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CLASSIFICATION OF DICOVERINGS

LISBETH FAJSTRUP

Abstract. The dicoverings of a “well pointed” d-space are classi-
fied as quotients of the universal dicovering space under congruence
relations. We prove that the subcategory of d-spaces generated by
the subcategory of directed cubes is equal to the category generated
by the interval and the directed interval. Similarly, the category
of topological spaces generated by simplices may be generated by
the interval.

1. Introduction

Dicoverings were introduced in [3] as a tool for investigating d-spaces.

A d-space is a topological space X with a subset ~P (X) ⊂ XI of the
set of paths, denoted the dipaths. A dicovering is a map of d-spaces
p : Y → X satisfying certain lifting properties. We do not require
local (di) homeomorphism properties as in non-directed topology, since
such properties are not implied by the lifting properties, even in very
simple examples, see Ex. 4.7. Our dicoverings are more like fibrations
of directed graphs in the sense of [1]. In particular, a dicovering may
not be a covering in Top. A dicovering Π : X̃ → X is universal, if
for all dicoverings, p : Y → X, there is a unique map φ : X̃ → Y
such that Π = p ◦ φ. A pointed d-space, (X,x) is well pointed, if all
points in X are the target of a dipath with source x. The category of
well pointed d-spaces is denoted wpd-Top. In Thm. 5.2 we prove the
existence Π : (X̃, x̃) → (X,x) of a universal dicover of all well pointed
d-spaces. In Section 4, we provide a construction of X̃.

The main ingredients in these results are the construction from [3]
and the result from [7], where we proved the existence of a universal
dicovering of cubically generated well pointed d-spaces, i.e., in a sub-
category wpd-TopB ⊂ wpd-Top. A d-space X is cubically generated,
if a map f : X → Y is a d-map whenever f ◦ φ is a d-map for all maps
φ : B → X, and all n-cubes B = I × I × · · · × I where I is the unit
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2 LISBETH FAJSTRUP

interval with either the standard d-structure - dipaths are the increas-
ing paths - or the discrete structure - only constant paths are dipaths.
Denote these d-spaces on the interval ~I and I.

In Prop. 3.3 we prove that d-TopB = d-TopI where I is the full

subcategory with two objects, ~I and I. Hence, if continuity of a map
f : X → Y can be established by checking the restriction to cubes, one
may check it just by the restriction to paths. A similar result holds
for topological spaces generated by simplices TopD, which is the same
subcategory of Top as TopI where I is the full subcategory of Top
with one object, the unit interval.

In order to use the universal dicoverings which we know exist for
wpd-TopB for a general wpd-space, we give a boxification functor � :
d-Top → d-TopB. This is right adjoint to the inclusion ι : d-TopB →
d-Top. Similarly, we get a simplexification functor ∆ : Top → TopD,
which is a right adjoint to the inclusion ι : TopD → Top. It is well
known [7] Prop. 3.5 that such generated subcategories are coreflective.
The contribution here is to spell this out in the examples d-TopB and
TopD

The universal dicovering Π : (X̃, x̃) → (X,x) supports certain equiv-
alence relations, congruence relations. The dicoverings of X are clas-
sified in the following sense: For all congruence relations ≈ on X̃,
the quotientmap ψ : (X̃, x̃) → (X̃/≈, [x̃]) is a dicovering and there
is a unique map p : (X̃/≈, [x̃]) → (X,x) such that p is a dicovering
and p ◦ ψ = Π. Moreover, given a dicovering q : (Y, y) → (X,x),
there is a congruence relation ≈q on X̃ such that the universal map

φ : (X̃, x̃) → (Y, y) factors over ψ : (X̃, x̃) → (X̃/≈q, [x̃]), φ = f ◦ ψ
and f is a bijective d-map. Hence (Y, y) and (X̃/≈q, [x̃]) differ only in
the topologies in the sense that the quotientspace has more opens than
Y .

This is as good as it gets in the sense that we give an example of a
wpd-TopB space which is not the quotient of its universal dicovering.
Hence, not even the trivial dicovering, the identity map, is a quotient.

It is a pleasure to thank Martin Raussen for very helpful remarks
and discussions.

2. d-Spaces and categories generated by a subcategory

We give the definitions and results from [5] and [7] on d-spaces and
categories generated by a subcategory. Moreover, we give some exam-
ples.
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Definition 2.1. A d-space is a topological space X with a set of paths
~P (X) ⊂ XI such that

• ~P (X) contains all constant paths.

• γ, µ ∈ ~P (X) implies γ ⋆ µ ∈ ~P (X), where ⋆ is concatenation.

• If φ : I → I is monotone, t ≤ s⇒ φ(t) ≤ φ(s), and γ ∈ ~P (X),

then γ ◦ φ ∈ ~P (X). I.e., ~P (X) is closed under taking subpaths
and monotone reparametrization.

The d-space is saturated if whenever φ : I → I a monotone surjection
and γ ◦ φ ∈ ~P (X), then γ ∈ ~P (X).

A d-map or dimap f : X → Y is a continuous map, such that if
α ∈ ~P (X) then f ◦ α ∈ ~P (Y ).

The set of distinguished paths, ~P (X) are called the dipaths. They

are d-maps from the ordered interval ~I to X.
For γ : I → X, we denote γ(0) the source and γ(1) the target of γ,

and we let ~P (X,A,B) denote dipaths with source γ(0) ∈ A ⊆ X and
target γ(1) ∈ B ⊆ X.

The category of d-spaces is denoted d-Top

Example 2.2. Let X = Rn and let a path γ(t) = (γ1(t), . . . , γn(t)) be
a dipath if t1 ≤ t2 implies γi(t1) ≤ γi(t2) for all i. When we consider
Rn as a d-space, this will be the dipaths, unless we mention otherwise.

Example 2.3. Let X be the geometric realization of a cubical set. In a
cube [0, 1]n ⊂ Rn, the dipaths are all restrictions of dipaths in Rn. Let
~P (X) be generated by concatenation and monotone reparametrization
of the dipaths in the cubes.

Example 2.4. ([3] Ex. 4.7) We define a Hawaiian star for δ an irra-
tional number:

S =
∞⋃
n=1

{(u cos(nπδ), u sin(nπδ))|[0 ≤ u ≤ 1

n
}

with the subspace topology from R2. The dicone on S is

CS =
∞⋃
n=1

{(tu cos(nπδ), tu sin(nπδ), t− 1)|(u, t) ∈ [0, 1/n]× ~I}

with topology induced from R3 and partial order in terms of the (u, t)
coordinates: (u, t1) ≤ (u, t2) if t1 ≤ t2.

Example 2.5. A space X with ~P (X) = XI is a d-space with trivial d-

structure. If ~P (X) is the constant maps, X has the discrete d-structure.
Note that the d-maps from a space with discrete d-structure are the
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continuous maps. The d-maps to a space with trivial d-structure are
the continuous maps.

Example 2.6. A subspace Y ⊂ X of a d-space has an induced d-
structure in the obvious way.
The product X × Y of two d-spaces has a product d-structure: γ(t) =
(γ1(t), γ2(t)) is a dipath if both components are.

The d-structure on the image of a surjection is defined as in [5],
except that we take closure under monotone reparametrization, which
[5] forgot. For a thorough discussion of monotone reparametrization,
see [2]

Definition 2.7. Let Z be a d-space and let f : Z → Y be a surjection.
Then Y has the quotient d-structure if the topology is the quotient
topology and ~P (Y ) is the closure of the set of dipaths {f ◦γ|γ ∈ ~P (Z)}
under finite concatenation and monotone reparametrization.

Remark 2.8. Let F : Z → Y be as above with Y the quotient d-
space. Let g : Y → X. Suppose g ◦ F is a d-map. Then clearly g is
continuous. Let γ ∈ ~P (Y ), then γ is a monotone reparametrization of

F ◦η1⋆F ◦η2 · · ·F ◦ηn for a set of ηi ∈ ~P (Z). Hence g◦γ is a monotone

reparametrization of g ◦F ◦η1 ⋆g ◦F ◦η2 · · · g ◦F ◦ηn which is in ~P (X).
So Y is indeed a quotient, i.e., g is a d-map if and only if, g ◦ F is a

d-map.

Definition 2.9. For a d-space (X, ~P (X)), and x0, x1 ∈ X a dihomo-

topy of dipaths γ1, γ2 ∈ ~P (X,x0, x1) is a d-mapH : ~I×I → X such that
H(t, 0) = γ1(t), H(t, 1) = γ2(t), H(0, s) = x0 and H(1, s) = x1. Here

I is the interval with the discrete d-structure and ~I has the subspace
structure from R. Similarly, we define dihomotopies with fixed source
of dipaths γ1, γ2 ∈ ~P (X,x0,−) and dihomotopies of general d-maps.

Remark 2.10. A dihomotopy between dipaths is a d-map from the quo-
tient of ~I × I under identification of all (0, s) with (0, 0) and all (1, s)
with (1, 0).

In [7], we study generated categories in the following sense:

Definition 2.11. Let D be a full subcategory of a concrete category C.
The subcategory generated by D, denoted CD is the full subcategory
defined by C ∈ C is in CD if for all B,K ∈ C, f : UB → UK lifts to
a C morphism if and only if f ◦ Uφ : UD → UK lifts for all D ∈ D
and all φ : D → B. Here U is the forgetful functor to Set.
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Remark 2.12. A well known example is the category of k-spaces, which
is the subcategory of Top generated by compact Hausdorff spaces.

Definition 2.13. Let B be the full subcategory of d-Space with ob-
jects all cubes I1×I2×. . .×In where Ik is the unit interval with subspace
topology from R and either the discrete d-structure or the standard d-
structure induced from R. The d-structure on I1 × I2 × . . .× In is the
product structure.

Example 2.14. The subcategory of d-Top generated by B is denoted
d-TopB. A d-space X is in d-TopB if f : X → Y is a d-map whenever
f ◦ φ is a d-map for all φ : B → X and all B ∈ B. The requirement
f ◦ γ is a d-map, whenever γ : ~I → X ensures that f(~P (X)) ⊂ ~P (Y ),
so the X ∈ d-TopB is really a statement about the topology on X.
Since for a directed cube, the identity map from the corresponding dis-
cretely ordered cube is continuous and hence a d-map, we may restate
the condition: A d-space X is in d-TopB if f : X → Y is a d-map
whenever f ◦ φ is a d-map for all φ : B → X and all cubes B with the
discrete d-structure (and the standard topology.)

Example 2.15. Let D be the full subcategory of Top with objects the
n-simplices ∆n, n = 0, 1, . . .. Then TopD is the category of topological
spaces generated by simplices. Since ∆n is homeomorphic to the n-
cube, the same subcategory may be generated by the n-cubes.

3. The boxification functor and the simplexification
functor

The inclusion ι : d-TopB → d-Top has a right adjoint, the boxifica-
tion functor, which we define here. Similarly, we give a right adjoint,
simplexification to the inclusion ι : TopD → Top. The existence and
categorical construction of such adjoints as a U-final lift is well known,
[7], and we give the construction in these special cases. Moreover, we
prove that the subcategory d-TopI ⊂ d-TopB generated by the full
subcategory I with two objects, the interval with the discrete structure
and the interval with standard d-structure, is in fact the whole d-TopB
and similarly TopI ⊂ TopD where I is the unit interval, is in fact all
of TopD.

We provide an example, the Hawaiian star, of a compact space, which
is not cubically generated.

Definition 3.1. Let d-TopB be the subcategory of d-Top generated
by B, then we define the Boxification functor � : d-Top → d-TopB.
Let X ∈ d-Top, then �X is a d-Space on the underlying set UX of X
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with topology: V ⊂ UX is open in �X if for all d-maps φ : B → X,
where B ∈ B, φ−1(V ) is open.

The dipaths are given ~P (�X) = ~P (X).
Let f : X → Y be a d-map, then by Lem. 3.9, f : �X → �Y is a

d-map, so we define �f = f

Remark 3.2. By Ex. 2.14, the topology on �X is actually generated
by the cubes with the standard topology and discrete d-structure.
The identity map i : �X → X is a d-map, since U ⊂ X open implies
φ−1(U) open for all d-maps φ : B → X with B ∈ B, so U is open in
�X.

Proposition 3.3. Let I be the full subcategory of d-Top with objects
I and ~I. Then d-TopB = d-TopI

Proof. Since I is a subcategory of B, we have d-TopI ⊂ d-TopB. Now
suppose X ∈ d-TopB and let Y ∈ d-Top. Suppose for f : UX → UY

that f ◦ µ is a d-map for all µ : I → X and all µ : ~I → X. The latter
ensures, that f(~P (X)) ⊂ ~P (Y ), so to show that f is a d-map it suffices
to study continuity. Let h : B → X, where B = In is an n-cube. Then
for all paths γ : I → B, f ◦ h ◦ γ is continuous.
We prove that g : In → Y is continuous if (and only if) g ◦ γ is
continuous for all paths γ : I → In. So suppose g ◦ γ is continuous
for all paths γ : I → In. Since In is first countable, it suffices to see,
for a convergent sequence {xn}n∈IN in In, limn→∞ xn = x that g(xn)
is convergent to g(x). Let γ : I → In be given by γ|[1− 1

k
,1− 1

k+1
] is the

line segment from xk to xk+1 and γ(1) = x, then γ is continuous: For
a neighborhood V of x, let B(x, r) be an open ball contained in V .
There is an N such that for n ≥ N , xn ∈ B(x, r) and by convexity,
t ∈]1− 1

N
, 1] implies γ(t) ∈ B(x, r). The sequence tk = (1− 1

k
) converges

to 1 in I, and hence g ◦ γ(tk) = g(xk) converges to g ◦ γ(1) = g(x).
Hence, f ◦ µ continuous for all µ implies f ◦ h continuous for all

h : B → X which implies f is continuous, since X ∈ d-TopB �
Corollary 3.4. Let the intervalization functor I : d-Top → d-TopI
be defined by I(X) is a d-Space on the underlying set UX of X with
topology: V ⊂ UX is open in I(X) if for all d-maps φ : I → X, and

all d-maps φ : ~I → X φ−1(V ) is open.

The dipaths are given ~P (I(X)) = ~P (X). On morphisms, I(f) = f
Then I = �

Proposition 3.5. Let Top be the category of topological spaces and
continuous maps and D the full subcategory od simplices as in Ex. 2.15.
Then TopD = TopI .
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Proof. As above. �
Example 3.6. The Hawaian star, S, Ex. 2.4, is compact and we will see
below, that S /∈ d-TopB. To see that S is compact, since it is clearly a
bounded subset of R2, it suffices to see, that it is closed. For p ∈ R2\S,

let N ≥ 2
|p| . The finite union SN =

⋃N
n=1{(u cos(nπδ), u sin(nπδ))|[0 ≤

u ≤ 1
n
} is closed, and hence there is an r > 0 such that B(p, r)∩SN =

∅. Since
⋃∞
n=N+1{(u cos(nπδ), u sin(nπδ))|[0 ≤ u ≤ 1

n
} ⊂ B(0, 1

N
) ⊂

B(0, |p|
2

) we get B(p,min{r, |p|/2}) ∩ S = ∅, so S is closed in R2. A
similar proof shows that the dicone CS is compact.

Lemma 3.7. With notation from above, the Hawaiian star S is not in
d-TopB.

Proof. The d-structure is irrelevant - we study the topology. Let
⊔∞
j=1 Ij

be the disjoint union of countably many copies of the unit interval and
for 0 ≤ t ≤ 1 let tj be the point t ∈ Ij. Let X =

⊔∞
j=1 Ij/{0j} be the

quotient under the relation 0j ∼ 0k. X is clearly in d-TopB.
Define ϕ : X → S by ϕ(tn) = t

n
(cos(nπδ), sin(nπδ)). Then ϕ is a

continuous bijection, since ϕ|In is clearly continuous. However, ϕ−1 is
not continuous: With metric on X, d(tn, tl) = |tn − tl| if n = l and
d(tn, tl) = |tn| + |tl| else, we get ϕ(BX(0, 1/2)) = ϕ(

⊔∞
j=1[0, 1/2[/∼) =⋃∞

n=0{u(cos(nπδ), sin(nπδ))|u ∈ [0, 1
2n

[}. The latter is not open in S,
since for all r > 0, S ∩BR2(0, r) 6⊂ ϕ(B(0, 1/2)), so 0 is not an interior
point.

Claim: ϕ : X → �(S) is a homeomorphism. By 3.9, ϕ is continu-
ous.
Let µ : I → S. We have to see, that φ−1 ◦ µ is continuous. Let
K = µ−1(0), then I \ K is open, and hence a countable disjoint
union of open intervals

⊔
j∈J ]aj, bj [ where bj ≤ aj+1 and J ⊆ N.

By continuity, and since ]aj , bj[ is connected, there is an nj such that
µ(]aj , bj[) ⊂ Snj

where Snj
is the nj ’th strand of S \ {0}, i.e., Snj

=

{u(cos(njπδ), sin(njπδ))|u ∈]0, 1
nj

[}; and µ(aj) = µ(bj) = 0. To see

that all Sn are open in S \ {0} and hence connected components, let
p ∈ Sn. Then |p| > 0 and the construction from Ex. 3.6 will provide a
ball BR2(p, r) with BR2(p, r) ∩ S ⊂ Sn

The restriction of ϕ−1 to a strand is continuous, since φ−1 : Sn →
In \ {0} is the bijection φ−1(u(cos(nπδ), sin(nπδ))) = (nu)n and the
topology on Sn induced from R2 is the standard topology on an interval.
Hence, ϕ−1 ◦ µ is continuous on ]aj , bj[ for all j, and since µ(aj) =
µ(bj) = 0, ϕ−1 ◦ µ is continuous on [aj , bj] with ϕ−1(aj) = ϕ−1(bj) =
0 ∈ X for all aj, bj . Moreover, for t ∈ [bj, aj+1], ϕ

−1(t) = 0. �
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We have also proved

Proposition 3.8. The boxification �S is X =
⊔∞
j=1 Ij/{0j}

Lemma 3.9. Let f : X → Y be a d-map, then f : �X → �Y is a
d-map. In particular, if γ : ~I → X is a dipath, then γ : ~I → �X is a
d-map.

Proof. Let U ⊂ �Y be open and let ψ : B → �X where B ∈ B.
Then ψ−1(f−1(U)) = (f ◦ ψ)−1(U) and the latter is open, since f ◦ ψ
is a d-map. �
Theorem 3.10. Let X ∈ d-TopB and Y ∈ d-Top. Then a map
f : X → Y is a d-map if and only if f : X → �Y is a d-map.

Proof. Since the dipaths of a space and its boxification are the same,
we just have to check continuity. Suppose f : X → �Y is continuous.
Then, since a subset which is open in Y is also open in �Y , f : X → Y
is continuous.

If f : X → Y is continuous, then by Lem. 3.9 f : �X → �Y is
continuous. But X = �X. �
Corollary 3.11. The boxification functor is a right adjoint to the in-
clusion ι of d-TopB in d-Top

Proof. Let X ∈ d-TopB and Y ∈ d-Top and U the forgetful
map to Set. By Thm. 3.10, a map of sets f : UX → UY , lifts to
f ∈ Homd-TopB(X,�Y ), if and only if it lifts to f ∈ Homd-Top(ιX, Y ).
Hence Homd-TopB(X,�Y ) ≃ Homd-Top(ιX, Y ). �
Definition 3.12. The simplexificaton ∆ : Top → TopD is defined on
objects X ∈ Top: ∆X is a topological space on the underlying set UX
of X. The topology is V ⊂ UX is open in ∆X if for all continuous
maps f : D → X, where D ∈ D, f−1(V is open. On morphisms,
∆g = g, i.e., the same map on the underlying sets.

Proposition 3.13. The simplexification functor is right adjoint to the
inclusion ι : TopD → Top.

Proof. As Cor. 3.11 - Thm. 3.10 and the previous lemmas translate to
the non-directed case verbatim. �

4. Dicoverings and universal dicoverings. Definitions and
existence

In [7] we prove that d-TopB has universal dicoverings. We change
the setup here to be in accordance with the recent amendment to [3]:
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Definition 4.1. Let X,Y ∈ d-Top and p : Y → X. Then p is a
dicovering of X if

• for each dipath γ : ~I → X with γ(0) = x and for each y ∈
p−1(x), there is a unique lift γ̂ : ~I → Y with γ̂(0) = y, i.e.,
there is a unique filler γ̂ of the following commutative diagram

{0} //
� _

��

Y

p

��
~I

γ̂
>>}

}
}

}
} γ // X

• Let J be the coequalizer of f1, f2 : I → ~I×I where f1(s) = (0, s)

and f2(s) = (0, 0). Then there is a unique filler Ĥ of this
commutative diagram.

(0, 0) //
� _

��

Y

p

��
J

Ĥ

<<z
z

z
z

z H // X

I.e., dihomotopies with fixed source lift uniquely.
• Let K be the coequalizer of g1, g2 : I ⊔ I → ~I × I, g1(s1) =

(0, s1), g1(s2) = (1, s2) and g2(s1) = (0, 0), g2(s2) = (1, 0), then
we require a unique filler of

(0, 0) //
� _

��

Y

p

��
K

Ĥ

<<z
z

z
z

z H // X

i.e., the unique lift of a dihomotopy with both source and target
fixed is a dihomotopy with fixed source and target.

A pointed d-space is a pair (X,x) consisting of a d-space X and a
point x ∈ X. A morphism of pointed d-spaces (X,x) → (Y, y) is a
d-map f : X → Y such that f(x) = y.

A pointed dicovering, a p-dicovering, is a pointed d-map which is a
dicovering.

The category of pointed d-spaces and pointed d-maps, pd-maps, is
denoted pd-Top and the category of pointed d-spaces (X,x) s.t. X ∈
d-TopB is denoted pd-TopB. Dicoverings in subcategories of d-Top
are defined as above - requiring the same lifting properites.

Definition 4.2. ([7]) A universal p-dicovering of (X,x) ∈ pd-TopB
is a p-dicovering π : (X̃, x̃) → (X,x) in pd-TopB such that for any
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p-dicovering g : (Y, y) → (X,x) in pd-TopB there is a unique pd-map
φ : (X̃, x̃) → (Y, y) such that φ is a dicovering and π = g ◦ φ.

Remark 4.3. If a d-map φ exists,s.t. Π = g ◦ φ, then φ is a dicovering,
which one can see by examining the diagram with Π, ϕ and g, where
g and Π are known to satisfy the lifting properties.

Corollary 4.4. ([7] Corollary 5.6) A universal p-dicovering exists for
every pd-space in pd-TopB

Definition 4.5. A pd-Space (X,x) is well pointed, if for all z ∈ X,

there is a dipath γ : ~I → X with γ(0) = x end γ(1) = z. We denote
this condition z � x.

A dicovering p : (Y, y) → (X,x) of a well pointed space (X,x) is
surjective, since dipaths lift. Moreover, if we restrict to ↑Y y = {z ∈
Y |z � y}, then p :↑Y y → X is a surjective dicovering in the category
wpd-Top of well pointed spaces.

Corollary 4.6. If π : (X̃, x̃) → (X,x) is the universal dicovering in
pd-TopB and (X,x) ∈ wpd-TopB, then ↑X̃ x̃ → X is the universal
dicovering in wpd-TopB, i.e., for well pointed dicoverings.

Example 4.7. The unit circle S1 = {(cos(t), sin(t))|0 ≤ t ≤ 2π} with
dipaths running counterclockwise and basepoint x0 = (−1, 0) has the
positive reals as its universal dicovering.
If instead the dipaths are the paths which increase in the first coordi-
nate, then the universal dicover is ~I⊔~I/01 ∼ 02 where coordinates t1 are

in the first copy of ~I and similarly for t2. The dicoveringmap is Π(t1) =
(cos(π(1−t1)), sin(π(1−t1))) and Π(t2) = (cos(π(1+t2)), sin(π(1+t2))).
Notice that this dicovering har fiberdimension one over all points except
at (0, 0), where Π−1((0, 0)) = {11, 12}

5. Dicoverings and boxification

For a well pointed d-space (X,x) ∈ wpd-Top, the universal di-

covering of the boxification of (X,x), Π : (�̃X, x̃) → (�X,x) is
also a universal dicovering for (X,x) in the sense that for a dicov-
ering p : (Y, y) → (X,x) in wpd-Top, there is a unique pd-map

φ : (�̃X, x̃) → (Y, y), s.t. φ is a dicovering and p ◦ φ = i ◦ Π, where
i : �X → X is the identity.

Lemma 5.1. Let p : (Y, y) → (X,x) be a dicovering in pd-Top. Then
the boxification �p : (�Y, y) → (�X,x) is a dicovering in pd-TopB
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Proof. We have a commutative diagram in pd-Top

(�Y, y) i //

�p
��

(Y, y)

p

��
(�X,x) i // (X,x)

Here i is the identity map in pd-Top. �p is a d-map by Lem. 3.9 and
it is a dicovering: Let H : J → �X where J is as in Def. 4.1. Then
i ◦ H lifts to Ĥ : J → Y , and J ∈ B, so Ĥ : J → �Y is a d-map by
Thm. 3.10 and this is the unique lift. The same argument works for
the other lifting requirements. �

Theorem 5.2. Let (X,x) ∈ wpd-Top and let Π : (�̃X, x̃) → (�X,x)
be the universal dicovering in wpd-TopB. Then i ◦ Π : (�̃X, x̃) →
(X,x) is universal for dicoverings in wpd-Top.

Proof. Let p : (Y, y) → (X,x) be a dicovering in wpd-Top. In the
commutative diagram in wpd-Top:

(�̃X, x̃)
φ //

Π

%%KKKKKKKKKK
(�Y, y) i //

�p
��

(Y, y)

p

��
(�X,x) i // (X,x)

the maps Π, φ, �p and p are dicoverings. Since ~I,K and J are in B,
lifting properties for i ◦ φ and i ◦ Π may be proven as in the proof of
Lem. 5.1 to give that i ◦ φ and i ◦ Π are dicoverings.

Uniqueness of i ◦ φ: Let z ∈ �̃X and let γ : (~I, 0, 1) → (�̃X, x̃, z)
be a dipath from x̃ to z. Let ˆi ◦ Π ◦ γ be the unique lift of i ◦Π ◦ γ to
(Y, y0). Then i ◦ φ(z) = γ̂(1).

Uniqueness: Suppose P : (X̂, x̂) → (X,x) in wpd-Top is universal

for dicoverings in wpd-Top. Then �P : (�X̂, x̂) → (�X,x) is a

dicovering in wpd-TopB and i◦�P : (�X̂, x̂) → (X,x) is a dicovering
in wpd-Top. Hence there is a diagram

(X̂, x̂)
ψ //

P

%%JJJJJJJJJ
(�X̂, x̂)

i◦�P
��

(X,x)
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Use that (X̂, x̂) is well pointed to see that ψ is the identity map on the

underlying sets. Hence, i : (�X̂, x̂) → (X̂, x̂) is a d-equivalence with

inverse ψ, so (X̂, x̂) ∈ wpd-TopB.
Hence (X̂, x̂) is dihomeomorphic to (�̃X, x̃), the dihomeomorphism

being the universal maps.
�

6. Construction of the universal dicovering

In [3] we constructed a candidate (X̂, x̂) for a universal dicovering of
a well pointed space (X,x) satisfying certain diconnectivity conditions.

The topology on X̂ was not right, in the sense that the “universal” maps
to other dicoverings failed to be continuous in various examples. We
give the construction here again in a more general setting and prove
that for a wpd-space, the two constructions are related via a bijective
d-map. They may have different topology.

Definition 6.1. For a wpd-space (X,x), let (X̂, x̂) = {[γ]|γ : ~I →
X, γ(0) = x} ∈ Set where [γ] is the dihomotopy class of γ with fixed
endpoints. x̂ is the dihomotopy class of the constant dipath to x. Let
π̂ : (X̂, x̂) → (X,x) be the endpoint map π̂([γ]) = γ(1).

Definition 6.2. For a basis U for the topology on X, we get a subbasis
for a topology on X̂ - all sets

U[γ] = {[µ]|µ ∈ ~P (X,x0, U), µ ∼U γ}
for U ∈ U and γ ∈ ~P (X,x0, U). The relation ∼U is defined by µ ∼U γ,
if there is H : (J, (0, 0)) → (X,x) s.t. H(t, 0) = γ(t), H(t, 1) = µ(t)

and ηs0(t) = H(t, s0) ∈ ~P (X,x0, U) for all s0 ∈ I
The d-structure is ~P (X̃, [γ],−) = {η(t) = [γ ⋆ µ|[0, t+1

2
]], where µ ∈

~P (X, γ(1),−)}, γ ⋆ µ|[0, t+1
2

](s) = γ(2s) for [0 ≤ s ≤ 1/2] and γ ⋆

µ|[0, t+1
2

](s) = µ((2s− 1) t+1
2

) for 1/2 ≤ s ≤ 1.

And subpaths and monotone reparametrizations of such.

Remark 6.3. The strange choice of parameter value η(t) = [γ ⋆µ|[0, t+1
2

]]

gives η(0) = [γ] and η(1) = [γ ⋆ µ] by definition of concatenation of
paths. For a proof of continuity see [3]. Since we close off under subpath
and monotone reparametrization, clearly we have a d-structure.

Lemma 6.4. With the above d-structures, the projection map, π̂ :
(X̂, x̂) → (X,x) is a d-map. And a dicovering.
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Proof. See the proof of 3.9 and 3.11 in [3]. We sketch the proof in this
more general context:
Continuity : Let U ∈ U , then π̂−1(U) = ∪{[γ]|γ∈~P (X,x,U)}U[γ], a union of
opens.

The image of a dipath is clearly a dipath.
Since (X,x) is a wpd-space, it suffices to establish lifting properties

for dipaths and dihomotopies initiating in x: A dipath γ : ~I → X,
γ(0) = x lifts to Γ(t) = [γ|[0,t]], where by γ|[0,t] we understand the
linear monotone reparametrization of the restriction - our paths should
be defined on [0, 1]. For uniqueness, notice that all dipaths Γi : ~I → X̂

with Γi(0) = x̂ are of the form Γi(t) = [γi(t)] for some γi : ~I → X.
So if π̂ ◦ Γ1 = π̂ ◦ Γ2, γ1(t) = γ2(t) and hence Γ1 = Γ2. Unique
lift of dihomotopies follows the proof in [3] verbatim. There is a lift
of the dipaths, and one proves that it is continuous in the homotopy
parameter. If H : ~I × I → X has fixed endpoints x and x1, H(t, s) =

γs(t), then H lifts to Ĥ(t, s) = Γs(t), and Γs(1) = [γs], and since

H provides a dihomotopy with fixed endpoints of all γs, Ĥ(1, s) is
constant.

�
Theorem 6.5. Let π̂ : (X̂, x̂) → (X,x) be the dicovering of a wpd-
space (X,x) ∈ wpd-Top defined in 6.2. Then the induced d-map

φ : (�̃X, x̃) → (�X̂, x̂0) from the universal dicovering (�̃X, x̃) is a

bijective d-map. The composition i ◦ φ : (�̃X, x̃) → (X̂, x) with the

identity map i : (�X̂, x̂) → (X̂, x) is a bijective d-map. Both φ and
i ◦ φ are dicoverings.

Proof. We have a diagram

(�̃X, x̃)
φ //

Π

%%KKKKKKKKKK
(�X̂, x̂)

�Π̂
��

i // (X̂, x̂)

Π̂
��

(�X,x) i // (X,x)

The maps φ and hence i◦φ is a dicovering of wpd-spaces, hence surjec-
tive and a d-map. For injectivity: Suppose i ◦ φ(z1) = i ◦ φ(z2) = [γ].

Let µi : ~I → �̃X, µi(0) = x, µi(1) = zi. Then i ◦Π ◦µi lifts along Π̂ to
ηi(t) = [(i ◦ Π ◦ µi)[0, t+1

2
]]. This is a unique lift, so i ◦ φ ◦ µi(t) = ηi(t).

Hence η1(1) = i◦φ(z1) = i◦φ(z2) = η2(1), i.e., [i◦Π◦µ1] = [i◦Π◦µ2].
A dihomotopy with fixed endpoints, H : K → X between i◦Π◦µ1 and
i ◦Π ◦ µ1 lifts uniquely to a dihomotopy with fixed endpoints between
µ1 and µ2. In particular, µ1(1) = µ2(1) �
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7. Dicoverings as quotients

Given a dicovering of a wpd-Space p : (Y, y) → (X,x) there is a con-

gruence relation ≈, Def. 7.1, on the universal dicovering space (�̃X, x̃)
of the boxification of X, such that the universal map φ : (�̃X, x̃) →
(�Y, y) factors over the quotient map ψ : (�̃X, x̃) → (�̃X/≈, [x̃]),
φ = f ◦ ψ and f is a bijective d-map. Composing with the bijective
d-map i : �Y → Y , i ◦ f is a bijective d-map from the quotient to
Y . The topology on �Y may not be the quotient topology (See Ex.
7.7), and neither is the topology on Y , but the dipath structure is the
quotient structure.
Vice versa: Quotients of the universal dicovering space under congru-
ence relations are dicoverings. In fact, for a congruence relation, the

quotient map ψ : (�̃X, x̃) → (�̃X/≈, [x̃]) is a dicovering and there is a

dicovering map q : (�̃X/≈, [x̃]) → (�X,x) s.t. q◦ψ = Π, the universal
map. Compose with i : �X → X to get a dicovering of (X,x).

In the following, we will write Π : (X̃, x̃) → (X,x) for the universal

dicovering of a wpd-space. That is, the space (X̃, x) = (�̃X, x̃) where
we think of the points as in the construction Def. 6.2, i.e., dihomotopy
classes [γ] of dipaths initiating in x, and the topology is the topology
from Cor. 4.6. The map Π is tacitly composed with i : �X → X when
X /∈ wpd-TopB
Definition 7.1. Let Π : (X̃, x̃) → (X,x) be the universal dicovering of
a wpd-space. An equivalence relation on X̃ is a congruence if [γ1] ≈ [γ2]
implies γ1(1) = γ2(1) and [γ1 ⋆ µ] ≈ [γ2 ⋆ µ] for all dipaths µ initiating
in γi(1).

Example 7.2. The relation [γ1] ≈ [γ2] if γ1(1) = γ2(1) is a congruence,
and there is a bijective d-map from X̃x0/≈ with the quotient d-structure
to X. (By Thm. 7.5)

Example 7.3. Let f : X → Y be an injective d-map, then the relation
[γ] ≈f [η] if [f ◦γ] = [f ◦η] is a congruence, since f ◦(γ⋆µ) = f ◦γ⋆f ◦µ
and [f ◦ γ] = [f ◦ η] implies f ◦ γ(1) = f ◦ η(1), so γ(1) = η(1), as f is
injective.

In particular, the inclusion of X = ~I×~I \{(1/2, 1/2)} into Y = ~I×~I
induces relation on X̃, making the two dihomotopy classes of dipaths
fom (0, 0) to (1, 1) equivalent.

Lemma 7.4. Let f : Y → X be a surjection and suppose Y ∈ d-TopB
and X has the quotient d-structure. Then X is in d-TopB. If (Y, y0) ∈
wpd-Top, then (X, f(y0)) ∈ wpd-Top
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Proof. f : Y → X is a d-map and hence f : Y → �(X) is a d-map by
Lem. 3.10. Boxification adds more opens, but the quotient topology
is the maximal topology on X with f : Y → X continuous. Hence
X = �(X). Suppose (Y, y0) ∈ wpd-Top and x ∈ X, x = f(y). Let

γ : (~I, 0, 1) → (Y, y0, y). Then f ◦ γ : (~I, 0, 1) → (X, f(y0), x), so
(X, f(x)) ∈ wpd-Top. �

Theorem 7.5. Let p : (Y, y0) → (X,x0) be a dicovering in wpd-Top,
let i ◦ Π : (X̃, x̃0) → (X,x0) be the universal dicovering of (X,x0) in
wpd-Top and let i ◦ φ : (X̃, x̃0) → (Y, y0) be the induced dicovering
map.

Define a congruence relation on X̃ as follows: [γ1] ≈p [γ2] if γ̂1(1) =
γ̂2(1), where γ̂i is the unique lift of γi to Y with initial point y0. Then
φ factors over the quotient ψ : X̃ → X̃/≈p, φ = f ◦ψ and f : X̃/≈p→
�Y is a bijective d-map. Similarly i ◦ f : X̃/ ≈p→ Y is a bijective
d-map.

Proof. The relation is a congruence relation, since γ̂1(1) = γ̂2(1) implies
γ1(1) = (p ◦ γ̂1)(1) = (p ◦ γ̂2)(1) = γ2(1) and γ̂i ⋆ µ is γ̂i composed with
a lift of µ initiating in γi(1).

The dipath in X̃ initiating in x̃0, Γi(t) = [γi|[0,t]] is the unique lift
of γ̂i(t) along φ. Hence, φ([γi]) = φ(Γi(1)) = γ̂i(1), so [γ1] ≈p [γ2]
implies φ([γ1]) = φ([γ2]) and φ then factors over the quotient. By the
same argument, φ([γ1]) = φ([γ2]) implies [γ1] ≈p [γ2], so the map f is
a bijection. �

Remark 7.6. Hence all dicoverings are quotients of the universal di-
covering. But the topology may not be the quotient topology. The
following example illustrates this problem.

Example 7.7. Let Idisc be the interval with the discrete topology and
f1, f2 : Idisc → ~I × Idisc be f1(s) = (0, s), f2(s) = (0, 0). Let A be the
coequalizer in d-Top of f1, f2 and let x0 = (0, 0) ∈ A then (A, x0) ∈
wpd-TopB. Let B = ~I × I and let X be the coequalizer in d-Top of
g1, g2 : Idisc → A ∪ B, g1(s) = (1, s) ∈ A, g2(s) = (0, s) ∈ B. Then
(X,x0) ∈ wpd-TopB.

The only dipaths in X are paths with constant s. Hence the image
of a dihomotopy with fixed initial point is a set with s constant, and
dipaths are dihomotopic with fixed endpoints if and only if one is a
monotone reparametrization of the other.

As a consequence, π : (X̃, x̃0) → (X,x0) is a bijective d-map, but it
is not a dihomeomorphism:
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We define a dicovering X̄ ∈ wpd-Top is the coequalizer f1, f2 :

Idisc → ~[0, 2] × Idisc f1 and f2 as above - it is a bouquet of directed
intervals. The basepoint is (0, 0). p : X̄ → X is p(t, s) = (t, s) ∈ A
for 0 ≤ t ≤ 1 and p(t, s) = (t − 1, s) ∈ B for 1 ≤ t ≤ 2. It is
easy to check that p is a dicovering and a bijective d-map. Hence,
the universal dicovering induces a bijective d-map (X̃, x̃0) → (X̄, x̄0),
which is a dicovering. Since all dipaths lift and the topology on X̄
is generated by the full subcategory of d-Top with objects ~I, the d-
map is a d-homeomorphism, so the bijection p : X̄ → X is in fact the
universal dicovering. The induced congruence relation on X̄ is trivial,
and p is not a d-homeomorphism, so X is not a quotient of the universal
dicover.

Theorem 7.8. Let Π : (X̃, x̃) → (X,x) be the universal dicover-
ing of (X,x) ∈ wpd-TopB and let ≈ be a congruence relation on

X̃. Then the quotient map ψ : (X̃, x̃) → (X̃/ ≈, ψ(x̃)) and the map
q : (X̃/≈, ψ(x̃)) → (X,x) defined by q(ψ([γ])) = γ(1) are dicoverings
in wpd-TopB

Proof. ψ is a d-map by definition of the quotient structure and (X̃/≈
, ψ(x̃0)) ∈ wpd-TopB by Lem. 7.4.
q is a d-map, since q ◦ ψ = Π, Π is a d-map and ψ is a quotient of

d-spaces.
We have to prove lifting properties. First dipaths:
Let γ : ~I → X be a dipath and y ∈ q−1(γ(0)). Let ỹ ∈ ψ−1(y) ⊂

Π−1(γ(0)) then γ lifts uniquely to γ̂ : (~I, 0) → (X̃, ỹ) and ψ ◦ γ̂ :

(~I, 0) → X̃/ ≈, y) is then a lift of γ along q.

For uniqueness suppose β1, β2 : (~I, 0) → (X̃/ ≈, y) are lifts of γ with a

common source y and β1 6= β2. Let β̂i : (~I, 0) → (X̃, ỹ) be the lifts of

βi provided by Lem. 7.10. Clearly β̂1 6= β̂2, and Π ◦ β̂1 = γ = Π ◦ β̂2

which contradicts the unique lifting along Π.
Let H : (J, 0) → (X,x) and let Ĥ be the lift to (X̃, ỹ). Then ψ ◦ Ĥ

is a lift of H to (X̃/≈, y); it is a composition of d-maps, and by unique
lifting of dipaths, it is unique. For a dihomotopy with fixed endpoints,
the same construction works.

Let H : (J, 0) → (X̃/ ≈, y). The unique lift of q ◦ H along Π with
initial point z provides a unique lift of H along ψ.

�

Corollary 7.9. Let i ◦ Π : (X̃, x̃) → (X,x) be the universal dicov-
ering of (X,x) ∈ wpd-Top and let ≈ be a congruence relation on
X̃. Then the quotient map ψ : (X̃, x̃) → (X̃/ ≈, ψ(x̃)) and the map
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q : (X̃/≈, ψ(x̃)) → (X,x) defined by q(ψ([γ])) = γ(1) are dicoverings
in wpd-Top

Lemma 7.10. Let ≈ be a congruence relation on the universal dicov-
ering Π : (X̃, x̃) → (X,x) of a wpd-TopB-Space. Let ψ : (X̃, x̃) →
(X̃/ ≈, [x̃]) be the projection to the quotient. Then ~P (X̃/≈) = ψ(~P (X̃))

and if, for dipaths µ, η ∈ ~P (X̃), ψ ◦ η = ψ ◦ µ, then µ is the unique lift
of Π ◦ η with source µ(0).

Proof. By definition, ~P (X̃/≈) ⊇ ψ(~P (X̃)). Let γ ∈ ~P (X̃/ ≈), then

γ = ψ ◦ η1 ⋆ ψ ◦ η2 · · ·ψ ◦ ηn for ηi ∈ ~P (X̃). We construct a dipath

η̄ ∈ ~P (X̃) s.t. γ = ψ ◦ η̄ iteratively as follows:
Let η1(0) = [α0] then, since dipaths lift uniquely along Π, η1(t) =

[α ⋆ Π ◦ η1](
t+1
2

), where we define [µ](t) = [µ[0,t]] for [µ] ∈ X̃. Let
η̄1(t) = η1(t).

For 1 ≤ k ≤ n−1, let [αk] = η̄k(1) and η̄k+1(t) = [αk ⋆Π◦ηk+1](
t+1
2

).
Claim: ηk(t) ≈ η̄k(t) for k = 1, . . . , n.
Induction: η1 = η̄1. Suppose ηk(t) ≈ η̄k(t) for k < i. Let ηi(0) = [βi].

By unique lifting, ηi(t) = [βi ⋆ Π ◦ ηi]( t+1
2

). Since ψ ◦ ηi−1 composes
with ψ ◦ ηi, ηi−1(1) ≈ ηi(0). Combine with the induction hypothesis
and get [αi−1] = η̄i−1(1) ≈ ηi(0) = [βi]. As ηi(t) = [βi ⋆Π ◦ ηi]( t+1

2
) and

η̄i(t) = [αi−1 ⋆ Π ◦ ηi]( t+1
2

) and ≈ is a congruence, we are done.
Now γ = ψ ◦ (η̄1 ⋆ η̄2 · · · ⋆ η̄n
If ψ ◦µ = ψ ◦η, then Π◦µ = Π◦η. By unique lifting, µ is the unique

lift of Π ◦ µ and hence of Π ◦ η initiating in µ(0) �

8. Conclusions and outlook

Dicoverings in wpd-Top are now classified. For (X,x) ∈ pd-TopB,
we proved existence of a universal dicovering in [7]. In a subsequent
paper, we will study a d-space X by restricting to the wpd-spaces ↑X x
for varying basepoint x. In particular, the maps between the universal
dicoverings of these subspaces induced by dipaths between the base-
points will carry information about the d-structure of the whole space
- a representation of the fundamental category.
In [4], dicoverings and universal coverings are defined for streams in
the sense of [6]. In that approach, the restriction to the underlying
spaces are coverings in Top, and thus the requirements on the under-
lying spaces are more restrictive than here. In the motivating examples
from computer science, geometric realizations of precubical sets, both
approaches provide unversal dicoverings.
The existence of universal coverings in [7] can be restated in a non-
directed setting, and it would be interesting to see, whether this gives
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new information, in particular for spaces not satisfying the restrictions
on local connectedness required in the usual setting of covering theory.
The new description of TopD and d-TopB as generated by paths (and
dipaths) should give a better understanding of these categories. In
particular in the (di)covering setting, since lifting properties for paths
is a very strong property in these categories, where continuity is de-
cided by studying the restriction to paths. Some consequences, lift-
ing properties for maps of dicones, ~I × Z/{0} × Z and disuspensions
~I × Z/{0} × Z, {1} × Z for Z ∈ d-TopB are studied in a subsequent
paper.
The original motivation for studying dicoverings comes from computer
science, where a dicovering is a functional bisimulation in the sense that
geometric representations of programs are d-spaces where dipaths rep-
resent executions of programs, dihomotopies are equivalences of such
executions and dicoverings are then equivalences of programs. Hence
the classification provided here should give information on bisimilarity.
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(2003), no. 4.
6. S. Krishnan, A convenient category of locally preordered spaces, Appl. Categor.

Struct (2008).
7. J. Rosicky L. Fajstrup, A convenient category for directed homotopy, Theory

Appl.Categ. 21 (2001), no. 1, 7–20.

Department of Mathematical Sciences, University of Aalborg
E-mail address : fajstrup@math.aau.dk


