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MATERIAL-POINT-METHOD ANALYSIS OF COLLAPSING SLOPES

S.M. Andersen & L. Andersen
Department of Civil Engineering, Aalborg University, Aalborg, Denmark

ABSTRACT: To understand the dynamic evolution of landslides and predict their physical ex-
tent, a computational model is required that is capable of analysing complex material behaviour
as well as large strains and deformations. Here, a model is presented based on the so-called
generalised-interpolation material-point method, combining a Eulerian grid for solving the gov-
erning equations of a continuum with a Lagrangian description for the material. The method is
extended to analyse interaction between multiple bodies, introducing a master–slave algorithm
for frictional contact along interfaces. Further, a deformed material description is introduced,
based on time integration of the deformation gradient and utilising Gauss quadrature over the
volume associated with each material point. The method has been implemented in a Fortran
code and employed for the analysis of a landslide that took place during the night of Decem-
ber 1st, 2008, near Lønstrup, Denmark. Using a simple Mohr-Coulomb model for the soil, the
computational model is able to reproduce the change in the slope geometry at the site.

1 INTRODUCTION

Slope stability and the initiation of landslides can be analysed using classical geotechnical meth-
ods or, for example, finite-element analysis (FEA). However, to model the behaviour of the
soil during a slide, a computational method must be able to handle dynamic problems involv-
ing large strains and displacements as well as complex material behaviour. To avoid the mesh
entanglement associated with Lagrangian FEA or the mass diffusion encountered in Eulerian
descriptions, a novel computational technique for modelling landslides is presented. The nu-
merical model is an extension of the material-point method (MPM) (Sulsky, Chen, & Schreyer
1994; Sulsky, Zhou, & Schreyer 1995) and the generalised-interpolation material-point (GIMP)
method (Bardenhagen & Kober 2004). In the material-point method, the physical domain is dis-
cretized into a number of points where material properties and state variables are prescribed. The
interaction between the different points and the development of stresses and strains are obtained
by mapping to a grid when solving the governing equations. As the material points carry all the
state variables, an undeformed mesh can be employed throughout the analysis. Also, convection
issues associated with a traditional Eulerian formulation are avoided.

In the original MPM formulation (Sulsky, Chen, & Schreyer 1994), mapping between the
material points and the grid is performed by evaluating the nodal shape functions associated with
the grid at the location of the material points. Associating a volume with each material point, and
integrating over these volumes when mapping between the material points and the grid, is shown
by Bardenhagen et al. (2001) to provide more accurate results. For an undeformed material-point
volume, the integration can be carried out analytically. However, when the material points are
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subject to significant strains and rotations, integration in the deformed state may be necessary.
For this purpose a method is proposed in which a Gauss quadrature rule is employed for the
numerical integration over the deformed volume defined by the deformation gradient tensor at
the material point.

In order to model the interaction between different bodies, a contact algorithm is introduced.
The governing equations are solved separately for each individual continuum and the interaction
between different materials is governed by a frictional contact law, enforcing no interpenetration
of adjacent materials and allowing materials to slide relatively to each other. The evaluation of the
contact forces is performed on the computational grid. In the original work presented by York et
al. (1999) and Bardenhagen et al. (2000, 2001), the normal vectors for each continuum are found
independently, by employing the grid-node density field obtained for each individual continuum.
Due to the spatial discretization of the material, the normal vectors of two adjacent bodies may
not point exactly in opposite directions and therefore this approach may fail. In particular, sliding
at an interface can be hindered by an erroneous prediction of the outward normal on parts of the
surface of a small body interacting with a body with a much greater extent. In order to avoid
this, a change of the original algorithm is presented that allows the interaction between bodies
with an arbitrary interface. This is done by defining a hierarchy of bodies, and letting the normal
vector for the master surface define the direction of the common interface.

The theory behind the numerical model is presented in Section 2. Section 3 presents a numer-
ical study of a specific land slide taking place on the coastline at Lønstrup in northern Denmark
December 1st, 2008. Finally, the conclusions are presented in Section 4.

2 THEORY AND IMPLEMENTATION

Consider a continuum subject to initial and boundary conditions. The governing equation for the
momentum is given by

ρ
dvα

dt
=
∂σαβ

∂xβ
+ ρbα, (1)

whereσαβ is the Cauchy stress tensor andbα is the specific body force. The indexα ranges over
1 and 2 in the case of plane strain considered in the present analysis.

A weak form of Eq. (1) is obtained by multiplying the balance of momentum by an arbi-
trary test functionwα and integrating over the initial volume. Applying integration by parts and
employing the Green theorem, the weak form is given by

∫

Ω

ρwα
dvα

dt
dV =

∫

Γτ

wαταdΓ −

∫

Ω

∂wα

∂xβ
σαβdV +

∫

Ω

ρwαbαdV, (2)

where τα is the surface traction on part of the boundary,Γτ , where the surface tractions are
prescribed, andΩ the physical domain.

2.1 Generalized interpolation material-point discretization

In order to discretize Eq. (2), the domain is divided intonp subdomainsΩp, p = 1,2, . . . , np.
A material point is placed at the centre of each subdomain, defined by the coordinatesxp

α, p =
1,2, . . . , np. The velocitiesvp

α and the stressesσp
αβ as well as the external body forcesbpα at the

np material points are defined as volume-weighted quantities, i.e.

vp
α =

1

Vp

∫

Ωp

vα(xβ)dV, σ
p
αβ =

1

Vp

∫

Ωp

σαβ(xγ)dV, bpα =
1

Vp

∫

Ωp

bα(xβ)dV. (3)
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Similarly, a deformation gradient is associated with each material point in the current state as

F
p
αβ =

∂xα

∂x0
β

∣

∣

∣

∣

x=xp

=
1

Vp

∫

Ωp

Fαβ(xγ)dV, (4)

wherex0 are the initial coordinates.
In order to obtain a discrete spatial representation, particle characteristic functions,χp, asso-

ciated with the material points are defined (Bardenhagen & Kober 2004). The particle character-
istic functions are normalized with respect to the initial volume, i.e.

∫

Ωp
0

χp(xα, t)dΩ = V 0

p , (5)

whereV 0
p is the volume associated with the material point in the initial state. Field quantities are

represented as sums over the material points, i.e.

f(xα) ≃
∑

p

fpχp(xα). (6)

For example, the first term in the balance of momentum is represented by

ρ
dvα

dt
≃

∑

p

ρpdv
p
α

dt
χp =

∑

p

mp

Vp

dvp
α

dt
χp =

∑

p

π̇p

Vp
χp, (7)

where the momentum rate of change has been introduced asπ̇p = mpdv
p
α/dt. In our imple-

mentation we use a constant particle characteristic function. Hence, stresses, densities etc. are
considered constants within the volume associated with each material point.

Using the material-point representation in the balance of momentum yields

∑

p

π̇p
α

Vp

∫

Ωp

⋃

Ω

wαχpdV =

∫

Γτ

wαταdS

−
∑

p

σ
p
αβ

∫

Ωp

⋃

Ω

∂wα

∂xβ
χpdV +

∑

p

mpbpα
Vp

∫

Ωp

⋃

Ω

wαχpdV. (8)

The left-hand side represents the rate of change of momentum. On the right-hand side, the first
term represents the surface tractions, the second term represents internal forces due to stress
gradients, while the last term represents external body forces. Further it is noted that the physical
quantities are evaluated at each material point.

A background grid is introduced and the test functionwα(xβ , t) is discretized into its values
wi

α, i = 1,2..nn at nn nodes. Within each cell of the grid, interpolation of the test function and
its gradient is carried out by means of shape functionsNi(xβ) associated with the nodes, i.e

wα(xβ) ≃
∑

i

wi
αNi(xβ),

∂wα(xγ)

∂xβ
≃

∑

i

wi
α

∂Ni(xγ)

∂xβ
, (9)

where
∑

i denotes the sum over the grid nodes andNi is the nodal shape function associated
with nodei. Employing Eq. (9), the balance of momentum can be written as

∑

i

∑

p

wi
απ̇

p
α

1

Vp

∫

Ωp

⋃

Ω

NiχpdV =
∑

i

wi
α

∫

Γτ

NiταdS

−
∑

i

∑

p

wi
ασ

p
αβ

∫

Ωp

⋃

Ω

∂Ni

∂xβ
χpdV +

∑

i

∑

p

wi
αm

pbpα
1

Vp

∫

Ωp

⋃

Ω

NiχpdV. (10)
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Now the weighting and the gradient-weighting functions are introduced as

N̄ip =
1

Vp

∫

Ωp

⋃

Ω

NiχpdV,
∂N̄ip

∂xβ
=

1

Vp

∫

Ωp

⋃

Ω

∂Ni

∂xβ
χpdV. (11)

Utilising that the test functionswi
α are arbitrary, the system of equations need to be satisfied at

all grid nodes. Employing Eq. (11) in Eq. (10) yields

∑

p

π̇p
αN̄ip =

∫

∂Ω0
τ

NiταdS −
∑

p

σ
p
αβVp

∂N̄ip

∂xβ
+

∑

p

mpbpαN̄ip. (12)

Rewriting the balance of momentum yields

π̇i
α = f i,int

α + f i,ext
α , (13)

where

π̇i
α =

∑

p

π̇p
αN̄ip, f i,int

α = −
∑

p

σ
p
αβVp

∂N̄ip

∂xβ

, f i,ext
α =

∫

Γτ

NiταdS +
∑

p

mpbpαN̄ip (14)

are the rate of change of the nodal momentum, the internal force and the external force, respec-
tively. As the mass is tracked through the material points, the conservation of mass is automati-
cally satisfied.

2.2 Numerical integration in the deformed state

The above derivation yields final equations identical to the GIMP formulation presented by Bar-
denhagen & Kober (2004). For landslides involving rotations and deformations the analytically
evaluated GIMP weighting functions in (Bardenhagen & Kober 2004) can no longer be applied
to represent the physical domain of the material points. Hence, a scheme for numerically eval-
uating the GIMP functions is presented. The subdomain associated with each material point is
assigned a number of Gauss points. Rewriting the integral part of the weighting functions and
the gradient weighting functions as sums over the Gauss points yields

N̄ip =
1

Vp

∑

GP

χp(x
GP
α )Ni(x

GP
α )φGP ,

∂N̄ip

∂xβ
=

1

Vp

∑

GP

χp(x
GP
α )

∂N̄ip(xα)

∂xβ

∣

∣

∣

∣

xα=xGP
α

φGP , (15)

whereφGP is the weight for the Gauss point, normalised to provide
∑

GP φGP = Vp. Integrating
numerically over the shared domain is consistent as eitherNi(x

GP
α ) = 0 orχp(x

GP
α ) = 0 outside

the shared domain. The equations can be further simplified as

N̄ip =
∑

GP

χp(x
GP
α )Ni(x

GP
α )φ̄GP ,

∂N̄ip

∂xβ
=

∑

GP

χp(x
GP
α )

∂N̄ip(xα)

∂xβ

∣

∣

∣

∣

xα=xGP
α

φ̄GP , (16)

where
∑

GP φ̄GP = 1. If a single Gauss point, located at the material point, is employed, the
weighting function becomes simply the nodal shape function and the original MPM formulation
given by Sulsky et al. (1995) is retrieved.

Considering a material point initially located atxp,0
α , the coordinate for a Gauss point can be

written as
xGP,0

α = xp,0
α + dx0

α, (17)
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wherexGP,0
α is the location of the Gauss point in the initial configuration anddx0

α is the line seg-
ment between the material point and the Gauss point in the initial configuration. At an arbitrary
time the location of the Gauss point is given as

xGP
α = xp

α + dxα. (18)

Using the deformation gradientFαβ, the deformed line segmentdxα can be calculated by

dxα = Fαβdx
0

β , Fαβ =
∂xα

∂ξγ

∂ξγ

∂ξ0
δ

∂ξ0
δ

∂x0
β

. (19)

In thepresented examples, the initial local axes are chosen along the global coordinate system.
Hence, in this caseFαβ = ∂ξα/∂ξ

0
β . The idea of utilising a non-linear strain measure within the

MPM is introduced by Guilkey & Weiss (2003) who introduce a weak form of the balance of
momentum based on the deformation gradient and the second Piola-Kirchhoff stress tensor.

The location of the Gauss points is specified through the deformation-gradient tensor which
needs to be tracked for each material point through the simulation. In the initial configuration,
the deformation-gradient tensor is presumed known. Typically, an undeformed material state will
be prescribed, i.e.F 0

αβ = δαβ , whereδαβ is the Kronecker delta. An explicit forward difference
scheme for updating the deformation gradient is employed,

F k+1

αβ = ∆F k+1

αβ F k
αβ . (20)

Expressing the time derivative of the deformation gradient as∂Fαβ/∂t = ∂vk
α/∂x

0
β , ∆F k

αβ can
be expressed as

∆F k+1

αβ = δαβ +∆t
∂vk

α

∂xβ
. (21)

Usingthe nodal shape functions, the change in deformation gradient at an arbitrary pointxγ can
be evaluated as

∆F k+1

αβ (xγ) = δαβ +∆t
∑

i

vi,k
α

∂Ni(xγ)

∂xβ
. (22)

By useof the particle characteristic function the increment of deformation gradient can be for-
mulated as

∆F
p,k+1

αβ = δαβ +∆t
∑

i

vi,k
α

∂N̄ip

∂xβ

. (23)

This way of integrating the deformation gradient, using the grid velocities, is also employed by
Love & Sulsky (2006).

The stress is integrated using an updated Lagrangian scheme. At the beginning of the time
step, a reference state is defined bySk

αβ := σk
αβ . For small strain increments, the approximation

ε̇αβ = Ėαβ is valid, whereĖαβ is the Green strain rate andε̇αβ is the linear strain rate,

ε̇αβ =
1

2

(

∂vα

∂xβ

+
∂vβ

∂xα

)

. (24)

Thus the rate of change of the second Piola-Kirchhoff stress tensor is given by

Ṡαβ = Cαβγδ ε̇γδ, (25)
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whereCαβγδ yields the constitutive behaviour of an observed material point at the current ma-
terial state. Using a forward difference scheme the Piola-Kirchhoff stress at the end of the time
step is approximated by

Sk+1

αβ = σk
αβ +∆tṠαβ (26)

The local deformation occurring during the time step is given by∆F k
αβ . Hence, with∆J =

det(∆F k+1

αβ ), the rate objective Cauchy stress at end of the time step is given by

σk+1

αβ =
1

∆J
∆F k+1

αγ Sk+1

γδ ∆F k+1

δβ . (27)

2.3 Implementation of the improved GIMP algorithm

In the subsections above, the governing equations for a large-strain GIMP method using numeri-
cal integration are given. The basic idea is to solve the balance of momentum on the grid and then
use the information to update the state variables at the material points. The mass and momentum
at a grid nodei are found by

mk
i =

∑

p

mk
pN̄ip, πi,k

α =
∑

p

πp,k
α N̄ip, (28)

respectively. Using a linear extrapolation of Eq. (13), the nodal momentum at the end of the time
step becomes

πi,k+1

α = πi,k
α +∆t(f i,int,k

α + f i,ext,k
α ). (29)

The position and velocity updates for the material points are then given by

xp,k+1

α = xp,k
α +

∆t

mp

∑

i

πi,k+1

α N̄ip, vp,k+1

α = vp,k
α +

∆t

mp

∑

i

(f i,int,k
α + f i,ext,k

α )N̄ip. (30)

The algorithm can be summarised as:

1. Initialisation of material properties, including the deformation gradient at the material points
at timetk = 0

2. At each time step:
• A background computational grid is generated
• The coordinates for the Gauss points are found by Eq. (18)
• The weighting and gradient-weighting functions are determined by Eq. (16)
• Stress and strain increments are found and the stresses and strains are updated
• The objective Cauchy stresses at the end of the time step are found by Eq. (27)
• Internal and external forces are found by Eq. (14)
• The updated nodal momentum is determined using Eqs. (14) and (29)
• The position and the velocity of the material points are found by Eq. (30)
• The deformation gradient increment for the material points are updated using Eq. (20),

and the total deformation gradient is calculated.

Here, an algorithm as simple as possible has been presented. Hence, explicit forward difference
schemes are employed for updating the deformation gradient, Eq. (23), as well as the stress,
Eq. (26), and to update the velocity and the position of the material points, Eq. (30). As the
resulting equations are similar to the original MPM formulation, the difference relates to the
construction of the weighting functions and how to integrate the constitutive behaviour. Alterna-
tively, implicit MPM schemes presented by, for example, Cummins & Brackbill (2002), Guilkey
& Weiss (2003), or Sulsky & Kaul (2004) can be implemented.
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2.4 Frictional contact algorithm for multiple interfaces

The algorithm described above is employed when the modelled material can be considered one
single continuum. According to Sulsky et al. (1995), the algorithm can also model collision
between colliding bodies, illustrated by the simple problem of collision of two elastic discs.
This is due to the interaction between the two bodies when internal forces are calculated on the
grid. However, York et al. (1999) showed that modelling interaction between different bodies
has shortcomings when using a shared nodal field for the whole domain. If two particles are in
contact over a large area compared to the volume, or if the materials are soft, the two interacting
materials tend to stick together instead of separating after contact. York et al. (1999) provide an
algorithm that only allows bodies to share grid nodes when they are moving towards each other.

In the present study of landslides it is essential to model friction at interfaces. Further, the
large deformations necessitate the ability to model material separation, when parts of the soil
stop belonging to the continuum, and is able to move relatively to the remaining soil. Hence,
a frictional contact algorithm is introduced, based on the work by Bardenhagen et al. (2000,
2001). Thus, the domain of material points is subdivided into a number of subdomains (so-called
‘grains’) in the initial reference. Within each subdomain, the equations for a continuum are valid.
The interpolations defined by Eqs. (28) and (14) are performed for each continuum. Between
adjacent continua, a frictional contact model is introduced. Usingvi

α = πi
α/mi, a centre-of-mass

velocity, vi,CM
α , at a grid node can be found by integrating over all material points. Similarly,

the velocity of one continuum,vi,c
α , can be found, where indexc corresponds to the continuum

material. Nodes representing interfaces are identified by

vi,CM
α − vi,c

α 6= 0. (31)

For a node at an interface, a normal surface traction,τ i,c
n , is introduced byτ i,c

n = ni,c
α σ

i,c
αβn

i,c
β ,

whereni,c
α is the outward unit normal of continuumc evaluated at nodei, andσi,c

αβ is the Cauchy
stress at the node found by mapping from the material points.

The contact forces are determined at the grid nodes. Direction-of-sliding forces and normal
forces applied to the continuum at a grid node are determined based on unit outward normal vec-
tors. An algorithm for determining these normal vectors based on the density fields is presented
in (York, Sulsky, & Schreyer 1999). In order to model problems, in which three or more continua
interact, a master–slave relationship is employed. The continua at a grid node are assigned num-
bers, wherec = 1 corresponds to the master material. For material 1, the normal vectorni,1

α is
determined according to the original scheme proposed by York et al. (1999). The normal vector
for material 2 is prescribed asni,2

α = −ni,1
α , i.e. orthogonal to the density field of material 1 along

the common interface. The normal vector for material 3 is prescribed orthogonal to the combined
density fields of materials 1 and 2. This can be generalised to handle any number of continua.

The normal surface traction is found as described in (Bardenhagen, Guilkey, Roessig, Brack-
bill, Witzel, & Foster 2001). Using the sign convention where compressive stresses are negative,
the frictional-contact algorithm is enforced at an interface node whenti,cn < 0.

When continua are not in contact, the governing equation (13) is solved for each body on its
own. When the bodies are moving towards each other, frictional contact is enforced by changing
the velocity fields of each continuum in order to prevent interpenetration and allow for incorpo-
ration of frictional forces. The details in the numerical implementation are found in the work by
Bardenhagen et al. (2001). Basically, the algorithm prevents sliding whent

i,c
t < µti,cn , whereti,ct

is the unit traction vector resolved in the tangential direction of sliding andµ is the coefficient of
friction between the continuum and the other materials it is interacting with. Whent

i,c
t = µti,cn ,

sliding is allowed and the frictional force is determined by the coefficient of friction.
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3 CASE STUDY: COLLAPSING SLOPE ON THE COAST NEAR LØNSTUP

3.1 Presentation of the physical problem

The presented method is employed to analyse a recent event of a major landslide on the coastline
between Lønstrup and Rubjerg Knude in northern Denmark. The local soil consist of interchang-
ing layers of clay and sand, originally deposited almost horizontally. However, due to tectonic
dislocations during the Weichsel glaciation, the layers are now inclined at angles as high as 60
degrees (Pedersen 2006). This has a significant impact on the slope stability, and smaller but sim-
ilar landslides are often reported in the area (Skov og Naturstyrelsen 2008), typically observed
at the interfaces between different layers.

The slide near Rubjerg Knude occurred in the night between November 30th and December
1st, 2008, and was most likely triggered by a heavy rainfall. According to Bent Lykkegaard,
responsible for the maintenance of the coastline area, the clay became heavier, eventually causing
it to slide along the interface with sand (Tv2|Nord 2008). On December 3rd, 2008, a survey was
carried out in order to determine the geometry of the collapsed slope. Figure 1 (left) shows a
photograph taken from the top of the collapsed slope. Already on November 27th, 2008, deep
cracks were observed, but it was expected that it would take several years for the cracks to
develop into a slide. A photograph of typical cracks, probably due to initial sliding in an interface
between clay and sand, about 300 metres to the south of the slide, is shown in Fig. 1 (right).

Fig. 1. Left: The slope near Lønstrup after the landslide (December 3rd, 2008). The poles in the photograph are used as points
in the land surveying performed. Right: Development of cracks in the sand material (December 3rd, 2008). The photograph is
taken approximately 300 metres to the south of the slide.
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Fig. 2. Comparison of the slope geometry at the site near Lønstrup before and after the slide based on GIS data from 2007 (left)
and land surveying performed December 3rd, 2008 (right).
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After the field trip, the data obtained from the survey was compared to GIS data from 2007.
Figure 2 shows the cross sections before and after the slide. Some of the survey poles, utilised for
obtaining the slope geometry after the slide, are visible in Fig. 1 (left). The relative position of the
two cross sections, shown in Fig. 2, are subject to uncertainty. The location of a reference point
on the slope after the slide was obtained using a simple GPS transmitter is with an uncertainty
±12m at the point of measuring, while the resolution of the GIS data is 10 metres. Nonetheless,
the figure clearly shows the extent of the slide and a significant change in the slope geometry.

3.2 Material model for the soil

A major difficulty in obtaining a reliable numerical analysis of the particular slide is the complex
material properties and the identification of layer boundaries present in the slope. In the consid-
ered problem, the soil consists of a complex pattern of clay and different sand materials. Further,
the material properties, at the initiation of the slide, are uncertain. Another limitation is the lack
of constitutive models involving very large deformations for soil materials. In order to test the
frictional contact model and to study the suggested failure mechanism reported in (Tv2|Nord
2008), a numerical model with simplified material assumptions is employed. By introducing
simplified material and geometrical models, the soil is represented as two isotropic, homoge-
nous materials, clay and sand. The clay and sand are modelled as different continuum materials.
The interaction between the materials is described using the frictional-contact algorithm.

Both the sand and the clay are modelled as elasto-plastic materials, based on the Mohr-
Coulomb yield criterion. Thus, a yield functionf is introduced such thatf < 0 corresponds to
elastic material behaviour, whereas elasto-plastic behaviour is observed whenf = 0. In terms of
principal stresses by, the yield criterion reads:

f =
1

2
(σ3 − σ1) +

1

2
(σ1 + σ3) sinφ− c cosφ ≤ 0, (32)

whereφ is the angle of friction andc is the cohesion. In Equation (32), tension is considered
positive and the principal stresses are ordered asσ1 ≤ σ2 ≤ σ3. The stress rate is given in terms
of the elastic strain rate, i.e.

σ̇αβ = Eαβγδ : (ε̇γδ − ε̇
p
γδ), (33)

whereε̇γδ is the total strain rate,̇εp
γδ is the plastic rate andEαβγδ is the elastic constitutive tensor.

In the case of linear isotropic elasticity,Eαβγδ depends on Young’s modulus,E, and Poisson’s
ratio,ν. Assuming non-associated plasticity, the plastic strain increment is found as

ε̇
p
αβ = λ̇

∂g

∂σαβ
, g =

1

2
(σ3 − σ1) +

1

2
(σ1 + σ3) sinψ. (34)

whereλ̇ is a positive scaling factor, andg is the plastic potential withψ denoting the angle of
dilatation of the soil. In the numerical solution, finite increments in the strain are considered.
Hence, the state of stress may initially be taken outside the yield surface. In order to return
the stresses to a physically valid state, the efficient return algorithm proposed by Clausen et al.
(2006) is applied for the Mohr-Coulomb criterion.

The clay is assumed to be undrained, represented by the material properties:E = 20 MPa,
ν = 0.40, ρ0 = 1900 kg/m3, c = 100kPa, φ= 1◦, andψ = 0◦. The sand is assumed drained with
the initial properties:E = 20 MPa,ν = 0.40, ρ0 = 1900 kg/m3, c = 0, φ = 35◦, andψ = 5◦.
Further, the interface between sand and clay is modelled with an coefficient of frictionµ = 0.6.
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This corresponds to requiring a smaller force in order to enforce sliding at the interface than to
trigger plastic response in the sand next to the interface, astan35◦ ≈ 0.7.

During the landslide, significant plastic shear strains are accumulated in the sand. This leads
to over-excessive dilatation if the material model is used uncritically. To avoid this, dilation cut-
off is implemented when the maximum void ratio for the sand has been reached. The cut-off
condition is implemented numerically by representing all material points that have obtained the
maximum void ratio as a new continuum. This allows the loose sand to slide relatively to the
underlying sand. In the present case, an initial void ratio of 0.5 is assumed and the maximum
void ratio is estimated to 0.8. A more realistic model would consider the effects of capillary
tension in the sand as well as the curvature of the yield function at low confining pressures, i.e.
near the ground surface. The use of more accurate material models is the focus of future research.

3.3 Simulation of the landslide—results and discussion

A two-dimensional cross section is divided into a number of rectangular domains each repre-
sented by a material point (either clay or sand). The model has 80 computational cells in the
horizontal direction and 32 cells in the vertical direction, see Figure 3. The geometry for the
part of the numerical model representing the slope is obtained from the GIS data. The part of
the model to the left of the slope, that represents the beach and the seabed, is modelled with an
inclination of6%. Three by three material points are defined for each cell in the computational
grid, leading to a total of 10977 material points in the model in the initial configuration.

0 20 40 60 80 100 120 140 160
0

20

40

60

Fig. 3. The configuration of material points before the slide. The mesh visible is the computational grid and lengths are in metres.
A total number of 10977 material point is employed in the shown model. Dark shades indicate sand and light shades indicate
clay. Information from GIS data has been utilised for defining the geometry.

The initial stresses in the slope are determined using the algorithm presented by Andersen
& Andersen (2008), where the gravity is gradually applied to the material points. Based on the
geometry and the initial stresses, the deformed slope geometry is found by explicitly integrating
in time. A time increment of∆t = 0.002 s is employed, and the simulation has been carried out
until the sliding motion has ceased. In the current model, the slide takes approximately9.0 s.

Figure 4 shows the configuration over time. The slide starts as a slip at the interface between
the clay and the sand. Att= 2.9 s the sliding is mostly due to the clay sliding down the sand with
some plastic deformations taking place in the clay. Plastic deformations in the sand is of little
importance. Att = 2.9 s the physically dominant interface is the interface between the clay and
the sand. Att = 5.8 s the interaction between the sand and the clay at the interface on the beach
has lead to plastic deformations in the sand closest to the clay. Normal forces enforced onto the
clay by the frictional contact law is now yielding a large contribution to stopping the slide.
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Fig. 4. The geometry of the slope at different instants of time:t = 0 s (upperright); t = 2.9 s (upper left);t = 5.8 s (lower
right); t = 9.0 s (lower left). Dimensions are in metres and the (initially vertical) stripes are solely inserted to provide a better
visualisation of the deformation mechanism. Dark shades indicate sand and light shades indicate clay.

Another observation to be made from that figure is the significant change in the shape of
the clay. At t = 9.0 s, after which no further sliding is taking place, the clay has stopped at
a newly formed interface between the two materials (betweenx = 70 m andx = 90 m). The
interface has an inclination opposite to the inclination of the original slope. Hence, with the
provided layer boundaries and material properties, the plastic deformations in the sand along
the beach contributes in stopping the slide. Finally, comparing the solutions att = 5.8 s and
t= 9.0 s, plastic deformations are observed in the sand at the upper part of the slope, i.e. between
x = 130 m andx = 150 m.

4 CONCLUSION

A new numerical technique for modelling problems involving large strains and deformations
is presented. The model is an extension of the generalised-interpolation material-point method,
employing numerical integration in the deformed state. Interaction between several bodies is
modelled using a frictional contact algorithm based on a master–slave interface definition.

The numerical method is tested by analysing a recent landslide at the coastline near Lønstrup
in northern Denmark. A two-dimensional model of the slope before the landslide is obtained
using GIS data. A Mohr-Coulomb model is employed to model the elasto-plastic behaviour of the
soil, using material properties representative for drained sand and undrained clay, respectively.
In the simulation, the slide is initiated by increasing the density of the clay, corresponding to
the behaviour during heavy rainfall. A frictional contact algorithm is employed at the interface
between the clay and the sand. With the utilised material and interface properties, the landslide
is triggered at the interface between the sand and the clay, whereas the elasto-plastic properties
of the two materials are of a little importance regarding the initiation of the slide. However, they
have a significant influence on the material deformations during the slide.
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The numerical test case shows that it is possible to model elasto-plastic deformation, slide
between the different materials, and the change of the sand properties due to dilatation using a
fairly simple model. A model able to handle all these physical phenomena simultaneously would
be extremely difficult to construct using a conventional method such as the finite element method.
Despite the many simplifications in the numerical representation of the physical problem, the
model provides results that are qualitatively and quantitatively similar to the slide observed on
location.
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