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ABSTRACT

As education technology continues to evolve, the domains of Automatic Short-Answer

Grading (ASAG) and Automated Misconception Detection (AMD) stand at the fore-

front of innovative approaches to educational assessment. We explore the transfor-

mative potential of Large Language Models (LLMs) in revolutionizing these critical

areas. Leveraging the remarkable capabilities of LLMs in semantic inference, con-

textual understanding, and transfer learning, we embark on a comprehensive journey

to enhance both ASAG and AMD. On ASAG, we illuminate the efficacy of transfer

learning by fine-tuning RoBERTa Large, a state-of-the-art LLM, on task-related cor-

pora, e.g. the Multi-Genre Natural Language Inference (MNLI) corpus. The model’s

adaptability across unseen questions and domains on the minority class, coupled with

its narrowed performance gap from unseen answers, highlights the profound impact

of transfer learning on grading diverse student responses. In the emerging realm of

AMD, we pioneer a dataset and methodology that inaugurates a new era in miscon-

ception detection. Framing the task as Recognizing Textual Entailment (RTE), our

approach with RoBERTa Large MNLI captures nuanced misconceptions, unveiling the

untapped potential of LLMs in unraveling the intricate landscape of automated mis-

conception detection. The synergy between these endeavors presents a holistic view

of the transformative role anticipated for LLMs in automated educational assessment.

Our research, spanning adaptability in short-answer grading and groundbreaking ad-

vancements in misconception detection, establishes a foundation for a future where

LLMs excel not only in understanding nuanced student responses but also in pin-

pointing and rectifying misconceptions with unparalleled precision. These insights

contribute significantly to the dynamic field of educational technology, heralding a

new era wherein the full potential of LLMs is utilized to shape the trajectory of

educational assessment.
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Chapter 1

Introduction

In the landscape of modern education, the quest for personalized and efficient learn-

ing experiences has never been more imperative [30]. Instructors strive not only to

impart knowledge but also to assess the depth of their students’ comprehension to cul-

tivate a deeper understanding of the subject matter among their students. Typically,

standardized multiple-choice (i.e., closed-ended) questions are employed in adaptive

assessments due to their ease of implementation and evaluation. However, multiple-

choice questions can only access a limited scope of knowledge, primarily focusing on

factual recall rather than profound understanding and application of concepts [18].

Students might guess correct answers randomly without a full grasp of the materials,

leading to an inaccurate assessment of their cognitive level [30].

Besides, the format of multiple-choice questions often provides a binary marking of

“correct” or “incorrect” as feedback, potentially constraining students’ opportunities to

learn from their errors and enhance their understanding of the material. In contrast,

open-ended questions frequently compel students to engage in critical and creative

thinking, thereby fostering the development of metacognitive skills. This approach

permits a more comprehensive evaluation of a student’s comprehension and applica-

tion of concepts [5]. When responding to open-ended questions, students are tasked

with generating their own answers and elucidating their thought processes and rea-

soning. This process facilitates instructors in gaining invaluable insights into their

student’s learning progress and areas where improvement may be needed.

- 1 -



Moreover, written assignments, in which students express their comprehension of

educational materials in their own words, yield invaluable information regarding stu-

dents’ understanding and perspectives on the subject matter [23]. These assignments

essentially serve as records of students’ cognitive processes, as they chronicle their

mental engagement through writing. Employing such writing exercises as a means

of assessing students not only verifies their knowledge but also contributes to more

favorable learning outcomes.

The education system is meticulously crafted to furnish students with the essential

knowledge and skills required for success in life. Nevertheless, students frequently con-

front obstacles in their educational journey that impede their advancement. Among

these challenges, the prevalence of misconceptions—a condition wherein a student

holds an erroneous understanding of a specific concept—stands out. These miscon-

ceptions, if left unaddressed, can prove detrimental to a student’s academic pro-

gression and, when left unchecked, may persist and cast a shadow over their future

performance.

While the identification and correction of misconceptions are crucial components of

effective teaching and learning, it’s important to note that detecting misconceptions

is distinct from the process of grading student responses. Grading primarily focuses

on assessing the correctness or completeness of students’ answers to questions and

assignments. It provides a quantitative measure of their performance, often in the

form of scores or grades. In contrast, detecting misconceptions delves deeper into

the qualitative aspects of a student’s understanding. It involves identifying not only

whether an answer is right or wrong but also why a student might hold a particular

belief or misunderstanding. This nuanced approach requires a careful examination of

the thought processes and reasoning behind a student’s response. It’s a formative as-

- 2 -



sessment process aimed at improving a student’s conceptual grasp rather than merely

assigning a grade.

Nonetheless, manually grading or detecting misconceptions in open-ended responses

can prove to be a time-consuming and laborious task [17]. This can divert instruc-

tors from their primary objectives of teaching and offering personalized feedback to

students, hindering the students’ ability to learn from their errors and enhance their

understanding. Grading requires meticulous assessment, considering not only correct-

ness but also the depth of understanding, critical thinking, and communication skills

displayed by students. Detecting misconceptions adds an additional layer of com-

plexity. It necessitates a deep understanding of both the subject matter and common

student misconceptions within that domain. In the context of open-ended questions,

where student responses can vary widely in terms of content, quality, and clarity, ed-

ucators often face a dual challenge. They must efficiently evaluate student responses

for correctness while also providing constructive feedback to address misconceptions.

This challenge becomes especially pronounced when dealing with a large volume of

responses, potentially compromising the quality of feedback and the overall learning

experience for students.

Recognizing these challenges, automatic short-answer grading (ASAG), a field of

study with over a decade of dedicated research and development, emerges as a pivotal

component within intelligent tutoring systems [30]. ASAG involves the automated

assessment of the correctness of short answers, allowing for real-time feedback to stu-

dents and streamlining the evaluation process for instructors. By automating grad-

ing, ASAG enables educators to allocate more time to teaching and assisting students

while ensuring a consistent and efficient assessment of student responses. ASAG is

a challenging task, as it demands proficiency in both semantic inference and textual

- 3 -



entailment recognition. Moreover, ASAG introduces an additional layer of complexity

by necessitating transfer learning to ensure cross-domain compatibility, rendering it

inherently as a data-driven problem.

There is a burgeoning interest in the development of automated misconception de-

tection (AMD) within student responses [4]. Much like ASAG, AMD necessitates

expertise in semantic inference, textual entailment recognition, and transfer learning.

However, AMD presents an even greater challenge compared to ASAG. While ASAG

aims to determine whether a response is factually accurate or aligns with the expected

answer, AMD goes beyond mere correctness and aims to uncover any underlying er-

rors in a student’s understanding of the subject matter. AMD is inherently more

complex as it requires identifying nuanced misconceptions or errors in a student’s

reasoning. This entails a deeper understanding of the subject matter and common

misconceptions within that domain. Generally, ASAG pursues to render the level of

correctness and/or completeness of an answer via a score or grade (interchangeable),

such as 8 out of 10, 80%, A, F, pass, etc. This grading framework remains consistent

across different domains. In contrast, misconceptions can vary widely within a single

domain, shifting from topic to topic (see Appendix A for more details). Consequently,

AMD demands models to be pretrained on an extensive range of domain-specific text

and relies heavily on transfer learning to encompass domain-specific misconceptions.

Leveraging Large Language Models (LLMs), that have revolutionized the field of

Natural Language Processing, presents a remarkable opportunity for both ASAG and

AMD. These sophisticated models have demonstrated their prowess in understanding

and generating human-like text across a wide array of domains and topics. Their

ability to grasp nuances in language, recognize contextual cues, and perform complex

semantic inference makes them invaluable assets in educational assessment. Their

- 4 -



capacity to process vast amounts of domain-specific text through transfer learning is

particularly advantageous. In essence, LLMs offer a promising avenue for advancing

both ASAG and AMD, heralding a new era of sophisticated and efficient educational

assessment methods.

In our research, we embark on a comprehensive exploration of both ASAG and AMD.

Our investigation into ASAG centers on enhancing the transfer learning capabilities

of LLMs through fine-tuning on task-related corpora, a subject that we delve into

in Chapter 2. On the expedition of AMD, we harness the power of LLMs to detect

prevalent misconceptions among students in an introductory circuit analysis course,

a critical endeavor discussed in detail in Chapter 3. These two chapters elucidate

our methodologies, findings, and future research directions in these vital areas of

educational assessment.

- 5 -



Chapter 2

Enhancing Transfer Learning of LLMs through
Fine-Tuning on Task-Related Corpora for

Automated Short-Answer Grading

A portion of the research presented in this chapter has been accepted for

publication at the International Conference on Machine Learning and

Applications (ICMLA) 2023 [15]. This accepted publication encompasses

research on classical machine learning models (Table 2.3 & 2.4), fine-

tuning a RoBERTa Large model using 3-way labels (Table 2.5), and an

exploration of the potential benefits of the task-related MNLI corpus in

enhancing the performance of RoBERTa Large in the context of 3-way

labeling (Table 2.6).

2.1 Introduction

Adaptive testing and assessment capture the cognitive level of students which is

essential for formulating personalized learning routes [30]. Typically, standardized

multiple-choice (i.e., closed-ended) questions are used in adaptive assessments due to

their simplicity of implementation and assessment. However, multiple-choice ques-

tions can only test a limited range of knowledge, mainly focusing on factual recall

rather than a deeper understanding or application of concepts [18]. In some cases,

students might randomly guess correct answers without a full grasp of the material,

leading to an inaccurate reflection of their cognitive proficiency in the assessment [30].

- 6 -



Besides, multiple-choice questions commonly provide binary feedback (correct or in-

correct), which might limit the student’s ability to learn from their mistakes and

improve their understanding of the material. On the contrary, open-ended questions

often require students to think critically and creatively. This promotes meta-cognitive

skills and allows for a more comprehensive evaluation of a student’s understanding

and application of concepts [5]. In open-ended questions, students are asked to gen-

erate their own answers and explain their thought processes and reasoning. This

can help instructors gain valuable insight into their student’s learning progress and

identify areas for improvement.

However, grading open-ended questions manually can be time-consuming and te-

dious [17]. This process can detract instructors from their primary objectives of

teaching and providing personalized feedback to help students improve upon their

mistakes. Therefore, automated short-answer grading (ASAG) is a crucial component

of any intelligent tutoring system [30]. ASAG automatically assesses the correctness

of short answers, providing real-time feedback to students and helping instructors

evaluate students more efficiently. This would allow the instructors to devote more

time to teaching and supporting students.

Therefore, there has been a growing interest in developing automated systems that

can evaluate student responses to open-ended questions across various domains and

topics [30]. ASAG is a challenging task, as it requires both semantic inference and

recognizing textual entailment (RTE). Besides, ASAG presents an additional layer

of complexity by requiring transfer learning to ensure cross-domain compatibility,

making it inherently a data-driven problem. The SemEval-2013 Task 7 [12] and the

SciEntsBank dataset included in this challenge are widely used benchmarks for ASAG

research.
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Various approaches have been proposed but only a handful of researchers have ex-

plored the potential of LLMs for this task and the SciEntsBank dataset. LLMs have

shown great promise in various natural language processing tasks, including language

modeling, machine translation, and sentiment analysis due to their ability to capture

complex contextual information and relationships between words and phrases [10, 19].

Compared to classical ML approaches, LLMs have the potential to improve the accu-

racy and efficiency of ASAG. Dzikovska et al. [12] reported 0.63 as the best weighted-

average F1 for 3-way labeling (i.e., classification into three distinct classes), and all

the reported models use some form of classical ML. Recent studies demonstrate the

superior performance of LLMs in ASAG. Sung et al. [27] achieved a weighted-average

F1 of 0.68 using BERT-base [10], while Zhu et al. [30] reported a weighted-average F1

of 0.67 using BERT-base and 0.69 using a BERT-based DNN network. Camus and

Filighera [8] fine-tune and compare the model performance of various LLMs including

BERT, RoBERTa, AlBERT, XLM, and XLMRoBERTa; RoBERTa Large fine-tuned

over the MNLI corpus performed the best with a weighted-average F1 of 0.72.

In this project, we investigate two main research questions related to automated

short-answer grading using LLMs. Firstly, we assess the potential of various well-

known classical machine learning algorithms to surpass the performance of the lexical

baseline established in SemEval-2013 Task 7. The goal is to establish a new baseline

for LLMs that underlines the highest potential of popular classical ML algorithms.

We test several algorithms, including Decision Tree, Random Forest, Support Vector

Machines (SVM), and Multi-layer Perceptron (MLP) with various feature extrac-

tion techniques, such as bag-of-words and TF-IDF. Secondly, we investigate whether

fine-tuning RoBERTa-Large on a more extensive and diverse corpus, such as the

Multi-Genre Natural Language Inference (MNLI) corpus [28], could help the model

with semantic inference and transfer learning to boost the model performance. By
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addressing these research questions, we aim to contribute to the ongoing efforts to

improve the accuracy and efficiency of ASAG using LLMs.

2.2 Dataset

2.2.1 SciEntsBank

We utilized a portion of the Student Response Analysis (SRA) corpus [11], known

as the SciEntsBank dataset, for this experiment. The dataset has been annotated

with SRA labels by human annotators [12]. The dataset was released with three

distinct labeling versions: 5-way, 3-way, and 2-way. We centered our experiments

around the 3-way labeling scheme. However, we also employed the 5-way labeling for

one of the experiments. In the 5-way labeling scheme, each sample is assigned one

Figure 2.1: An overview of the data distribution adapted to generate three test sets
and, subsequently, a training set by sequentially excluding samples based on domain,
question, and answer. Each set is represented by a distinct color corresponding to its
scope. The outermost ring signifies the domains, followed by the adjacent inner ring
representing questions, then the subsequent ring indicating answers, and finally, the
innermost ring illustrates the division of the four sets.
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of the following labels: “correct”, “partially correct but incomplete”, “contradictory”,

“irrelevant”, and “non-domain”. The 5-way labeling scheme is reduced down to a 3-way

labeling structure by consolidating “partially correct but incomplete“, “irrelevant”, and

“non-domain” into a unified category labeled as “incorrect”.

The SciEntsBank dataset comprises four distinct sets: a training set and three test

sets. The sample distribution process among these four sets is illustrated in Figure 2.1.

The test sets are tailored to assess the adaptability of a model across various problems

and domains. The details regarding the creation and purpose of these test sets are

outlined below:

1. Unseen domains (UD): The authors set aside the complete set of questions

and answers of three science domains from training to create this set. The

purpose of this set is to evaluate a model’s versatility and adaptability across

diverse knowledge domains.

2. Unseen questions (UQ): Within the 12 domains selected for training, the

authors randomly selected a subset of questions and held out all responses to

these selected questions to create this set. This set evaluates a model’s capacity

to accommodate novel questions within familiar domains.

3. Unseen answer (UA): From the questions selected for the training set, the

authors withheld a subset of randomly selected responses from the training set

to create this set. This set of unseen answers is the most typical approach to

model evaluation. Its purpose is to assess the model’s proficiency in grading

responses it has not previously encountered.

The training set consists of samples that are not present in any of the three test sets.

- 10 -



Labels Train
Test

Unseen
Answers

Unseen
Questions

Unseen
Domains

Correct 2,008 233 301 1,917

Contradictory 499 58 64 417

Partially correct but incomplete 1,324 113 175 986

Irrelevant 1,115 133 193 1,222

Non-domain 23 3 - 20

Total
4,969

540 733 4,562
5,835

10,804

Table 2.1: Sample distribution of SciEntsBank dataset across a train and three test
sets in the 5-way labeling scheme.

Table 2.1 displays the distribution of the 5-way labels in the dataset. Please note

that the dataset is imbalanced. In the 3-way labeling scheme, the contradictory class

has a significantly low number of samples (only 10% of the dataset) compared to the

other two classes: correct and incorrect.

2.2.2 Natural Language Inference (NLI) Corpora

We have utilized two NLI corpora for this research: a) Stanford Natural Language

Inference (SNLI) corpus [6], and 2) Multi-Genre Natural Language Inference (MNLI)

corpus [28]. These meticulously curated corpora stand as pivotal resources in the field,

serving as well-established and widely adopted benchmark datasets for NLI tasks,

particularly in recognizing textual entailment (RTE). The SNLI corpus comprises a

diverse range of sentence pairs labeled for entailment, contradiction, or neutrality.

On the other hand, the MNLI corpus is modeled after the SNLI corpus and extends

the scope by including a variety of genres, ensuring a more comprehensive evaluation
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Corpus Train Validation Test Total

SNLI 550,152 10,000 10,000 570,152

MNLI 392,702 20,000 20,000 432,702

Table 2.2: Sample distribution of SNLI and MNLI corpora across train, validation
(i.e., eval), and test sets.

of models across different linguistic contexts. It is important to note that there is

no sample overlap between the MNLI and SNLI corpora. The sample distribution of

these corpora is depicted in Table 2.2.

2.3 Models

2.3.1 Classical ML Models (Baseline)

In this study, we establish a baseline for our deep learning models using four popular

classical ML models. These models require feature engineering, selection, and ex-

traction. We use the TfidfVectorizer with the word analyzer to generate features. In

this context, features refer to TF-IDF (term frequency-inverse document frequency)

values of words. To reduce the dimensionality of the feature space (i.e., the feature

matrix where each row corresponds to a sample and each column corresponds to a

feature), we remove all English stop words1 and lemmatize the remaining words. We

also include uni-grams and bi-grams in our feature space but limit it to the top (i.e.,

most relevant) 10,000 features for training.

We experiment with two tree-based models: Decision Tree (DT) and Random Forest

(RF). DT is a non-parametric model that generates parameters from the provided

1https://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
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Macro Weighted

Value of C 0.1 0.5 1.0 0.1 0.5 1.0

Unseen Answers (UA) 0.43 0.48 0.51 0.54 0.59 0.61

Unseen Questions (UQ) 0.32 0.34 0.35 0.42 0.45 0.46

Unseen Domains (UD) 0.34 0.36 0.39 0.37 0.45 0.47

Table 2.3: Performance of Linear SVM in F1 for different C values.

features and builds tree structures for the decision process. On the other hand, RF

fits multiple decision trees on different subsets of the dataset and decides on a label

by averaging over all decision trees. We use an RF model consisting of one hundred

decision trees to estimate the labels.

Another model we explore is the Support Vector Machines (SVM), a supervised learn-

ing model that tries to define a hyperplane on the feature space that distinctly sepa-

rates the data points into distinct classes. SVM has demonstrated promising results

in various NLP tasks. We use the linear kernel SVM classifier (as linear kernel works

well with TF-IDF features, and is less prone to overfitting on large feature space

compared to non-linear kernels) from Sci-Kit Learn, and we experiment with three C

values, finding the best performance for C = 1 (see Table 2.3).

Additionally, we investigate the performance of an artificial neural network (ANN)

model, specifically, the Multilayer Perceptron (MLP) model, a fully connected feed-

forward neural network. We use ReLU as the activation function and the Adam

optimizer with two hidden layers with one thousand and one hundred neurons, re-

spectively, considering the complexity of the problem.
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2.3.2 Large Language Models (LLMs)

Large Language Models (LLMs) such as RoBERTa Large have shown remarkable

success in natural language processing tasks. RoBERTa Large is a pre-trained LLM

that has been trained on a massive amount of unlabelled text data. Fine-tuning a pre-

trained RoBERTa Large model on a specific task can lead to significant improvements

in performance [19].

Each instance in the SciEntsBank dataset consists of a question, a reference answer,

a student answer, and an associated label. The goal is to classify the student answer

within the context of the provided question and reference answer. In this project,

we frame ASAG as an RTE problem. To achieve this, we construct the premise by

concatenating the question with the reference answer. The student answer then serves

as the hypothesis in our modeling approach.

We crafted three models, leveraging the pre-trained RoBERTa Large Language Model

(LLM) as the foundational base. The objectives and the configuration of these three

models are elaborated below:

1. RoBERTa Large: We fine-tuned this model solely on the SciEntsBank dataset.

The primary purpose was to assess the inherent capabilities of RoBERTa Large

on the SciEntsBank dataset.

2. RoBERTa Large MNLI: We fine-tuned a RoBERTa Large model on the

MNLI corpus and subsequently on the SciEntsBank dataset. this model aimed

to investigate the potential performance enhancement achieved by fine-tuning

a pretrained model on a task-related corpus.
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3. RoBERTa Large 2NLI: Impressively, the RoBERTa Large MNLI model

exhibited significantly higher performance compared to the RoBERTa Large

model. Observing the benefits of fine-tuning on a task-related corpus, we delved

deeper into exploring whether fine-tuning on multiple corpora could lead to fur-

ther improvements in model performance. To this end, we developed this model

that underwent fine-tuning on the MNLI corpus, then on the SNLI corpus, and

finally on the SciEntsBank dataset. We named this model 2NLI due to its

fine-tuning on two NLI datasets.

We defined two distinct sets of hyper-parameters to fine-tune the models, one for

fine-tuning on the NLI corpus and another to fine-tune on the SciEntsBank dataset.

Both hyper-parameter sets are detailed below:

1. MNLI & SNLI: These hyperparameters were adapted from the configuration

provided by the authors of the RoBERTa Large model [19]. Our adaptation

includes utilizing the Adam optimizer with ϵ = 1e − 6, β1 = 0.9, β1 = 0.98, a

learning rate of 2e− 5, and a weight decay of 0.1. The learning rate scheduler

type was defined as linear, and a warm-up ratio of 6% facilitated a gradual

transition into the main training phase. We fine-tune for a maximum of 10

epochs with early stopping. For MNLI, we used a batch size of 32. The batch

size of 64 returned better results (data not shown) for SNLI. Model performance

was recorded after each epoch, with the best model chosen based on the epoch

displaying the highest macro F1 score.

2. SciEntsBank: These hyperparameters were tailored to suit the specificities of

the dataset. We employed the Adam optimizer with ϵ = 1e− 8, a learning rate

of 2e − 5, and a weight decay of 0.01. We establish a warm-up step of 500 to
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facilitate a controlled start of the training. We fine-tuned for a maximum of

20 epochs with early stopping and a batch size of 5. We recorded the model

performance after each epoch and selected the best model based on the epoch

exhibiting the highest macro F1 score.

2.3.3 Experimental Setup

To evaluate the performance of our models, we use the same three metrics as used by

[12]: a) accuracy, b) macro-average F1, and c) weighted-average F1. Macro-average

F1 calculates the average F1 score for all classes without considering the size of each

class. Please note that the dataset is imbalanced as shown in Table 2.1, with the

contradictory class having a significantly smaller number of samples compared to

the other two classes. Weighted-average F1 considers the size of each class in the

calculation and returns a balanced score over imbalanced datasets.

For classical ML models and evaluation metrics, we used the Sci-Kit Learn2 library.

We implemented the LLMs using PyTorch3 and the Hugging Face Transformers4

library.

2.4 Results and Discussion

Table 2.4 presents the performances of four classical ML models: Decision Tree (DT),

Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron

2https://scikit-learn.org/
3https://pytorch.org/
4https://huggingface.co/
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Classifier
Unseen Answers Unseen Questions Unseen Domains
Acc M-

F1
W-
F1

Acc M-
F1

W-
F1

Acc M-
F1

W-
F1

Lexical Baseline [12] 0.56 0.41 0.52 0.54 0.39 0.52 0.58 0.42 0.55

Decision Tree (DT) 0.65 0.57 0.64 0.48 0.33 0.44 0.48 0.34 0.43

Random Forest (RF) 0.63 0.54 0.62 0.56 0.39 0.53 0.55 0.37 0.52

Support Vector Ma-
chines (SVM)

0.63 0.52 0.61 0.47 0.34 0.46 0.50 0.38 0.47

Multilayer Perceptron
(MLP)

0.67 0.63 0.67 0.38 0.33 0.38 0.47 0.39 0.47

Table 2.4: Performance of classical machine learning models on SciEntsBank dataset.
Acc: Accuracy, M-F1: Macro-Average F1, W-F1: Weighted-Average F1.

(MLP) on three test sets for 3-way labeling. The table also includes the lexical

baseline from SemEval-2013 Task 7 [12]. MLP outperforms all other classifiers on the

Unseen Answers test set in all metrics. On the Unseen Questions test set, RF achieves

the highest scores in all metrics while achieving the same macro-averaged F1 as the

lexical baseline. On the Unseen Domains test set, RF yields the highest accuracy

and weighted-average F1 while MLP returns the best macro-averaged F1 among our

models but none of the models outperform the lexical baseline. Overall, MLP shows

superior performance over other ML models for intra-domain classification whereas

RF shows a high potential for transfer learning. We establish a new baseline for the

LLMs by taking the maximum score per test set and metric—a method chosen to

highlight the best potential performance of classical ML across different aspects—

which is denoted as “Baseline” in Table 2.5.

Table 2.5 presents the performance of LLMs on all test sets. The baseline indicates

that the LLMs have performed significantly better. The SemEval 2013 Task 7 results

are also presented in the table, which shows the maximum scores achieved by any

model/algorithm in that competition. These SemEval Best scores serve as another
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Classifier
Unseen Answers Unseen Questions Unseen Domains
Acc M-

F1
W-
F1

Acc M-
F1

W-
F1

Acc M-
F1

W-
F1

Baseline 0.67 0.63 0.67 0.56 0.39 0.53 0.58 0.42 0.55

SemEval 2013 Task 7
(the best score per set
and metric) [12]

0.72 0.65 0.71 0.66 0.47 0.63 0.64 0.49 0.62

BERT Base by Sung et
al., 2019 [27]

0.76 0.72 0.76 0.65 0.58 0.65 0.64 0.58 0.63

BERT Base by Zhu et
al., 2022 [30]

0.74 0.69 0.73 0.66 0.55 0.65 0.66 0.56 0.64

BERT-based DNN by
Zhu et al., 2022 [30]

0.77 0.71 0.76 0.69 0.58 0.67 0.66 0.56 0.65

RoBERTa (Large +
MNLI) by Camus and
Filighera, 2020 [8]

0.79 0.78 0.79 0.66 0.66 0.66 0.72 0.71 0.72

RoBERTa Large 0.76 0.71 0.75 0.65 0.54 0.66 0.67 0.60 0.67

RoBERTa Large MNLI 0.77 0.74 0.77 0.72 0.67 0.72 0.72 0.70 0.72

RoBERTa Large 2NLI 0.78 0.75 0.78 0.72 0.68 0.72 0.72 0.67 0.72

Table 2.5: Performance of large language models (LLMs) on SciEntsBank dataset.
Acc: Accuracy, M-F1: Macro-Average F1, W-F1: Weighted-Average F1.

point of comparison for the LLMs. The BERT-base fine-tuned by Sung et al. [27]

outperforms the SemEval Best in all test sets and metrics except UQ and UD on

the accuracy, whereas the BERT-base fine-tuned by Zhu et al. [30] outperforms the

SemEval Best in each test set and metric. However, the BERT-base fine-tuned by

Sung et al. [27] performs slightly better than the BERT-base fine-tuned by Zhu et

al. [30] based on weighted-average F1 (0.68 vs 0.67). BERT-based DNN performs

equally or better than both BERT-base models except for shows under-performance

for UA and UD on macro-averaged F1 compared to the BERT-base fine-tuned by

Sung et al. [27] (0.71 vs 0.72 and 0.56 vs 0.58, respectively). With a weighted average

F1 of 0.69, BERT-based DNN outperforms both BERT-base models. RoBERTa Large

underperforms compared to BERT-based DNN on UA and UQ but outperforms the
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model on UD in all metrics. RoBERTa Large MNLI outperforms all models on all

test sets and all metrics. RoBERTa Large MNLI significantly improves upon the

UQ and UD sets compared to any other models on any metrics. Notably, RoBERTa

Large MNLI shows closely similar performance on the UQ and UD sets portraying

little to no difference between unseen questions and domains while narrowing down

the performance gap with UA.

The RoBERTa Large model fine-tuned by Camus and Filighera [8] on the MNLI cor-

pus demonstrates similar performance to our own. While their model achieved higher

performance for the UA set on all metrics, our model excels on the UQ set. Notably,

both models exhibit almost identical performance on the UD set. We strongly at-

tribute the performance differences to our choice of hyperparameters, emphasizing

that batch size can significantly impact the scores as well. Unfortunately, we are

unable to compare and highlight the differences in our hyper-parameters since the

authors only mentioned the value of the learning rate (same as ours) and the batch

size of 16. Importantly, our results not only validate their model performance but

also reciprocally affirm our findings. It is crucial to emphasize that the objective of

this experiment is not solely to validate their model’s performance but rather to in-

vestigate the effect of fine-tuning on the MNLI corpus, shedding light on its influence

on model performance and its utility in transfer learning—an aspect unexplored by

Camus and Filighera [8].

Table 2.6 presents a performance comparison between RoBERTa Large and RoBERTa

Large MNLI based on F1 scores. It is evident that fine-tuning the model on the

MNLI corpus has significantly enhanced its capacity for semantic inference, resulting

in a notable boost in performance, especially within the contradictory class. This

improvement is most pronounced in the UQ and UD sets, with increases of 0.31 and
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Classifier
Unseen Answers Unseen Questions Unseen Domains
CR CN IN CR CN IN CR CN IN

RoBERTa Large 0.77 0.58 0.78 0.68 0.24 0.70 0.67 0.40 0.72

RoBERTa Large MNLI 0.78 0.65 0.78 0.70 0.55 0.76 0.71 0.64 0.75

Improvement 0.01 0.07 0.00 0.02 0.31 0.06 0.04 0.24 0.03

Table 2.6: Improvement in F1 scores illustrating the impact of MNLI corpus and
transfer learning in model performance on 3-way labeling scheme. CR: correct, CN:
contradictory, and IN: incorrect.

0.24, respectively. Additionally, the UA set demonstrates a respectable increase of

0.07.

Notably, the SciEntsBank dataset comprises a considerably smaller number of training

samples within the contradictory class, accounting for only 10% of the dataset (see

Table 2.1). As a consequence, RoBERTa Large initially exhibits comparatively lower

performance for contradictory when contrasted with both correct and incorrect across

all test sets. However, the fine-tuning of the model on the MNLI dataset has played a

pivotal role in enhancing its performance within this minority class through effective

transfer learning.

Table 2.7 illustrates the F1 scores of RoBERTa Large and RoBERTa Large MNLI,

along with a comparison in the context of the 5-way labeling scheme. When evaluating

the average of the weighted-average F1 scores across the test sets, RoBERTa Large

demonstrates superior performance in the 3-way labeling scheme compared to the

5-way labeling scheme (0.69 vs 0.56). While maintaining similar performance for the

correct class in UA and the contradictory class in UQ, there is an evident increase

in performance for the contradictory class in both UA (0.58 vs 0.69) and UD (0.40

vs 0.46), accompanied by a notable decrease in performance for the correct class in

both UQ (0.68 vs 0.61) and UD (0.67 vs 0.60), as the dataset transitions from the
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Test Set Model CR PC CN IR ND

Unseen RoBERTa Large 0.78 0.52 0.69 0.72 0.67
Answers RoBERTa Large MNLI 0.81 0.57 0.73 0.77 0.00

Improvement 0.03 0.05 0.04 0.05 -0.67

Unseen RoBERTa Large 0.61 0.33 0.25 0.49 -
Questions RoBERTa Large MNLI 0.60 0.42 0.54 0.59 -

Improvement -0.01 0.09 0.29 0.10 -

Unseen RoBERTa Large 0.60 0.27 0.46 0.51 0.61
Domains RoBERTa Large MNLI 0.68 0.38 0.64 0.64 0.74

Improvement 0.08 0.11 0.18 0.13 0.13

Table 2.7: Changes in F1 scores illustrating the impact of MNLI corpus and transfer
learning in model performance on 5-way labeling scheme. CR: correct, PC: Partially
correct but incomplete, CN: contradictory, IR: irrelevant, and ND: non-domain.

3-way to the 5-way labeling scheme (see Table 2.6 and 2.7). Intriguingly, the model

correctly identifies two out of three non-domain samples, mislabeling only one sample

from other classes.

RoBERTa Large MNLI exhibits a marginal performance improvement (0.03-0.05)

across all classes, except for the non-domain class in UA, where the model labels no

samples, resulting in a score of zero. In UQ, the model demonstrates similar per-

formance for the correct class, while showing a significant increase for other classes,

notably a boost of 0.29 for the contradictory class. In UD, there is a consistent per-

formance increase across all classes, with a minimum improvement of 0.08, and the

contradictory class experiences the most substantial improvement (0.18). Despite the

introduction of additional class labels and potential sample imbalances, the contra-

dictory class shows the most pronounced improvement in both labeling schemes and

across all test sets.

Recognizing the potential advantages of the MNLI corpus for enhancing the RoBERTa
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Classifier
Unseen Answers Unseen Questions Unseen Domains
CR CN IN CR CN IN CR CN IN

RoBERTa Large MNLI 0.78 0.65 0.78 0.70 0.55 0.76 0.71 0.64 0.75

RoBERTa Large 2NLI 0.79 0.66 0.79 0.72 0.59 0.75 0.72 0.64 0.73

Improvement 0.01 0.01 0.01 0.02 0.04 -0.01 0.01 0.00 -0.02

Table 2.8: Changes in F1 scores illustrating the impact of 2NLI corpus in model
performance on 3-way labeling scheme. CR: correct, CN: contradictory, and IN:
incorrect.

Large model, we pursued fine-tuning with RoBERTa Large 2NLI to explore the ef-

fects of fine-tuning the model across multiple NLI corpora. LLMs are known to be

data-hungry, and leveraging additional large corpora for fine-tuning can contribute

to enhanced model performance. In this context, the MNLI corpus stands out as

one of the largest corpora for RTE, boasting over 392K training samples. Given its

substantial size, the MNLI corpus might already provide sufficient training data, po-

tentially limiting the additional benefits gained from incorporating the SNLI corpus.

The comparative performance of RoBERTa Large MNLI and RoBERTa Large 2NLI

is detailed and analyzed in Table 2.8. RoBERTa Large 2NLI exhibits little to no

improvement over RoBERTa Large MNLI across all classes and test sets. The model

shows the highest performance increase for the contradictory class (0.04) in UQ and

a decrease for the incorrect class (-0.02) in UD. The extensive computing power re-

quired for fine-tuning over the SNLI corpus underscores a crucial observation: when

the initial corpus, such as MNLI, is substantial in size, the subsequent inclusion of an-

other large corpus, like SNLI, might not contribute to further improvements in model

performance. In essence, the findings highlight the diminishing returns of additional

corpora, emphasizing the need for judicious consideration of computational resources

in the pursuit of model training and optimization.
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2.5 Conclusions and Future Work

The ability to comprehend and accurately categorize student answers is a pivotal

aspect of automated scoring systems, and it holds great potential to assist students in

their educational pursuits. However, this task presents challenges, given the diverse

and intricate nature of student responses. Traditional rule-based approaches often

struggle to capture the subtleties and nuances of language usage. In contrast, Large

Language Models (LLMs) have exhibited exceptional performance in this domain

compared to classical machine learning methods.

Through our experimentation, we have uncovered a significant enhancement in model

performance by fine-tuning LLMs on the MNLI corpus. This fine-tuning equips the

model with a profound understanding of semantic inference, thereby contributing

to its improved performance. Our findings underscore the effectiveness of transfer

learning, a critical component for tasks such as Automated Short Answer Grading,

particularly for ensuring cross-domain adaptability and compliance.

In future research, this experiment can be expanded by including the SRA corpus,

which incorporates the Beetle dataset alongside the SciEntsBank dataset. Moreover,

given the limited scope for hyper-parameter tuning in the current study, a more thor-

ough investigation into optimal hyper-parameter configurations could be a valuable

avenue for future work. In addition, considering the continuous advancements in

language models, assessing the performance of more recent models such as Megatron-

Turing NLG or PaLM 2 on the SRA corpus presents another promising avenue for

future exploration.

The F1 score is a harmonic mean between precision and recall. In the context of
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ASAG, one can argue that recall takes precedence over precision and it is more

important to minimize false negatives [4]. As a potential enhancement for future

assessments, the consideration of the F-beta score, which allows the adjustment of

the balance between precision and recall, could provide a more nuanced evaluation

tailored to the specific needs. However, it is important to note that in multi-class

classification, an increase in recall for one label at the expense of an increase in false

positives will lower the recall of another label(s).
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Chapter 3

Automated Misconception Detection using LLMs

The educational framework is intricately designed to equip students with the funda-

mental knowledge and skills crucial for navigating a successful career and a life jour-

ney. However, within this carefully crafted system, the presence of misconceptions can

pose a significant impediment to a student’s educational journey [2]. Misconceptions,

whether arising from misunderstood concepts or incomplete information, can create

cognitive roadblocks that hinder the acquisition of accurate knowledge [25]. When

left unaddressed, these misconceptions tend to perpetuate, leading to a cascade of af-

tereffects that extend beyond the classroom. Students may find themselves grappling

with distorted understandings of foundational concepts, impacting not only their aca-

demic performance but also their ability to apply acquired knowledge in real-world

scenarios [25]. Therefore, addressing and rectifying misconceptions become crucial

steps in fostering a learning environment that nurtures genuine comprehension and

paves the way for sustained academic success and practical application of skills in

life [3].

Writing exercises play a pivotal role in evaluating students by fostering critical think-

ing, creativity, and metacognitive skills. The open-ended nature of these questions

compels students to delve deep into their understanding of concepts, encouraging

them to generate thoughtful and reasoned responses. Through articulating their

answers in writing, students not only demonstrate comprehension but also provide

insights into their unique thought processes, individual perspectives, and learning

progress. Therefore, writing exercises stand as an invaluable pedagogical tool for

- 25 -



academic assessment, enhancing the overall educational experience and preparing

students for both academic and real-world challenges.

In addition to their evaluative role, writing exercises serve as an effective means of

identifying misconceptions among students [4]. The process of translating knowledge

into written form requires a deeper engagement with the subject matter, increasing

the likelihood for students to recognize and address incomplete knowledge and simple

misunderstandings. Naturally, individuals interpret new information in the context

of their existing knowledge [25]. As part of the learning process, there is a tendency

to validate the new information against what is already known. However, if the new

information seamlessly aligns with existing knowledge without triggering conflicts, it

integrates into the individual’s knowledge and becomes a reference point for future

information [25]. Commonly, individuals do not doubt, question, or re-evaluate the

validity of their existing knowledge independently or when it is in contrast to new

information. Consequently, misconceptions go unnoticed and unaddressed by the

students. Educators who hold accurate knowledge can identify these misconceptions

by carefully examining student’s reflections of comprehension within products such

as writing exercises [20].

Detecting misconceptions in writing exercises can be a labor-intensive and time-

consuming task for educators [26]. Analyzing written responses requires a meticulous

examination of each student’s work, necessitating careful attention to detail and a

nuanced understanding of the subject matter [4]. Educators must navigate through

diverse perspectives and thought processes articulated in the student’s writings, iden-

tifying subtle nuances that may indicate misconceptions. Furthermore, providing

constructive feedback to address these misconceptions requires additional time and

effort [24]. The time commitment for detecting misconceptions demands the class to
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be reasonably small. As class sizes increase, this task becomes increasingly challeng-

ing, compromising the availability of educators to provide timely and comprehensive

feedback [22]. It not only stretches educators thin but also limits the scope of their

engagement, making it difficult to address misconceptions effectively in larger classes.

There is a growing interest in advancing the field of automated misconception de-

tection (AMD) systems [4]. The development of AMD involves the integration of

semantic inference, recognition of textual entailment, and the utilization of transfer

learning techniques. The inherent complexity of AMD lies in its ability to identify

subtle misconceptions or errors in a student’s reasoning, requiring a profound under-

standing of the subject matter and the prevalent misconceptions within that particu-

lar domain. To effectively fulfill this role, AMD heavily relies on transfer learning to

encapsulate domain-specific misconceptions, enabling the system to discern nuanced

misunderstandings that may arise in diverse educational contexts.

Several pioneering studies have endeavored to address or automate this intricate edu-

cational challenge through a variety of methodologies. Schmidt [25] identified several

misconceptions held by students related to chemical terms. They developed test ques-

tions that can be easily used by teachers to find out whether these misconceptions

appear in a learning group. They found that discussions among students have been

a good way of dealing with these problems. Danielsiek et al. [9] identified several

core topics that are prone to errors in algorithms and data structures. They verified

misconceptions known from the literature and identified previously unknown miscon-

ceptions related to algorithms and data structures. They reported on methodological

issues and pointed out the importance of a two-pronged approach to data collection.

Britos et al. [7] presented a work in progress that focuses on data mining tools used for

discovering programming misunderstandings of students. They used decision trees to
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discover knowledge in rule format that constitutes a model for detecting misconcep-

tions in learning processes. Michalenko et al. [21] introduced a novel NLP framework,

employing probabilistic classical machine learning models to detect misconceptions

in students’ textual responses. Yang et al. [29] took a unique approach by employing

concept maps and lists to diagnose misconceptions in circuit courses, encouraging stu-

dents to actively identify and rectify their misconceptions. Arbogast and Montfort [1]

delved into linguistic indicators derived from transcripts and computational grammar

to correlate linguistic changes with conceptual understanding in engineering topics.

Elmadani et al. [13] explored data-driven techniques to uncover students’ misconcep-

tions within interactions with Intelligent Tutoring Systems (ITSs), highlighting the

potential of ITS-based AMD. Goncher et al. [14] ventured into automated text analy-

sis, focusing on thematic analysis and high-level concept extraction from open-ended

student responses to assess conceptual understanding.

Despite these valuable efforts, AMD has received relatively little attention compared

to other educational assessment fields. The major drawback of previous methods

lies in their limited capacity to address nuanced misconceptions and the need for

manual rule-based coding, which is time-intensive and may lack scalability. However,

LLMs have the potential to revolutionize AMD. With their pre-trained knowledge

and contextual understanding, these models can efficiently capture complex linguis-

tic patterns indicative of misconceptions. Surprisingly, to date, no researchers have

harnessed the capabilities of LLMs for AMD, presenting a significant opportunity

to explore uncharted territory in the quest for advancing misconception detection in

education.

In this project, we aim to develop a framework that leverages the capabilities of LLMs

to detect common misconceptions prevalent among students enrolled in introductory
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STEM courses. We are collaborating with Montana State University to obtain data

for this endeavor, focusing on an introductory circuit analysis course titled EELE

201: Circuits I for Engineering [4]. Our overarching goal is to design and develop

an AMD system adaptable across a wide spectrum of STEM courses. By achieving

this, we intend to empower students to gain a deeper and clearer understanding of

the subject matter.

Our research and the outcomes of this project are structured into three phases. As

we progressed through each phase, we aimed to address the limitations identified in

the preceding stage, leveraging the lessons learned to enhance our methodology. Each

phase is allocated a dedicated section, where we thoroughly examine the associated

data, methodology, and results specific to that phase. Section 3.1 details the quiz

question used across all three phases to collect the student responses.

3.1 Writing Exercise

Figure 3.1 illustrates the quiz question employed to gather student responses for

this project. Becker and Plumb [2] conducted a comprehensive study spanning seven

semesters, examining the performance of students who failed the course. The findings

Consider the four-element circuit depicted below and
argue what will happen to the power (increase, decrease,
or remain the same) of each of the circuit's four elements
when the resistance of resistor R2 decreases. Treat all
elements as ideal including the independent voltage
source and thoroughly justify your response.

+ 

-

R1

R2 R3Vs

Figure 3.1: The question of the writing quiz employed to collect student responses. [4]
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revealed a direct correlation between the final grade and their performance on Exam

1. Becker et al. [3] developed this quiz with the dual purpose of identifying at-risk

students and detecting common misconceptions. Notably, this quiz is administered

on the fifth day of the class.

The instructions provided along with the quiz question have undergone evolution

over time. For instance, in the Fall of 2017, students heavily relied on formulas in

their responses. Consequently, future students were explicitly instructed to use as

few formulas as possible when answering the question. Despite these adjustments in

instructions, the core question has remained consistent throughout the entire project.

An example student response is presented below. In this instance, the underlined sen-

tence highlights a sequential misconception. The sequential misconception in electric

circuits is the belief that elements located further downstream from a source, such

as R2 and R3 in Figure 3.1, receive current after elements positioned closer to the

source, like R1.

Vs is an ideal component, so changing R2 will not affect it. R1 is in series
with iR23 so changing R2 will also not affect the power associated with it.
R3 will slowly have a decrease in power as R2’s resistance goes to 0, with
R2 at zero coinciding with no power in R3. R2 will increase in power,
because the current is going to increase with a decrease in resistance. So
Vs is the same, R1 is the same, R2 is larger and R3 is smaller.

3.2 Phase 1: Prelude

We initiated our work on this project in early 2021 upon receiving the initial dataset

from our collaborator. In this phase, our focus centered on the exploration and

assessment of the usability and potential of LLMs for AMD.
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Semesters F17 F18 S19 F20 Total

Number of responses 56 61 23 45 185

Shows misconception 11 9 9 0 29

No misconception 45 52 14 45 156

Table 3.1: Sample and label distribution of Dataset 101 across four semesters.

3.2.1 Datasets

3.2.1.1 Dataset 101

This inaugural dataset in the project comprises 185 student responses collected over

four semesters. Annotated with a single misconception known as the sequential mis-

conception, labels are assigned at the response level. The distribution of samples

across semesters and labels is detailed in Table 3.1. For model training, 60% of the

dataset (111 responses) is utilized, and the remaining 40% (74 responses) for testing.

3.2.1.2 Dataset 102

Upon analyzing the outcomes of the model fine-tuned on Dataset 101, a hypothesis

emerges that fine-tuning the model at the sentence level may enhance performance.

A notable limitation of Dataset 101 lies in labeling responses at the response level.

Consequently, Dataset 102 is created by reannotating responses presenting miscon-

ceptions at the sentence level. Out of 119 sentences across 29 responses featuring

misconceptions in Dataset 101, only 34 sentences are annotated with the misconcep-

tion. The training and testing distribution of this dataset mirrors Dataset 101.
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3.2.2 Model

We fine-tune BERT Base uncased [10] modeling the task as a binary classification

problem. The optimization process employs the Adam optimizer with ϵ = 1e − 8, a

learning rate set at 2e− 5, and a weight decay of 0.01. For model training, we utilize

the Binary Cross-Entropy loss function with a sigmoid layer. The fine-tuning process

is capped at a maximum of 50 epochs with an early stopping mechanism.

3.2.3 Results and Discussion

The performance of the BERT model is outlined in Table 3.2. Initially, we conduct

fine-tuning on Dataset 101, resulting in a model with a notable recall of 0.92 but

a comparatively lower precision of 0.31. Concurrently, we implement a rule-based

model employing keyword matching techniques within spaCy [4], which attains perfect

recall (1.0) coupled with a high precision of 0.63. In the context of misconception

detection, where identifying misconceptions is crucial for effective learning, recall

takes precedence over precision [4]. It is vital to avoid missing genuine misconceptions,

as these can significantly impact students’ understanding and progress. However,

achieving a moderate precision with the LLM remains essential for the feasibility of

our approach.

Model Dataset Precision Recall F1

Rule-based 101 0.63 1.00 0.77

BERT Base 101 0.31 0.92 0.47

BERT Base 102 0.61 0.92 0.73

Table 3.2: Performance of the rule-based and BERT Base models for detecting a
single misconception in student responses of Dataset 101 & 102.
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Considering the performance of the rule-based model, we hypothesize the necessity

of altering our fine-tuning approach. A meticulous examination of the responses

reveals that the majority of sentences are correct within a response presenting a

misconception. This observation prompts the hypothesis that fine-tuning the model

at the sentence level might enhance model performance. Consequently, we introduce

Dataset 102 and fine-tune the model at the sentence level by providing the remaining

sentences in the same response as context. To predict the labels at the response level

for comparison with the rule-based model, we utilize the model to predict labels at

the sentence level and assign the misconception label to the response if any sentences

within it are labeled as presenting the misconception. This approach significantly

elevates precision while maintaining the same recall, resulting in a notable increase

in F1 from 0.47 to 0.73.

In summary, the BERT model falls short of outperforming the rule-based model.

However, it is crucial to note that the rule-based method necessitates manual anal-

ysis of responses and the creation of keyword-matching rules for detecting miscon-

ceptions, presenting a significant obstacle to scalability. Some misconceptions even

require sentence-pair analysis [4], further complicating the process. LLMs automate

the feature extraction process and alleviate the challenges associated with the rule-

based approach. Despite achieving lower performance compared to the rule-based

model, LLMs successfully showcase their potential and utility in the task of detecting

misconceptions.

3.3 Phase 2: Foundation

Detecting misconception is inherently a data-driven problem. In early 2022, our

primary focus revolves around expanding the dataset to enhance model performance.
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Despite the course (our data source) being offered nearly every semester, the quantity

of responses is constrained by student enrollment. As we actively accumulate more

data, new challenges surface concerning data collection and processing. On one front,

we are engaged in the creation of an in-house data annotation web app, while on

the other front, we engage in enhancing the model performance and scrutinizing the

drawbacks of our approach. Subsequently, we formulate annotation guidelines for a

consistent and standardized annotation process.

3.3.1 Glechon: Annotation Web App

During the development of Dataset 101, student responses were collected on paper

and handwritten by the students during an in-class quiz. The digitalization of these

responses was carried out by a typist, who assigned a continuous numerical identifier

to each response. Annotations were then added using a text editor, with labels typed

next to the respective identifiers. For Dataset 102, a PDF file was generated, contain-

ing responses presenting misconceptions, and sentences were labeled by highlighting

them. With no standardized structure, annotations in both datasets were manually

organized into the required format for model training.

As we commenced the annotation of new data, the need for an annotation tool to

standardize the process became evident. Unfortunately, no readily usable annotation

tool was found, leading us to use Microsoft Word for annotating the responses. Soon

after transitioning to multiple labels, inconsistencies in labeling and formatting chal-

lenges emerged. Word processors lacked the capability to enforce a strict structure

and automatically extract responses along with labels. The current state necessitates

a time-consuming manual post-processing to format the data for model training. The

realization of the need for an annotation tool became evident to facilitate system-
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Figure 3.2: The dashboard of the Glechon web app, developed in-house to streamline
data annotation and processing. The dashboard presents a list of available datasets
(i.e., responses grouped semester-wise) along with their metadata and an action menu.

atic, efficient, and large-scale data collection. With no other viable options available

through the community, we dedicated our efforts to developing an in-house annotation

web app called Glechon1.

We take advantage of the Laravel framework2 to develop the web app. We prioritized

versatility in its design, ensuring its adaptability to various courses. The dashboard

(see Figure 3.2), presented in a tabular format, offers an overview of datasets, with

each dataset row containing essential metadata such as the course name, activity type,

year, semester, response count, and an accessible dropdown menu. The dropdown

1https://glechon.oxiago.com
2https://laravel.com
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Figure 3.3: A overview of the annotation page featuring a response with four sen-
tences. The label menu for the third sentence is open, displaying the available labels.

menu, tailored to user roles, offers a range of actions, including viewing, editing,

annotating, exporting, and deleting datasets. Additionally, users have the option to

import datasets from files or URLs. An independent web app is currently under

development to collect student responses digitally. Importing datasets via URLs will

allow us to import student responses directly from another server in the future.

Within the annotation interface (see Figure 3.3), all responses from a dataset are

displayed, each presented in an individual table complete with a unique identifier.

Responses may consist of multiple sentences, each enumerated and displayed in sep-

arate rows. Each row features two multi-tag boxes—one for labels and another for

selecting sentences providing context for the chosen label. In anticipation of numerous

labels, both multi-tag boxes incorporate search functionality. Annotators can apply

multiple labels to a sentence and specify context sentences per label (see Figure 3.4).

For convenience, each response includes a dedicated save button, allowing annotators
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Figure 3.4: A glimpse of the annotation page featuring a sentence annotated (unsaved)
with two labels and the respective context menu populated with options based on the
selected labels.

Figure 3.5: A snapshot showcasing a user invitation email with a unique code on the
left and the user registration form on the right.
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Figure 3.6: A screenshot of the user management page illustrating the current role of
various users and providing options to assign roles or remove users from the system.

to pause and easily track their progress. The input boxes are color-coded, with amber

indicating never annotated, red for unsaved, and green for successfully saved.

To ensure security, the application is safeguarded behind a login page, with all com-

munication encrypted. Only administrators have the ability to invite new users by

providing their email addresses in the system. An automated email containing a

unique code (see Figure 3.5) is sent to the provided address to prevent the creation of

malicious accounts. After a user signs up, administrators have the authority to assign

roles and customize permissions (see Figure 3.6). User permissions can be tailored

to include specific actions within the app. Furthermore, we have implemented role-

based user permissions, simplifying the assignment of permissions to common user

roles, such as annotators, for efficient and streamlined access control.

Users with appropriate permissions have the capability to export any dataset in JSON
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Source Dataset 102 F21 S22 Total

Number of responses 185 42 27 254

Shows misconception 29 9 5 43

No misconception 156 33 22 211

Table 3.3: Sample and label distribution of Dataset 201 across Dataset 102 and two
new semesters.

format, a widely recognized and supported file format. The JSON file schema de-

tailing the organization and structure of a dataset is depicted in Appendix B. The

exported file encompasses dataset metadata, responses segmented into sentences, and

annotations for each sentence from every annotator, all organized in a standardized

format. The application also incorporates API support, providing users with tokens.

This allows users to employ the API through programming scripts, enabling direct

data retrieval from the server and seamless integration into their model training.

3.3.2 Enhancing Model Performance

3.3.2.1 Dataset 201

We gather responses from two additional semesters (Fall 2021 and Spring 2022) and

annotate the datasets at the sentence level for sequential misconceptions. This new

dataset is created by combining the annotated data from these two semesters with our

existing Dataset 102. The sample and label distribution of this dataset is illustrated

in Table 3.3. Among the 14 new responses presenting misconceptions, 20 sentences

are annotated with the label. For model training, 60% of the dataset (152 responses)

is utilized, while the remaining 40% (102 responses) is allocated for testing.
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3.3.2.2 Model

We employ the same approach and hyperparameters used for fine-tuning our model

on Dataset 102, with a couple of modifications, to fine-tune a BERT Base uncased

model on Dataset 201. A notable change is the warming up of the learning rate over

the initial 500 steps. Additionally, we fine-tune the model using only the preceding

sentences, if any, as context. When evaluating a response, the identification of a mis-

conception in a given sentence is solely based on the information from the preceding

sentences. If a misconception is identified in light of a following sentence, the label

should be assigned to the latter sentence. This is because the information necessary

to detect the misconception was not available until the latter sentence was reached.

3.3.2.3 Results and Discussion

The performance of the model is presented in Table 3.4. The model’s precision has

slightly increased (0.63 vs. 0.61), while the recall has notably decreased (0.88 vs.

0.92). Despite the changes in precision and recall, the F1 score remains consistent

(0.73). These scores indicate that the additional data did not contribute to improving

the model’s performance as anticipated.

We experimented with various sets of hyperparameters, but the model’s performance

Dataset Precision Recall F1

102 0.61 0.92 0.73

201 0.63 0.88 0.73

Table 3.4: Performance of BERT Base model for detecting a single misconception in
student responses of Dataset 201.
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did not show any improvement. Subsequently, we shifted our focus to identifying

potential reasons behind the challenge in enhancing the model’s performance. Upon

a meticulous examination of the data, we discovered many responses, primarily from

Dataset 101/102, to be highly noisy. Numerous responses contain misspellings and

incomplete sentences, while some sentences are challenging to comprehend even for

humans. Additionally, certain students have utilized diagrams or computations to an-

swer questions, which were omitted during the transcription process. Unfortunately,

the original copies of the responses from Dataset 101 were unavailable, preventing us

from curating the data. However, unused responses from several other semesters were

unearthed, prompting us to redirect our efforts toward creating a new dataset with

seven misconceptions addressing the issues observed in our past datasets.

3.3.3 Annotation Guidelines

As we commence our work on developing the new dataset across multiple semesters

and seven misconceptions, it becomes imperative to construct annotation guidelines to

ensure consistent policies and procedures are followed throughout the entire process.

These guidelines provide the annotation team with a set of rules and instructions

for the annotation process and equip the NLP team with a profound understanding

of the process of detecting misconceptions in responses. These insights provide us

with a means of designing a new approach and making design decisions for model

training in the next phase. We utilize these guidelines to annotate responses from

eight semesters, spanning from the Fall of 2019 to the Fall of 2023. The annotation

guidelines are listed below:

1. A response contains one or more sentences. When tagging the sentences, pre-

defined misconception labels should be used where applicable.
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2. If a response indicates a misconception, at least one sentence should be tagged

with that misconception. However, a sentence can be incorrect and yet express

no misconceptions. In such cases, the sentence should not be tagged with any

misconceptions.

3. There are two scenarios in which a sentence may exhibit a misconception:

(a) A sentence displays the misconception by itself and does not require any

context from other sentences in the response. In this case, the sentence

should be tagged with the misconception, and no sentences should be se-

lected as context.

(b) A sentence requires context from one or more preceding sentences to exhibit

misconceptions. In this case, the last sentence in the group that exhibits

the misconception should be tagged with the misconception, and the other

sentences in the group should be mentioned as context. Only the last

sentence in the group should be tagged with the misconception because

the misconception is detected only after reading the last sentence.

4. There may be cases where two or more groups of sentences express the same

misconception independently in the same response. In such cases, the last sen-

tence in each group must be different, but the two groups may contain common

context sentences. The last sentence of each group should be tagged with the

misconception type, and the other sentences within the groups should be marked

as context, including common sentences. In a rare case where the last sentence

from the former group provides context to the latter group, the last sentence

from the former group should be tagged with the misconception as part of the

former group and also mentioned as context as part of the latter group.

5. It is important to note that other sentences should not be mentioned as context

for a sentence if the sentence is not tagged with any misconceptions.
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6. In rare cases of a sentence containing multiple misconceptions, it should be

tagged with each applicable label. Then, context sentences should be added for

each misconception.

3.4 Phase 3: Transformation

The emergence of a new dataset, comprising over 300 responses annotated with seven

misconceptions, not only revitalized our research efforts but also unlocked doors to

new possibilities. These seven misconception label types are described elsewhere [4].

Leveraging this dataset, we fine-tune one of the largest and most powerful LLMs in

the BERT series. We meticulously analyze and prepare the dataset for fine-tuning,

and employ various strategies to enhance the model performance.

3.4.1 Dataset 301

To address the issues encountered with Dataset 201, the research team ensured to

receive unchanged digital copies of the responses for each semester. We utilized a

sentence tokenizer from spaCy3 for sentence segmentation, complemented by regular

expressions to identify undetected sentence boundaries (only a few cases) by matching

terminal punctuations between words. A Python script was employed to organize the

responses into the JSON structure (see Appendix B) defined for Glechon. Each re-

sponse underwent a meticulous review, addressing mis-spellings and potential typos,

as mis-spelled words can introduce noise for most LLMs in the BERT series, im-

pacting tokenization. Grammatical errors, if present, were retained, as altering them

3https://spacy.io
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might compromise the originality of the responses. During this review, we seman-

tically segmented sentences that remained undetected due to a lack of punctuation

or complex sentence structure. This detailed formatting process was necessary, con-

sidering that most, if not all, of these limitations is expected to be resolved in the

future as responses are collected through a web-based app with native browser-based

spell-checking enabled.

The student composition in a course changes every semester, and it is not uncom-

mon to have multiple instructors teaching the same course concurrently in sections

or interchangeably from one semester to another. Several factors can influence the

student’s knowledge base, leading to variations in their performance and the quality

of their responses across semesters. For instance, Becker and Plumb [2] established a

strong correlation between students’ performance on Exam 1 of EELE 201 (our data

source) and their performance in a prerequisite course, Calculus II. Additionally, as

mentioned earlier, the instructions provided with the quiz questions have evolved over

time. Instructors continually refine their teaching methods to enhance the learning

experience for their students. Consequently, training a model with data from one

semester and testing it on responses from different semesters may result in unreli-

able outcomes. To address this, we store and annotate responses separately for each

semester. This organizational strategy later facilitates the development of training,

validation, and test sets by incorporating responses from various semesters, ensuring

diversity in the dataset splits.

Table 3.6 illustrates the number of responses per label and their distribution across

semesters. The full title of the abbreviated labels are listed in Table 3.5. We have

annotated the responses at the sentence level, and the distribution of sentences across

labels and semesters is presented in Table 3.7. It is important to acknowledge that
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Abbreviation Full Name
CEE Conservation of Energy Errors
CVE Constant Voltage Errors
IIVSM Ideal Independent Voltage Source Misconception
LM Localized Misconception
PCM Precedence of Current Misconception
RCE Resistor Combination Errors
SM Sequential Misconception

Table 3.5: Abbreviations and full titles of the misconception labels in Dataset 301.
The full definitions of these seven misconception label types are provided elsewhere [4]

Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

Number of responses 57 46 26 42 27 47 26 42 313
Shows misconception 31 19 10 28 17 23 13 35 176
No misconception 26 27 16 14 10 24 13 7 137

CEE 0 0 2 2 2 2 0 3 11
CVE 9 8 4 8 7 6 3 7 52
IIVSM 8 6 1 6 1 6 3 5 36
LM 1 0 0 1 2 2 0 2 8
PCM 1 0 2 0 2 4 1 0 10
RCE 14 5 0 10 5 2 5 10 51
SM 7 4 4 9 4 11 5 14 58

Table 3.6: Distribution of collected responses across eight semesters and seven mis-
conceptions. Please note that the three rows (e.g., Number of responses) in the top
section of the table are not sums of any numbers in that column since the responses
are annotated at the sentence level with multiple labels.

certain sentences carry multiple labels, with the count reflected under each applica-

ble label. Notably, in both tables, the Number of responses and Shows misconception

rows do not represent any sums derived from the lower part of the table. The Shows

misconception row indicates the count of samples presenting at least one misconcep-

tion, while the No misconception row signifies samples devoid of any misconceptions.
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Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

Number of sentences 317 212 143 257 186 284 165 227 1,791
Shows misconception 44 29 16 41 28 37 19 76 290
No misconception 273 183 127 216 158 247 146 151 1501

CEE 0 0 2 2 2 2 0 3 11
CVE 10 9 5 11 10 6 3 12 66
IIVSM 8 6 1 7 1 7 3 6 39
LM 1 0 0 1 2 2 0 3 9
PCM 1 0 2 0 3 4 1 0 11
RCE 17 9 0 11 5 2 6 11 61
SM 8 5 7 10 5 14 7 24 80

Table 3.7: Distribution of sentences, in the collected responses, across eight semesters
and seven misconceptions.

3.4.1.1 Filtering Training Data

Sentences from merely six responses across five semesters have been annotated with

multiple labels. While detecting misconceptions inherently involves a multi-label

classification, our dataset lacks the comprehensive information needed to address it

as such. Given this limitation, our primary emphasis lies in modeling the data for

multi-class classification. Recognizing the presence of a few responses with multiple

labels, we have opted to exclude these six responses entirely from our training data.

In our previous datasets, we encountered responses that consisted of only 1-2 sen-

tences. Some of these responses were deemed too brief for effective misconception

detection, as comprehensive details are crucial for accurate analysis. Figure 3.7 illus-

trates a histogram of response distribution based on the number of sentences, with

the majority containing 3-5 sentences. Notably, 20 responses consist of only 1-2 sen-

tences. However, sentence length varies, and a response with two lengthy sentences

can provide sufficient information to identify misconceptions. Therefore, solely re-
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Figure 3.7: Distribution of responses based on the number of sentences.

lying on the number of sentences as a criterion for removal is not deemed optimal.

Consequently, we extended our analysis to consider response length in terms of to-

kens. Figure 3.8 presents a histogram based on the number of tokens, revealing that

the majority of responses contain around 105 tokens. There are 39 responses with less

than 70 tokens and 19 responses with less than 50 tokens. To address the challenge

of short responses while minimizing data loss, we set the token threshold at 60 and

remove 25 responses. A few responses with less than three sentences met the token

threshold and remain in the training data.

LLMs have a token limit for input data, and truncation is a common strategy to

manage lengthy inputs. However, due to our specific input design for the model

(see section 3.4.2), truncating inputs was not a viable option. Upon finalizing the

structure of the inputs (see section 3.4.2), we were restricted to only 349 tokens for
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Figure 3.8: Distribution of responses based on the number of tokens.

each response. Fortunately, only one response exceeded this limit with 384 tokens.

Given the absence of options to increase the token limit or accommodate this response

within the derived limit, we decide to exclude it from our training data.

In previous phases, we evaluated our models at the response level to compare their

performance with the rule-based model. However, in this phase, developing a rule-

based model became impractical. Consequently, we decided to assess our models at

the sentence level, aligning more realistically with the task of misconception detection.

While some misconceptions are common among students, others are very rare. Out

of the seven misconceptions used to annotate the dataset, there are only a handful of

responses under CEE, LM, and PCM (refer to Table 3.6). These labels lack sufficient

responses to be distributed across train, validation, and test sets. Therefore, we opt

to exclude these labels from fine-tuning, retaining the responses without these labels.
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Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

Number of responses 52 41 22 37 26 46 21 36 281
Shows misconception 27 19 6 21 13 18 10 22 136
No misconception 25 22 16 16 13 28 11 14 145

CVE 8 8 4 7 7 6 3 7 50
IIVSM 8 6 0 4 1 6 2 4 31
RCE 12 5 0 7 5 2 4 8 43
SM 7 4 3 9 4 11 3 12 53

Table 3.8: Distribution of responses across eight semesters and four misconceptions
in Dataset 301.

Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

CVE 9 9 5 9 10 6 3 12 63
IIVSM 8 6 0 5 1 7 2 4 33
RCE 15 9 0 8 5 2 4 8 51
SM 8 5 6 10 5 14 4 20 72

Shows misconception 40 29 11 32 21 29 13 44 219
No misconception 264 170 117 211 162 252 125 167 1468
Number of sentences 304 199 128 243 183 281 138 211 1687

Table 3.9: Distribution of sentences across eight semesters and four misconceptions
in Dataset 301.

The distribution of responses and sentences after all filtering is shown in Table 3.8

and Table 3.9, respectively.

3.4.1.2 Training Splits

We divide the training data into three sets: train, validation, and test. Although we

are fine-tuning at the sentence level, we cannot split the data at the sentence level

due to the design of the input to the models. A response should be entirely assigned

to at most one set.
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Considering the diversity of responses, it is essential to construct each set with re-

sponses balanced across all semesters. However, some semesters have too few re-

sponses to consider for the test or validation set, such as IIVSM in S22 or S23. To

simplify the process, we focus on assembling the test and validation set first and then

constructing the train set from the remaining responses. We set a simple rule to

decide whether to use responses from a given semester for a given label. We calculate

the median number of responses across semesters for each label. Then, we designate a

semester as a potential source for the test or validation set if the number of responses

from that semester is greater than or equal to the median number of responses for

that label.

Since responses are annotated with multiple labels, we also need to consider the label

distribution while splitting the data. Otherwise, a split may result in no responses

Figure 3.9: A Venn diagram illustrating the distribution of responses among five
distinct labels, demonstrating the uniqueness and overlap in occurrences of miscon-
ceptions within Dataset 301. The None label represents no misconception.
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for a particular label. To gain insights into the overlap of labels, we plot a Venn

diagram with the number of responses per label, as shown in Figure 3.9. The label

none in the Venn diagram represents the absence of misconceptions in responses in

the non-overlapping region and in sentences within regions that overlap with other

labels. Figure 3.10 illustrates the number of responses per number of labels, where

zero denotes no labels. For the test and validation sets, we aim to maintain this

distribution as closely as possible.

We require a substantial portion of the data for fine-tuning, especially given the

complexity of the problem. However, it is equally crucial to have sufficient samples

in the test and validation sets to effectively evaluate the models. Considering the

dataset size, distribution of responses, and the distribution of the number of miscon-

ceptions per response, we set the test and validation sizes to each be 35 responses.

To eliminate bias, we randomly select the responses from a uniform distribution. The

distribution of the number of misconceptions per response in the three sets is shown

in Figure 3.11. The distribution of responses in train, validation, and test sets is

depicted in Table 3.10, Table 3.11, and Table 3.12, respectively. The distribution of

sentences in train, validation, and test sets is depicted in Table 3.13, Table 3.14, and

Table 3.15, respectively.

3.4.2 Fine-tuning Approach and Design Decisions

Misconception detection demands domain and subject knowledge. Large Language

Models (LLMs) are pretrained on extensive corpora for general language compre-

hension. While LLMs can be fine-tuned for specific tasks, it is crucial to note that

discriminative LLMs do not inherently acquire domain knowledge through this pro-

cess. Pretraining LLMs specifically for domain knowledge is a resource-intensive and
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Figure 3.10: Distribution of responses based on the number of misconceptions per
response in Dataset 301. The first bar signifies responses with no misconceptions.

(a) Train (b) Validation / Test

Figure 3.11: Distribution of responses based on the number of misconceptions per
response in train, validation, and test sets. The first bar in each subplot signifies
responses with no misconceptions.
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Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

Number of responses 36 31 22 24 26 29 21 22 211

Shows misconception 18 14 6 14 13 14 10 13 102

No misconception 18 17 16 10 13 15 11 9 109

CVE 6 6 4 5 7 6 3 2 39

IIVSM 5 4 0 3 1 3 2 4 22

RCE 7 3 0 4 5 2 4 6 31

SM 4 4 3 6 4 9 3 6 39

Table 3.10: Distribution of responses across labels and semesters in the train set.

Misconceptions F19 S20 F21 F22 F23 Total

Number of responses 6 5 6 11 7 35

Shows misconception 4 2 3 4 4 17

No misconception 2 3 3 7 3 18

CVE 1 1 1 0 3 6

IIVSM 1 1 0 3 0 5

RCE 2 1 2 0 1 6

SM 0 0 1 2 3 6

Table 3.11: Distribution of responses across labels and semesters in the validation
set.

Misconceptions F19 S20 F21 F22 F23 Total

Number of responses 10 5 7 6 7 35

Shows misconception 5 3 4 0 5 17

No misconception 5 2 3 6 2 18

CVE 1 1 1 0 2 5

IIVSM 2 1 1 0 0 4

RCE 3 1 1 0 1 6

SM 3 0 2 0 3 8

Table 3.12: Distribution of responses across labels and semesters in the test set.
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Misconceptions F19 S20 S21 F21 S22 F22 S23 F23 Total

CVE 7 7 5 7 10 6 3 3 48

IIVSM 5 4 0 4 1 4 2 4 24

RCE 9 6 0 4 5 2 4 6 36

SM 4 5 6 7 5 12 4 8 51

Shows misconception 25 22 11 22 21 24 13 21 159

No misconception 189 128 117 133 162 165 125 97 1116

Number of sentences 214 150 128 155 183 189 138 118 1275

Table 3.13: Distribution of sentences across labels and semesters in the train set.

Misconceptions F19 S20 F21 F22 F23 Total

CVE 1 1 1 0 5 8

IIVSM 1 1 0 3 0 5

RCE 2 2 2 0 1 7

SM 0 0 1 2 7 10

Shows misconception 4 4 4 5 13 30

No misconception 26 22 37 52 37 174

Number of sentences 30 26 41 57 50 204

Table 3.14: Distribution of sentences across labels and semesters in the validation set.

Misconceptions F19 S20 F21 F22 F23 Total

CVE 1 1 1 0 4 7

IIVSM 2 1 1 0 0 4

RCE 4 1 2 0 1 8

SM 4 0 2 0 5 11

Shows misconception 11 3 6 0 10 30

No misconception 49 20 41 35 33 178

Number of sentences 60 23 47 35 43 208

Table 3.15: Distribution of sentences across labels and semesters in the test set.
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costly endeavor, and it falls outside the scope of our project. Consequently, we must

impart subject knowledge to LLMs through the input. Drawing from our experience

with the ASAG project (Chapter 2), we conceptualize misconception detection as

a Recognizing Textual Entailment (RTE) problem. In this framework, we map the

response as a hypothesis and provide the requisite knowledge through the premise.

The selection of the premise is crucial in RTE tasks, as it involves determining if

the hypothesis entails the premise. In our case, the quiz question contains valuable

information for the model, given the models’ lack of background or subject knowledge.

Omitting the question would be akin to expecting the model to extract an answer

from a passage without providing a question. Additionally, based on our previous

study [16], we have observed that questions offer valuable context to the models.

However, the quiz question includes a circuit diagram, and we cannot input images

into a text model. To address this issue, we extend the quiz question by describing

the circuit diagram using words.

The question alone is insufficient to equip the model with the necessary knowledge

since it provides only context and lacks a reference point for entailment. To address

this, we augment the premise with a reference answer, following our established prac-

tice from the ASAG project. We concatenate the quiz question and the reference

answer with a single space. The same premise is used for all inputs to the model.

The input size of LLMs is restricted by a predetermined number of tokens, established

during pre-training. For this task, we utilize a RoBERTa Large LLMs [19], which has

a token limit of 512. Consequently, the combined length of the premise and hypothesis

cannot exceed 509 tokens. This poses a challenge since the reference answer provided

by the instructor is 352 tokens long. To overcome this limitation and ensure there

- 55 -



is sufficient space for the hypothesis, we focus on condensing the token count in

the premise. We address this challenge by manually summarizing both the question

and the reference answer, resulting in 62 tokens (43 words) for the question and 98

tokens (76 words) for the reference answer, while preserving essential information. In

summarizing the reference answer, we aimed to succinctly convey the changes in power

and the reasons behind them using as few words as possible. This yields a premise

of 160 tokens, leaving 349 tokens for the hypothesis. The summarized question and

reference answer are provided below:

Question: Resistors R1 and R2 are connected in series with a voltage

source Vs and resistor R3 is connected in parallel to R2. When the re-

sistance of R2 decreases, will the power on R1, R2, R3, and Vs increase,

decrease, or remain the same?

Reference Answer: As the resistance of R2 decreases, the power of R1

will increase since P=I^2R and the current flow increases. The power

consumed by the Vs will increase, as it carries more current through the

decreasing equivalent resistance. The power of R3 will decrease because

less voltage drops across the parallel combination of R2 and R3. As R2

approaches zero resistance, the power of R2 will eventually decrease to

zero, as it will sustain no voltage drop.

Our data is annotated at the sentence level. Some misconceptions exhibit inter-

sentence dependencies, making them challenging to detect when analyzing sentences

independently, even for instructors. Furthermore, we instructed annotators to list

context sentences, if any, along with the labels. Upon reviewing the annotations, we
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observed that in many cases, a sentence presents a misconception only in the context

of a preceding sentence. Therefore, it is crucial to include the preceding sentences in

the input.

The inclusion of preceding sentences raises a dilemma of how to incorporate these

sentences into the inputs. On one hand, a common practice is to use the premise

to input all context to the model. However, the preceding sentence may contain

misconceptions or incorrect information, introducing noise or contradiction in the

premise and potentially harming the model’s performance. Therefore, incorporating

the preceding sentences in the premise is not an option. On the other hand, adding the

preceding sentences can divert the model’s attention from the sentence we are asking

the model to classify. To keep the preceding sentences separate from the classifying

sentence, we concatenate them with a newline character. Since all the sentences

in a response are collapsed into a single paragraph and have been segmented into

sentences, a response cannot contain a newline character. Thus, we chose the newline

character as glue in the hypothesis and hypothesized (due to the black-box nature of

the models) that it would be recognized by the model as a separator. In the case of

the first sentence of a response, we employed an empty string in place of the preceding

sentences. In other words, the hypothesis begins with a newline character.

Due to the design of our input structure, any form of truncation would lead to the

loss of information. Truncating the premise would jeopardize the reference answer.

Placing the classifying sentence at the beginning would compromise context and de-

pendencies from the preceding sentences. Positioning the classifying sentence at the

end would compromise the sentence itself. Consequently, we have disabled truncation

and ensured the hypothesis adheres to the token limit.
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3.4.3 Model

We fine-tune RoBERTa Large MNLI using the Adam optimizer with ϵ = 1e − 8, a

learning rate of 1e− 5, a weight decay of 0.01, and Cross Entropy Loss function. The

training is warmed up linearly over the first 10% of the data. The fine-tuning process

lasts for a maximum of 20 epochs with early stopping. A batch size of 5 is utilized.

Model performance is recorded after each epoch, and the best model is selected based

on the epoch displaying the highest macro F1 score on the validation set.

The responses contain domain-specific words that may be unfamiliar to the model’s

tokenizer. Such words are segmented into smaller subword units recognizable by

the tokenizer. However, when segmentation is not possible, the tokenizer marks

these words as unknown and they are subsequently ignored by the model. Given

the substantial weight and semantic context carried by domain-specific words in this

task, it is crucial to incorporate them into the tokenizer’s vocabulary and the model’s

embeddings. To achieve this, we employ spaCy for tokenization and generate a list

of all unique words present in the dataset. Subsequently, we compare this list with

the tokenizer’s vocabulary (case-sensitive) to identify words unknown to the model.

We have identified and added the following 27 words to the model’s vocabulary:

1. G1

2. G2

3. G3

4. I1

5. I2

6. I3

7. Ieq

8. KCL

9. KVL

10. Kirchhoff

11. P1

12. P2

13. P3

14. R1

15. R2

16. R3

17. Reff

18. Req

19. Rn

20. Rtot

21. Rtotal

22. V1

23. V2

24. V3

25. Vout

26. amperage

27. wattage
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Remarkably, we discovered that many domain-specific words are already present in the

model’s vocabulary. Examples include R, Vs, W, Amps, Ohm, and current. R denotes

resistor and Vs refers to a voltage source (i.e., battery) in the electrical engineering

domain. Although these terms exist in the model’s vocabulary, the specific meanings

of words like R and Vs to the model remain unknown to us.

3.4.4 Results and Discussion

The comprehensive performance of our models is illustrated in Table 3.16. Initially,

we fine-tune a RoBERTa Large MNLI model with input tokenized using the stock

tokenizer (i.e., the tokenizer with the original vocabulary), codenamed ST (Stock To-

kenizer). Subsequently, we fine-tune another RoBERTa Large MNLI model using our

tokenizer with an extended vocabulary, referred to as ET (Extended Tokenizer). The

ET model significantly outperforms the ST model in terms of recall (0.60 vs. 0.55) and

F1 score (0.60 vs. 0.54). However, the ST model exhibits marginally better precision

(0.64 vs. 0.63) than the ET model. To validate the importance of preceding sentences

as context, we fine-tune a RoBERTa Large MNLI model, codenamed LC (Limited

Context), at the sentence level without incorporating the preceding sentences in the

inputs. The ET model surpasses the LC model across all metrics, showcasing the

significance of preceding sentences in providing valuable context and improving both

precision (0.58 vs. 0.63) and recall (0.55 vs. 0.60). The epoch column denotes the

training epoch at which the model achieves the highest F1 on the validation set. No-

tably, the ET model has a lower epoch than both ST and LC models and verifies the

effectiveness of our design.

The performance of the ET model for each label is detailed in Table 3.17. The ET

model excels in detecting SM, boasting perfect precision (1.00) and a recall of 0.64.
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Valid Test
Model Epoch P R F1 P R F1

ST (Stock Tokenizer) 15 0.45 0.42 0.42 0.64 0.55 0.54
LC (Limited Context) 19 0.60 0.56 0.55 0.58 0.55 0.56
ET (Extended Tokenizer) 12 0.61 0.56 0.57 0.63 0.60 0.60

Table 3.16: Performance of RoBERTa Large MNLI multi-class models fine-tuned on
Dataset 301 with three distinct configurations.

Valid Test
Label P R F1 P R F1

CVE 0.19 0.38 0.25 0.21 0.43 0.29
IIVSM 0.40 0.40 0.40 0.33 0.25 0.29
RCE 0.83 0.71 0.77 0.67 0.75 0.71
SM 0.67 0.40 0.50 1.00 0.64 0.78
No misconception 0.94 0.93 0.93 0.95 0.93 0.94

Macro Average 0.61 0.56 0.57 0.63 0.60 0.60
Weighted Average 0.88 0.86 0.87 0.90 0.88 0.89

Table 3.17: Performance of the RoBERTa Large MNLI model with extended tokenizer
(ET), the best multi-class model, with scores detailed per misconception label.

Valid Test
Model Epoch P R F1 P R F1

BIN RES 3 0.86 0.71 0.78 0.67 0.71 0.69
BIN SENT 5 0.65 0.73 0.69 0.67 0.67 0.67
BIN CVE 7 0.43 0.38 0.40 0.50 0.57 0.53
BIN IIVSM 10 0.00 0.00 0.00 0.00 0.00 0.00
BIN RCE 5 1.00 0.71 0.83 0.86 0.75 0.80
BIN SM 4 0.73 0.80 0.76 0.73 0.73 0.73

Table 3.18: Performance of six RoBERTa Large MNLI binary models fine-tuned on
Dataset 301 at the response and sentence levels, and one for each misconception label.

It achieves the highest recall on RCE (0.75) with the second-best precision (0.67) and

F1 score (0.71). However, the model faces challenges in detecting CVE and IIVSM,

attaining the same F1 score (0.29) for these labels with a higher recall on CVE (0.43
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vs. 0.23). A notable observation is that the model, despite having twice the sample

size for CVE (48) compared to IIVSM (24) and only a few samples less than SM (51),

achieves the lowest F1 on CVE. This suggests that detecting CVE in responses is

inherently more complex than the other labels. Remarkably, the model achieves an

F1 of 0.94 in detecting sentences with no misconceptions.

The ET model demonstrates superior performance compared to the BERT model fine-

tuned on Dataset 201. While predicting three additional labels, it also outperforms

the BERT model on SM achieving a higher F1 score (0.78 vs. 0.73) and an F1 score

of 0.71 for another label, RCE. Although the ET model exhibits a lower recall (0.64

vs. 0.88) than the BERT model on SM, it significantly enhances precision (1.00 vs.

0.63), which may serve as a foundation for further improvements in F1. This improved

performance underscores the effectiveness of our model design.

To gain valuable insights into the challenges and complexities of detecting misconcep-

tions in general and specific instances, we fine-tune six binary models using RoBERTa

Large MNLI, prefixed with BIN for binary, and the scores are presented in Table 3.18.

First, we fine-tune a binary model, codenamed BIN RES, to detect the presence of

any misconceptions at the response level. The BIN RES model exhibits higher scores

on each metric, notably a significantly higher recall (0.71 vs. 0.60) than ET. This

suggests that detecting misconceptions, in general, might share common patterns

and supports our choice of approaching misconception detection as an RTE problem.

Second, we fine-tune another binary model, codenamed BIN SENT, to investigate

how the challenge of detecting the presence of misconceptions changes when transi-

tioning from the response to the sentence level. The BIN SENT model achieves a

lower recall (0.67 vs. 0.71) compared to the BIN RES model while maintaining the

same precision. This indicates that detecting misconceptions at the sentence level
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is harder than at the response level. However, the BIN SENT model outperforms

the ET model in all metrics, particularly in F1 (0.67 vs. 0.60). This result further

supports our hypothesis that common patterns across different misconception types

make it easier to detect misconceptions in general.

Third, we fine-tune a binary model for each misconception label at the sentence level.

These misconception-specific models are codenamed with the prefix BIN, followed by

their corresponding label name. The BIN CVE model significantly outperforms the

ET model in all metrics, particularly in precision (0.50 vs. 0.21) and F1 (0.53 vs.

0.29), for detecting CVE. Similarly, the BIN RCE model exceeds the ET model in

precision (0.86 vs. 0.67) and F1 (0.80 vs. 0.71), while maintaining the same recall.

However, the ET model surpasses the binary models in F1 for detecting IIVSM (0.29

vs. 0.00) and SM (0.78 vs. 0.73). Notably, the BIN IIVSM model labels all samples as

misconception-free even after 10 epochs. Although extensive hyperparameter tuning

may enhance the performance of BIN IIVSM, it remains unexplored given the low

performance of the ET model on IIVSM. Interestingly, the binary models excel for

two labels while underperforming for the other two, and this performance trend does

not correlate with the sample size. The fact that the epoch of BIN CVE is higher

than all other binary models and nearly double that of the BIN SM model aligns with

the earlier observation suggesting that detecting CVE is inherently more challenging,

pointing to its complexity as a misconception.

Recognizing the strengths and weaknesses of the models, we develop an ensemble

model by combining the ET model with multiple binary models. BIN CVE, BIN RCE,

and BIN SM outperform the ET model in F1 on the validation set. Consequently,

we use these three binary models to predict their corresponding labels, while the

ET model for IIVSM. We apply a misconception label to a sample if the sample
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Valid Test
Label P R F1 P R F1

CVE
0.50 0.12 0.20 0.60 0.43 0.50

0.31 ↑ 0.26 ↓ 0.05 ↓ 0.39 ↑ 0.21 ↑

IIVSM
0.40 0.40 0.40 0.50 0.25 0.33

0.17 ↑ 0.04 ↑

RCE
1.00 0.71 0.83 1.00 0.62 0.77

0.17 ↑ 0.06 ↑ 0.33 ↑ 0.13 ↓ 0.06 ↑

SM
0.86 0.60 0.71 0.89 0.73 0.80

0.19 ↑ 0.20 ↑ 0.21 ↑ 0.11 ↓ 0.09 ↑ 0.02 ↑

No misconception
0.92 0.98 0.95 0.94 0.98 0.96

0.02 ↓ 0.05 ↑ 0.02 ↑ 0.01 ↓ 0.05 ↑ 0.02 ↑

Macro Average
0.74 0.56 0.62 0.78 0.60 0.67

0.13 ↑ 0.05 ↑ 0.15 ↑ 0.07 ↑

Weighted Average
0.89 0.91 0.89 0.92 0.92 0.92

0.01 ↑ 0.05 ↑ 0.02 ↑ 0.02 ↑ 0.04 ↑ 0.03 ↑

Table 3.19: Performance of RoBERTa Large MNLI ensemble model with scores out-
lined per misconception label. The second row within each label indicates the dif-
ference in performance compared to the ET model. The blue color with up arrows
signifies an increase in performance while the amber color with down arrows indicates
a decrease in performance.

is predicted for misconception by the BIN SENT model. The performance of the

ensemble model is outlined in Table 3.19. The ensemble model achieves higher F1

scores for all labels, with a notable increase for CVE (0.50 vs. 0.29). The precision

for SM decreased (0.89 vs. 1.00), whereas the recall has increased (0.73 vs. 0.64).

Notably, the precision for RCE (1.00 vs. 0.67) and IIVSM (0.50 vs. 0.33) have

also increased significantly. Overall, the recall remains unchanged while the precision

increases significantly (0.78 vs. 0.63) contributing to a higher F1 score (0.67 vs. 0.60).

Prior to adopting RoBERTa Large MNLI as our base model, we fine-tune a RoBERTa

Large pretrained model on Dataset 301. Surprisingly, the model does not predict any

samples with misconceptions. Despite conducting extensive hyperparameter tuning,
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limiting the training to a maximum of 10 epochs, no changes are observed. This

observation suggests that modeling the task as recognizing textual entailment may

necessitate fine-tuning the model on a task-related corpus before fine-tuning it on the

target dataset. Alternatively, the issue could be attributed to the relatively small

dataset size.

3.5 Conclusions and Future Work

Our study delves into the nuanced task of misconceptions detection in student re-

sponses, employing state-of-the-art language models like RoBERTa Large MNLI.

Formulating the task as recognizing textual entailment by incorporating the ques-

tion along with a reference answer as premise and the student response as hypothe-

sis, demonstrates notable advancements in the detection of specific misconceptions.

While the ensemble model exhibits moderate precision and F1 scores with consid-

erable recall, indicating its proficiency in capturing misconceptions, it is crucial to

acknowledge the challenges posed by certain complex misconceptions.

Our exploration extends beyond the binary classification approach used in previous

models, embracing a multi-class classification framework. The results underscore

the intricacies involved in developing the dataset and fine-tuning models for diverse

misconceptions, with varying levels of complexity and prevalence.

Our study lays the groundwork for investigating the impact of sample size on model

performance. Future work could delve deeper into understanding how sample distri-

bution and size influence the efficacy of misconception detection, potentially leading

to insights that inform data collection strategies.
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As we navigate the evolving landscape of misconception detection, several other av-

enues for future research emerge. First, to adhere to the token limitation of the model,

we had to minimize the size of both the quiz question and the reference answer, sac-

rificing valuable information. Exploring LLMs, such as T5, PaLM, and Megatron-

Turing NLG, that have a higher token limit and surpass RoBERTa on RTE could be

a promising avenue for future research. T5 boasts a token limit of 4096 tokens, while

both PaLM and Megatron-Turing NLG further extend the limit to 8000 tokens, pro-

viding an excellent opportunity to enrich the context through premise. Second, the

observed challenges in detecting complex misconceptions highlight the need for more

sophisticated strategies and scrupulous model design. Third, we perform shallow hy-

perparameter tuning on RoBERTa Large MNLI and extensive hyperparameter tuning

may further improve the overall performance or on specific misconceptions. Fourth,

misconception detection is a multi-label classification problem that is not explored

due to the lack of sufficient data. Fifth, we have excluded three misconceptions from

our training data owing to their low sample counts, which can be a part of future

research. In essence, our study opens the door to a realm of possibilities in the pursuit

of enhancing misconceptions detection in student responses.
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Chapter 4

Conclusion

In the landscape of automated educational assessment, Large Language Models (LLMs)

emerge as transformative catalysts, reshaping our understanding and approach. LLMs,

with their extensive knowledge and contextual understanding, stand as beacons of in-

novation in the realm of natural language processing. Their ability to capture intricate

linguistic patterns, coupled with adaptability across diverse tasks, positions them as

powerful tools for unraveling the underlying nuanced expression of student responses.

As we embark on this exploration, the potential of LLMs becomes not only a tech-

nological advancement but also a paradigm shift in perception and engagement with

the multifaceted nature of education assessment. Our journey through automated

short-answer grading and misconception detection unveils the immense possibilities

of LLMs for the future of automated educational assessment.

In our relentless pursuit to propel automated short-answer grading and revolution-

ize automated misconception detection, our exploration unfolds across two pivotal

chapters. On automated short-answer grading, we illuminate the transformative po-

tential of transfer learning on a state-of-the-art LLM, RoBERTa Large. The model’s

remarkable adaptability across unseen answers, questions, and domains, showcases

the effectiveness of task-related corpora in discerning contradiction in diverse student

responses.

As we transition to automated misconception detection, we delve into an unexplored

territory of educational assessment. We meticulously craft a misconception detection
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dataset poised to serve as a guiding light for future research in this domain. Framing

the task as recognizing textual entailment, our innovative approach with RoBERTa

Large MNLI heralds a breakthrough in misconception detection. The model’s prowess

in capturing nuanced misconceptions shines a spotlight on the untapped potential

of LLMs in unraveling the underlying intricate expression of student responses and

misunderstandings.

The harmonious interplay between these two projects paints a comprehensive picture

of the transformative role we envision for LLMs in automated educational assessment.

From the showcased adaptability in short-answer grading to the pioneering strides in

misconception detection, our findings lay the groundwork for a future where assess-

ment tools will not only decipher the subtleties of student responses but also detect

and address misconceptions with unparalleled accuracy. We find ourselves standing

at the crossroads of groundbreaking research, ushering in a new era of educational

assessment—one where the capabilities of LLMs are recognized and fully harnessed

to their utmost potential.
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Chapter 5

Contributions

5.1 Automated Short Answer Grading (ASAG)

1. We formulate ASAG as a Recognizing Text Entailment (RTE) problem, where

the question description concatenated with the reference answer becomes the

premise, and the student answer becomes the hypothesis.

2. We demonstrate that fine-tuning models on task-related corpus (prior to fine-

tuning on task-specific data) holds promise for cross-domain generalization,

which effectively enhances the model performance by leveraging successful trans-

fer learning. However, the model does not benefit from multiple corpora.

3. We published these findings in Kazi and Kahanda (2023) [15].

5.2 Automated Misconception Detection (AMD)

1. In collaboration with Montana State University, we developed a versatile an-

notation app and guidelines applicable to any domain or subject and utilized

them to annotate an extended misconception dataset containing over 300 stu-

dent answers and seven misconceptions types related to Electric Circuits.

2. We detail recommendations for novel techniques on data curation, data cleaning,

filtering outliers, train/test splitting, and formulating AMD as an RTE problem

where the question description concatenated with the reference answer becomes
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the premise, and each sentence prepended with previous “context” sentences in

a student response become the hypothesis.

3. We uncover the importance of domain-specific terminology and sentence depen-

dency in detecting misconceptions. We ensemble multi-class with binary models

to strike a balance and maximize overall performance to demonstrate the utility

of our approach.
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Appendix A

Variation of Misconceptions

Let’s consider a scenario where responding to a question involves writing a for loop
with five iterations. The presence of an incorrect number of iterations in a Java course
may result from an operator error (i ≤ 5), as exemplified below:

for (int i = 0; i <= 5; i++) {}

Following the standard practice, this particular operator error or misconception is
not possible in a Python course. Conversely, in a Python course, the potential for an
erroneous iteration count arises from a misunderstanding of the exclusivity of the to
argument in the range method, illustrated by the following code:

for i in range (4):

It is noteworthy that Java lacks a built-in range method similar to Python, eliminating
the possibility of encountering the same misconception in a Java course. This high-
lights that the same question or topic can elicit two distinct sets of misconceptions,
with some commonalities, by simply altering the programming language.

A curriculum encompasses diverse types of courses, with undergraduate computer
science (CS) students being obligated to enroll in classes covering programming lan-
guages, data structures, algorithms, and other related subjects. Within a program-
ming course, misconceptions frequently revolve around the intricacies of language
syntax, as students grapple with coding rules and conventions. In contrast, a data
structure class, being more generalized and not confined to a specific programming
language, exposes students to a broader array of concepts related to various data
structures. Misconceptions in a data structure course are more likely to center around
the understanding and application of diverse data structure concepts. Moreover, in
an algorithm course, misconceptions predominantly pertain to algorithms, although
some may extend to programming languages and data structures. This highlights the
nuanced nature of misconceptions, demonstrating how they can vary from course to
course based on the specific focus and content.

Misconceptions within the domain of engineering exhibit a considerable breadth, given
the diverse nature of engineering disciplines such as computer science, electrical en-
gineering, mechanical engineering, and more. Each of these fields embodies distinct
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subject matter, topics, and concepts, leading to a wide array of misconceptions unique
to each discipline. In computer science, for instance, misconceptions may revolve
around programming paradigms, algorithms, or software design principles. On the
other hand, electrical engineering may involve misconceptions related to circuitry,
signal processing, or electromagnetic phenomena. Similarly, mechanical engineering
misconceptions could center around principles of thermodynamics, mechanics, or ma-
terials science.

It is evident that misconceptions show considerable variation not only between differ-
ent domains but also within a single domain or subject. Furthermore, misconceptions
related to a single topic may also differ.
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Appendix B

Structure and Organization of Dataset in JSON

1 {
2 "course ": "EELE 201",
3 "activity ": "QZ 1",
4 "semester ": "Fall",
5 "year": 2023,
6 "labels ": {
7 "lbl1": "Label 1",
8 "lbl2": "Label 2"
9 },

10 "responses ": [
11 {
12 "id": 1,
13 "text": [
14 "sentence 1",
15 "sentence 2",
16 ...
17 ],
18 "annotators ": [7, 9],
19 "labels ": {
20 "7": {
21 "0": ["lbl1"],
22 "1": ["lbl1", "lbl2"]
23 },
24 "9": {
25 "1": ["lbl2"]
26 }
27 },
28 "context ":
29 {
30 "7": {
31 "1": {
32 "lbl2": [0]
33 }
34 },
35 "9": {}
36 }
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37 },
38 {
39 "id": 2,
40 "text": [
41 "sentence a",
42 "sentence b",
43 ...
44 ],
45 "labels ": null
46 },
47 ...
48 ]
49 }
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