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Chapter 2
Discovering Sets of Key Players
in Social Networks

Daniel Ortiz-Arroyo

Abstract The discovery of single key players in social networks is commonly
done using some of the centrality measures employed in social network analysis.
However, few methods, aimed at discovering sets of key players, have been pro-
posed in the literature. This chapter presents a brief survey of such methods. The
methods described include a variety of techniques ranging from those based on tra-
ditional centrality measures using optimizing criteria to those based on measuring
the efficiency of a network. Additionally, we describe and evaluate a new approach
to discover sets of key players based on entropy measures. Finally, this chapter
presents a brief description of some applications of information theory within social
network analysis.

2.1 Introduction

Social Network Analysis (SNA) comprises the study of relations, ties, patterns of
communication, and behavioral performance within social groups. In SNA, a so-
cial network is commonly modeled by a graph composed of nodes and edges. The
nodes in the graph represent social actors and the links the relationship or ties be-
tween them. A graph consisting of n nodes and m edges is defined as G D fV; Eg,
where V D fv1; v2; : : : ; vng is the set of nodes or vertex and E D fe1; e2; : : : ; emg
is a set of links or edges. In general, graphs where the edges do not have an associ-
ated direction are called undirected graphs. Graphs that contain no cycles are called
acyclic graphs. For convenience, in the rest of this chapter, we will use the terms
undirected acyclic graph, graph, and network as synonyms. Additionally, we will
use indistinctly the term node, player, and actor.

One important issue in SNA is the determination of groups in complex social net-
works. Groups are disjoint collections of individuals who are linked to each other
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by some sort of relation or interaction. Within a group, members have different
positions. Some of them occupy central positions, others remain in the periphery,
and the rest lies somewhere in between. A group may have one or more key play-
ers. While this definition of a group is intuitive, a more mathematical description
of a group is required to enable us analyzing systematically social networks. One
possible definition of a social group is based on the concept of a clique. A clique of
a graph G is defined as a subgraph H of G in which every vertex is connected to
every other vertex in H . A clique H is called maximal if it is not contained in an-
other subgraph of G. While this definition of a clique may be useful to study small
social networks,1 other more complex organizations have been analyzed using semi-
lattices and a more recent extension of these mathematical structures called Galois
lattices [2, 3].

Numerous studies in SNA have proposed a diversity of measures to study the
communication patterns and the structure of a social network. One of the most stud-
ied measures is centrality. Centrality describes an actor’s relative position within the
context of his or her social network [4]. Centrality measures have been applied in a
diversity of research works, for instance, to investigate influence patters in interorga-
nizational networks, to study the power or competence in organizations, analyzing
the structure of terrorist and criminal networks, analyzing employment opportuni-
ties, and many other fields [5].

The ability that centrality measures have to determine the relative position of
a node within a network has been used in previous research work to discover key
players [6–8] in social networks. Key players are these nodes in the network that
are considered “important” with regard to some criteria. In general, the importance
of a node is measured in a variety of ways depending on the application. In this
chapter, we will define important nodes as those nodes that have a major impact on
the cohesion and communication patterns that occur in the network.

One possibility for measuring the importance of a node given the previous criteria
is to calculate how many links a node has with the rest of the network’s nodes, this is
called degree centrality. Nodes with high degree centrality have higher probability
of receiving and transmitting whatever information flows in the network. For this
reason, high degree centrality nodes are considered to have influence over a larger
number of nodes and/or are capable of communicating quickly with the nodes in
their neighborhood. Degree centrality is a local measure [9], as only the connections
of a node with its neighbors are taken into account to evaluate node’s importance.

Other centrality measures evaluate the degree with which a player controls the
flow of information in the network. Messages sent through the network frequently
pass through these players; they function as “brokers”. A measure that models this
property is called betweenness.

Another closely related method that has been used to evaluate the importance of
a node within a network is based on measuring how close a node is located with
respect to every other node in the network. The measure is called closeness. Nodes

1 The use of cliques to model social groups has been criticized by some authors (e.g. [1, 2]) due to
the strict mathematical definition of cliques.
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with low closeness are able to reach (or be reached by) most or all other nodes in
the network through geodesic paths.

Some other proposed centrality measures try to evaluate a player’s degree of
“popularity” within the network, i.e., they represent centers of large cliques in the
graph. A node with more connections to higher scoring nodes is considered as be-
ing more important. The measure that captures this intuition is called eigenvector
centrality.

Contrarily to a local measure such as degree centrality, metrics like between-
ness, closeness, or eigenvector centrality are considered global measures [9] since
they evaluate the impact that a node has on the global structure or transmission of
information within the network.

Degree centrality, betweenness, closeness, and eigenvector centrality are among
the most popular measures used in SNA. However, over the years other measures
have been proposed in the literature to overcome some of their limitations. Among
these measures we can mention information centrality, flow betweenness, the rush
index, and the influence [10], among others.

In spite of the relative simplicity of the centrality measures we have described,
recent research has found that such metrics are robust in the presence of noise. Noise
in this case refers to the possibility of including or excluding some nodes and links
from a network during its construction due to the use of imprecise or incorrect infor-
mation. In [11] Borgatti and Carley studied the performance of centrality measures
under the conditions of imperfect data. Firstly, they generated random graphs with
different densities. Afterward, it was measured the effect that the addition or re-
moval of nodes and edges had on the accuracy of each of the centrality measures
employed in the experiments. Borgatti et al. found out that, as expected, the accu-
racy of centrality measures decreases with an increasing error rate, but surprisingly,
it does it in a predictable and monotonic way. This result means in principle that if
one were able to estimate the percentage of errors made when a network is built, it
could also be possible to estimate bounds on the accuracy of the results obtained by
applying centrality measures. The other interesting finding reported in [11] was that
all centrality measures performed with a similar degree of robustness. However, it
must be remarked that the results of this study apply only to random graphs.

Centrality measures make certain assumptions about the way the information
flows in the network. Hence, as described in [10], the type of information flow as-
sumed in the network determines which measure may be more appropriate to be
applied in a specific problem. Figure 2.12 illustrates some nodes within a network
that have different centrality values. This picture clearly illustrates that the type of
flow that occurs within a network for an specific application domain must be deter-
mined before a centrality measure could be used correctly.

The literature on centrality measures is rather extensive; see for example [4,6,7],
and [10]. However, very few methods have been proposed to find sets of key players
capable of optimizing some performance criterion such as maximally disrupting the
network or diffusing efficiently a message on the network.

2 A similar figure is used in [12].



30 D. Ortiz-Arroyo

Highest
betweenness
centrality

e

b

d

f

a
c

r

h i j

p

n

o

k

l

m

q

s

g

Highest
eigenvector
centrality

Highest
degree
centrality

Best
closeness
centrality

Fig. 2.1 Diverse centrality measures applied on an example network

Methods for discovering a set of key players in a social network have numerous
applications. For instance, these methods may help intelligence agencies to disrupt
criminal organizations or allocate human resources in a more effective way within
formal organizations.

The problem of finding an individual key player is fundamentally different from
that of finding a set of k-players. More specifically, the problem of getting an op-
timal set of k-players is different from the problem of selecting k individuals that
are each, individually optimal [12]. For this reason, applying naively centrality mea-
sures to find a set of key players will likely fail. A simple example that illustrates
why this may happen is the case of a network with a few central nodes that are re-
dundant. Eliminating the redundant nodes will have no effect on the network even if
they have high centrality degree. Additionally, it is also possible to find nodes that
in spite of not having a high centrality degree have in fact a greater impact in dis-
rupting the network structure when removed. For instance, Fig. 2.1 illustrates that
nodes h and i are redundant as the removal of any of them will fragment the network
into two or three components. However, as is explained in Sect. 2.3, in this specific
example node h is more important than node i .

To simplify analysis, social networks are commonly considered static structures.
However, most social interactions in reality do not remain static but rather evolve
through time. Dynamic network analysis is an active area of research [13] that stud-
ies models of the evolution of social relations through time. Some of the methods
employed to analyze dynamic networks comprise statistical process control and
Markov chains among other techniques. Due to lack of space, in this chapter we
will only focus on static networks.

This chapter presents a brief survey of methods that have been proposed in the
literature recently to discover sets of key players in social networks. Additionally,
a new method, based on Shannon’s definition of entropy is introduced. To asses
the performance of this method we have designed a simulation environment spe-
cially built for the purpose. The simulation environment allowed us to perform a
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comparative evaluation of the results obtained by entropy-based methods with those
reported in the literature using other methods. Our preliminary results indicate that
the entropy-based methods can be used effectively to identify sets of key players for
certain type of networks.

The rest of this chapter is organized as follows. Section 2.2 presents a summary of
related work on the use of information theory in SNA. Section 2.3 briefly describes
some of the methods that can be used to discover sets of key players. Section 2.4 de-
scribes the proposed method based on entropy measures together with an evaluation
of its preliminary performance results. Finally, Sect. 2.5 describes some possible
research directions and provides some conclusions.

2.2 Information Theory in SNA

Information theory deals with the transmission, storage, and quantification of in-
formation. Concepts originally introduced in information theory have been success-
fully applied in a wide range of fields, ranging from digital communication systems,
cryptography and machine learning to natural language processing, neurobiology
and knowledge discovery in unstructured data.

One of the fundamental concepts employed in information theory is entropy. En-
tropy was originally proposed by Claude Shannon [14] as a measure to quantify the
amount of information that can be transmitted through a noisy communication chan-
nel. In a complementary way, entropy is used to quantify the degree of uncertainty
in the content of a message or in general the uncertainty within a system. Shannon’s
definition of entropy of a random variable X that can take n values is presented in
Eq. 2.1.

H.X/ D �
nX

iD1

p.xi / � log2p.xi / (2.1)

Given its wide applicability, concepts borrowed from information theory have
been recently applied in SNA. For instance, in [15] a method capable of measuring
centrality on networks that are characterized by path-transfer flow is described. In
social networks characterized by path-transfer flow, information is passed from one
node to other following a path. However, contrary to other patterns of communica-
tion, information is contained within a single node at a time, i.e., there is no parallel
transfer of information. An example of this type of information flow appears in chain
letters where each recipient add its name to the end of the letter and then sends it
to other person within the network. Other examples include trading and smuggling
networks.

The method introduced in [15] to determine the centrality of nodes in networks
characterized by path-transfer flow basically consists in calculating the probability
that the flow originated in a node stops at every other node in the network. The basic
idea is to model the fact that highly central nodes may be identified by measuring
how similar probabilities are that the flow originating in a node will stop at every
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other node within the network. In a highly central node, such as the one located in
the center of a star graph, the probability that the flow starting in the central node
ends in any other node in the network is exactly the same. Contrarily, the flow that
starts in a node of a graph that is less central will have a more uneven distribution
of probabilities. The definition of Shannon’s entropy perfectly captures these two
intuitions. Entropy is defined in terms of the downstream degree of a vertex, which
is the number of eligible vertices to which the transfer can be next made. Then
the transfer probability is defined as the inverse of the downstream degree of a node.
Using the definition of transfer and stop probabilities in the calculation of Shannon’s
entropy and then normalizing it, finally provides the centrality measure for a vertex,
as is described in [15].

In [16], Shetty and Adibi combine the use of cross-entropy and text-mining tech-
niques to discover important nodes on the Enron corpora of e-mails. The corpora of
e-mails is analyzed to create a social network representing the communication pat-
terns among individuals in the company. The email messages in the Enron corpora
were analyzed to determine their similarity regarding its contents. The degree of
similarity in message content was used as an indication that the people sending these
messages were talking about similar topic. Sequences of similar topic e-mails up of
length two involving three actors A; B; C sent for instance in the order AsentBsentC

were counted. Afterward, a method based on the calculation of cross-entropy for
such sequences of messages was used to rank the importance of a node. Nodes that
produced the highest impact in reducing the total cross-entropy when removed from
the network were selected as the most important ones. The method proposed by
Shetty and Adibi was designed specifically to discover the set of key players within
the Enron scandal case. Their results show that the method was capable of finding
some key players in the Enron company. However, these players were not necessar-
ily participating in the Enron scandal.

The next section discusses other methods that can be used to discover sets of key
players in other social networks.

2.3 Methods for Discovering Sets of Key Players

One naive approach that can be used to discover sets of key players is to measure
the centrality of every single node in the network. Afterward, nodes are ranked ac-
cording to their importance as measured by value of the specific centrality measure
used. Finally, a subset of size k of these nodes could be selected as the key players.

Another more interesting approach to find key players is described in [17]. This
approach is based on measuring the communication efficiency of a network. The
efficiency E of a network G was defined in Eq. 2.2:

E.G/ D
P

i¤j2G "ij

N.N � 1/
D 1

N.N � 1/

X

i¤j2G

1

dij
(2.2)
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Fig. 2.2 Efficiency variation of a graph taken from Borgatti’s examples in [12]

where N is the number of nodes in graph G and "ij is the communication efficiency,
which is proportional to the inverse of dij (the shortest path length between two
nodes i; j ). The equation calculates all shortest paths between all pairs of nodes
normalized by the number of all possible paths that will be contained in a fully con-
nected graph consisting of N nodes. The method essentially consists in removing
nodes one by one, recalculating the drop in network efficiency every time. These
nodes that produce the largest impact in reducing the overall efficiency of a network
are selected as the key players. The advantage of this method is that it can be eas-
ily implemented. Figure 2.2 shows the result of calculating graph efficiency using
Eq. 2.2 for the example graph shown in Fig. 2.1.

Figure 2.2 shows that the method based on calculating graph efficiency will de-
tect nodes h, i , and m as being the key players, using an appropriate threshold value.
However, the method fails at detecting that nodes h and i are in fact redundant.

The problem of previous two approaches is that they measure the effect that each
single node has on the network independently. Hence, as previous example shows
they will likely fail at identifying redundant nodes.

Another heuristic approach briefly sketched in [12] consists in selecting the top
individual player using whatever centrality measure is appropriated for the task.
Then, the nodes that are least redundant are added to the set of key players. The
challenge of this approach will be to find an efficient procedure to determine which
nodes are the least redundant.

The concept of centrality has been applied not only to single individuals within
a network but also to groups of individuals. In [18], measures for degree centrality,
closeness, and betweenness are defined for a group. Using these measures, groups
having high centrality will be the key players. It must be remarked that group cen-
trality can be used not only to measure how “central” or important a group is, but
also in constructing groups with maximum centrality within an organization. For in-
stance, a team of experts can be distributed within an organization in such a way that
it has high group centrality. The idea is that this group will provide readily access to
the expertise needed by other members of an organization.
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In [19] a recent approach to discover a group of key players is presented. The
method is based on the concept of optimal inter-centrality. Inter-centrality measure
takes into account a player’s own centrality and its contribution to the centrality of
others. The individual optimal inter-centrality measure is then generalized to groups
of players. The group with the highest inter-centrality measure is the key group.

Another approach to discover sets of key players, proposed by Borgatti in [12],
consists in selecting simultaneously k players via combinatorial optimization. In
that work, Borgatti defines two problems related to discovering sets of key players
as follows.

The Key Player Problem Positive (KPP-Pos) consists of identifying these
k-players that could be used as seeds in diffusing optimally some information
on the network.

The Key Player Problem Negative (KPP-Neg) goal consists of identifying those
k-players that, if removed, will disrupt or fragment the network. A more formal
definition of the two problems taken from [12] is

“Given a social network(represented as an undirected graph), find a set of k
nodes (called a kp-set of order k) such that,

1. (KPP-Neg) Removing the kp-set would result in a residual network with the least
possible cohesion.

2. (KPP-Pos) The kp-set is maximally connected to all other nodes.”

Borgatti found that off-the-shelf centrality measures are not appropriate for the
task of discovering sets of key players as defined by KPP-Pos and KPP-Neg prob-
lems. Hence, he proposes a new method based on combinatorial optimization and
greedy heuristics. Additionally, to evaluate the solution to both KPP-Neg and KPP-
Pos problems, Borgatti proposes new metrics to measure how successfully both
problems are solved. One metric is called the degree of reachability described by
Eq. 2.3:

DF D 1 � 2

P
i>j

1

dij

N.N � 1/
(2.3)

where dij is the distance between nodes i; j , and N the total number of nodes in
the graph. The metric DF captures the fragmentation and relative cohesion of the
components in the network.

The other metric proposed by Borgatti is the weighted proportion of nodes
reached by the set of key players defined in Eq. 2.4:

DR D
P

j

1

dKj

N
(2.4)

where dKj is the distance from any member of the key player set to a node j not in
the set. This metric evaluates the degree with which the set of key players is isolated
from the rest of the nodes.

The greedy heuristic presented in [12] seeks to select those nodes in the graph
that maximize DF and DR metrics. The algorithm taken from [12] is presented as
Algorithm 2.1.
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Algorithm 2.1 (taken from [12])
1: Select k nodes at random to populate set S

2: Set F D fit using appropriate key player metric
3: for all nodes u in S and each node v not in S do
4: DELTAF D improvement in fit if u and v were swapped
5: end for
6: Select pair with largest DELTAF
7: a. If DELTAF � then terminate
8: b. Else, swap pair with greatest improvement in fit and set F D FC DELTAF
9: Go to step 3

Borgatti applied the proposed approach to two data sets, one terrorist network and
a network of members of a global consulting company with advice-seeking ties. The
results obtained by Borgatti show that the combinatorial optimization together with
the use of the success metrics perform well on the two problems considered.

2.4 Discovering Sets of Key Players Using Entropy Measures

A new method aimed at finding sets of key players based on entropy measures that
provide a simple solution to both the KPP-Pos and KPP-Neg problems will be in-
troduced in this section.

The method based on entropy measures has some similarities with the method
described in [16, 17]. However, contrarily to the approach described in [16], this
method relies only on the structural properties of the network, uses Shannon’s
definition of entropy instead of cross-entropy. Additionally, the method described
in [16] was specifically designed to detect important nodes on the Enron corpus,
whereas the entropy-based method can be applied in many other problems.

The entropy-based method shares also shares some similarity with the one de-
scribed in [17]. The main difference lies in the type of measure used which is
Shannon’s entropy instead of efficiency as defined in Eq. 2.2. Additionally, the
entropy-based method is aimed at providing simple alternative solutions to both
KPP-Pos and KPP-Neg problems. However, it must be remarked the entropy-based
method does not aim at solving both problems optimally as was done in [12], but to
provide an alternative simple solution that could be used to tackle both problems.

We first define the connectivity of a node vi 2 V in a graph as:

�.v/ D deg.vi /

2N
; N > 0 (2.5)

where deg.vi / is the number of incident edges to node vi and N the total number of
edges in the graph. We can use � as the stationary probability distribution of random
walkers in the graph [20]. This is called the connectivity probability distribution of
the graph.
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Another probability distribution can be defined in terms of the number of shortest
or geodesic paths that have vi as source and the rest of nodes in the graph as targets:

�.v/ D spaths.vi /

spaths.v1; v2; : : : ; vM /
; spaths.v1; v2; : : : ; vM / > 0 (2.6)

where spaths.vi / is the number of shortest paths from node vi to all the other nodes
in the graph and spaths.v1; v2; : : : ; vM / is the total number of shortest paths M

that exists across all the nodes in the graph. This is called the centrality probability
distribution of the graph.

Using Eqs. 2.5 and 2.6 to define our probability distributions, we can obtain
different entropy measures by applying the definition of entropy in Eq. 2.4. This
procedure allows us to define connectivity entropy Hco and centrality entropy mea-
sures Hce of a graph G in the following way:

Hco.G/ D �
nX

iD1

�.vi / � log2�.vi / (2.7)

Hce.G/ D �
nX

iD1

�.vi/ � log2�.vi/ (2.8)

It must be noticed that Eqs. 2.7 and 2.8 should be normalized to enable us to
compare the centrality or connectivity entropies obtained from different types of
networks. However, this is not done here since we will not be comparing different
networks.

The connectivity entropy measure provides information about the connectivity
degree of a node in the graph. In a fully connected graph, the removal of a node will
decrease the total entropy of the graph in the same proportion as when any other
node is removed. All nodes will have the same effect on the graph entropy leaving
it still densely connected after a node is removed. However, in a graph with lower
density, the removal of nodes with many incident edges will have a larger impact in
decreasing the total connectivity entropy of the system, compared to the case when
a node with a smaller connectivity degree is removed. This effect is illustrated in
Figs. 2.3 and 2.4.

Centrality entropy provides information on the degree of reachability for a
node in the graph. In a fully connected graph the removal of any node will have
the same effect on centrality entropy as when any other node is removed. All nodes
are equally important for the flow of information. This effect is illustrated in Fig. 2.4.
Contrarily, in partially connected graphs, those nodes whose removal will split the
graph in two or more parts or that will reduce substantially the number of geodesic
paths available to reach other nodes when removed, will have a higher impact in
decreasing the total centrality entropy. This effect is illustrated in Figs. 2.5 and 2.6
where the removal of node v5 causes the disconnection of node v6, and this event
produces the largest change in centrality entropy for the graph.
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Fig. 2.3 Fully connected graph

Fig. 2.4 Entropy variation of a fully connected graph

Note that Figs. 2.4 and 2.6 also show that there is either perfect or very high corre-
lation between the connectivity and centrality entropy measures when applied to the
fully connected and partially-connected graph examples, respectively. This happens
due to the fact that these graphs are very symmetric. Homogeneity is the strongest
form of symmetry that a graph can posses. Therefore, the correlation among these
two measures will decrease as the network becomes more and more heterogeneous.
This fact will be illustrated in the following example graphs.

In general, centrality and connectivity entropies provide an average measure of
network heterogeneity since they measure either the diversity of paths to reach the
nodes within the graph or the diversity of link distribution in the graph, respec-
tively. Heterogeneity in complex networks is identified by looking at the degree
distribution Pk , which is the probability of a node having k links [21]. The method
introduced in this section additionally to degree distribution adds path distribution,
which is the probability Pl that a node is being reached by other nodes through l

different geodesic paths.
The entropy-based method introduced in this chapter is presented in

Algorithm 2.2. In summary, the algorithm attempts to solve KPP-Pos and KPP-Neg
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Fig. 2.5 Partially connected graph

Fig. 2.6 Entropy variation of a partially connected graph

problems using connectivity entropy and centrality entropy. The basic idea is to find
those nodes that produce the largest change in connectivity or centrality entropy
when removed from the graph. These nodes should be included in the set of key
players as they have the largest impact in the structure (information content) of the
network. The value of ıi , allows us to control how many players should be included
in the set.

Since centrality entropy is based on the calculation of all the unweighted shortest
paths in the network, it has the highest effect in the complexity of Algorithm 2.2.
The complexity of Dijkstra’s shortest path algorithm (from a single source node to
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all others) is O.n2/.3 However, given that Algorithm 2.2 needs to calculate all the
shortest paths from every single node in the graph its overall complexity is O.n3/.

Algorithm 2.2 Entropy-based method
1: Calculate initial total entropy Hco0.G/ and Hce0.G/

2: for all nodes 2 graph G do
3: Remove node vi , creating a modified graph G0

4: Recalculate Hcoi .G
0/ and Hcei .G

0/, store these results
5: Restore original graph G

6: end for
7: To solve the KPP-Pos problem select those nodes that produce the largest change in graph

entropy Hco0 -Hcoi � ı1

8: To solve the KPP-Neg problem select those nodes that produce the largest change in graph
entropy Hce0 -Hcei � ı2

Figure 2.8 shows the results of applying Algorithm 2.2 to the graph in Fig. 2.7.
The graph is provided as an example by Borgatti in [12]. Our results show that
centrality entropy is capable of detecting redundant nodes such as h and i . Node
i is redundant as its removal will not have any impact on the number of partitions
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Fig. 2.7 Graph taken from Borgatti’s examples in [12]

3 The complexity is calculated assuming that an adjacency matrix is used to represent the graph,
other implementations using other more efficient data structure representations perform better.
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Fig. 2.8 Entropy variation of a graph taken from Borgatti’s examples in [12]

created, once h has been removed. This happens in spite of i having a high centrality
value. The reason this occurs is that when node h is disconnected it leaves node r

isolated from the rest of the graph, fragmenting the network into three components.
The paths that go from r to the rest of the nodes contribute significantly to the overall
centrality entropy of the graph. Contrarily, when node i is removed, the graph will
be fragmented into two components. However, as node r will remain connected
it will still be able to communicate with the subnetwork to which it is attached,
contributing with these paths to the total entropy calculation. In this simple example,
the algorithm will find the set of key players consisting of fh; m; qg. By adjusting
the value of ıi we can control how many nodes we will include in the final set of
key players.

It must be noted that in a graph similar to the one in Fig. 2.7, but where node
r is eliminated, our algorithm will still be able to determine that node h is more
important than node i . This is due to the fact that there are more nodes in that part of
the graph where node i is the “gatekeeper” and therefore more paths leading to that
subnetwork. Figure 2.9 shows the result of applying the entropy-based algorithm
to a graph similar to the one in Fig. 2.7 but not containing node r . The set of key
players in this case will still be fh; m; qg as these are the nodes that produce the
largest change in centrality entropy.

Figure 2.9 also shows that node h has the largest impact on connectivity entropy
when removed from the graph. Interestingly, the same graph also shows that node q

has more effect on connectivity entropy, when compared to node m. The reason is
that removing m leaves still a connected graph composed of nodes q and s, which
contributes to the total entropy. Contrarily, removing q leaves the single node s

isolated.
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Fig. 2.9 Entropy variation of modified graph taken from Borgatti’s examples in [12]

2.4.1 Applying Entropy Measures to More Complex
Social Networks

Figure 2.11 shows the results of applying Algorithm 2.2 using centrality and con-
nectivity entropy to the terrorist graph in Fig. 2.10. The graph is a simplification
of the graph provided by Krebs in [7]. Figure 2.11 shows that centrality entropy
identifies a set of key players consisting of fatta; nalhazmi; darkazalnig, since these
are the nodes that produce the biggest changes in entropy when removed, with atta
producing the largest change. It must be noticed that nodes nalhazmi and darkazanli
have the same effect on centrality entropy. This is because if we look at Fig. 2.10
we can see that both nodes will disconnect a single node if removed. However, re-
moving nalhazmi will also cause a major impact in connectivity entropy, contrarily
to the case when darkazanli is removed. This indicates that nalhazmi may be indeed
more important than node darkazanli, even if both produce a similar effect on cen-
trality entropy. This factor can also be used to grade the importance of a node in the
graph.

Removing the set consisting of fatta; nalhazmi; darkazalnig causes the network
to be fragmented into five components. The optimization algorithm proposed by
Borgatti produces a fragmentation of seven components.

Our Algorithm 2.2 finds that the set of nodes in Fig. 2.10 that solves KPP-Pos
problem consists of fnalhazmi; halghamdi; salghamdi; attag, as these are the nodes
that will have the biggest impact on connectivity entropy when removed from the
graph. The optimization algorithm proposed by Borgatti found that only three nodes
are needed to reach 100% of the graph.

Previous results show that when entropy measures are applied to the terrorist
network we can find similar results as those obtained by Borgatti. However, it must
be remarked that the graph used by Borgatti in his experiments (derived from the one
made available by Krebs in [7]) contains 63 nodes, whereas the network employed
in our experiments (also derived from Krebs graph) contains only 34 nodes.
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Fig. 2.10 Terrorist network

Figure 2.12 shows the result of calculating the efficiency of the terrorist network
in Fig. 2.10. The figure illustrates that the key players detected by the graph effi-
ciency calculation are fatta; nalhazmi; darkazalni; hanjourg. The graph efficiency
calculation finds hanjour as key player contrarily to centrality entropy measure.
However this node does not cause a fragmentation in the network. Interestingly, it
is connectivity entropy which also finds hanjour as key player since this node will
cause a major disruption in the connectivity of the key players with the rest of the
network.

In a different example of social network, Fig. 2.14 shows the result of applying
centrality and connectivity entropy to the graph in Fig. 2.13. The graph describes the
advise-seeking ties between members of a company and was obtained from [12].

Applying Algorithm 2.2 to this network, we found that the set of most impor-
tant players for solving KPP-Neg consists of fHB; BM; WD; NP; SRg. In this same
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Fig. 2.11 Entropy variation of terrorist network

Fig. 2.12 Efficiency variation of terrorist network

example, Borgatti obtained a set of key players consisting of fHB; BM; WDg [12].
This is the set of players that if removed will divide the network into six compo-
nents. Our algorithm finds the same elements additionally to NP and SR. However,
it must be remarked that contrarily to [12], the centrality entropy-based algorithm
does not try to optimize any specific metric.

In KPP-Pos problem, we are asked to find the smallest set of nodes that are well
connected to the entire network. This set of players are the ones that if used as
“seeds” will reach 100% of the network.

If we look only at the connectivity entropy chart in Fig. 2.14 we notice that
Algorithm 2.2 will select nodes

˚
BM; DI; HB; BW; CD; BS0; NP; TO; BS

�
as the key

players when a set of size k D 9 is selected. These are the nodes that when re-
moved will produce the largest changes in connectivity entropy. This list indicates
that connectivity entropy allows us to get 89% of the key players found by Borgatti
for a similar set size. However, if we add to the set, the 10th node that produces
the next largest change in connectivity entropy, we will obtain a set consisting of˚
BM; DI; HB; BW; CD; BS0; NP; TO; BS; PS

�
. This new set contains 100% of the

nodes that Borgatti found as the key players in [12].
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Fig. 2.13 Company ties network

Fig. 2.14 Entropy variation of company ties network

In this last example it must be noted that the graph used in these experiments is
exactly the same that represents the “company ties” problem described in [12].

Finally, Fig. 2.15 shows the result of calculating the efficiency of the company
ties network in Fig. 2.14. The figure illustrates that the key players discovered by
the graph efficiency calculation are fHA; SR; HB; WDg. In this case the efficiency
calculation finds two of the three key players that were also found by Borgatti’s
optimization method and our centrality entropy-based calculations.
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Fig. 2.15 Efficiency variation of company ties network

It must be remarked that being connectivity and centrality entropies average mea-
sures of the heterogeneity of a graph, these measures will not be useful when applied
to more homogeneous graphs. This fact is partially shown in Fig. 2.4 for the fully
connected graph shown in Fig. 2.3. When a network obtained from Enron’s e-mail
corpora was constructed, it was found that the network was very homogeneous. Be-
cause of this, results showed that the entropy-based centrality measure had very little
variations when nodes were removed from the graph.

2.5 Conclusions and Future Work

In this chapter we have described methods aimed at discovering sets of key players
in social networks. A new method that finds the set of key players within a network
using entropy measures was introduced. The method provides a simple solution to
the KPP-Pos problem, selecting the set of nodes that produce the largest change
in connectivity entropy when removed from a graph. Similarly, to solve KPP-Neg
centrality entropy is used, measuring how the overall entropy changes when a node
is removed from the graph. The main advantage of this method is its simplicity.
We have shown the application of an entropy-based method in discovering sets of
key players to two examples of social networks: a terrorist organization and a com-
pany. Our experimental results show that these methods are capable of obtaining
comparable results with those described in [12], where combinatorial optimization
algorithm and special performance metrics are used. However, one of the disad-
vantages of entropy-based methods is that these methods only work on non-dense
heterogeneous networks.

We created a special simulation environment to asses the performance of the
some of the methods presented. The simulation environment accepts as input the
description of a graph in the standard XML-based file format for graphs called
GraphML. The development process of the simulation environment was substan-
tially reduced by using open source libraries. To create the mathematical models
and representation of a graph we use the jGraphT library. JGraphT is an extension
to jGraph, a popular graphic visualization library that has been optimized to handle
several data models and algorithms. The algorithms provided by jGraphT allow us
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to traverse and analyze the properties of a graph. To show the simulation results we
used jChart and jFreeChart. Finally, as jGraph does not provide a free graph lay-
out algorithm we have implemented a variation of the well-known spring algorithm
[22]. The whole simulation environment was designed using design patterns and
was written in the Java language.

A possible extension to the study of entropy-based measures of centrality is to
investigate their robustness, using a method similar to the one described in [11]
on both random and real graphs. The entropy-based approach may also be extended
with heuristics targeted at optimizing some specific metrics, similarly as it was done
in [12]. Other measures borrowed from information theory such as mutual informa-
tion may be used to provide insights into the dependencies between the nodes in the
graph.

Finally, we plan to investigate techniques aimed at reducing the current overall
complexity (O.n3/) of the algorithms employed to find all the shortest paths within
the network more efficiently. This is one of the weaknesses not only of the entropy-
based measures described in this chapter but also of other similar methods that
require to find all possible shortest paths between pairs of nodes within a network.
In this regard we are exploring a simple approach that finds simultaneously all the
shortest paths within the nodes in the graph on the multicore shared memory per-
sonal computers that are widely available today. The entropy-based algorithms will
be implemented in the programming language Erlang, a functional language that
provides parallel-processing capabilities based on the message passing model.
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