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ABSTRACT
In this paper, the problem of extracting periodic signals, like voiced
speech or tones in music, from noisy observations or mixtures of
periodic signals is considered, and, in particular, the problem of
designing filters for such a task. We propose a novel filter design
that 1) is specifically aimed at extracting periodic signals, 2) is op-
timal given the observed signal and thus signal-adaptive, and 3)
offers a full parametrization of the periodic signal. The found fil-
ters can be used for a multitude of applications including signal
compression, parameter estimation, enhancement, and separation.
Some illustrative signal examples demonstrate its superior proper-
ties as compared to other similar filters.

1. INTRODUCTION

Many natural signals that are of interest to mankind are periodic
by nature. This is particularly the case for speech and audio sig-
nals where such signals constitute the very atoms of music, namely
tones, or, in the case of voiced speech, individual speakers. Per-
haps the most fundamental problem of all in signal processing is
the source separation problem, as many other problems are triv-
ially, or at least more easily, solved once a complicated mixture
has been broken into its constituent parts. There exists a number of
different methods for extracting periodic sources like, for example,
the algebraic separation method [1] or comb filtering [2], and these
can generally also be used for finding the fundamental frequency
itself. Recently, some optimal filter designs have been proposed
for fundamental frequency estimation [3, 4, 5]. These filter designs
are generalizations of Capon’s classical optimal beam-former [6].
While these filters have proven to have excellent performance even
under adverse conditions, like in the presence of multiple interfer-
ing sources [4], they do, however, suffer from several problems
when applied to the problem of extracting sources, such as poor
performance for high signal-to-noise ratios and high sensitivity to
model mismatch or uncertainties (see, e.g., [7]).

In this paper, we propose a novel filter design method which
is aimed at extracting periodic signals from noisy observations or
from mixtures of periodic signals. The obtained filters are opti-
mal given the observed signal and can thus be said to be signal-
adaptive. The proposed filter design is reminiscent of the princi-
ple used in the Amplitude and Phase EStimation (APES) method
[8, 9], which is well-known to have several advantages over the
Capon-based estimators. It can be used for not only extracting or
separating periodic signals but also for estimating the fundamental
frequency and the number of harmonics of such signals along with
the amplitudes of the individual harmonics. In other words, the
filtering approach proposed herein provides a full parametrization
of periodic signals through the use of the same filter.

The paper is organized as follows. In Section 2, we introduce
the fundamentals and proceed to derive the filter designs showing
their optimality given the observed signal in Section 3. In the fol-
lowing section, namely Section 4, we illustrate the properties of the
proposed design and compare the resulting filters to those obtained
using previously published methods. Moreover, we demonstrate
its application for the extraction of a periodic signal from a mix-
ture of interfering periodic signals and noise, i.e., for separation
and enhancement. Finally, we conclude on the work in Section 5.

2. PROBLEM STATEMENT

We are interested in obtaining the output y(n) of an FIR filter
having coefficients h(m) from the input x(n), defined for n =
0, . . . , N − 1, as

y(n) =

M−1X
m=0

h(m)x(n−m). (1)

We seek to find an optimal set of coefficients {h(m)} such that the
mean square error between the filter output and a desired output,
a signal model if you will, ŷ(n), is minimized in the following
sense:

P =
1

K

N−1X
n=M−1

|y(n)− ŷ(n)|2 , (2)

where K = N − M + 1 is the number of samples over which
we average. Since we are here concerned with periodic signals,
this should be reflected in the choice of the signal model ŷ(n).
In fact, this should be chosen as the sum of sinusoids having fre-
quencies that are integer multiples of a fundamental frequency ω0

weighted by their respective complex amplitudes al, i.e., ŷ(n) =PL
l=1 ale

jω0ln. This leaves us with the following expression for
the mean square error:

P =
1

K

N−1X
n=M−1

˛̨̨̨
˛
M−1X
m=0

h(m)x(n−m)−
LX

l=1

ale
jω0ln

˛̨̨̨
˛
2

. (3)

In the following derivations, we assume the fundamental frequency
ω0 and the number of harmonics L to be known (with L < M ),
although the so-obtained filters can later be used for finding these
quantities. Next, we proceed to find not only the filter coefficients
but also the complex amplitudes al. In doing so, we first introduce
some useful notation. First, we introduce a vector containing the
filter coefficients as

h = [ h(0) · · · h(M − 1) ]H (4)



(with (·)H denoting the Hermitian transpose) and a sub-vector
containing M samples of the observed signal, i.e.,

x(n) = [ x(n) · · · x(n−M + 1) ]T . (5)

This allows us to write the output of the filter at time n as y(n) =
hHx(n). Similarly, we introduce a vector containing the complex
amplitudes as

a = [ a1 · · · aL ]H , (6)

and one containing the complex sinusoids at time n, i.e.,

w(n) =
h
ejω01n · · · ejω0Ln

iT

. (7)

Finally, this allows us to write (2) as

P =
1

K

N−1X
n=M−1

|hHx(n)− aHw(n)|2, (8)

which in turn can be expanded into

P = hH bRh− aHGh− hHGHa + aHWa, (9)

with bR =
1

K

N−1X
n=M−1

x(n)xH(n), (10)

which can be identified as the sample covariance matrix, and the
remaining quantities being defined as

G =
1

K

N−1X
n=M−1

w(n)x(n)H (11)

and

W =
1

K

N−1X
n=M−1

w(n)wH(n). (12)

3. SOLUTION

Solving for the complex amplitudes in (9) yields the following ex-
pression

â = W−1Gh, (13)

which depends on the yet unknown filter h. For W to be invert-
ible, we require that K ≥ L, but to ensure that also the covariance
matrix is invertible (which we will need later), we will also assume
that K ≥ M . By substituting the expression above back into (9),
we get

P = hH bRh− hHGHW−1Gh. (14)

By some simple manipulation, we see that this can be simplified
somewhat as

P = hH
“bR−GHW−1G

”
h , hH bQh (15)

where bQ = bR−GHW−1G (16)

can be thought of as a modified covariance matrix estimate that
is formed by subtracting the contribution of the harmonics from
the covariance matrix given the fundamental frequency. It can be
shown that W is asymptotically identical to the identity matrix.

By replacing W by I in (15) one obtains the usual noise covariance
matrix estimate, used, for example, in [10]. For finite N , though,
this is only an approximation that, nonetheless, may still be useful
for practical reasons as it is much simpler.

Solving for the unknown filter in (15) directly results in a triv-
ial and useless results, namely the zero vector. To fix this, we
will introduce some additional constraints. Not only should the
output of the filter be periodic, i.e., resemble a sum of harmon-
ically related sinusoids, the filter should also have unit gain for
all the harmonics frequencies, i.e.,

PM−1
m=0 h(m)e−jω0lm = 1 for

l = 1, . . . , L. Introducing the vector

z(ω) =
h
e−jω0 · · · e−jω(M−1)

iT

, (17)

we may also express this as hHz(ω0l) = 1 . We can now state
the filter design problem as the following constrained optimization
problem:

min
h

hH bQh s.t. hHz(ω0l) = 1, (18)

for l = 1, . . . , L.

The constraints for theL harmonics can also be expressed as hHZ =
1, where 1 = [ 1 · · · 1 ]T , and

Z = [ z(ω0) · · · z(ω0L) ] (19)

The problem in (18) is a quadratic optimization problem with equal-
ity constraints that can be solved using the Lagrange multiplier
method. Introducing the Lagrange multiplier vector

λ = [ λ1 · · ·λL ]T , (20)

the Lagrangian dual function of the problem stated above can be
expressed as

L(h,λ) = hH bQh−
“
hHZ− 1T

”
λ. (21)

By taking the derivative with respect to the unknown filter vector
and the Lagrange multiplier vector and setting this to zero, i.e.,
∇L(h,λ) = 0, we obtain

ĥ = bQ−1Z
“
ZH bQ−1Z

”−1

1. (22)

This filter is optimal in the sense that it has unit gain at the har-
monic frequencies and an output that resembles a sum of harmon-
ically related sinusoids while everything else is suppressed max-
imally. It can readily be used for determining the amplitudes of
those sinusoids by inserting (22) into (13), which yields the fol-
lowing estimate:

â = W−1GbQ−1Z
“
ZH bQ−1Z

”−1

1. (23)

The output power of the filter when this is applied to the original
signal can be expressed as ĥH bRĥ which may be used for deter-
mining the fundamental frequency by treating ω0 in Z, G, W as
an unknown parameter and then pick as an estimate the value for
which the output power is maximized, i.e.,

ω̂0 = arg max
ω0

ĥH bRĥ. (24)

One can also obtain an estimate of the number of harmonics L by
estimating the noise variance by filtering out the harmonics and



applying one of the many statistical model order estimation tools,
like, e.g., the MAP-rule of [11]. From the optimal filter, it is thus
possible to obtain a full parametrization of periodic signals as was
claimed in the introduction.

The main difference between the design proposed here and
the Capon-like designs previously proposed is that the modified
covariance matrix bQ is used in (18) in place of bR, i.e., the differ-
ence is essentially in terms of the output of the filter being peri-
odic. Interestingly, despite this difference, the Capon-like filters of
[3, 4] can be obtained as a special case of the solution presented
here by setting the modified covariance matrix equal to the sam-
ple covariance matrix of the observed signal, i.e., bQ = bR. The
proposed filter design leads to filters that are generally also much
more well-behaved for high SNRs, where Capon-like filters are
well-known to perform poorly and require that diagonal loading
or similar techniques be applied [7]. The proposed filter also holds
several advantages over traditional methods, like the comb filtering
approach or sinusoidal filters (also known as FFT filters), namely
that it is 1) optimal given the observed signal, and 2) optimized for
periodic filter output.

4. EXPERIMENTAL RESULTS

We will start out the experimental part of this paper by showing an
example of the optimal filters obtained using the proposed method
and the Capon-like filters of [3, 4]. In Figure 1, the magnitude
frequency response of the filters are shown for a synthetic signal
having ω0 = 0.6283, L = 5, unit amplitudes and random phases
with white Gaussian noise added at -20 dB. Both the proposed and
the Capon-like filters can be seen to exhibit the expected response
following the harmonic structure of the signal, and they are also
quite similar. In Figure 2, the same is shown only the SNR is now
20 dB. It can clearly be seen that the proposed filters still exhibit
the desired response emphasizing the harmonics of the signal. The
Capon-like design, however, behaves erratically. In the next ex-
ample, we will use the proposed signal-adaptive filter to extract a
real trumpet signal, a single tone sampled at approximately 8 kHz
using 60 ms segments and a filter length of 100. For each segment
the fundamental frequency was found using the subspace method
of [12]. The single tone has been buried in noise at 10 dB and
interfering tones (also trumpet tones) have been added also at 10
dB. The spectrogram of the original signal is shown in Figure 3
and the same signal with noise and interference added is shown
in Figure 4. The spectrogram of the extracted signal is shown in
Figure 5. A slice of the time-domain signals are depicted in Figure
6. These figures clearly demonstrate the ability of the proposed
filters to extract the signal while rejecting not only noise, but also
strong periodic interference even when these are fairly close to the
harmonics of the desired signal.

5. CONCLUSION

In this paper, we have proposed novel filter designs for extract-
ing periodic signals from noisy mixtures. The filters are optimal
given the observed signal and are designed such that their output
is periodic as possible, meaning that it should resemble a sum of
harmonically related sinusoids. This idea can be seen as a gener-
alization of the principle employed in the well-known APES fil-
ters. Moreover, the filters are obtained as solutions to a linearly
constrained quadratic optimization problem that has a closed-form
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Fig. 1. Frequency response of the proposed (top) and Capon-like
filters (bottom) for an SNR of -20 dB.
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Fig. 2. Frequency response of proposed (top) and Capon-like fil-
ters (bottom) for an SNR of 20 dB.

solution. We have demonstrated that the new filters lead to a num-
ber of advantages over previous methods, including Capon-like
designs. The filters can be used for a number of application, in-
cluding separation, enhancement, and parameter estimation.
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Fig. 3. Spectrogram of trumpet signal.
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Fig. 4. Spectrogram of trumpet signal in noisy and with periodic
interference added at 10 dB SNR.
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Fig. 5. Spectrogram of signal extracted using the optimal filter.
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