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The Summation-by-Parts Algorithm—A New Efficient
Technique for the Rapid Calculation of Certain

Series Arising in Shielded Planar Structures

Juan R. Mosig and A. Alvarez Melcón

Abstract—This paper presents a new technique for the convergence
acceleration of a large class of series often arising in electromagnetic
problems. The technique is based on the recursive application of the
integration-by-parts technique to discrete sequences, thus the given name
of the “summation-by-parts” technique. It is shown that the new technique
greatly enhances the convergence rate of the series treated, and very
small relative errors are obtained by performing a few simple operations.
The new technique is applied to the efficient numerical calculation of the
Green’s functions in a parallel-plate waveguide.

Index Terms—Convergence acceleration, modal expansions, shielded
Green’s functions.

I. INTRODUCTION

In many electromagnetic problems, the relevant physical quantities
(electric and magnetic fields) and associated quantities (potentials) are
expressed in terms of infinite series that are usually very slow conver-
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gent. This is the case, for instance, when analyzing shielded circuits
[1], cavity-backed antennas [2], or microwave devices inside photonic
crystals [3]. In these problems, the need of numerically evaluating in-
finite sums, usually very time-consuming, prevents, in general, the de-
velopment of efficient software codes.

To try to overcome this difficulty, several convergence series accel-
eration techniques have been developed in the past. Detailed and com-
plete survey on series acceleration is available in any modern textbook
(see, e.g., [4]).

As for the application of these general methods to the acceleration of
series arising in electromagnetic problems, a very interesting work can
be found in [5]. In that paper, some results on series acceleration are
given when these techniques are applied to the numerical evaluation
of the free-space periodic Green’s functions, and to the evaluation of
the quasi-static Green’s function term developed within the complex
images representation derived in [6].

Other acceleration techniques employed in the past include the use of
the Poisson’s summation formula together with the Kummer’s transfor-
mation for the evaluation of the shielded Green’s functions [7], [8] and
the Ewald transformation, which was used in [9] for the same purpose.

In spite of all these efforts, the use of these techniques in a reliable
systematic fashion is not straightforward, and some situations and ge-
ometries can be found where the efficiency of the algorithms breaks
down. In this context, this paper describes an alternative algorithm to
accelerate the convergence behavior of certain series often arising in
electromagnetic problems. It is shown in this paper that the new tech-
nique can be applied in a reliable fashion, and greatly accelerates the
convergence rate of the series treated.

II. THEORY

In many microwave circuits involving multilayered planar shielded
configurations, the relevant Green’s functions of the problem can be
formulated in terms of very slow convergent modal series of the form

S1 =

1

n=0

~Gnfn (1)

where ~Gn represents the spectral-domain Green’s function of the
problem, which it is a slow varying function, andfn, which is a
highly oscillatory (typically sinusoidal) function. In this section, we
will present the mathematical transformations leading to the new
formulation for the convergence acceleration of the series whose
general form is shown in (1).

To start, we first define partial sums and reminders of the original
series as follows:

SN�1 =

N�1

n=0

~Gn fn

RN =

1

n=N

~Gn fn

S1 =SN�1 +RN (2)

and since the partial sumsSN�1 are bounded, the attention must be
focused in the efficient evaluation of the infinite remainderRN . To do
so, we apply simple algebraic manipulations to the remainderRN in
(2), allowing us to rewrite it as

RN

=

1

n=N

~Gn fn = ~GN

1

n=N

fn+

1

n=N

~Gn+1 � ~Gn

1

k=n+1

fk :

(3)
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The important change when transforming (2) into (3) is that now we
have written the residueRN in a new form, where only differences
of Green’s functions~Gn and partial sums of sinusoidal termsfn do
appear.

The key point here is that we expect that a straightforward analyt-
ical procedure can apply to obtain the partial sums offn as closed for-
mulas. This, and the fact that the remaining terms of the series should
exhibit good convergence properties, being differences between suc-
cessive values of a slowly varying function, show the numerical interest
of the procedure.

It is now clear that the same procedure can be applied again to the
sum in the right-hand side of (3) since it has the same formal structure
than the original sum defining the residualRN in (2). We obtain

RN =

1

n=N

~G(0)
n f

(0)
n =

1

i=1

~G
(1�i)
N

f
(+i)
N�1 (4)

where we have defined the successive sums offn and differences of
~Gn in the following form:

~G(0)
n = ~Gn

~G(�i)
n = ~G

(1�i)
n+1 �

~G(1�i)
n (5a)

f
(0)
n =fn

f
(+i)
n =

1

k=n+1

f
(i�1)
k

; for all i = 1; 2; 3; 4; . . . : (5b)

It is interesting to observe that the successive difference functions
~G
(�i)
n can be viewed as the implementation of a numerical derivative,

and the successive sum functionsf
(+i)
n as the implementation of a nu-

merical integration. Having this is mind, it is not difficult to note that
the expression given in (4) could also be directly obtained if a discrete
equivalent of the integration-by-parts procedure is formally applied to
the original expression of the residueRN in (2).

III. M ATHEMATICAL EXAMPLE

In order to illustrate the numerical behavior of the new technique,
we are now going to show how it can be applied to the summation of
the following simple one-dimensional sinusoidal series [10]:

S1 =

1

n=1

sin(nx)

n
=

� � x

2
; 0 < x < 2�: (6)

If one ignores the analytical solution of the series and tries a direct
brute-force numerical evaluation of the sum, then a very slowly con-
vergence behavior is found, and relative errors in the final sum greater
than 1% are obtained, even after having summed more than 100 terms.
Let us now try to apply the summation-by-parts technique given in (4),
and see how the convergence of the series is affected. First note that by
identifying (6) with (1), the following relations are established:

~Gn = ~G(0)
n =

1

n
fn = f

(0)
n = sin(nx): (7)

For this selection offn, the series in (5b) can be easily evaluated ana-
lytically using simple trigonometric series formula, thus obtaining

f
(+i)
n =

1

k=n+1

f
(i�1)
k

=

cos (i� 1)
�

2
+ n+ i

1

2
x

2i sin
x

2

(i)
: (8)

Using the above analytical expression, the relative errors for this series
were computed when several correcting summation-by-parts terms are
included in the expression of the remainder. Fig. 1 presents the results
obtained, showing a dramatic improvement in the convergence for each

Fig. 1. Relative error for the series in (6) when different summation-by-parts
correcting terms are used, and as a function of the order of the reminder(N).
For this calculationx = 2.

Fig. 2. Relative error for the series in (6) when different orders of the reminder
are used, and as a function of the number of summation-by-parts terms(i). For
this calculationx = 2.

new correcting term included. In particular, when six terms are used,
an impressive numerical precision of 10�8% is obtained for values of
the index(N) of only N = 25. In contrast, the convergence of the
original series is very slow.

As a final convergence study of the novel technique developed, the
relative error of the same series has been evaluated as a function of
the number of correcting terms included(i), when the order of the re-
mainder(N) is fixed constant. Fig. 2 presents the results obtained, in-
dicating an impressive convergence rate, and that very accurate results
are obtained with a very small order of recursive operations. However,
it should be pointed out that the new algorithm is less efficient for very
small values ofx since (8) then starts to show a divergence behavior,
as indicated by the sine function in the denominator [11].

IV. ELECTROMAGNETIC APPLICATION

The technique derived can be used for the efficient numerical evalu-
ation of slow convergent series arising in many electromagnetic prob-
lems. One such situation corresponds to the Green’s functions inside a
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Fig. 3. Basic parallel-plate waveguide structure whose Green’s functions are investigated. (a) Waveguide approach: fields are expressed as a sum ofdiscrete
waveguide modes propagating alongz. (b) Stratified media approach: the plates are perpendicular toz and fields are expanded into a continuous radialk spectrum
(Sommerfeld).

(a) (b)

Fig. 4. Mixed-potential Green’s functions for the parallel-plate structure shown in Fig. 3 when the source point is placed at positions A and B. Comparisons
between the summation-by-parts technique and standard Sommerfeld formalism are included. Frequency: 45 GHz (h = 19:05mm). (a) Magnetic vector potential.
(b) Electric scalar potential.

parallel-plate waveguide, as shown in Fig. 3. It is interesting to note that
the analysis of this structure can be attempted in two different ways.

In the so-called waveguide approach, the propagation directionz is
parallel to the plates, and the field is expanded into a discrete spectrum
of waveguides modes [see Fig. 3(a)]. This approach yields for the elec-
tric scalar potential [12]

4��0G
PPW
V (�) =

2j�

h

1

n=1

H
(2)
0 (�kz) sin(kxx) sin(kxx

0)

kz = k20 � k2x

� = (z � z0)2 + (y � y0)2: (9)

The alternative approach (stratified media approach) defines the
propagation directionz as normal to the plates [see Fig. 3(b)]. We
have now an unbounded medium terminated by two ground planes.

The field expansion gives a continuous spectrum of radial modes and
is given by a Sommerfeld integral [13]

G
PPW
V (�) =

1

0

J0(k��)k� ~GV (k�)dk�

� = (x� x0)2 + (y � y0)2: (10)

The numerical evaluation of this Green’s function using any of the
two formulations is, in general, not easy, due to the very slow con-
vergence rates of the series and integrals involved. The problem of the
numerical evaluation of the Sommerfeld integral in (10) has been exten-
sively studied in the past, and very efficient algorithms are now avail-
able [13], [14]. Finally, with the technique derived in this paper, an
efficient numerical evaluation of (9) can be attempted. In this case, the
summation-by-parts technique just developed is used for the evaluation
of the slow convergent infinite modal series.
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As an example, Fig. 4 shows the results obtained for the mixed-po-
tential Green’s functions in Fig. 3(a) obtained with (9), as compared
with the Green’s functions obtained using a standard Sommerfeld for-
mulation (10) of the identical problem in Fig. 3(b). Fig. 4 shows the
comparison for both the electric scalar potential and magnetic vector
potential (analogous to the electric scalar potential, but not vanishing
in the walls), when the source is placed at points A and B in Fig. 3, and
as a function of the position of the observer point. As we observe, the
agreement is excellent; therefore, validating the parallel-plate Green’s
functions computed with the new algorithm.

V. CONCLUSIONS

In this paper, a new and efficient technique for the convergence ac-
celeration of a large class of series arising in electromagnetic problems
has been presented. The technique can be viewed as the successive ap-
plication of the integration-by-parts technique to discrete sequences;
therefore, the given name of the “summation-by-parts technique.”

The technique has been first applied to the numerical evaluation of a
simple canonical series, showing that convergence is greatly enhanced,
allowing to obtain very small relative errors with just a few operations.
The technique described can be applied to many real electromagnetic
problems and, in this paper, it has been used for the efficient numerical
calculation of the parallel-plate mixed-potential Green’s functions.
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Direct Extraction of Linear HBT-Model Parameters Using
Nine Analytical Expression Blocks

Achour Ouslimani, Jean Gaubert, Habiba Hafdallah, Ahmed Birafane,
Pierre Pouvil, and H. Leier

Abstract—A method to determine the heterojunction bipoloar transistor
(HBT) equivalent-circuit elements without numerical optimizations is pre-
sented. It is based on the extraction of nine analytical expressions, which
are referred to here as “blocks.” The model elements are extracted using
certain blocks for some of them and three nonlinear equations derived from
a combination of four expression blocks for some others. The base and col-
lector resistances can be determined at each bias point. The method is val-
idated treating the on-wafer HBTs.

Index Terms—Analytical method, heterojunction bipolar transistor, pa-
rameter extraction.

I. INTRODUCTION

An accurate parameter-extraction procedure of the linear equivalent
circuit is crucial to optimize the device and circuit performances. Ap-
proaches that consist of reducing the number of unknown elements by
using complementary characterizations for independently estimating
as many heterojunction bipolar transistor (HBT) parameters as pos-
sible have been proposed [1]–[3]. Measurements of special test struc-
tures and geometrical and material parameters are needed in [1] to ob-
tain some of the parasitic parameter values. The measurements of two
separate test structures are proposed in [2] and [3] to determine the
probe-pattern parasitic. The cutoff mode measurements are used in [2]
to determine some of the HBTs’ capacitances, and the equivalent cir-
cuit of the device biased to active mode is obtained using numerical
optimizations. Analytical expressions and numerical optimizations are
used in [3] and [4] and the information about the geometry device is
used to evaluate the ratio� between the extrinsic and intrinsic base–col-
lector capacitances. Analytical extraction methods have been proposed
in [5] and [6]. In [5], the method is based on the use of local fitting
routines and certain assumptions. In [6], theS-parameters measured
under open-collector condition are used to determine the extrinsic el-
ements. An approach based on both empirical optimization and ana-
lytical evaluations is reported in [7]. Initial values of HBT parameters
are estimated from dc and multibiasS-parameter measurements and
then used to achieve the evaluation of the HBT model elements by the
impedance-block conditioned optimization. Finally, a procedure com-
bining the analytical and optimization approaches was developed in
[8], in which the influence of pad capacitances is discussed.
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