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ABSTRACT

In this work, we propose a novel scheme to re-estimate
the linear predictive parameters in sparse speech coding. The
idea is to estimate the optimal truncated impulse response that
creates the given sparse coded residual without distortion. An
all-pole approximation of this impulse response is then found
using a least square approximation. The all-pole approxima-
tion is a stable linear predictor that allows a more efficient
reconstruction of the segment of speech. The effectivenessof
the algorithm is proved in the experimental analysis.

1. INTRODUCTION

The most important speech coding paradigm in the past
twenty years has beenAnalysis-by-Synthesis(AbS) [1, 2].
The name signifies analysis of the optimal parameters by
synthesizing speech based on these. In other words, the
speech encoder mimes the behavior of the speech decoder in
order to find the best parameters needed. The usual approach
is to first find the linear prediction parameters in a open-loop
configuration then searching for the best excitation given
certain constraints on it. This is done in a closed-loop config-
uration where the perceptually weighted distortion between
the original and synthesized speech waveform is minimized.
The conceptual difference between a quasi-white true resid-
ual and its approximated version, where usually sparsity is
taken into consideration, creates a mismatch that can raise
the distortion significantly. In our previous work we have de-
fined a new synergistic predictive framework that reduces this
mismatch by jointly finding a sparse prediction residual as
well as a sparse high order linear predictor for a given speech
frame [3]. Multipulse encoding techniques [4] have shown
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to be more consistent with this kind of predictive framework,
offering a lower distortion with very few samples [5].

In this work, we propose a method to further reduce the
mismatch between sparse linear predictor and approximated
residual by re-estimating the linear predictive parameters.
This paper is structured as follow. In Section 2, we intro-
duce the coding method based on sparse linear prediction.
In Section 3, we introduce the re-estimation procedure and
in Section 4 we propose the results to validate our method.
Finally, Section 5 concludes our work.

2. SPEECH CODING BASED ON SPARSE LINEAR
PREDICTION

In our previous work [3, 5], we have defined a synergistic
new predictive framework that jointly finds a sparse predic-
tion residualr as well as a sparse high order linear predictor
a for a given speech framex as

â, r̂ = arg min
a

‖r‖1 + γ‖a‖1, subject to r = x − Xa;

(1)
where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 − K)
...

...
x(N2 − 1) · · · x(N2 − K)







and‖ · ‖1 is the 1-norm defined as the sum of absolute values
of the vector on which operates. The start and end points
N1 and N2 can be chosen in various ways assuming that
x(n) = 0 for n < 1 andn > N [6]. The more tractable
1-norm‖ · ‖1 is used as a linear programming relaxation of
the sparsity measure, often represented as the cardinalityof a
vector, the so-called 0-norm‖ · ‖0. This optimization prob-
lem can be posed as a linear programming problem and can
be solved using an interior-point algorithm [7]. The choice
of the regularization termγ is given by theL-curve where a



trade-off between the sparsity of the residual and the sparsity
of the predictor is found [8].

The sparse structure of the predictor allows a joint estima-
tion of short-term and long-term predictor [9]:

A(z) ≈ Ã(z) = F (z)P (z), (2)

whereF (z) is the short-term predictor, commonly employed
to remove short-term redundancies due to the formants, and
P (z) is the pitch predictor that removes the long-term redun-
dancies. The sparse structure of the true residualr̂ allows for
a quick and more efficient search of approximated residual
r̃ using sparse encoding procedure, where the approximated
residual is given by a regular pulse excitation (RPE) [10]. The
problem can be rewritten as:

r̃ = arg min
r

‖W(x − H̃r)‖2, (3)

by imposing the RPE structure oñr:

r̃(n) =

N/S−1
∑

i=0

αiδ(n − iS − s) s = 0, 1, . . . , S − 1, (4)

whereαi are the amplitudesδ(·) is the Kronecker delta func-
tion,N/S are the number of pulses andS is the spacing; only
S different configurations of the positions are allowed (s is the
shift of the residual vector grid). In (3),W is the perceptual
weighting matrix,H̃ is the(N) × (K + N) synthesis matrix
whosei−th row contains the elements of index[0,K + i− 1]
of the truncated impulse responseh̃ of the combined predic-
tion filter Ã(z) = F (z)P (z):
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(5)
andr is composed of the previous residual samplesr̃

−
(the

filter memory, already quantized) and the currentr̃ that has to
be estimated:

r =
[

r̃
T
−

r̃
T
]T

= [r̃
−K , · · · , r̃

−2, r̃−1, r̃0, r̃1, r̃2, · · · , r̃N−1]
T

.
(6)

In the end a segment of speech can be represented by the
sparse predictor̃A(z) and its approximated excitatioñr.

3. RE-ESTIMATION OF THE PREDICTIVE
PARAMETERS

To ensure simplicity in the following derivations, let’s assume
that no perceptual weighting is performed (W = I). The re-
sults can then be generalized for an arbitraryW. The problem

in (3) is now just a waveform matching problem. The interest-
ing thing is that, once found a proper sparse excitation, we can
re-estimate the matrixH and therefore the impulse response
h by posing it as a convex optimization problem:

Ĥ = arg min
H

‖(x − Hr̃)‖2 → ĥ = arg min
h

‖(x − R̃h)‖2

(7)
where:
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(8)

where{r̃
−K , . . . , r̃

−1} is the past excitation (belonging to the
previous frame). The problem (7) allows for a closed form
solution when the 2-norm is employed in the minimization:

ĥ = hopt = R̃
T (R̃R̃

T )−1
x. (9)

Because the matrix̃RT (R̃R̃
T )−1 in (9) is the pseudo-inverse

R̃
+ of R̃, the newhopt is then the optimal truncated impulse

response that matches the given sparse residual:

‖x − R̃hopt‖2 = 0. (10)

It is therefore clear that the optimal sparse linear predictor
A(z) is the one that hashopt as truncated impulse response.
The problem now is that the impulse response will include
both short-term and long-term contribution. We can split the
two contribution and perform a two step optimization.

Assuminghf the impulse response of the short-term pre-
dictor 1/F (z) andhp the impulse response of the long-term
predictor1/P (z), we can rewrite the problem in (7) as:

Ĥf , Ĥp = arg min
Hf ,Hp

‖(x − HfHpr̃)‖2. (11)

We can then proceed with the re-estimation of the impulse
response of the short-term predictor by solving the problem:

ĥf = arg min
hf

‖(x − (HpR̃)hf )‖2, (12)

and then find the predictor that approximatesĥf . The pre-
dictor A(z) = 1 +

∑Q
k=1

akz−k can then just be seen as a
reducedQ order IIR approximation (Q << N + K) to the
optimal FIR filterHf (z). Assuming:

Hf (z) =
E(z)

A(z)
(13)

whereE(z) is the error polynomial andA(z) is the approxi-
mating polynomial:

E(z) =

N+Q−1
∑

k=0

eiz
−i (14)



and

ei = hf
i −

Q
∑

k=1

akhf
i−k. (15)

We recognize this also as a linear predictive problem. Putting
(15) into matrix form:

ê = hf − H
F
f â, (16)

and:

hf =







hf (N1)
...

hf (N2)






,HF

f =







hf (N1 − 1) · · · hf (N1 − Q)
...

...
hf (N2 − 1) · · · hf (N2 − Q)







we can solve it using common procedures. In particular,
rewriting the problem as:

â = arg min
â

‖hf − H
F
f â‖2. (17)

ChoosingN1 = 1 andN2 = N +Q and assuminghf (n) = 0
for n < 1 andn > N , we find the well known Yule-Walker
equations. This guarantees stability and simplicity of theso-
lution. In more general terms the problem of approximating
the impulse responseHf (z) through the linear predictorA(z)
falls in the class of the approximation of FIR through IIR dig-
ital filters (see, for example, [12, 13]). Using a similar ap-
proach we can recalculate the long-term predictor as well.

4. EXPERIMENTAL ANALYSIS

In order to evaluate our method, we have analyzed about one
hour of clean speech coming from several different speakers
with different characteristics (gender, age, pitch, regional ac-
cent) taken from the TIMIT database, re-sampled at 8 kHz.
We choose a frame length ofN = 160 (20 ms) and a order
of the optimization problem in (1) ofK = 110. We imple-
ment the sparse linear predictive coding usingNf = 10 and
Np = 1, the residual is encoded using RPE with 20 sam-
ples (pulse spacingS = 8), a gain and a shift. The gain is
coded with 6 bits and the pulse amplitude are coded using
a 8 level uniform quantizer, the LSF vector is encoded with
20 bits (providing transparent coding) using the procedurein
[14], the pitch period is coded with 7 bits and the gain with 6
bits. This produces a fixed rate of 102 bit/frame (5100 bit/s).
No perceptual weighting is employed. The re-estimation is
done only on the short-term parameters. The coder that em-
ploys re-estimation consists of the following steps:

1. DetermineÃ(z) = F (z)P (z) using sparse linear pre-
diction.

2. Calculate the residual vectorr̃ using RPE encoding.

3. Re-estimate the optimal truncated impulse response
hf .
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Fig. 1. An example of the different impulse response used in
the work. The impulse responsehf of the original short-term
predictor F (z), the optimal re-estimated impulse response
adapted to the quantized residualhopt and the approximated
impulse responsehn

f of the new short-term predictor̂F (z).
The order isNf = 10.

4. Least square IIR approximation ofhf using order
Nf = 8, 10, 12.

5. Optimize the amplitudes of the sparse RPE residualr̃

using the new synthesis filter̂hf (positions and shift
stay the same).

We compare two approaches, one with only the re-estimation
of hf and one with the optimization of the amplitudes of the
RPE residual, using (3). The results, in comparison with stan-
dard Sparse Linear Prediction, are shown in table 1. An ex-
ample of the re-estimated impulses responses are shown in
Figure 1.

Table 1. Improvements over conventional SPARSE LP in the
decoded speech signal in terms of reduction of log magni-
tude segmental distortion (∆DIST) and Mean Opinion Score
(∆MOS) using PESQ evaluation. A 95% confidence intervals
is given for each value.

METHOD ∆DIST ∆MOS

Nf =8 +0.12±0.02 dB +0.01±0.00
Nf =10 +0.35±0.03 dB +0.05±0.00
Nf =12 +0.65±0.02 dB +0.04±0.00

Nf =8 + REST +0.17±0.01 dB +0.03±0.00
Nf =10 + REST +0.41±0.02 dB +0.06±0.00
Nf =12 + REST +0.71±0.04 dB +0.07±0.00



5. CONCLUSIONS

In this paper, we have proposed a new method for the re-
estimation of the prediction parameters in speech coding.
In particular, the autoregressive modeling is no more em-
ployed as a method to remove the redundancies of the speech
segment but as IIR approximation of the optimal FIR fil-
ter, adapted to the quantized approximated residual, that is
used in the synthesis of the speech segment. The method
has shown an improvement in the general performances of
the sparse linear prediction framework, but it can be applied
also to common methods based on minimum variance lin-
ear prediction (e.g. ACELP). The work can be extended for
these methods where we expect an even greater increase in
performances due to the mismatch between true residual and
approximated one.
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