RNA and EV-RNA fractions as well as an additional tar-
geted validation by RT-qPCR support the general high- 
throughput results. Nevertheless, we acknowledge that different 
normalization approaches can impact the results of respective 
studies relying on microarrays or sequencing. Additionally, we

with respect to the correlation with age. The coloured lines in the background denote the enrichment plots for random distributions. The more the blue line exceeds 
the background distribution the more significant the pathway is enriched. The horizontal dashed orange line represents a running sum of 2,000 to make the two 
curves better comparable to each other. (c) Same information as in panel (b) for the response to hypoxia. Here, both, the Ev and fc fraction exceed the random 
distributions significantly. (d) for miRnas that are positively and negatively correlated with age in either the fc fraction or EVs, the average correlation with age of 
target genes from Tabula muris senis across 17 tissues is shown. As expected, miRnas decreasing with age showed target genes increasing with age and vice versa. 
(e, f) for two fat tissues, the target gene correlation with age is detailed for the four groups shown as rows in (b). Gray boxes span the first to the third quartile, with 
the line inside the box representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below 
or above the first or third quartile if outliers are present (shown as separate, black outlined dots). (g) Target network. Large green dots depict miRnas, small pink dots 
represent genes, and lines delineate experimentally validated regulatory events between miRnas and genes. The colour shading represents the correlation with age, 
and the hub genes targeted by at least three miRnas are annotated in red. Relative font sizes represent the number of miRnas targeting the respective gene. (h) for 
the core miRnas from panel (g), the direct correlation of miRnas to all target genes in fat tissues of the TMS cohort is shown. Distributions are sorted with respect to 
an increasing average correlation such that the most consistent downregulation of target genes is observed for miRnas at the top. (i) RT-Qpcr results. The log2 fold- 
change based on the RT-Qpcr is presented for EV and GAT tissue. The miR-29 family members present a consistent up-regulation in both fractions.
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want to highlight that we considered here only the non-coding 
RNA fraction from vesicles. But exosomes, known as crucial 
systemic signalling mediators, carry also mRNA as well as pro-
teins. Especially when secreted by cancer cells the composition of 
exosomes varies depending on the disease, and these components 
can have an impact on the development and maintenance of the 
tumour microenvironment [33–35]. Applying multi-omics stu-
dies to ageing-associated vesicles is now crucial to get 
a comprehensive model on the action of the miRNAs reported 
herein and due to the complex EV micro-ecosystem.

In performing the study, we paid attention to limit con-
founding factors wherever possible. Because an influence of 
the sex on organ specific RNA signatures is known [9,10], we 
decided to only measure female mice in this study. Of note, 
the pathways comprising these sex DEGs in the previous RNA 
based studies largely differ from those describing ageing 
DEGs. We thus do not have evidence that sex differences 
influence the transcriptional ageing profiles from those stu-
dies. Nonetheless, the amount and cargo of EVs seems to be 
affected significantly by the sex overall [36–40]. In future 
targeted preclinical studies, the role of mouse sex on vesicle 
cargo type and amount should be further explored.

The primary aim of our study was to develop a resource for 
free circulating (fc-RNA) and extracellular vesicle-associated 
small RNAs (EV-RNA) in ageing. While we observe broad 
differences between RNA classes upon ageing, pathway and 
network analysis highlights a limited set of miRNAs with age- 
related regulatory activity. Missing miRNA target interactions 
(MTIs) in the regulatory core network (Figure 3e) await 
validation in future studies. Our results however do not only 
pinpoint a multifaceted ageing-factor depending on the RNA 
class but also on the organ. Strikingly, the results of EV- 
bound miRNAs suggest a major role of fat tissue in the 
process of ageing. The miR-29 family seems to play an essen-
tial role as a regulator of a tentative core ageing network and 
has been described in the context of ageing [41,42]. There is 
an increasing body of evidence associating fat tissue or pro-
cesses therein with ageing in health and disease [43]. Age- 
related inhibition of adipogenesis and adipose tissue senes-
cence leads to a decline in body fat in elderly individuals and 
is implicated in the development of metabolic diseases [44]. 
One hallmark of ageing is the so-called ‘inflammageing’, 
which describes a low-level chronic inflammation caused by 
cells taking on a senescence-associated secretory phenotype 
(SASP) and secreting proinflammatory molecules [45]. 
A recent single-cell sequencing study suggests the emergence 
of ‘ageing-dependent regulatory cells’ in fat tissue of mice 
with higher age that secrete, for example, the proinflamma-
tory Ccl6 as a major contributor to adipose cell senescence 
[46]. For some of the genes in the computed core networks, 
there is already evidence of a contribution to ageing or age- 
related diseases. The growth factor IGF1, for example, is 
a major player regulating ageing on a cellular and organism- 
wide level [47]. The histone deacetylase HDAC4 has been 
shown to be polyubiquitylated and degraded during all types 
of senescence [48]; however, it seems to be overexpressed in 
ageing muscle [49]. Similarly, deregulation was shown for 
CAV2 [50] and other genes reported in this study. The asso-
ciation of EV-RNAs is a likely contributor to these ageing 

processes and is already known from cancer research. For 
example, miR-29a enclosed in tumour-derived exosomes has 
even been shown to directly bind to intracellular toll-like 
receptors in immune cells, generating a prometastatic inflam-
matory response [51]. Moreover, overexpression of miR-29a 
has been shown to repress adipogenesis in humans and mice 
due to repression of the glucocorticoid receptor as its target 
gene [52]. Our data, first and foremost the pathway enrich-
ment analysis, provides evidence that miRNAs are not ran-
domly associate with vesicles. It is hard to distinguish whether 
those miRNAs have synergistic or antagonistic effects. For 
both mechanisms examples have been published [53–55]. Of 
note, miRNAs with different (seed) sequences that nonethe-
less regulate similar gene sets or pathways exist, pinpointing 
synergistic or antagonistic effects [56]. Considering the set of 
pathways identified in our study we assume that the miRNAs 
in exosomes are synergistically targeting pathways but par-
tially also exhibit antagonistic effects. Here, a systems biology 
analysis together with targeted validation experiments is 
required.

Together with the data presented herein, it is plausible to 
postulate that the miR-29 family might be one of the media-
tors for the inhibition of adipogenesis and the induction of 
a proinflammatory environment in ageing fat tissue. One 
interesting open task for future studies is to determine the 
cells of origin of the EVs loaded with miR-29 and clarify the 
regulatory functions of the miRNA in adipocytes. This finding 
adds to the knowledge on the importance of extracellular 
vesicles and the immune system interplay in ageing and 
immune diseases [57], together forming the complex cellular 
ecosystem.

Methods

Animals

We initially conducted the EV-RNA and fc-RNA isolation work-
flow on 18 female C57BL/6N mice, 14 of which resulted in 
a sufficient amount of biological material. Overall, we thus gen-
erated non-coding RNA-sequencing samples from mice at the age 
of 2 months (n=3; body weight (bw): 19–20g), 6 months (n=4; bw: 
25–29g), 8 months (n=3; bw: 23–26g), 12 months (n=2; bw: 31g) 
and 18 months (n=2; bw: 34 & 41g). The age range was selected 
based on our previous results on age-related tissue-specific 
changes in gene expression that were already evident in mice 
18months old (Tabula muris senis [9,10]. Leftover gonadal fat 
tissue samples from the TMS study were obtained as a second 
cohort for RNA sequencing. To assess the size distribution of 
vesicles and perform EM, an independent cohort of female 
C57BL/6N mice was used with an age of 2 (n=4; bw: 19–20g) 
and 18 months (n=4; bw: 29–41g). For validation experiments 
using RT-qPCR, a third independent cohort of female C57BL/6N 
mice was used (2 months: n=4, bw: 19–21g; 18 months: n=2, bw: 
27–32g). The animals – excluding the existing specimens from 
TMS – were housed in groups on wood chips as bedding in the 
conventional animal facility of the Institute for Clinical & 
Experimental Surgery (Saarland University, Homburg/Saar, 
Germany). They had free access to tap water and standard pellet 
food (Altromin, Lage, Germany) and were maintained under
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a controlled 12-h day/night cycle. This animal study was approved 
by the local State Office for Health and Consumer Protection and 
conducted in accordance with Directive 2010/63/EU and the NIH 
Guidelines for the Care and Use of Laboratory Animals (NIH 
Publication #85–23 Rev. 1985).

Blood sampling

The mice were anesthetized by an intraperitoneal injection of 
ketamine (100 mg/kg bw; Ursotamin®; Serumwerke Bernburg, 
Bernburg, Germany) and xylazine (12 mg/kg bw; Rompun®; 
Bayer, Leverkusen, Germany). Subsequently, they were fixed 
on a heating pad in the supine position. After midline lapar-
otomy, a maximal volume of blood (~700–1000 µL) was taken 
from the vena cava and transferred into plasma tubes 
(Sarstedt, Nümbrecht, Germany). The blood samples were 
then centrifuged at 20°C and 10.000 × g for 5 min to remove 
platelets, large vesicles, and cell debris; the resulting platelet- 
free plasma was stored at −80°C until further use. After blood 
collection, gonadal fat tissue of the mice in the third cohort 
was collected and snap-frozen.

Isolation of EVs

Two hundred microlitres of mouse plasma was transferred to 
a 1 mL open-top thickwall polypropylene ultracentrifugation 
tube (Beckman-Coulter, USA) and diluted with 800 µL of 
phosphate-buffered saline to prevent the tube from collapsing 
in the ultracentrifuge vacuum. Samples were centrifuged for 2  
h at 4°C at 100,000 × g using Type 50.4 Ti fixed-angle rotor 
(Beckmann-Coulter, USA). Supernatants were carefully 
removed, and the EV-containing pellets were resuspended in 
20 µL of phosphate-buffered saline. Samples were stored at 
−80°C until further analyses. The samples were characterized 
according to the MISEV2018 criteria [58], and NTA and EM 
were performed. Limitation of material (700 µl blood/animal/ 
sample that resulted in approximately 250 µl plasma/sample) 
prevented application of other analytical approaches.

RNA extraction

EV-enriched pellets further referred to as EV fractions and EV- 
depleted plasma referred to as the free circulating (fc) fraction 
were used for RNA isolation. All samples (blood from one 
animal corresponding to one sample) were treated separately, 
and no samples were pooled. EV- and fc- total RNAs were 
isolated semi-automated using the miRNeasy Micro kit 
(Qiagen, Hilden, Germany) and Qiacube isolation robot accord-
ing to the manufacturer’s recommendations with the addition of 
2 µL RNase-free glycogen (20 mg/mL, Invitrogen, Carlsbad, CA, 
USA) to facilitate RNA precipitation. For each sample, at least 
two replicated sequencing results were available (12- and 18- 
month replicates, all other time points in triplicate). Total RNA 
of gonadal fat tissue was isolated using a miRNeasy Mini kit and 
Tissue Lyser LT according to the manufacturer´s protocol. The 
RNA concentrations of the EV- and fc-fractions were measured 
using a Qubit™ microRNA Assay Kit, and fat tissue was mea-
sured using a Nanodrop (Thermo Fisher Scientific, Waltham, 
MA, USA).

High-throughput RNA sequencing

Isolated EV-RNA and fc-RNA samples were analysed by Agilent 
small RNA chips, and 2 ng each (EV-RNA and fc RNA) was used 
for Illumina-compatible library preparation using the D-Plex 
Small RNA Kit (Diagenode, BE). The kits employ 3´-poly 
A tailing and template switch-based cDNA generation using 
unique molecular identifier (UMI)-tagged template switch oligos. 
After PCR amplification involving 13 cycles, libraries were purified 
from TBE-PAGEs. Illumina sequencing was carried out on 
a HiSeq2500 platform using the High Output mode for 96 cycles. 
Isolated RNA from gonadal fat tissue was sequenced using the 
MGISeq system with the standard MPS protocol as described 
previously [59].

Nanoparticle-tracking analysis

Each EV preparation and each EV-depleted sample were tested 
using NTA to estimate the number of particles in a sample. For 
that, 1 µl of plasma was diluted in 1199 µL, and 1 µL of the 
resuspended EV pellets was diluted in 999 µL of phosphate- 
buffered saline to achieve a final concentration between 20 and 
120 particles/frame. Samples were then measured on NanoSight 
(Malvern, UK) at a camera level of 15. For each sample, three 
captures of 30 s were acquired. Videos were then analysed at 
a detection threshold of 5 using NTA 3.4 software.

Cryo-transmission electron microscopy

Three microlitres of each EV sample was transferred to a holey 
carbon film-coated copper grid (Plano S147–4), blotted for 2 s, 
and plunged into undercooled liquid ethane at −165°C (Gatan 
Cryoplunge3). The grid was then transferred to a cryo-TEM 
sample holder (Gatan model 914) under liquid nitrogen. Low- 
dose bright-field images were acquired at −170°C using a JEOL 
JEM-2100 LaB6 Transmission Electron Microscope and a Gatan 
Orius SC1000 CCD camera.

RT-Qpcr

Quantitative real-time PCR of EV-RNA and gonadal fat 
tissue RNA was used to validate age-related expression 
differences of selected miRNAs. Reverse transcription was 
performed using the miRCURY LNA RT Kit (Qiagen, 
Hilden, Germany) with 100 ng fat tissue RNA and EV- 
RNA equivalent to EVs from 20 µl plasma as input. qPCR 
was performed using the miRCURY LNA SYBR Green PCR 
Kit with miRCURY LNA miRNA PCR Assays specific for 
selected miRNAs in a 10 µl reaction volume. Uniform iso-
lation and RT efficiency were checked using the manufac-
turer’s recommended spike-in controls (Uni-Sp2, 4, 5 
and 6). Expression differences were calculated using the 
ΔΔCt method with miR-191a and let-7a (in conjunction) 
as endogenous controls [60].

Computational data analysis

The sample primary processing was performed with 
miRMaster [61] using standard parameters. The miRNAs 
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were mapped using Bowtie (version 1.2.3) and allowing up
to 1 mismatch. As reference databases we used miRbase (ver-
sion 22.1); Ensembl ncRNA (version 100), RNACentral 
piRNA (version 15), GtRNAdb (version 18.1), NCBI RefSeq 
(bacteria & viruses; version 74) and NONCODE (version 5). 
As output, miRMaster generated a list with the expression of 
80,668 RNAs from 10 RNA classes. The data were normalized 
to expression in one million reads and further processed with 
R (R 4.0.4 GUI 1.74 Catalina build (7936)). For quality control 
aspects, we compared the correlation of replicated samples to 
the correlation obtained for samples that were not replicated. 
In the first case, we reached an average correlation of 0.93 for 
the replicates and 0.80 between samples that were not repli-
cates of each other (p < 10−10). Venn diagrams were generated 
using the eulerr package from R. Mapping the fraction of 
variance to different parameters was performed using the 
principal variance component analysis (pvca) package. 
Splines were computed using the smooth.spline function with 
seven degrees of freedom. Colour palettes were generated 
using the RColorBrewer package. Smoothed scatter plots 
were computed using the smoothScatter function setting the 
point number to 500. Clustering was performed for the most 
highly expressed noncoding RNAs (at least 5 reads per million 
in at least one sample) using the scaled expression matrix 
(z-score of each feature). The clustering was performed with 
the hclust function using the Euclidean distance measure. 
Clusters were extracted by cutting the dendrograms at 1/1.25 
of the maximal height. Heatmaps of target genes were com-
puted using the heatmap.2 function. Network visualization 
was performed using iGraph. As input for the network ana-
lysis, targets from miRTarBase [31] were used; however, they 
were restricted to strong evidence targets (i.e. experimentally 
validated). To compute the statistical concordance of RNAs 
correlated with ageing across sample types, a random back-
ground distribution with respect to positive and negative 
correlation was assumed. Briefly, a random distribution 
would mean that close to 25% of non-coding RNAs is con-
sistently positively regulated in plasma and EVs, 25% is con-
sistently negatively correlated with age and 25% in each are 
positively correlated in the one and negatively correlated in 
the other specimen type. Where applicable, p-values were 
corrected for multiple testing using the Benjamini Hochberg 
method with an alpha-level set to 5%.

Pathway analysis

For the pathway analysis we used miEAA 2.0. Precisely we 
performed a miRNA set enrichment analysis of the mature 
RNAs. To this end, we sorted the correlation value of the 
EV- and fc-fraction separately with the age and uploaded 
both sorted lists to miEAA. As organism we selected mus 
musculus and choose the gene ontology categories derived 
over the miRTarBase. We then selected a p-value threshold 
of 1 to force miEAA reporting of all nominal p-values, 
facilitating a direct comparison between the pathway results 
of the fc- and EV-fraction. We adjusted the p-values using 
the Benjamini-Hochberg method. As graphical output we 
present the enrichment plots. These plots describe the 
enrichment statistics for the input list as solid blue line. 

In the background, the same distributions computed for 
random lists (corresponding to the result of non- 
parametric permutation tests) are shown.

Matrix factorization

We predicted the age of samples with respect to three age 
groups: ‘young’ (2 months), ‘middle’ (6–8 months) and ‘old’ 
(12–18 months). To this end, the expression patterns were 
split into 20 individual matrices for each of the 10 noncoding 
RNA classes and for plasma and EVs. We first normalized the 
given nonnegative Matrix D by dividing all elements by the 
maximum value in D.To obtain the probabilistic regarding the 
age groups, we decomposed the matrix D into two further 
matrices T and P, where P gives us the desired probabilities. 
Tstands for the matrix of the typical age group vectors, i.e. in 
each entry of a column, there is a value representing all entries 
at this position of all samples belonging to this age group. The 
matrix P contains the probabilities of each sample to each age 
group respective to their typical vector in T. We formulated 
the non-negative matrix factorization as the optimization 
problem:

The first two constraints require all entries of the matrices T 
and P to lie between 0 and 1. Since we were interested in the 
percentage of a sample belonging to the three age groups, we 
also required all columns of the matrix P to sum up to 1 using 
a numerical solver [62].

We then classified each sample by choosing the index with 
the highest entry of each column in P and assigned the index 
as a label to each one. However, the rows of P were invariant 
to permutations. Here, this means that it is not clear which 
label corresponds to which age group. Furthermore, 
a measure of quality for the results was needed. Using the 
known age, we could construct a ground truth for each 
sample and calculated the classification accuracy for every 
permutation. The ground truth used was ‘young’ correspond-
ing to two-month-old mice, ‘middle’ to six- and eight-month- 
old mice and ‘old’ to twelve- and 18-month-old mice. Finally, 
we chose the permutation labels that maximize the accuracy 
and obtain a measure of quality.
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