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A mode-stirred reverberation chamber (RC) is nowadays a commonly accepted performing tool for over-the-air (OTA)
communication system evaluation, and their standardization is underway. Before performing active measurements of wireless
communication systems using an RC, field uniformity inside the RC working volume has to be measured following the calibration
method described in IEC standards 61000-4-21 and 61000-4-3, which requires 24 calibration measurements of field amplitude.
In this contribution, we present the statistical laws that describe electromagnetic field maxima distribution, and based on them,
a novel expression that could be useful to obtain a lower limit for the number of stirrer positions required at least to obtain a
specific value for the normalized dispersion used to evaluate field uniformity with the IEC calibration method, being therefore of
particular interest for OTA measurements.

1. Introduction

A mode-stirred reverberation chamber (RC) is an electrically
large, highly conductive enclosed cavity commonly accepted
as performing tool for electromagnetic (EM) measurements
(both emissions and immunity) on electronic equipment
and for over-the-air (OTA) communication system evalua-
tion. It is typically equipped with mechanical stirrers that
modify its electromagnetic field boundary conditions, and
when it is well stirred, that is, when a sufficient number of
modes are excited, the resulting environment is essentially
statistically uniform and statistically isotropic (i.e., the
energy having arrived from all aspect angles and at all polar-
izations) with independence of location [1], achieving the
field uniformity requirements, except for those observation
points in close proximity to walls [2] and nearby objects. The
field uniformity property of an ideal reverberation chamber
is such that the mean-square value of the electric field and
its rectangular components is considered independent of

position [1]; likewise, the real and imaginary parts of each
rectangular component of the electric and magnetic field
throughout the chamber are Gaussian distributed, independ-
ent with identical variances; thus, the electric or magnetic
field inside an ideal RC follows a single-cluster Rayleigh pro-
bability density function in amplitude and uniform distribu-
tion of phase, whereas the power fits an exponential one [3],
which resembles the multipath fading in indoor scenarios
of wireless communications systems. This RC behavior con-
cerns high frequencies and can be qualified of “asymptotic”
or “overmoded.” On another hand, the “undermoded” case
corresponds to the lower part of the spectrum that is close to
the lowest usable frequency (LUF) [4, 5]. Standard guidelines
for RC operation usually involve estimating the LUF from the
field uniformity of a given working volume. Field uniformity
also permits to assess the behavior goodness of the RC,
and its definition is based on the calibration procedure
[4, 5]. The field is determined at eight points located at
the working volume corners, as depicted in Figure 1, and
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Figure 1: Chamber working volume [4].

normalized (to the square root of the input power). For
each of the 8 × 3 normalized rectangular components, ER,
the maximum value among N∗ stirrer positions, ERMax, is
evaluated. From these ERMax maxima values, the mean val-
ue 〈ERMax〉 and empiric standard deviation σERMax are calcu-
lated. Then, field uniformity is evaluated by calculating
a normalized dispersion, S (dB), expressing the standard
deviation σERMax in terms of dB relative to the mean 〈ERMax〉,
that is,

S (dB) = 20 log10

(
1 +

σERMax

〈ERMax〉
)
. (1)

This is typically the figure of merit used to assess the
performance of the RC, since the field within it is considered
to be uniform if S (dB) is within 3 dB above 400 MHz,
4 dB at 100 MHz decreasing linearly to 3 dB at 400 MHz,
and within 4 dB below 100 MHz [4]. Thus, field uniformity
is a requirement for an RC to become a site for elec-
tromagnetic compatibility tests, in both radiated emission
and susceptibility, and to provide measure reproducibility.
Once field uniformity is attained in the working volume
defined inside an RC, if a specific lower value of S (dB)
is desired in order to obtain more accuracy for certain
measurements, a higher number N∗ of stirrer positions
are required, and if it is determined only through trial
and error, calibration costs will increase, owing to the fact
that calibration according to IEC standards [4, 6] is a long
process, as explained before. Thus, in this contribution, we
present the statistical laws that describe electromagnetic field
maxima distribution, and based on them, we develop a novel
methodology which relates the normalized dispersion S (dB)
and the number N of independent samples among the ones
given byN∗ stirrer positions (whose relationship is estimated
in [7]) when uniformity of the field amplitude distribution
of the 3 rectangular components at the 8 points of the
working volume defined inside an RC is accomplished. This
methodology does not replace the IEC calibration method
[4, 6], since the only way to ensure the required uniformity
is to perform the corresponding 24 measurements for N∗

stirrer positions, and check that the collected samples are
identically distributed, fitting a certain asymptotic law whose
cumulative distribution function (CDF) is known. But once

this is accomplished, the presented methodology can help
to search for the number N∗ of stirrer positions necessary
to obtain a desired lower S (dB) value quicker than only
through trial and error, and thus decreasing calibration
costs. This methodology has been validated through both
simulations (by a Monte Carlo simulation, following the
work presented in [5]) and measurements inside an RC. This
contribution is of special interest for OTA measurements,
whose standardization is underway [8], since it gives insights
on the relationship between field amplitude distribution, its
maxima distribution, and under the previously mentioned
conditions, field uniformity inside an RC.

2. Statistical Derivation of Field Amplitude,
Maxima Distribution, and Its Relationship
with Field Uniformity

As in [9], where extreme value theory is used to deal with
asymptotic distributions of extreme values, such as maxima,
let X1,X2, . . . ,XN be independent and identically distributed
(i.i.d.) random variables with a parent distribution function
F(x) and maxima YN = max1≤i≤N{Xi}. If there exist
constants aN ∈ R, bN > 0, and some nondegenerate
distribution function G such that the distribution of (YN −
aN )/bN converges to G, then G belongs to one of the
three standard extreme value distributions: Frechet, Webull,
and Gumbel distributions. The following lemma indicates
a sufficient condition for a parent distribution function
F(x) belonging to the domain of attraction of the Gumbel
distribution.

Lemma 1. Let X1,X2, . . . ,XN be i.i.d. random variables with
a parent distribution function F(x). Define ω(F) = sup{x :
F(x) < 1}. Assume that there is a real number x1 such that,
for all x1 ≤ x < ω(F), f (x) = F′(x) and F′′(x) exist and
f (x) /= 0. If

lim
x→ω(F)

d

dx

[
1− F(x)
f (x)

]
= 0, (2)

then there exist constants aN and bN > 0 such that (YN −
aN )/bN uniformly converges in distribution to a normalized
Gumbel random variable as N → ∞. The normalizing
constants aN and bN are determined by

aN = F−1
(

1− 1
N

)
,

bN = F−1
(

1− 1
Ne

)
− F−1

(
1− 1

N

)
,

(3)

where F−1(x) = inf{y : F(y) ≥ x} [9–11]. Therefore, if the
amplitude of an electric field rectangular component inside the
RC working volume, ER, follows a parent distribution function
F(x), then the maxima values among N independent samples
obtained through the stirring process, ERMax, will follow a
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Gumbel distribution, whose probability density function (PDF)
is

g
(
y; aN , bN

) = 1
bN
· exp

[
− y − aN

bN

]

· exp
[
− exp

[
− y − aN

bN

]] (4)

[12], where its location and scale parameters, aN and bN , res-
pectively, can be straightforwardly derived from (3). For
example, if the amplitude of an electric field rectangular com-
ponent inside an RC is Rayleigh distributed, that is, ER ∼
Rayleigh (σ), since the assumption in (2) is accomplished for
F(x) = Rayleigh (σ), the maximum value among N∗ stirrer
positions will be asymptotically Gumbel distributed, that is,
ERMax ∼ Gumbel(aN , bN ), with aN = √

2σ2 ln(N) and
bN = √

2σ2(
√

1 + ln(N) − √
ln(N)), where N is the number

of independent samples among the ones given by the N∗ stirrer
positions (whose relationship is estimated in [7], as mentioned
in the introduction). Moreover, according to IEC 61000-4-21
standard [4], if the field amplitudes are normalized to the
square root of the input power,

√
2σ2 will be equal to 1, and

so the expressions for aN and bN are even more simplified,
that is, aN = √

ln(N) and bN = √
1 + ln(N) − √

ln(N). Fur-
thermore, after knowing that the distribution of maxima
values uniformly converges to a Gumbel one, in order to
calculate its moments, moment convergence has to be ensured.
Even though convergence in distribution is not equivalent to
moment convergence in general, following the relation between
convergence in distribution and moment convergence [9, 13],
convergence in distribution for the maximum of nonnegative
random variables, as field amplitude inside an RC, results
in moment convergence. Thus, the mean value 〈ERMax〉 and
empiric standard deviation σERMax of maxima values ERMax

which follow a Gumbel distribution can be straightforwardly
derived from their mathematical definition, using the Gumbel
PDF described in (4), resulting in

〈ERMax〉 = aN + γbN ,

σERMax =
π√
6
bN ,

(5)

where γ = 0.5772 . . . is the Euler constant [11], and aN and bN
were already presented in (3).

Likewise, in the particular case of attaining field unifor-
mity inside an RC, evaluated through the IEC calibration
method [4, 6], and when the collected samples of field
amplitude are identically distributed for the 3 rectangular
components at the 8 points of its working volume, field uni-
formity could also be evaluated by the following normalized
dispersion:

S̃ (dB) = 20 log10

(
1 +

π√
6

1
γ + (aN /bN )

)
. (6)

It is obtained by substituting 〈ERMax〉 and σERMax in (1)
for the values obtained from (5). However, S̃ (dB) is not
necessarily equal to S (dB), and the previously described
distribution uniformity needs to be evaluated by the IEC

calibration method [4, 6] and attained in order to be
comparable. The advantage that (6) provides is that once the
described distribution uniformity is accomplished, in order
to achieve a lower dispersion S (dB), the higher number N∗

of stirrer positions which would be required at least can
be calculated faster using it if we consider that the ratio
between N and N∗ should not be increased when N∗ is
increased if the stirring method is not altered. It is worthy
to note that field uniformity evaluated by means of (6) only
depends on its coefficients aN and bN , which are described
in (3), and thus on the distribution of the field amplitude
inside the RC working volume, F(x), and the number of
independent samples, N , among the ones given by the N∗

stirrer positions. Following the previous example, if the field
amplitude distribution results to be Rayleigh (σ) for the
3 rectangular components at the 8 points of the working
volume defined inside an RC, (6) becomes

S̃ (dB) = 20 log10

⎛⎝1 +
π√
6

1

γ + 1/
(√

1 + (1/ ln(N))− 1
)
⎞⎠,

(7)

which depends only on the number N of independent
collected samples. Thus, (6) and (7) can also be useful to
calculate the number N of independent samples among the
ones given by the N∗ stirrer positions from the S (dB) value
calculated according to IEC standards [4, 6] when the previ-
ously described distribution uniformity is accomplished.

3. Validation through Monte Carlo Simulations

Following the works presented in [5, 14], we use a Monte
Carlo simulation in order to validate the expression pre-
sented in (5), and also the one in (6) for the case of having the
previously described distribution uniformity, by confirming
that the maxima values among N independent samples
which follow a given parent distribution F(x) follow a
distribution that converges asymptotically to a Gumbel one,
comparing the maxima mean value and standard deviation
to the ones given by (5), and also comparing the field
uniformity dispersion S (dB) to the S̃ (dB) given by (6).

Thus, using a MATLAB script, 24 signals of a determined
length N (modeling the 3 rectangular components of the
electric field at the 8 working volume corners along the
same number of independent stirrer positions) are randomly
generated following one specific distribution function, F(x).
Then, the maximum value of each signal is calculated, and
the mean value and standard deviation of these 24 maxima
are computed. The procedure is iterated 1000 times, and the
averaged results are depicted in Figures 2 and 3, in solid
lines. They are compared with the ones predicted by (5), in
dotted lines. Different numbers N of independent samples
(or alternatively, independent stirrer positions), and a Rice
distribution as parent distribution, with different K-factors
(including K = 0 in order to study the results for a Rayleigh
distribution) have been used. As we can see, since maxima
distribution only converges asymptotically to a Gumbel one
(but does not fit exactly for a finite number N of independent
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Figure 2: Mean value of the 24 maxima, averaged along 1000 runs
of a Monte Carlo simulation, and the comparison to the values
predicted by (5), for a Rice distribution as parent distribution with
different K-factors.
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Figure 3: Standard deviation of the 24 maxima, averaged along
1000 runs of a Monte Carlo simulation, and the comparison to the
values predicted by (5), for a Rice distribution as parent distribution
with different K-factors.

samples), there is a small bias from the simulated results to
the predicted ones. However, this bias has also been corrected
by multiplying bN , obtained following (3), by a factor of
23/24 = 0.9583 . . . (related to the M = 24 maxima, as
(M − 1)/M), and recalculating the statistics by means of (5),
as shown in dashed lines.

Afterwards, field uniformity is evaluated by calculating
the normalized dispersion S (dB) according to IEC standards
[4, 6] from the simulated samples (using the statistics of
the 24 maxima), and the obtained values are averaged
over the 1000 Monte Carlo runs and depicted (in green)
in Figures 4–6, for different K-factors. Moreover, S (dB)
extrema [S (dB)min S (dB)max] have been also computed, as
in [5] (and depicted in blue and red, resp.). These results are
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Figure 4: S (dB) mean value, averaged along 1000 runs of a Monte
Carlo simulation, and the comparison to the values predicted
by (6), for a Rayleigh distribution as parent distribution (Rice
distribution with K = 0).

compared with the ones predicted by (6), S̃ (dB) (depicted
in black). Since a small bias appears for the same reason
already explained for the statistics (mean value and standard
deviation) case, bN is multiplied by the same correcting
factor of 23/24, and the resulting S̃ (dB) is also presented (in
magenta).

As we can see, the mean value of the calculated S (dB),
averaged along the 1000 runs of the Monte Carlo simulation,
asymptotically converges to the S̃ (dB) given by (6), with
bN calculated following (3). Moreover, after multiplying bN
by the correction factor of 23/24, the mean value of the
calculated S (dB) fits S̃ (dB). Similar results are obtained for
other parent distributions, F(x), as Weibull or Nakagami,
and they are therefore not presented here for brevity. It is also
worthy to note that field uniformity is improved when the
K-factor of the Rice distribution (followed by the amplitude
of the electric field rectangular components) increases.
This is obvious since when the dominant direct coupling
component of the field is increased, the Rice K-factor is
also increased, and in this case, the coefficient of variation
of amplitude of the electric field rectangular components is
reduced, thus decreasing the normalized dispersion used to
evaluate the field uniformity. Likewise, we can observe from
the results that the absolute deviation between both extrema
of S (dB) along the 1000 Monte Carlo simulations (which are
performed considering distribution uniformity) is up to 1 dB
(when each rectangular component is modeled by N = 100
independent samples following a Rayleigh distribution), and
this should be taken in consideration when an RC calibration
is performed according to the IEC standards [4, 6] in order
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Figure 5: S (dB) mean value, averaged along 1000 runs of a Monte
Carlo simulation, and the comparison to the values predicted by
(6), for a Rice distribution with K = 1 as parent distribution.

to consider the field within the RC as uniform or not,
specially when the value of S (dB) resulted too close to the
corresponding limit of 3 dB or 4 dB [4] (depending on the
frequency, as mentioned in the introduction).

4. Validation through Measurements in
Reverberation Chambers

In order to ensure the validity of (5), and also the one of
(6) when the previously described distribution uniformity
is accomplished, several measurements have been carried
out in one of the RCs of the OSA Department at XLim
Laboratory, whose inner view is shown in Figure 7.

Following the IEC calibration method [4, 6], the ampli-
tude of the x-, y-, and z-rectangular components of the
electric field has been measured using a triaxial probe
located at the 8 corners of a delimited working volume,
at a frequency of 2 GHz. At this frequency, the RC is
considered to work under the “overmoded” regime inside
its factory-delimited working volume, and this requirement
is necessary in order to compare the results obtained from
the measurements to the ones provided by the equations
presented before. The associated empirical CDFs are shown
in Figure 8, considering two different working volumes:
one slightly inside the factory-delimited working volume
and the factory-delimited working volume itself. As we can
see, they asymptotically converge to a Rayleigh distribution
(the differences will be attributed to a lack of independent
samples, since the measurement counts only with N∗ = 100
stirrer positions). Then, the maxima values for each one
of the normalized rectangular components are evaluated,
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Figure 6: S (dB) mean value, averaged along 1000 runs of a Monte
Carlo simulation, and the comparison to the values predicted by
(6), for a Rice distribution with K = 10 as parent distribution.

Figure 7: Inner view of the RC used in this study.

Table 1: Measured results.

Measurement 〈ERMax〉 σERMax S (dB)

I 2.2625 0.3284 1.1771

II 2.2249 0.2830 1.0399

and from these maxima, ERMax, the mean value 〈ERMax〉
and empiric standard deviation σERMax are calculated and
compared to the values given by (5). Finally, field uniformity
is evaluated by calculating the normalized dispersion S (dB)
according to IEC standards [4, 6], and the obtained value is
compared to the one given (6). The results obtained from
the measurements performed for the two different working
volumes, following the IEC calibration method [4, 6], are
shown in Table 1.

Likewise, when the amplitude of the rectangular com-
ponents is considered to be Rayleigh, (5) gives 〈ERMax〉 =
2.2739 and σERMax = 0.2842, for N = 100 independent
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Figure 8: CDFs of the electric field (x-, y-, and z-rectangular
components) at a frequency of 2 GHz.

samples. In addition, (6), or (7) since the considered
distribution is a Rayleigh one, gives a value of S̃ (dB) =
1.0228 . . ., also for N = 100 independent samples. As we
can see, the measured values are very close to the one given
by the equations presented in this contribution, since the
assumption of having the same distribution for the ampli-
tudes of all the rectangular components is accomplished
for both measurements, as depicted in Figure 8. Moreover,
the measured values of S (dB) resulted to be also situated
between the minimum and maximum values, [S (dB)min =
0.5161, S (dB)max = 1.5841] calculated by the Monte Carlo
simulation for N = 100 independent samples, as previously
depicted in Figure 4.

Furthermore, after performing the calibration according
to the IEC standards [4, 6], and confirming that the dis-
tribution of the amplitude of the rectangular components of
the electric field has resulted to be Rayleigh, if a lower S (dB)
value was desired, in order to obtain a higher accuracy, the
number N∗ of stirrer positions that would be required at
least can be calculated using (7). For example, if S (dB) was
desired to be lower than 0.5 dB, substituting S̃ (dB) by 0.5 dB
in (7), we obtain that the number N of independent samples
that are required at least for that purpose would be 29429,
and performing a calibration according to IEC standards
[4, 6] with a number N∗ of stirrer positions lower than
this higher number N would be useless, since increasing
the number N∗ of stirrer positions cannot decrease the dis-
tribution uniformity and cannot also increase the ratio
between N and N∗ if the stirring method is not altered.
This is specially important after seeing that the S (dB) val-
ue obtained for N∗ = 100 stirrer positions is around
1 dB, and that the absolute deviation from one calibration
realization to another in the same conditions has resulted to
be up to 1 dB, as confirmed by the Monte Carlo simulations

previously depicted in Figure 4, and thus, the value of
S (dB) = 0.5 dB desired in this example could be obtained
by chance using a lower number N∗ of stirrer positions
but only because of a deviation, and not because the field
is really as uniform as desired and as S (dB) = 0.5 dB
indicates. Therefore, (7), and in general, (6), becomes useful
for calculating a lower limit for the number N∗ of stirrer
positions to be selected in order to obtain a specific value for
S (dB) dispersion when performing a calibration according
to the IEC standards [4, 6], specially once distribution
uniformity is attained in a previous calibration with a lower
number N∗ of stirrer positions. In this way, the search
for the desired value of S (dB) would be faster if com-
pared to searching for it only through trial and error, and
consequently, the associated calibration time and costs would
be reduced.

5. Discussion and Conclusions

In this paper, the statistical laws that describe electromag-
netic field maxima distribution as a Gumbel one with param-
eters given by (3) have been presented, thus permitting to
calculate the statistics mean value and standard deviation of
the maxima values distributed so using (5). Based on that, we
present in (6) a novel expression which relates the normal-
ized dispersion S (dB) used to evaluate field uniformity to the
number N of independent samples collected among the N∗

stirrer positions used to calibrate an RC according to the IEC
standards [4, 6] for the special case of having distribution
uniformity, that is, when the field amplitude of the 3 rectan-
gular components measured at the 8 points of the working
volume defined inside the RC follows the same distribution.
This study has been successfully validated both through
Monte Carlo simulations and measurements in an RC.

Moreover, as it has been shown in Figures 4–6, field
uniformity measured through the IEC calibration method
[4, 6] can vary more than 1 dB between two calibration
realizations even when the amplitude of the electric field
rectangular components is independent and identically
distributed at the eight points located at the working volume
corners. Thus, since repeating the calibration process enough
times to calculate an estimation of the mean value of the
normalized dispersion S (dB) is usually unaffordable due
to time requirements, it is essential to know a lower limit
for the number N∗ of stirrer positions to be selected in
order to obtain a specific value for S (dB). This lower limit
can be easily obtained from (6) by substituting S̃ (dB) by
the desired S (dB) value, taking into account that the more
distribution uniformity we have and the more independent
the samples between two consecutive stirrer positions are,
the more this lower limit approaches the real number N∗ of
stirrer positions required for this purpose.

Therefore, this contribution is of special interest for OTA
measurements, whose standardization is underway [8], since
it not only gives insights on the relationship between field
amplitude distribution and its maxima distribution, but also
it could help to accelerate the achievement of a specific value
of S (dB) when performing a calibration according to IEC
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standards [4, 6] compared to doing it only through trial and
error and consequently could help to reduce calibration time
and costs.
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