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Abstract

This thesis spans over three strongly related topics in wireless communication:
channel-sounding, -modeling, and -estimation. Three main problems are
addressed: optimization of spatio-temporal apertures for channel sounding;
estimation of per-path power spectral densities (psds); and modeling of re-
verberant channels.

We develop a theory for optimization of spatio-temporal apertures used
in multiple-input multiple-output (MiM0) channel sounding. Initially, we
focus on joint estimation of bi-direction and Doppler frequency from time-
division multiplexing (Tpm) MIMO measurements. We introduce and analyze
a bi-spatio-temporal ambiguity function for spatio-temporal channel sound-
ing. The analysis reveals that by proper design of the spatio-temporal aperture,
the maximum estimable Doppler frequency of a TpM-MIMO sounder is as
high as that of a traditional single-input single-output sounder. We give the
necessary and sufficient conditions for spatio-temporal apertures to minimize
the Cramér-Rao lower bound on the joint bi-direction and Doppler frequency
estimation. The spatio-temporal aperture also impacts on the accuracy of
MIMO-capacity estimation from measurements impaired by colored phase
noise. We present an improved capacity estimator, which exploits the second
order statistics of the phase noise and the structure of the spatio-temporal
aperture.

Next we turn to the problem of estimating the per-path psd resolved in
directions and delay. We model the per-path psds using entropy maximizing
probability density functions (pdfs); the pdfs are defined by their first- and
second-order moments. We derive estimators of these parameters and illus-
trate their applicability on measurement data. The obtained spread estimates
are significantly smaller, and the estimated psds are much more concentrated,
than corresponding results from literature. These findings indicate that the
per-path directional spreads (or cluster spreads) assumed in standard models
are set too large.

Finally, we propose a model of the specular-to-diffuse transition observed
in measurements of reverberant channels. The model relies on a “propa-
gation graph” where vertices represent scatterers and edges represent the
wave propagation conditions between scatterers. The graph has a recursive
structure, which permits modeling of the transfer function of the graph. We
derive a closed-form expression of the infinite-bounce impulse response. This
expression is used for simulation of the impulse response of randomly gener-
ated propagation graphs. The obtained realizations exhibit the well-observed
exponential power decay versus delay and specular-to-diffuse transition.






Dansk resumé

Denne Ph.D. afhandling omhandler tre steerkt forbunde emner: méling, mo-
dellering og estimering af radiokommunikationskanaler. Tre hovedproblemer
behandles: optimering af rum-tid sampling i radiokanalmélesystemer, en-
keltvis estimering af effektspektre af signalkomponenter i radiokanaler med
flervejsudbredelse samt modellering af efterklangsfeenomener.

Der udvikles en teori for optimering of rum-tid aperturer i multi-input
multi-output (MiM0) malesystemer. Der fokuseres forst pa samlet bestemmel-
se af dopplerfrekvens og udstralings/indstralings retninger ud fra tidsmul-
tiplexede malinger af Mimo kanaler. Derefter indferes en ‘ambiguityfunktion’
for dette estimeringsproblem. Analyse af ambiguityfunktionen viser, at den
hojeste dopplerfrekvens, der kan bestemmes entydigt, athenger af rum-tid
aperturet. Ved passende design af malesystemets rum-tid apertur er den gvre
graense for den estimerbare dopplerfrekvens for MimMo systemer lige s& hoj
som for traditionelle malesystemer med en sender- og en modtagerantenne.
Der gives den nedvendige og tilstrackkelige betingelse for, at et givet rum-
tid apertur minimerer Cramér-Rao begransningen pa doppler-retnings be-
stemmelse. Rum-tid aperturet har ogsa indflydelse pa hvor nejagtigt Mmimo-
kanalkapaciteten kan estimeres nar malesystemets fasestoj tages i betragtning.
Ved at udnytte kendskab til fasestojens autokorrelationsfunktion og struktu-
ren af rum-tid aperturet, udledes en forbedret kapacitets estimator.

Dernzest behandles estimering af sprednings egenskaber for udbredelses-
veje i et miljo med flervejsudbredelse. Effektspektret for en udbredelsesvej
modelleres ved hjeelp af en entropi-maximerende fordelingsfunktion (pdf).
Denne pdf er givet ved det forste og andet moment, for hvilke en estimator
udledes. Estimatorens anvendelighed illustreres ved brug af méledata. De
opnaede spredningsestimater er vaesentligt mindre end tidligere publicere-
de estimater, hvor traditionelle metoder er anvendt. Estimeringsresultaterne
indikerer, at signalspredningen for de enkeltvise signalveje kan veere overvur-
deret i standardiserede radiokanalmodeller.

Til slut opstilles en model for overgangen fra separate til diffuse sig-
nalkomponenter som kan observeres i malinger af radiokanaler med efter-
klang. Modellen bygger pa en ‘udbredelsesgraf’, hvori punkter repraesente-
rer objekter i udbredelses miljoet, og kanter representerer belgeudbredelsen
mellem objekter. Der udledes et udtryk for grafens overferingsfunktion, der
geelder for signalkomponenter der udbredes via et vilkarligt antal interak-
tioner. Overforingsfunktionen anvendes til simulering af impulsresponset
af stokastisk genererede udbredelsesgrafer. Impulsresponserne udviser den
fornzevnte overgang fra separate til et diffust signalbidrag.

vii






Preface

This thesis is submitted to the International Doctoral School of Technology
and Science at Aalborg University, Denmark, in partial fulfillment of the
requirements for the degree of doctor of philosophy. Chapters 1-4 provides
an introduction and brief description of the contributions of the thesis. The
main body consists of ten papers referred to as Paper A-Paper ] published
in peer-reviewed conferences and journals listed at pp. xv-xvi. The work
has been carried out during the period September 2004 — August 2008 at
the Department of Electronic Systems, Aalborg University. It has been sup-
ported in part by Elektrobit and in part by the project 1cT-217033 Wireless
Hybrid Enhanced Mobile Radio Estimators (WHERE). Parts of the work have
been performed within the 1cT-216715 FP7 Network of Excellence in Wireless
COMmunication (NEwcom™™) and its predecessor NEWCOM.

Numerous people have in one way or another inspired my curiosity and
encouraged me to pursue the study of radio communications. I am grate-
ful to the members of the radio amateur club in Svendborg (0z7FYN E.D.R.
Svendborg Afdeling) who spurred my interest in radio communications. The
first semester at Aalborg University took part in a student project on radio
channel modeling supervised by the, now retired, Associate Professor Johan
Brondum. After completing the present thesis on the same topic, I can but
admire his bravery of teaching the topic to freshmen!

As I flew to Dallas to present Paper A at the Globecom 2004 conference,
I experienced a striking example of the unforeseeable nature of inspiration.
It was my first conference and, in fact, my first trip outside Europe. It was
a long flight Aalborg-Billund-Frankfurt-Dallas. At the boarding counter in
Frankfurt airport, I had to answer a questionnaire about my profession, the
purpose of the journey, etc. I handed in the filled-out form to a lady with
a prominent smile. She briefly checked my answers and informed me that
she had a few questions. “‘Why are you going to usa?’ she asked; T am going
for a conference, I answered. ‘What is the name of the conference?” was her
next question. Mildly annoyed, I told her politely that I already gave her
that information in the questionnaire. My answer did not please her, but she
kept smiling. After a dozen questions, she concluded her interrogation by the
asking:

‘Can you please tell me, in layman’s terms, what the topic of the
paper you are going to present at the conference is?’

Her question took me by surprise. However simple the question was, I realized
that answering it was not so easy. How do one explain the topic of optimi-

ix



PREFACE

zation of spatio-temporal apertures in channel sounding in layman’s terms?
I decided not to—in lieu, I attempted to explain what channel sounding is.
After a moment of though I replied:

‘Well, If you go down in your basement and shout “Hello” as loud
as you can, you hear an echo!

“Yes,, she said, still smiling. I continued:

‘...and if you shout “Hello” in your living room, the echo sounds
different’

“Yes it does’ she said and nodded heavily. I carried on;
‘I shout “Hello” with radio waves and listen to the echo’
The lady now smiled more than ever and replied in an excited high-pitched
voice:
‘Oooh! That’s a very good explanation—I understood everything
perfectly?

Although I didn’t answer her question exactly, I was allowed on board the
flight to Dallas. The conference went well. I would like to thank that lady from
American Airlines; her question inspired my further study of the analogy be-
tween acoustical and electromagnetic wave propagation and in turn inspired
me to the radio channel model in Papers I and J of this thesis.

I wish to express my gratitude and thanks to my supervisor Professor, Dr.
sc. techn. Bernard H. Fleury for providing me supervision and guidance of
the past years. I deeply admire his persevering pursuit of the highest scientific
standards. I also want to acknowledge my present and former colleagues and
fellow PhD students at Aalborg University: Thomas Arildsen, Kazimieras
Bagdonas, Mads Graesbell Christensen, Joachim Dahl, Bin Hu, Jesper Hoj-
vang Jensen, Gunvor Elisabeth Kirkelund, Morten Holm Larsen, Hans Laur-
berg, Michael Nielsen, Laust Olsen, Romain Piton, Darius Plausinaitis, Steffen
Praestholm, Christoffer Radbro, Gerhard Steinbdck, and Karsten V. Serensen
for many pleasant and inspiring discussions. I would like to direct a special
thanks to my friend and former colleague Xuefeng Yin for the countless
discussions of technical and non-technical nature. I will never forget his
enthusiastic and curious approach to research, which I highly appreciate.

Last, but not least, I thank my friends and family, but most of all Mette,
for her priceless help, understanding, and support.

Troels Pedersen
Aalborg, December 2008
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Chapter 1

Introduction and Motivation

Radio communications is an indispensable technology of a modern society.
Its applications range from pure convenience, such as the remote keys for cars,
to the essential mobile communications for emergency use. Radio communi-
cations is naturally applied when wired communication is impractical (e.g. in
mobile telephony) or impossible (e.g. data transfer from the ground to aircraft
or satellites). Radio communication systems exist for nearly any range; from
cable replacement in the so-called personal area networks to communications
between the Earth and distant space probes.

A radio communication system consists of one or more transmitters
which create a dynamic electromagnetic field, and one or more receivers
away from the transmitters sensing the electromagnetic field. The field at the
receiver is to some degree related to the emitted field. Thus, provided accept-
able propagation conditions exist, one may encode information in the field
emitted at the transmitter and recover parts of this information by sensing
the field at the receiver. Obviously, the engineering of a radio communication
system relies on specified requirements to the system, such as the type of
information to be transmitted, the required quality and reliability of the
transmission, efc. These specifications are, however, insufficient by themselves
to guarantee successful design of a communication system. In addition to
these predefined requirements, invention, design, testing, and optimization
of radio communication systems rely heavily on knowledge of the relation
between the electromagnetic field generated at the transmitter and the sensed
field at the receiver site. Thus, knowledge of this relation is a prerequisite for
the engineering of modern wireless communication systems.

For the purpose of studying or designing communication systems, it
brings great conceptual simplification to model such a system as a collection
of basic constituents as depicted schematically in Fig. 1.1: the transmitter, the
transmit antennas, the receive antennas, the receiver, and the propagation
environment. The transmitter generates the input (vector) signal x(t) (the
voltage or current) applied to the input ports of the transmitter antennas.
The transmitter antennas excite an electromagnetic wave which propagates
throughout the environment. As the electromagnetic wave reaches the re-
ceiver antennas, it induces a signal y(¢) (voltage or current) at their output
ports. We define the radio channel as the system where the input signal x(¢)
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Fig. 1.1: A radio communication system with M, transmit antennas and M, receive antennas. The
transmitter applies the signal x(t) to the inputs of the transmit antennas. Thereby the antennas
emit an electromagnetic field which propagates through the environment and interacts with
obstacles illustrated by the gray objects. Away from the transmitter, the field induces the signal
y(t) at the outputs of the receive antennas.

is applied and the output y(¢) is observed, i.e, from the input of the transmit
antenna array to the output of the receive antenna array. The problem at hand
is to obtain knowledge on the radio channel necessary for designing, testing,
or optimizing wireless communication systems.

In the remainder of this chapter we define and motivate the key crafts of
radio channel characterization: channel sounding, modeling and estimation.
In Section 1.1 the interconnections between these three crafts are outlined. We
further detail their definitions and purposes in Sections 1.2-1.5.

1.1 Channel Characterization: The Trinity of Sounding, Estimation,
and Modeling

The problem of radio channel characterization consists of three mutually de-
pendent crafts: sounding, modeling, and estimation. As summarized in Fig. 1.2,
various kinds of information are exchanged between these three crafts. In
the following we discuss these three crafts and the exchanged information
in further detail.

In channel sounding channel measurements are performed by applying
a known signal to the transmit antennas and observing the output signal of



1.1. CHANNEL CHARACTERIZATION: THE TRINITY OF SOUNDING, ESTIMATION, AND MODELING

Sounding

Modej,
Models d =

Modeling

Estimates

Fig. 1.2: The trinity of channel characterization: sounding, modeling, and estimation.

the receive antennas. Since the transmitted signal is known, information on
the relation between the transmitted and received signals can be gathered.
The output of channel sounding is the measurement data. It is sometimes
possible to observe a phenomenon directly from the measurement data. These
observations may then inspire the channel modeling process. The design
and planning of experiments relies on a priori information. This information
allows for the planner to decide upon which antennas to apply, which scenario
to investigate, at which frequency to transmit, etc. The information takes
the form of predictions of phenomena of interest, and specification of the
measurement settings required to obtain the necessary estimation accuracy.

Channel modeling is the craft of creating (mathematical) representations
or descriptions of the radio channel. Models can be based on theoretical
considerations as well as on measurements. The models give, however, only
approximate descriptions of the propagation conditions, and thus, there is no
guarantee that their predictions hold true. One main objective of modeling
is to organize available information about the channel in a form useful for
the design of communication systems. This process relies on channel obser-
vations and estimates of model parameters. The design of estimators thus
naturally depends on the models.

Channel estimation is concerned with extracting parameter values from
channel measurements.! To do so, estimators of the considered model pa-
rameters must be developed. The input data to a channel estimator is the
measurement data. To allow for a certain precision of the parameter estimates,

' We are here concerned only with channel estimation for the use in channel sounding
and modeling, and not with channel estimators for receiver algorithms.
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the estimator requires certain properties of the measurement data. This can
be requirements on the measurement design, the type of measurement signal,
the measurement bandwidth, etc.

The end-result of the channel characterization process is the knowledge
gained about the features of the channel, which is essential for system de-
sign. This knowledge may be qualitative or quantitative information on the
observed phenomena. This information is often conveyed in form of a channel
model. As previously stated, the system developer relies on this information
for the design of radio communication systems. The knowledge allows the
system designer to approach the questions of “how can the observed phe-
nomena be exploited”, “how can the best performance of the communication
system be achieved”, and “what is the performance of the system”. It should,
however, be kept in mind that none of the three crafts of sounding, modeling,
or estimation are directly relevant to the designers of radio communication
systems; only the outcome of the process, i.e., the model, is.

1.2 Definition of a (Mathematical) Model

In this thesis we will frequently use mathematical models. It is therefore
worthwhile to define the concept of a (mathematical) model. We first give a
definition of this concept and then refine the definition to the particular case
of a mathematical model. There are numerous definitions of the concept of
a “model” available in the literature. The interested reader is referred to [1-3]
for further examples of definitions. The following definition will serve as an
outset for our subsequent discussion of radio channel models:

Definition 1.2.1 (Model): A model is a representation of a part of the real world
created for a particular purpose.

This definition is inspired from the definitions given in the references [1]
and [2]. Definition 1.2.1 consists of three basic components*:

Purpose: The purpose of a model.
Scope: The part of the real world which the model is supposed to represent.

Formulation: The type of representation used in the model.

Of these three components, the purpose is the most fundamental: it can
be well-defined without having a scope or a formulation in mind. On the
contrary, it is meaningless to settle upon a scope unless we know what the
purpose of the model is; nor is it sensible to formulate something we do
not know what it is. To some extent, the purpose dictates the scope and

*In the references [1] and [2] only the “purpose” is discussed; the “scope” and “formula-
tion” are not discussed in relation with the definition of a model.
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determines, at least partly, the type of formulation. A model is evaluated with
respect to its purpose [2]: To evaluate a model one must answer the question
“Does the model suit the purpose?” A model well-suited for a specific purpose
might render completely useless for another.

The representation can take different forms: Architects often use card-
board, whereas physicists and engineers frequently use mathematical repre-
sentations. Since we are solely interested in mathematical models of radio
communication channels, a further precision of the concept of a mathemati-
cal model is beneficial. We shall adhere to the definition from [1]:

Definition 1.2.2 (Mathematical model): A mathematical model is an abstract,
simplified mathematical construct related to a part of reality and created for a
particular purpose.

Compared to Definition 1.2.1, Definition 1.2.2 has been delimited to math-
ematical models; the basic components (purpose, scope, formulation) re-
main. For reasons of brevity, we use the term “model” for “mathematical
model” throughout.

1.3 Purposes of Radio Channel Models

Channel models for radio communications are used for (at least) three differ-
ent purposes:

1. for the study of propagation effects,
2. for the design of communication systems, and

3. for the simulation of communication systems.

This observation suggests that models may be categorized according to their
purpose as respectively study, design, and simulation models.

Study models are used as tools to better understand the propagation
phenomena governing the radio channel. Understanding the impact of prop-
agation effects is useful to a system designer—without this understanding the
designer has no clue of the existence of propagation phenomena which should
be mitigated or could possibly be exploited. Often the models are inspired by
measurements or by simplifications of Maxwell’s theory of electromagnetism
[4, 5]. The scope of a model falling into this category naturally depends on
the particular phenomenon of interest and thus numerous different types
of formulations exist. Since their purpose is to help the understanding of
phenomena, study models are evaluated on their explanatory qualities, an-
alytic simplicity, and prediction accuracy. There are numerous study models
throughout literature, of which we give two examples. In the seminal work
[6], Clarke proposes a model for studying the correlation properties of the
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received signal envelope. Our second example is the more recent model by
Franceschetti [7], which describes the effect of environment parameters on
the delay-power spectrum.

Design models are the mathematical models assumed in the design of
communication systems. These models form the basis for analytical treatment
of (parts of) the communications systems to be designed. Communication
systems are usually complex enough by themselves. Hence analytic simplicity
is crucial for design models. But the models should still represent, at least in
a simplistic way, the specific phenomena considered. Typically design models
are inspired and/or justified by a certain study model. Illustrative exam-
ples can be found in the development of detection/demodulation algorithms,
which relies on simplified channel models. The models used in the design
of narrow-band receivers include the additive white Gaussian noise channel,
and the Raleigh fading channel [8, 9].

Simulation models are used to evaluate the performance of (parts of) a
communication system by simulation. Performance measures, like bit-error-
rates, are in most cases intractable for mathematical analysis [8]. To evaluate
the performance of communication systems we must, therefore, resort to
numerical methods. It is common practice to perform numerical simulations
using various Monte Carlo methods [10]. To this end, stochastic simulation
models of the radio channel are necessary. Obviously, one could use a simu-
lation model with the same assumptions as the design model. This provides
a test whether the design is good if the model assumptions hold true. But such
a test cannot be used as an indication of how the equipment performs in a
real-world scenario. Another option is to use a more realistic model to test
the equipment. A simulation model therefore has (at least) two conflicting
objectives: it should 1) mimic the propagation mechanisms accurately, and, as
a great number of model realizations are necessary, 2) have low computational
complexity. An early example of a simulation model is the model by Jakes [11],
which is essentially a simulation version of the model by Clarke [6]. A more
recent examples include the bi-directional simulation models [12-14]. Most
standardized models, such as the 3GPP [15], WINNER [16], COST 259 [17, 18],
and IEEE 802.16 [19] are simulation models.

Considering the mutually contradicting requirements to a model dictated
by the above model purposes, it is evident that no single model can satisfy
them all. Consequently, the literature on radio channel models is rich on
models for various purposes, scopes, and formulations.

Commonly, users of channel models work in fields of communication
engineering. The users may be experts in the field of receiver design or testing.
Naturally those engineers are specialists within their field, but cannot be
expected to have expertise in the creation of channel models too. The users
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of channel models must chose among the great many existing models to find
one suiting their purpose. One cannot expect these engineers to read detailed
scientific papers on the development and validation of specific models. In
lieu, to choose an appropriate model, they may rely on textbooks, tutorials,
reviews, or surveys written by channel modeling experts. A number of such
overviews exists in papers (e.g., [20-27]) and books (e.g., [28-36]). It appears,
however, that none of these overviews base their approach on a definition
of the model concept—at least none of the publications [20-36] states their
definition. Instead, the most often followed the procedure is to categorize
models according to the phenomena which they describe, or which assump-
tions they rely on. As a result, different models are compared with respect
to their computational complexity, disregarding their purposes. To a channel
modeling expert this might be of minor concern; but to the non-expert such
approaches may lead to an unbalanced view of the virtues and shortcomings
of models.

1.4 Purposes of Channel Sounding

Why do we perform measurements of the radio channel? Parsons [28, p. 221]
states two objectives:
“It is often of interest to make measurements which shed some light on

the propagation mechanisms that exist in the radio channel but engineers

are usually more interested in obtaining parameters that can be used

to predict the performance, or performance limits, of communication

systems intended to operate in the channel”
The two different objectives can be reformulated as: 1) gaining insight into
the propagation mechanisms and 2) to extract model parameters from mea-
surement data. Objective 1 is a matter of extracting knowledge of the channel
through measurements. However, scientific knowledge can only be gained by
use of a proper scientific method [37]. This method requires according to [37]
a separation between the hypothesis statement and the hypothesis test. There-
fore, the first objective contains two purposes: one is to make observations
and to state hypothesis; another is to test the hypothesis, or in model terms, to
validate the model. Objective 2 is a matter of estimation of model parameters
from the measurement data. We call this procedure “model calibration”. In ad-
dition to these three purposes, it is often necessary to evaluate the applicability
of estimation algorithms using measurement data.
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We therefore find it useful to distinguish between four different purposes
of channel measurements:

Observation of propagation phenomena: The measurement data can be used
for observing new propagation phenomena. Such observations are es-
sential to the statement of new hypotheses in the form of study models.

Model validation: It is usually possible to predict phenomena from a study
model. It is thus a natural validity test to design experiments specifically
with the purpose to check if the predictions hold true.

Model calibration: According to the discussion of the purposes of radio chan-
nel models in Section 1.3, simulation models are generally designed
from available study models. The settings of these parameters are some-
times known from the description of the intended propagation en-
vironment. It is, however, often necessary to “calibrate” a model by
estimating parameter values from measurement data.

Test of estimation algorithms: When testing parameter estimators it is often
necessary to assess whether the estimation methods are robust enough
to be used for real measurements. To this end, it is necessary to use a set
of measurement data to test, and possibly adjust, the implementation
of the estimators.

Due to a number of reasons, measurement campaigns are seldom made—
and almost never used—for a single purpose only. Measurement campaigns
are time-consuming and expensive. They are therefore usually planned for
multiple purposes. Another reason is that propagation phenomena are often
discovered while testing estimators or during model calibration and vali-
dation. This process is quite natural and cost-effective. There is, however, a
caveat: to observe a phenomenon from a set of data, create a model to fit
these data, and thereafter to use the same set of data to validate the model
is a circular argument [37] which potentially leads to erroneous conclusions.
An excellent example of how to avoid this problem is the contribution by
Turin et al. [38]: The authors first state an initial model (i.e. their hypothesis),
then perform the measurements, validate the model, and finally, inspired by
observations made while validating their initial model, propose a revised
model (i.e. a new hypothesis). The revised model is not validated with the
same measurement data. Instead, its validation is left to future measurement
campaigns.

1.5 Purposes of Channel Estimation Algorithms

The purpose of channel estimation algorithms can be defined in a more
straightforward manner compared to the previous discussion of modeling
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and sounding. The purpose of a channel estimation algorithm is to extract
values for model parameters from measurement data. Parameters estimates
are necessary for model validation, where estimates are compared to the
predictions of a model. Similarly, they are used for model calibration, where
parameters of a model are determined from calibration measurements.

As an example of the estimation process, we consider the parameter es-
timation of a probabilistic channel model. Let us consider the case where we
have made a measurement and recorded the observation data d. Now, we state
a model for d and make the assumption that d is an outcome d = Z of a
random variable Z ~ f(z;6), where f;(z; 0) denotes the probability density
function (pdf) of Z specified by the unknown parameter 6. An estimate
of 6 can be obtained as § = T(d), where T is a mapping of d into the
parameter space. The example shows, that both the channel model f7(z;6)
and the data d are part of the estimation process. Clearly, the model defines
what to estimate from the data and, thus, the model can be considered as
an input for the estimation process. In this example we have considered a
statistical channel model, but the estimation process is essentially the same
for deterministic models.

According to the preceding discussion, channel estimation relies on two
principal inputs: the sounding data and the model. The types of parameters
to be estimated are determined by the channel model under consideration.
Here, the term “parameters” is used in a fairly broad sense; e.g. a power
spectrum can be considered a parameter for some models. Due to the great
number of different models with different scopes, the type of entities to be
estimated are rather diverse. Also the kind and amount of measurement data
influence which types of parameters are estimable, as well as the achievable
precision. Thus, to enable estimation of the desired model parameters at the
necessary precision, certain requirements must be accounted for in the design
of measurement equipment, and planning of measurement campaigns.

1.6  Organization of the Thesis

This chapter has discussed the motivation for radio channel characteriza-
tion for use in the engineering of radio communication systems. We defined
channel characterization as a process in which the three crafts of sounding,
modeling, and estimation interact. The outcome of the characterization pro-
cess is knowledge of the relationship between the transmitted and received
signals. This outcome is often provided in the form of mathematical models.
We discern between study, design, and simulation models according to their
purposes.
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The remaining parts of the thesis are organized as follows:

Chapter 2 defines the mathematical notation and concepts which we rely on
in Chapters 3 and 4

Chapter 3 presents the three topics of the thesis. Each topic description is
concluded by the statement of a question.

Chapter 4 outlines the contributions of the thesis with respect to the ques-
tions posed in Chapter 3. This chapter is shaped as a brief overview and
summary of Papers A-J. Conclusions and outlook are provided at the
end of the chapter.

Papers A-] are ten contributions published in peer-reviewed conferences and
journals. The layouts of the papers have been adapted to the thesis, but
the wording and notation are kept tel quel in the original published
versions. Thus, the notation used in the papers differs from the one in
Chapters 2—4.

10



Chapter 2

Some Preliminaries

In Chapter 1 we defined the notion of radio channel models and related them
to channel sounding and parameter estimation. In this chapter we develop a
general model for the study of multiple-input multiple-output (Mmimo) radio
channels. The purpose of the model is to introduce the notation and concepts
used in Chapters 3 and 4.

2.1 A Generic Representation of Radio Communication Channels

We consider a radio communication system with M; transmit antennas and
M, receive antennas as depicted in Fig. 2.1. We represent the transmitted and
received signals by their complex baseband [8] (vector) signals

xlgt) ylgt)

x(t) = xml:(t) and  y(f) = ymz:(t) : (2.1)
s, (1) s (6)

Array 1 Array 2 ’

xum(t) o
Xm(t) © -
xl( t) o— 1"

Fig. 2.1: A radio communication system where Array 1 transmits and Array 2 receives. The signal
x(t) is applied to the M, inputs of Array 1; the signal y(t) is observed at M, outputs of Array 2.
The elements of Array k are confined in a region Ry, k =1, 2.

11
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respectively. Here, x,,, (t) is the input signal of transmit antenna m; and
¥m, (t) is the output signal of receiver antenna m,. We represent the observed
signal as the sum of two components

y(#) =s(t) +n(2), (2.2)

where s(t) denotes the x(t)-dependent signal component. The signal n(¢) in
(2.2) represents any interfering signal or noise contribution unrelated to the
transmitted signal x(¢). As an example n(t) could represent thermal noise in
the receiver itself. Therefore, n(t) is termed the noise component.

In this thesis the main interest lies in the characterization of the sig-
nal component. We shall therefore not consider the properties of the noise
component in much detail. The remainder of the chapter is devoted to the
representation of the signal component.

2.2 The Delay-Spread Function

We assume that the signal component can be represented by the integral
equation

s(t) = /H(t, 7)x(t - 7)dr, (2.3)

where we have introduced the M, x M, integral kernel H(t, 7). This kernel is
the matrix equivalent of the input delay-spread function in Bello’s terminology
[39]. There exist other kernels equivalent to H(t, 7) [39]; but for our use,
the delay-spread function suffices. For short we refer to H(¢, 7) as the delay-
spread function. In (2.3) the variable ¢ denotes the time at which the signal
is observed by the receive array, whereas t — 7 is the time at which the
signal is applied to the input of the transmit array. Therefore, 7 is called the
(propagation) delay.

Referring to (2.3), for a given delay-spread function the signal compo-
nent can be obtained for any transmitted signal. Thus, neglecting the noise
component in (2.2), the radio channel is represented entirely by its delay-
spread function. The delay-spread function allows for the representation of
delay dispersion in time-variant channels. It is practical to consider the special
cases where a channel is time-invariant, non-dispersive in delay, or both.
Definition 2.2.1 (Time-invariant channel): A time-invariant channel has a
delay-spread function of the form H(t,7) = H(t), where H¢(7) is is the
channel impulse response. The signal component of a time-invariant channel
reads

s(1) = f H,(1)x(f - 7)dr. (2.4)

12
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Definition 2.2.2 (Channel, non-dispersive in delay): The delay-spread function
of a channel, which is non-dispersive delay, is of the form H(t, 7) = Hy(t)-8(7).
Here H,,(t) is the time-varying (MiMo) channel matrix. The signal component
thus reads

s(t) = Ha(£)x(1). (2:5)

Definition 2.2.3 (Time-invariant channel non-dispersive in delay): A channel
that is non-dispersive in delay and time-invariant, has a delay-spread function
of the form H(t, T) = Hyy-8(7). The term Hyy, (t) is the (MIMO) channel matrix.
The signal component reads in this case

s(t) = Hypx(1). (2.6)

The symbol §(+) used in Definitions 2.2.2 and 2.2.3 denotes the Dirac delta.

Time-invariance may be assumed for environments where changes occur
slowly enough to be neglected for the considered transmission time duration.
Similarly, a channel can be assumed non-dispersive in delay if the Fourier
transform of the delay-spread function F;{H(t,7)}(f) with respect to the
delay variable is (approximately) constant for frequencies within the band-
width of the transmitted signal.

2.3 The Bi-Directional Delay-Spread Function

We now describe a channel representation using the delay-spread function.
The terminology “bi-directional ” indicates that the function can describe
both the direction of departure and the direction of arrival of waves prop-
agating from the transmitter to the receiver.

A characterization of first- and second-order moments of directional
spread functions is given in [40]. Bi-directional channel representations are
implicitly used in ray-tracing simulations [27, 28]. The bi-directional prop-
erty also underlies the angular extensions of the model by Saleh and Valen-
zuela [41] proposed in [42, 43]. In the contribution by Zwick [13] a “spa-
tial impulse response” is introduced which is essentially the same idea. The
term “directional impulse response” is used in [43]. In [44] the “double-
directional model” is described relying on the bi-directional representation.
The bi-directional delay-spread function is also used in conjunction with
stochastic models for Monte Carlo simulations as in, e.g., [12].

Again, we consider the propagation environment depicted in Fig. 2.1, but
introduce two assumptions:

Plane waves: Following [45], we assume that the far-field condition holds,
such that a plane wave approximation can be applied in a region R,

13
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CUS(Q)

sin(¢) sin(0)

N cos(¢) sin(6)
Q-=
cos(6)

Fig. 2.2: Definition of the direction vector Q with respect to the coordinate system O. The direction
vector can be uniquely related to its azimuth angle ¢ and co-elevation angle 0 by the expression
shown in the figure.

surrounding Array 2 when Array 1 transmits, and vice versa. This as-
sumption implies that the same set of plane waves impinge on all
elements of Array k when the other array transmits. The plane-wave
assumption allows us to characterize the antennas by their complex
field patterns [11, 32, 46].

Constant geometry: We assume that the gross geometries of the propagation
paths remain constant throughout the observation time. Thus, the di-
rections, delays, Doppler frequencies, and polarization properties are
assumed to be constant.

In addition we make two assumptions on the transmit and receive arrays:

Time-invariant antennas: We assume for simplicity that the complex field
patterns of the antennas [11, 32, 46] are constant over time.

Antennas with no delay dispersion: We assume that the array elements are
non-dispersive in delay.
The complex electric field pattern of element my of Array k is a two-
dimensional complex function [11, 32, 46]

(6)
(%))
Sem (@) =| ()

, (2.7)
Ck,mk(ﬂ)

where (2.7) c](c’gn)qk (Q), and Cl(<,¢n)1k (Q) are, respectively, the vertical and hori-
zontal components of its complex electric field pattern. The direction vector
Q is defined as in Fig. 2.2. We define the 2 x M} polarimetric steering matrix
of Array k to be

Ce(Q) =[cx1(Q)  cm(Q) - com (Q)]. (2.8)

14
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The field patterns in (2.8) are all measured with respect to the same coordinate
system Oy with origin in Ry. With this definition the delay-spread function
can be formulated as

H(t,7) = fSZ [Sn Co(0)TH(, 7, O, 0,)C(Q)dQdQs,  (2.9)

where the 2 x 2 complex kernel H(t, 7, Oy, Q) is the bi-directional delay-
spread function of the radio channel. In (2.9), [-]T denotes the transpose
operator. Its entries are named according to

hee(t, T, O, Qz) h6¢(t, 7, Qy, Qz)

hoo(t, 7,01, Q) h*(t, 1,01, Q) | (2.10)

H(t> T, Ql) QZ) = |:

where the superscripts denote the transmit-receive polarization pair. It ap-
pears from (2.9) that by the aforementioned assumptions on the environ-
ment we have achieved a separation of the delay-spread function into an
environment-related kernel H(t, 7, (Q, Q) and the two system-dependent
steering matrices C;(;) and C,(Q,).

Invoking Definition 2.2.1-2.2.3 in (2.9), the corresponding bi-directional
delay-spread functions reads

H(7,Q;, Q) by Definition 2.2.1
H(t, 7,0, Q;) = {Hy(t, Q1,Q;) - 8(7) by Definition 2.2.2 (2.11)
Hi, (Q1,Q,)-8(7) by Definition 2.2.3

with the same naming convention for the entries of the 2 x 2 kernels as in
(2.10).

The main limitations of the bi-directional representation are directly re-
lated to those of the assumptions underlying its derivation. In particular, the
plane-wave assumption over both arrays is an issue for some environments.
The assumption of constant geometry limits the time-duration for which the
representation is valid. The assumption of time-invariant antenna responses
is relevant in, e.g., cellular phones where the hand and the head of the user
influence the antenna field patterns. The assumption of non-delay-dispersive
antenna elements is not valid for ultra-wideband systems. The representation
can, however, be extended to account for delay dispersion of the antennas. We
let the bi-directional representation rest for now. We will return to it later in
Section 2.5.
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2.4 The Multipath Propagation Assumption

We now introduce the frequently used multipath propagation assumption.
Multipath propagation is an elegant and intuitive way to describe many ob-
served phenomena such as fast fading, delay- and Doppler-power spectra,
etc. [6, 21, 28, 31, 32, 34]. The assumption of multipath propagation simplifies
the mathematical representation of the radio channel in heterogeneous envi-
ronments. The multipath assumption also allows for physical interpretations
of observed phenomena.

Due to its conceptual and analytical simplicity, the multipath assumption
or similar ideas appear in numerous different models. In fact, most modern
simulation and design models for mobile and indoor communications rely
on some sort of multipath description of the propagation scenario. Multipath
propagation is assumed so frequently that it is often referred to as a fact,
see e.g. [11, 28, 34, 47]. However, multipath propagation cannot be directly
observed, but can only be inferred from the behavior of observed signal.
We therefore stress that multipath propagation is indeed assumed in the
formulation of a channel model.

The received signal is modeled as a superposition of L signal components
contributed by waves propagating along different paths

s(t) = zL:Se(t). (2.12)
=1

The signal sy(t) denotes the portion of s(t) which is contributed by the wave
propagating via Path ¢.

The concept of a propagation path implies an approximation of the prop-
agation mechanisms. The approximation depends on the particular definition
of what a propagation path is. The precise definition of the term “path” varies
throughout the literature. One frequently used definition is that a path con-
sists of the trajectory along which a wave or ray travels from the transmitter
to the receiver, under interaction with a number of so-called scatterers.
Definition 2.4.1 (Propagation path): A (propagation) path is defined as a se-
quence of scatterers and the corresponding wave interactions.

For the multipath model we obtain a decomposition of the delay-spread
function according to

L
H(t,7) = ;Hg(f, ), (2.13)
-1

where H,(¢, 7) denotes the delay-spread function of Path €. Furthermore, the
assumptions in Definitions 2.2.1-2.2.3 carry over to the delay-spread function

16



2.5. THE BI-DIRECTIONAL MULTIPATH REPRESENTATION

of each path; thus:

L L L
H(7) = ZHt)g(T), H,(¢) = ZHn’g(t), and H, = ZHm)g. (2.14)
=1 =1 =1

2.5 The Bi-Directional Multipath Representation
We now rewrite the bi-directional delay-spread function defined in Section 2.3
when the the multipath assumption holds.

Assuming that the plane-wave assumption holds for each path and invok-
ing (2.9) we can express the delay-spread function of Path ¢ as

Hg(t,r):fSz fszcz(nz)Tﬁe(t,T,Ql,nz)cl(nl)dnldnz, (2.15)

where H,(¢, 7, Q, Q) is the bi-directional delay-spread function of Path #.
Thus by (2.13), the delay-spread function can be recast as

L
H(t,7) =) H(t,71)
£=1
L
= Z ,/é /; Cz(ﬂz)THg(t, T, Ql, Qz)Cl(Ql)dﬂldQZ
=192 2

L
:—/s fS Cz(Qz)T[ZHe(t,T,Ql,QZ) Ci(0)d0dQ,. (2.16)
2 2 =1

Comparing this result to (2.9) it follows that the bi-directional delay-spread
function reads

L
H(t) T)QI)QZ) = ZHe(t) T>QI7 QZ) (2'17)
=1

Making use of (2.17) in Definitions 2.2.1-2.2.3 yields

L
Ht(T) Ql) QZ) = ZHt,e(T> QI)QZ)) (2'18)
£=1
L
Hn(tx Ql) QZ) = ZHn,e(ta 91302)7 (2~19)
¢=1
and
L
Hen(Q1, Q) = ) Hpgo(Q1, Q). (2.20)
£=1
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2.6 The Specular Bi-Directional Multipath Representation

The interactions along a propagation path may, due to the geometric extents
and electromagnetic properties of the scatterers, disperse the signal in delay,
Doppler, bi-direction, and in polarization under each scatterer-interaction.
We refer to this dispersion phenomenon as “per-path dispersion” The per-
path dispersion is small compared to inter-path dispersion and may in some
cases be neglected. This simplification leads to the modeling of a path as a
series of successive specular reflections. This motivates the use of the attribute
“specular” in connection with a propagation path when it is non-dispersive in
delay, Doppler, and bi-direction.

Definition 2.6.1 (Specular path): A path is specular when its bi-directional
delay-spread function reads

Hg(i’, 7,0, Qz) =T, exp(—jZant)6(T - Tg)5(Ql - Ql,g)(s(ﬂz - Qz’g).
(2.21)
The parameters of a specular path are: the 2 x 2 complex polarization matrix
Iy, the Doppler frequency v,, the delay t,, and the two unit vectors ¢, and
O, ¢ specifying the direction of departure and direction of arrival, respectively,
as shown in Fig. 2.3.

We use the term “dispersive path” to refer to a path that is non-specular.

The remainder of the chapter is devoted to the characterization of bi-
direction delay Doppler dispersion under the specular-path assumption. This
form of representation is especially relevant since most available high-resolu-
tion channel parameter estimators are derived based on it.

The entry of H(¢, 7) corresponding to transmit antenna m; and receive
antenna m,, which we call the delay-spread function of subchannel (m;, m;),
reads

[Hf(t, T)]mzml = '/; 'é sz(QZ)THf(t> T, Ql) Qz)cml(ﬂl)dﬂldﬂz.
2 2

(2.22)
After inserting (2.21) in (2.22) and integrating over Q; and Q, we obtain

[He(t,7) mym, = cmz(Qz,g)Tl"e Sy (Q1,0)0(7 — 70) exp(—j2mvet). (2.23)

Thus, the bi-directional delay-spread function of Path ¢ is determined by the
parameter set
0c = {Te, Que, Qap, 7o, Ve (2.24)

Recalling that T’y is a complex matrix with four entries and that the two unit
vectors Q; , and Q;, can be represented by their azimuth and co-elevation
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Path 1

Array 1 Array 2
R
m . 3 RZ
=
my
- ~<
] B 021’ s
-
[V 0,
Oy
Lath ,

Fig. 2.3: A specular multi-path propagation environment [Paper B]. The black dots indicate the
position of the antenna elements. The M, transmit antennas of Array 1 are confined in a region
R1. Antenna my is at position ¥, with respect to the origin O, measured in carrier wave-lengths.
Similarly the M, receive antennas of Array 2 are in the region R, with the position of antenna
m, given by r,,, with respect to O,. The signal propagates via L paths from Array 1 to Array 2.
The direction of departure of Path € is determined by the unit vector Q,,. Similarly, the direction
of arrival is determined by Q..

angles, in total 14 parameters are required to specify one path. Thus, the delay-
spread function H(t, 7) is specified by totally 14L parameters. It is possible,
however, to simplify the model by introducing further assumptions.

An important example of such a simplified bi-directional representation
is obtained by assuming isotropic’ antenna elements. This assumption implies
for subchannel (m;, m;) that

Cmy (Q22.0) TTocpm (Q1e) = ap exp(jZnQI':,_,r,,,1 + jZﬂQ;r’[rmz), (2.25)

where «a; is termed the complex gain of Path ¢ and the antenna positions are
given by the vectors r,,,, r,, defined in Fig. 2.3. Thus, in this case

[He(£,7) |y, = e exp(j2mvet+ 2mQ gty + 271Q3 g1, )O(1-1¢). (2.26)

In total 8 parameters are necessary to determine the delay-spread function in
(2.26).

Further simplifications can be obtained by applying Definitions 2.2.1,
2.2.2, and 2.2.3. For the time-invariant case (Definition 2.2.1) we have the

' Expression (2.25) is valid provided that each of the arrays consists of antenna elements
with identical responses, apart from a phase-shift due to the displacement from the origin of
the array. Obviously, this condition is fulfilled for isotropic array elements. In this general case,
however, a, may depend on Q¢ and Q.
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expression
[Hee(t, ) mym, = e exp(jZﬂQI':grm1 + jZ?‘[QIel‘mZ)(S(T— Tp) (2.27)

with 7 parameters. For a channel non-dispersive in delay (Definition 2.2.2) we
also need 7 parameters:

[Hn e (1) |imym, = apexp(j2mvet + jZﬂQIerml + jZHQZKrmz). (2.28)

Finally, in the time-invariant and delay non-dispersive case (Definition 2.2.3)
we obtain

[Hin,e (£, 7) Jmym, = e exp(j27'[QI€rm1 + jZnQZT’grmz) (2.29)

with 6 parameters.

The bi-directional multipath representation and derivatives thereof are
used in both study models (see e.g. [27, 44, 45]) and simulation models (see
e.g. [12-14, 17, 48]). The bi-directional specular multipath representation can
be used as a study model in channel estimation. To this end, estimation
algorithms must be derived. When used in simulation models, a common
approach is to draw the path parameters according to an assumed probability
density function, which then needs to be determined by calibration measure-
ments (cf Section 1.4).

20



Chapter 3

Topics of the Thesis

In this chapter we describe the three main topics covered in the Papers A-]
included in the thesis. We conclude each topic description with a statement of
the questions considered in these papers. The first topic presented in Section 3
regards sounding systems. More specifically, we are here concerned with
sounding systems for measurement of the spatial properties of the channel.
The second topic discussed in Section 3.2 is concerned with modeling and
estimation of the per-path dispersion in delay and bi-direction. The last topic
stated in Section 3.3 is the modeling of reverberant indoor channels.

3.1 Spatio-Temporal Channel Sounding

Due to the many different model types and scopes, there exist numerous
different sounding techniques for collecting various kinds of measurement
data [28, 47, 49-51]. Also spatially resolved measurements can be obtained by
different methods. The sounding systems may use one of the following four
approaches to obtain spatial resolution at the transmitter, at the receiver, or at
both sites:

Directional antenna: Measurements are performed with a highly directive
antenna [46] oriented in different directions [42]. While the hardware
necessary for this sounding method is relatively simple, this method is
slow (in the range of seconds or minutes [34]) due to the rotation of
the antenna. Therefore this method is suitable only for measurements
of stationary environments.

Antenna array: Measurements are performed using an array of antenna el-
ements [52-55]. The directional resolution is obtained via array pro-
cessing methods. The measurements can be performed continuously,
and therefore there are practically no constraints on the stationarity of
the measurement environment. The hardware complexity and cost is
high because of the required parallel transmitters and/or receivers. The
calibration of the transmitter/receiver chains is also cumbersome. In
the case of parallel transmitters, the sounding signals must be chosen
to allow for separation of the received signals into its components from
each of the transmitters.
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Synthetic antenna array: An antenna array is simulated by taking measure-
ments with a single antenna placed at a number of different positions.
The positions of the antenna are thereafter considered as element posi-
tions of a synthetic array [56]. Provided that the environment remains
constant during the whole measurement, it is possible to process the
measurement data by standard array processing methods [56]. As with
the rotated directional antenna this method is time-consuming, and
can therefore only be applied in stationary environments.

Switched antenna array: The sounder is connected to the transmit/receive
antenna array via a switch. The switch makes it possible to transmit
or receive with one antenna element at the time. This technique is
several orders of magnitudes faster than that using a synthetic array or
directional antenna [51, 57-61]. The complexity and calibration effort
is limited since only one transmitter/receiver is necessary. Due to the
limitations in switching speed, the environment is required to be quasi-
stationary. Additionally, since the measurements are not performed
simultaneous for all antennas, phase and frequency stability of the os-
cillators of the transmitter or receiver is an issue. One further weakness
of using a switched antenna array at the transmitter is the rather limited
power that the switch can accommodate. This limitation is especially
critical in outdoor measurements.

It is thus possible to obtain spatial resolution at the transmitter or at the
receiver site, or both. Indeed, modern sounding systems commonly apply
spatial resolution techniques at both sites. The above techniques may be
combined. For instance, the sounder presented in [51] relies on a combination
of a switched transmitter antenna array and an antenna array the receiver with
tully parallel receivers. Another example is the channel sounder presented in
[62]. Here, 16 fully parallel transmitters are connected directly to the transmit
array, while the 32 receive antennas are sensed by via 8 switches via 8 parallel
receivers. Commercially available sounders are most often equipped with
switched arrays at both the transmitter and the receiver [s1, 57, 59-61]. We
therefore discuss this sounding technique in further detail.

Fig. 3.1 shows a time-division-multiplexing (TpM) or a switched sounding
system. Switch 1 feeds the sounding signal to the inputs of the Array 1 ele-
ments. Similarly, the outputs of the Array 2 elements are sensed by the receiver
via Switch 2. In this way any subchannel can be measured. The sounding signal
u(t) can be chosen as a sum of time-shifted sounding pulses

I
u(t) = Z;Pi(t)- (3.1)
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Array 1 Array 2
1 1
Switch 1 Ch | Switch 2
u(t) ; anne ; y(t)
Transmitter : : Receiver
M, M,

Fig. 3.1: A switched sounding system. The known sounding signal u(t) is applied to the transmitter
antenna via a Switch 1. The output terminals of the receiver antennas is sensed via Switch 2. Thus,
a time-division-multiplexed channel measurement y(t) is obtained.

Different types of sounding pulses may be considered. Often applied sound-
ing pulses consist of a maximum-length sequence [45]. Another option is a
chirp signal [51]. The signal component s(t) of the observed signal y(t) =
s(t) + n(t) is a superposition

s(t) = isi(t), (3.2)

where the ith signal component s;(t) is obtained with Switch 1 in position
my (i) and Switch 2 in position m;(i):

() = [ [H(ED mmeopilt - 1)dr. (33)

In the case where the temporal variations of H(t, 7) are small for the
duration of p;(t) we can make use of the following approximation

H(t,7)~H(t;, 1), forteT; (3.4)

where sample time t; is the center time of the support 7; of p;(t). Under this
approximation, the signal component s;(¢) is the form

si(t) = [T D) sgoym 21t - ). (35)

Itappears from (3.5) that the signal component s;(¢t) is the ith sounding pulse
filtered by a channel specified by the sample time t;, and the two antenna
indices m;(i), and m,(i). We define the ith spatiotemporal sample as one
signal component s;(t) impaired by the noise component of y(t).

A switched ' sounding system allows for acquisition of one sample at each
of the sample times f;, ..., t;. In this case the channel coeflicient of s;(t) is

"We present here a simplified version of the theory developed fully in Paper B. In the
more general theory of Paper B we can define spatiotemporal samples and sounding modes
for systems with an arbitrary numbers of parallel transmitters and receivers.
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thus fully specified by the triplet of indices

(i,ml(i),mz(i)) € {1,...,1} X {1,...,M1} X {1,...,M2}. (3.6)

We define a sounding mode as the set of triplets from which measurements
are obtained:

M ={(i,m(i),my(i)):i=1,...,1}. (3.7)
If the radio channel varies between consecutive sample times, i.e., if the
channel matrix H(t;, 7) is not constant for i = 1, ..., I, then the acquired set of

channel measurement data is affected by the order in which the subchannels
are measured. Consequently, estimators relying on these data will be affected
by the choice of sounding mode. In the following we are concerned with two
such estimation problems where the sounding mode is of importance.

Estimation of Doppler Frequency and Bi-Direction in Switched Sounding

We now consider the estimation of the parameters of the non-delay-dispersive
channel model given in (2.26). The set of parameters to be estimated is 0 =
{01, e GL} with 0, = {(Xg, Ve, Ql’g, Qz)g}.

The ith spatiotemporal sample is obtained at time ¢; from transmitter
antenna m (i) at position r,, ;) and receiver antenna m;,(i) positioned at
Ty, (i)- Insertion in (2.26) yields for the channel coefficient of sample i

L
[Hu (£) Lo (iyma(iy = 2., @eexp (j2ma] 9) (3.8)
=1
where
ti Ve
a;=|[ryo)| and 9p=[Que|. (3.9)
T (i) Qs

The observed channel coefficients in (3.8) are thus specified by the spatio-
temporal aperture matrix:

A:[al,...,ai,...,al]. (3.10)

Given a set of sample times {f;,..., t;} and the layouts of the two antenna
arrays, the sounding mode completely specify A.

As apparent from (3.8), the data available for estimation of 6 depend on
the aperture matrix (and thus on the sounding mode). Consequently, the
performance of the estimator in terms of accuracy and noise-robustness is
influenced by the spatiotemporal aperture.

In the design of a sounding system, there is a degree of freedom to select
the timing scheme and sounding mode. It is, however, a standard approach to

24



3.1. SPATIO-TEMPORAL CHANNEL SOUNDING

group the measurement of sub-channels into sounding cycles [34, 61]. In each
sounding cycle all sub-channels are measured once. The cycle time denoted by
T,y between the start of two successive sounding cycles fulfills the inequality

Tcy 2 M1M2Tr7 (3-11)

where T; denotes the minimal time between successive spatio-temporal sam-
ples. It is commonly believed, by an intuitive argument [34, 61], that the
maximum estimable Doppler frequency is given by invoking the Nyquist-
Shannon Sampling Theorem [63] as (2T.y) . With this result the maximum
estimable Doppler frequency is accordingly reduced by a factor (M;M,)™
compared to a single-input single-output (s1s0) sounding system [34, 61]. For
sounding systems with a large number of transmitter and receiver antennas
this results in a significant limitation on the maximum Doppler frequency,
and thus on the maximum velocity of any moving object in the measurement
environment.

To illustrate the importance of this limitation we consider an example
where the transmitter moves directly toward the receiver at a speed V emitting
a carrier with wavelength A.. The signal component propagating directly
from the transmitter to the receiver (the direct component) has Doppler
frequency V/A. [28, 32, 34]. We are interested in computing the highest
speed denoted by Vinax, such that the Doppler frequency of the direct com-
ponent is estimable. We let the maximum estimable Doppler frequency equal
(2T, M M;) 7}, hence \

c

2T MMy’
As a numerical example consider the measurements presented in Paper A.
The carrier wave length is A, = 0.12m, and the sounding system is equipped
with M; = 54 transmitter antennas and M, = 32 receiver antennas, yielding
MM, = 1728. We obtain by setting T, = 5.1s, for the two cases M; M, =1
(s1s0) and MM, = 1728 (MIMO)

Vimax = (3.12)

(3.13)

max

0.12m 20-10°km/h, MM, =1,
©2-5.1ps- MiM,  |12km/h, MM, =1728.
In the s1s0 case, the speed limit does not pose problems for use in terrestrial
applications, whereas it severely limits the applicability in the mimo case.

It is important to notice that the Nyquist-Shannon Sampling Theorem
[63] gives the minimum sampling frequency by which one can represent a
band-limited signal and still recover the original signal without error. For
Doppler frequency and direction estimation, it is, however, not the objective
to be able to recreate the signal without error. It suffices to be able to estimate
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Array 1 Array 2
o —— .
1 1
Switch 1 Switch 2
e~ Channel [ —-¢ ¢
u(t) 2 2 y(t)
. H, (1) _ .
Transmitter : : Receiver
. . Noise Phasor
M M, elo(®)

Fig. 3.2: Measurement of a time-invariant, delay non-dispersive channel with a switched sounding
system impaired by phase noise. The noise phasor ¢/*") represents the concatenated phase noise
of the transmitter and receiver oscillators.

the parameters of interest with a small error. Thus the Nyquist-Shannon
Sampling Theorem cannot be directly applied for the determination of the
maximum estimable Doppler frequency.

It was shown in [64] that by appropriately selecting the temporal sampling
scheme, the maximum estimable Doppler frequency is limited by (27;)"
even for MiMo sounders. The results of [64] include Doppler frequency es-
timation, but does not consider estimation of bi-direction. A question arises
from this observation: How to select the spatio-temporal aperture such that the
estimation accuracy of joint Doppler frequency and bi-direction is optimum?

Phase-Noise Impaired Switched Sounding

Another situation where the sounding mode influences the measurement
results is the case of phase-noise impaired switched sounding [65, 66]. To
illustrate the problem, we consider the system depicted in Fig. 3.2.

We measure a time-invariant channel that is non-dispersive in delay with
a phase-noise impaired sounder. We represent the impairment by single phase
noise process ¢(t) concatenating phase noise of the oscillators in the trans-
mitters and receivers. Although the propagation channel H,8(7) is time-
invariant, phase noise causes the measured channel to vary over time. An
expression for the signal contribution s;(¢) is obtained from (3.3) by inserting
H,0(7)e/?) for H(t, 7):

si(t) = /[th6(7)ej"’(t)]mz(,-)ml(i)p,-(t -71)dr (3.14)
= [Hen ]y (iymi (i €7 pi(1). (3.15)

For a sounding pulse of sufficiently short duration, the following approxima-
tion is valid for a band-limited phase noise process ¢(t):
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ej"’(t)pi(t) ~ ejq)(ti)pi(t)' (3.16)
Making use of this approximation, we achieve from (3.15)
si(t) = gipi()s & = Hinlmy(iymiy - €7, (3.17)

From this expression it appears that g; depends on ¢;, m; (i) and m,(i). Due to
the random noise phasor, the obtained coeflicients {gi, . .., g1} are stochastic
variables. The phase of coefficient g; reads

<8 =4 ([th]mz(i)ml(i)) + ‘P(ti)- (3.18)
As a result, the expectation of « g; is

E[2gi]= < ((Huwlmy(iym(i)) + E[9(:)], (3.19)

where E[-] denotes the expectation operator. It appears from (3.19) that the
sequence {E[«g;]} depends on the sounding mode. It follows similarly,
that for correlated {¢(#;)}, the cross correlations of { « g;} depend on the
sounding mode as well. We thus reach the conclusion that the sounding mode
affects the statistical properties of {g;} and in turn the estimators relying on
the measurement y(t).

A specific estimation problem where the phase stability of the sounding
system is of importance is the problem of estimating the Mimo channel capac-
ity from measurement data [65-70]. The capacity of a time-invariant, non-
delay-dispersive deterministic MiMoO channel is defined as [71, 72]

p

C= max logzdet(1+ﬁ1

HmZH;t) , (3.20)
Zitr (2)=M,;

where X is the covariance matrix of the transmitted signal x(#) normalized
such that tr () = M; and p = E[x(t)Hx(t)] /Ny is the signal-to-noise
ratio with Ny denoting the one-sided spectral height of the noise component.
Rather than performing the maximization required to evaluate (3.20), it is
customary to consider the case, where the channel is unknown to the trans-
mitter, and thus select £ = I. This choice leads to

C(H,HH) = logdet(I + ﬁHmHﬂl). (3.21)
1

This quantity is, despite the fact that it is merely a mutual information between
the transmitted signal and the received signal, commonly referred to as the
MIMO channel capacity with no channel knowledge at the transmitter [73].
Recently, measurements of the MiMo capacity have been reported in a great
number of publications.
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Due to the noise phasor, the matrix Hy, in (3.21) is unknown and, conse-
quently, the capacity cannot be computed. Instead, the capacity must to be es-
timated from a set of measurement data. The standard estimate of C(H,H')
from a noisy measurement G of Hy, impaired by both additive and phase
noise is C(GGH) [65-70].

The contribution [74] considers the effect of additive measurement noise
on the standard capacity estimate. It is shown that the additive noise leads
to an overestimation of the channel capacity. It has been shown recently that
phase noise of the sounding system affects the estimation of MmiMo channel
capacity when using the standard capacity estimate [65-67]. The effect of
phase noise on MIMO capacity estimation is studied in [67] assuming that
phase noise is a random walk process. Theoretical investigations reported
in [65, 66] show that, provided phase noise is white and Gaussian, it leads
to large measurement errors in terms of estimated channel capacity when
the channel matrix has low rank. In [66] analytical results are given under
the assumptions that the sounding mode fulfills a separability condition and
that the phase noise process is white. However, experimental studies reported
in [70] show that phase noise cannot be assumed to be white or a random
walk on the time-scale of a measurement period [68, 70]. Furthermore, the
spatio-temporal arrays optimized for joint Doppler-direction estimation do
not in general fulfill the separability condition.

This leads us to a second question regarding the selection of sounding
mode: How does the sounding mode in combination with the correlated phase
noise of the sounding system affect the estimation of MImMo channel capacity, and
how can the sounding mode be accounted for in the capacity estimator?

3.2 Modeling and Estimation of Per-Path Dispersion

As described in Chapter 2, modern stochastic channel models commonly rely
on the multipath assumption, i.e., the response of the channel is modeled as a
superposition of components where each component represents the response
of one propagation path which may be dispersive or specular.

It is shown in [75-78] that the per-path dispersion has an impact on
important metrics of a channel model, such as, the MmiMo channel capacity
and diversity. Realistic models including the per-path dispersion are therefore
important to accurately assess the impact on system performance with respect
to these metrics.

Several models of per-path dispersion have been proposed in the litera-
ture. The most wide-spread approach, pioneered by Saleh and Valenzuela [41]
and extended by others [13, 14, 42, 43], is to model the per-path response as a
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superposition of specular components. Assuming uni-polarized antennas,
and dropping the polarization superscript in (2.11) we have for the time-
invariant case in (2.28)

hee(T, @1, Q2) = ) @egd(7 = 79) 0 (D = Q1 g) (D2 — Qagg),  (3.22)
q

where the complex gain ay,, the delay 74, the direction of departure Q ¢,
and the direction of Q; ¢, are random variables. The specular components
belonging to path ¢ are assumed to be grouped or “clustered” around a center
of gravity in the bi-direction-delay domain.

We remark that the term “cluster” introduced in [41] has been used in
several differing meanings in the literature. The large intra-cluster delays of
[41] suggests that the term originally referred to a group of signal components
arriving via different paths, and not the decomposition of the response of a
single path as in (3.22). In directionally resolved measurements, where the
spatial resolution admit resolution of the responses of individual paths, the
term cluster has been used in the meaning of the response of a single path
(42, 79, 80].

For simulation models it is necessary to generate realizations of the ran-
dom parameters in (3.22). This includes choosing realistic pdfs of these pa-
rameters. Similarly, for design models, parameters describing the per-path
dispersion must be chosen realistically in order to yield systems that will work
under realistic conditions. These pdfs are generally not readily available, but
must be inferred from measurements. Hence, for this purpose it is important
to be able to reliably estimate the per-path dispersion parameters from mea-
surement data.

The clustering approach proposed in [41] and later applied by other re-
searchers [42, 79-84] comprises three steps:

1. Estimate a number of specular components.
2. Group the obtained estimates according to a clustering rule.

3. Estimate the cluster parameters of the defined clusters.

The first step is typically performed by applying a high-resolution estimation
method such as CLEAN [42, 85], MUSIC [86, 87], ESPRIT [57, 88], RIMAX [89, 90],
Or SAGE [45, 91]. In step two, various heuristic clustering rules and algorithms
have been proposed and applied to measurement data [41, 42, 79-84]. Most
of these techniques rely on visual clustering performed by a trained operator
[41, 42, 79, 81, 82]. In the third step cluster parameters, most often first- and
second-order moments of each cluster, are estimated.

As the cluster model is an extension of the specular model, the clustering
approach extends the specular estimation techniques. There are, however, a
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few issues to be considered. The clustering approach relies on accuracy of a
high-resolution method; but these methods are most often derived for well-
separated specular components—a condition which is obviously not fulfilled
for estimation of per-path dispersion. Under such conditions the output of
the high-resolution estimators may contain estimation artifacts not related
to the propagation conditions. An example of this problem follows from the
analysis presented in [92] where a slightly dispersive path results in a heavy-
tailed distribution of the estimated specular components. Hence, relying on
this type of estimator, may result in large variances of the spread estimates.
The applied clustering rules are also problematic from a scientific viewpoint.
The use of visual inspection does not only make a systematic evaluation of
the accuracy of these methods difficult but renders their repeatability and
objectivity questionable. From a practical point of view, the clustering meth-
ods require large amounts of time-consuming manual work. The amount of
manual work has been alleviated by the introduction of (semi-)automatic
clustering methods [79-81, 83, 84], but to be replaced by another set of heuris-
tics involving parameter setting of these algorithms. The accuracy of these
methods, however, remains cumbersome to analyze statistically due to the
heuristic nature of their clustering rules.

Another approach to the estimation of per-path dispersion parameters
is to rely on a non-specular path model and to estimate the parameters of
this model directly [93]. Hence, in contrast to the clustering approach, this
procedure requires the development of new high-resolution estimators for
the parameters of each path model. The available methods are reviewed in
[93]. Rather than modeling the response of a path, we focus on modeling
and estimation of the per-path power spectral density (psd). The psd of a
path is defined as follows. Assuming that the spread functions of the paths
are uncorrelated and wide-sense stationary complex (zero-mean) orthogonal
stochastic measures [40] we have

E[ee(7, @1, Qo) by (7, O, Q5)] =
Po(1, 01, 95)8008(7-7)8(Q1 - Q])8(Q - Q). (3.23)

In (3.23) 8¢ is the Kronecker delta. The bi-direction delay psd P, (7, Q1, Q)
in (3.22) of Path ¢ reads

PL’(T, QI:QZ) = E[|ht,€(T> QI:QZ)lz]- (324)
For a model of the type (3.22), fulfilling the uncorrelated scattering (Us)
condition [39, 40], i.e, each of the terms in (3.22) are statistically uncorrelated,

the per-path psd can be interpreted as follows: Since the psd is non-negative
and since the integral
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f/ Po(7, Q1, ©,)d7d01dQ; = Py (3.25)

is finite, the psd of Path ¢ can be recast as a product of Py and a non-negative
function integrating to unity

Pp(7,01, Q) = Py (1,01, Q25 0,), (3.26)

where the vector 6, holds the parameters of f(7, Q;, Q);0,). We may thus
interpret the function f (7, Q1, Qy; 6;) as the joint pdf of the random variables
Teg> Q10> and Q3 ¢4 in (3.22). Thus by assuming a particular pdf, the estima-
tion problem at hand amounts to estimating the parameters 0, defining the
pdfin (3.26), and the power P,.

In the literature there exists a number of contributions proposing various
pdfs for estimation of dispersion in various dispersion domains [93-95]. It
is, however, not obvious which pdf to select. Since this choice affects the the
accuracy of the corresponding estimators [93] this issue merits further con-
sideration. We are particularly interested in estimating the first- and second-
order moments of the psd since these parameters are required in numerous
design and simulation models. It thus appears natural to pose the question:
“How should the model of the non-specular path be chosen for the purpose of
estimating the second order moments of path components dispersed in delay
and direction from measurement data?”

3.3 Reverberation Models for Indoor Radio Channels

The third topic treated in this thesis is modeling of the channel impulse
responses of indoor radio channels. In particular, we study the “specular-
to-diffuse” transition observed in experimentally obtained channel impulse
responses.

In the ultra-wide-band measurements presented in [96], it is observed
that the impulse response of an indoor channel exhibits a specular-to-diftuse
transition. For the purpose of describing the problem we consider the channel
impulse response h(7) of a single-input single-output communication sys-
tem operating in a time-invariant channel. The transition effect is illustrated
in Fig. 3.3. The early part of the response is dominated by specular components
while the later part is a diffuse ‘tail, of which the power decreases exponen-
tially as the delay increases.

The simulation models presented in [96—98] take this transition effect into
account by modeling the impulse response as a sum of specular components
and a single exponentially decaying diffuse term:

ht(T) = hspecular(T) + hdiffuse(T)a (3.27)
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Fig. 3.3: An example of a channel impulse response illustrating the specular-to-diffuse transition.
The magnitude of h:(7) is depicted on a logarithmic scale versus the delay 1. The early part of
the response is predominantly specular, while the later part consists of an exponentially decaying
diffuse ‘tail’.

where hgpecylar(7) is modeled as a superposition of specular components

L
hspecular(r) = Z aed (T~ 10) (3.28)
=1

and the diffuse component hgguse(7) is an zero-mean complex Gaussian
random process with delay-power spectrum

0 T < Tdiff

(3.29)
Pygexp(-7/T), 72 Tag.

E[|hdiffuse(T)|2] =
This approach is reasonable for simulation models but is, however, inadequate
as a study model since it does not reflect the propagation mechanisms leading
to the transition effect.

A different approach is followed by Franceschetti in [7, 99, 100], where
the radio propagation mechanism is modeled as a “stream of photons” per-
forming a continuous random walk in an isotropically cluttered environment.
When a photon interacts with an obstacle, it is either absorbed (with a certain
probability) or scattered in a random direction. The delay power spectrum is
derived in a closed-form expression directly reflecting the impact of the en-
vironment parameters. The obtained expression consists of a “coherent part”
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corresponding to the direct component and a “non-coherent part” stemming
from scattered power. While able to jointly describe the direct (the coherent
part) and the diffuse components (the non-coherent part), Franceschetti’s
model does not represent the specular-to-diffuse transition.

As does the radio channel, the delay-power spectrum of the acoustical
channel exhibits an exponential decay [101]. In the field of room acoustics
there is a well-developed theory quantifying this decay rate. A key feature of
the room acoustical response is the “reverberance time” of a room for which
several models exists [101-104]. The reverberance time is directly related to
the power decay rate of the impulse response [101]. Also, a similar specular-
to-diffuse transition effect is well-known in acoustics [101]. This effect is also
attributed to a reverberation phenomenon [101].

As a matter of fact there exist a well-developed statistical theory for
reverberant electromagnetic fields in convex cavities [105]. Most of the re-
sults are, however, derived under the assumption that the boundaries are
perfect conductors. The theory is well-suited for analysis of the so-called
“reverberation chambers” with metal clad walls used for electromagnetic
compatibility testing; but the theory does not apply directly to the normal
indoor propagation environments with finitely conducting walls.

There exists a number of contributions [106-112] where the analogy be-
tween reverberant acoustical and electromagnetic fields is exploited to model
the delay-power spectrum. The earliest work appears to be [106] by Holloway
et al. Here, the statistical acoustical reverberation theory by Sabine [102] and
Eyring [103] is applied with slight modifications to model the delay-power
spectrum of reverberant indoor radio propagation environments. The model
is further refined in [107, 109]. In the contributions [108, 110], acoustical
reverberation theory has been applied to analyze the electromagnetic field in
reverberation chambers. Recently, Andersen et al. [111, 112] have transcribed
Sabine’s acoustical reverberation theory to electromagnetic reverberation in
large room environments.

From this discussion of the available models describing the delay-power
spectrum of reverberant indoor channels it appears that these models are in
general not well-suited as study models to describe the specular-to-diftuse
transition effect. Therefore, to investigate the effect further—and in particular
to determine how it depends on the propagation environment—it is necessary
to develop a suitable study model which jointly describes specular and diffuse
signal components. We thus arrive at the question: How can the specular and
diffuse components of the channel impulse response be modeled jointly?
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Chapter 4

Contributions of the Thesis

This chapter summarizes the contributions of the thesis. The contributions fall
into three categories. In each of the three categories, we have found a number
of questions to be addressed in the thesis. For ease of reference we name these
questions as:

Q1 How to select the spatio-temporal array such that the estimation accu-
racy of joint Doppler frequency and bi-direction is optimized? How
does the sounding mode in combination with the correlated phase
noise of the sounding system affect the estimation of MmiMo channel
capacity, and how can the sounding mode be accounted for in the
capacity estimator?

Q2 How should the model of the non-specular paths be chosen for the

purpose of estimating the first- and second-order moments of path
components dispersed in delay and direction from measurement data?

Q3 How can the specular and diffuse components of the channel impulse
response be modeled jointly?

We provide an overview of the contributions of Papers A-] in Table 4.1. In the
table we indicate which questions and which fields the papers address.

Paper Field of Contribution Question

Sounding Estimation Modeling

A v v

B v v

C v v Qu
D v v

E v v

F v v

G v v Q2
H v v

I v

J v } Q3

Table 4.1: A tabular overview of the questions and contributions of the papers presented in this
thesis. The labels Q1,Q2, and Q3 refer to the questions stated in the text.
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4.1

Optimization of Spatio-Temporal Apertures in Channel Sounding

Papers A-D deal with the research question Q1. Papers A and B focus on
the selection of spatio-temporal arrays for joint Doppler and bi-direction
estimation. In Paper C and Paper D we study how phase noise of the channel
sounder affects the measurement accuracy. In particular we focus on how
phase noise affects the estimation of MimMo channel capacity. In Paper C
the problem is analyzed, and in Paper D we propose an improved capacity
estimator, that can account for the spatio-temporal array.

Paper A We study the effect of the spatio-temporal aperture on the estima-

tion of Doppler frequency and bi-direction. We analyze the objective
function of the sAGE algorithm [64, 113, 114] and show that extension
of the Doppler frequency estimation range as proposed in [64] leads to
an ambiguity in the joint estimation of Doppler and bi-direction. It is
also shown that the occurrence of this ambiguity effect is determined
by the sounding mode. More specifically, it is shown that on the one
hand the so-called modulo-type sounding modes, including the most
commonly used identity sounding mode, all lead to the ambiguity
effect. On the other hand, one can select sounding modes such that
the ambiguity effect does not occur. Simulations indicate that the root-
mean-square error of the Doppler-direction estimator depends heavily
on the normalized magnitude of the side lobes of the objective function.
This finding motivates the definition and use of the normalized side-
lobe level as a figure of merit to assess the sounding modes. Finally,
experimental results show that by using an appropriate sounding mode
the Doppler frequency can be estimated up to the range proposed in
[64], even in a practical multipath scenario.

Paper B The signal model assumed in Paper A is based on the signal models
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from previous papers [64, 113, 114], which where created for the purpose
of developing estimators. In Paper A these models are modified to
include the spatio-temporal aperture. While the previous signal models
are appropriate for describing the estimation algorithms, they signif-
icantly complicate the analysis of the impact of the spatio-temporal
apertures on the estimation accuracy. In particular they are inadequate
to describe parallel sounding systems. Therefore, a more general signal
model is developed in Paper B in which the spatio-temporal aperture
is represented in a straight-forward manner. Based on this new system
model, we introduce the Doppler-(bi-)direction ambiguity function.
The definition is inspired by the ambiguity theory used in the analy-
sis and design of radar systems. It can be shown that the ambiguity
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function is proportional to the objective function for the noise-less
one-path scenario analyzed in Paper A. The results of the ambiguity
analysis generalize the results presented in Paper A. We derive the
Cramér-Rao lower bound (cRLB) on the estimation error for Dopp-
ler frequency and bi-direction. The spatio-temporal aperture appears
directly in the expression of the crLB. This leads to the derivation of
a necessary and sufficient condition for spatio-temporal aperture to
minimize the cRLBs for Doppler and bi-direction estimation in the one-
path scenario. In essence the condition is that the apertures in time
and space should all be mutually orthogonal. We prove that the same
orthogonality condition is necessary to yield the minimum Bayesian
cRLB in the multipath scenario.

Paper C We analyze the combined impact of phase-noise correlation and
sounding mode in a TDM-MIMO sounding system on the capacity es-
timation based on the standard channel matrix estimator using the
experimentally obtained phase-noise model developed in [115]. Monte
Carlo simulations show that the predicted error of the ergodic capacity
estimate is reduced compared to the case where phase-noise is white
and Gaussian. We also show that the estimated ergodic capacity is
highly influenced by the choice of the spatio-temporal aperture [Pa-
per B]. It is found that there exist non-separable apertures which lead to
the same capacity estimation error as separable apertures. However, the
observations presented in Paper C raise a major concern regarding the
feasibility of the standard capacity estimator, when applied to phase-
noise impaired channel measurements.

Paper D In this paper we propose a new MIMO channel capacity estimator.
The estimator is designed for the case where the available channel mea-
surements are impaired by both phase-noise and additive noise. The
proposed estimator exploits knowledge of the phase-noise autocorre-
lation function, which can be obtained by calibration measurements of
the channel sounder. The accuracy of the proposed estimator is assessed
by Monte Carlo simulations. The proposed estimator yields reliable
estimates at signal-to-noise ratios relevant for wireless communication
systems. The simulation results reveal an interesting phenomenon re-
lated to the spatio-temporal aperture. While a non-separable aperture
deteriorates the estimation accuracy of the conventional capacity esti-
mator, it oppositely improves accuracy of the proposed estimator.
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4.2

Modelling and Estimation of the Per-Path Power Spectra

The Papers E, F, G, and H are concerned with Q2. We approach this problem
by formulating a study model of the power spectral density (psd), designing
an estimator of the model parameters, testing the applicability on measure-
ment data, and finally, using the estimator on measurement data. The steps of
the methodology require significant amounts of work and some of the steps
need to be revised; as the models improve, the estimators need to be adapted
as well. We present preliminary results of this ongoing process in Papers E, F,
G, and H.

Paper E In this contribution, we propose a characterization of the bi-azimuth

(azimuth of arrival and azimuth of departure) dispersion of individual
paths. For this purpose we introduce a bivariate generalized von-Mises-
Fisher pdf and a maximum-likelihood estimator for its parameters.
This distribution maximizes the entropy under the constraint that its
first- and second-order moments are specified.

Preliminary experimental investigations were conducted to assess the
applicability of the proposed characterization in real situations. The
experimental results show that the estimated per-path psds are no-
ticeably more concentrated in the bi-azimuth plane compared to the
corresponding estimates obtained with the classical Bartlett spectrum.

Paper F ' We propose a characterization of bi-azimuth-delay dispersion of in-

dividual paths. As in Paper E, the characterization relies on an entropy
maximizing psd. Again, the obtained experimental results show that
the per-path bi-azimuth-delay dispersion is significantly smaller than
that one might infer from the corresponding footprints in the Bartlett
spectrum. The obtained results also indicate dependency between dis-
persion in the azimuth and the delay dimensions.

Paper G We characterize the directional per-path psd paths using the Fisher-

Bingham-5 pdf. We derive a SAGE estimator for the model parameters,
and apply the estimator to measurement data. The estimated per-path
psd are more concentrated than the corresponding footprints in the
Bartlett spectrum

Paper H We model the per-path psd in the direction-delay domain. We use
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a SAGE algorithm to estimate the parameters of the direction-delay
power spectral densities from measurement data.



4.3. CHANNEL MODELLING USING STOCHASTIC PROPAGATION GRAPHS

4.3 Channel Modelling Using Stochastic Propagation Graphs

Paper I and Paper ] focus on Q3. We develop a study model with the purpose
of investigating the transition effect described in Section 3.3.

Paper I In this contribution we propose a channel model for the purpose of
studying the specular-to-diffuse transition effect. We model the propa-
gation environment by using random graphs. The vertices of a “propa-
gation graph” represent scatterers and its edges model the propagation
path in between scatterers. We propose a method to randomly generate
propagation graphs with the intent to simulate a single-room scenario.
Since the graph is not assumed cycle-free, reverberation phenomena
can be modeled. Due to its recursive scattering structure the obtained
model predicts an exponentially decaying delay-power spectrum as
commonly reported from measurements. Furthermore, the obtained
impulse responses exhibit a specular-to-diffuse transition.

Paper ] In this contribution the propagation graph model proposed in Pa-
per I is extended to include multiple transmitters and receivers. We
develop a closed-form analytical expression for the transfer matrix of
the propagation graph. This expression allows for faster computation of
the received signal for a given propagation graph. This property makes
the model feasible for computer simulations.

4.4 Discussion and Outlook

The thesis concerns three strongly related crafts in wireless communications:
channel-sounding, -modeling, and -estimation. We have addressed three top-
ics of central relevance to these crafts: optimization of spatio-temporal aper-
tures for channel sounding, estimation of per-path power spectral densities
(psds), and modeling of reverberant channels.

We have developed a theory for optimization of spatio-temporal apertures
used in multiple-input multiple-output (MiM0) channel sounding. We first
focused on joint estimation of bi-direction and Doppler frequency from time-
division multiplexing (TbM) MIMO measurements. We have derived the nec-
essary and sufficient conditions for spatio-temporal apertures to minimize the
Cramér-Rao lower bound for the joint estimation of bi-direction and Dopp-
ler frequency. We introduced and analyzed a bi-spatio-temporal ambiguity
function for spatio-temporal channel sounding. The analysis revealed that
by proper design of the spatio-temporal aperture, the maximum estimable
Doppler frequency of a TDM-MIMO sounder coincides with that of a tradi-
tional single-input single-output sounder. The derived ambiguity function is
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a means to test for "rank-1 ambiguity", i.e., to test whether ambiguity occurs
in the one-path case. Consequently, the developed theory applies only in the
strict sense to the one-path case. However, the measurement results presented
in Paper A demonstrate the utility of the theory in real measurement sce-
narios. The theory of spatio-temporal array optimization for joint estimation
of Doppler frequency and bi-direction can be applied to other systems than
radio channel sounding, e.g., in the design of bi-static MimMo radar systems.

It was shown that the spatio-temporal aperture affects the accuracy of
MIMO-capacity estimation from measurements impaired by colored phase-
noise. We have proposed an improved capacity estimator, which exploits the
second-order statistics of phase noise and the structure of the spatio-temporal
aperture. We found that the proposed estimator, in contrast to previously pub-
lished capacity estimators, works well for spatio-temporal arrays optimized
for joint estimation of Doppler frequency and bi-direction. The derivation
of the estimator relies on three main assumptions. Firstly, we have derived
the capacity assuming a wide-sense stationary phase-noise process. Thus,
we have neglected the non-stationary nature of phase-noise. Further work
is necessary to clarify if the capacity estimator can be extended to account
for this effect. Secondly, we have derived a capacity estimator for the Mimo
channel including the antennas of the measurement system. Since the antenna
arrays of measurement systems in most cases differ from the antennas of a
communication systems, this effect should be investigated further. Secondly,
we assumed that the MmiMo channel matrix is time-invariant throughout the
measurement. This assumption may not be fulfilled for real measurement
scenarios. The considered capacity metric, which assumes a static channel,
is not valid for the time-variant case. A more relevant approach would be to
develop an estimator of the ergodic capacity.

The second topic considered in the thesis is estimation of the per-path
psds resolved in directions and delay. We modeled the per-path psds using
entropy-maximizing probability density functions (pdfs); the pdfs are defined
by their first- and second-order moments. We have derived estimators of these
parameters. The applicability of these estimators has been tested by using
them to process measurement data. The main intent with this test was to
evaluate the estimators in real measurement scenarios. Nonetheless, we were
able to make an important empirical observation from this preliminary work:
The obtained spread estimates are significantly smaller and the estimated psds
are much more concentrated than corresponding results found in the litera-
ture. These findings indicate that the per-path directional spreads assumed
in standard models are set too large. Further experimental investigations are
needed to confirm this hypothesis. Initially, this can be done by processing
already available measurement data. Theoretically, however, a test of this
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hypothesis should be made from experiments designed especially for this
purpose, and not from previously available data. If the observation holds
true, this effect should by considered in (standardized) simulation models
including direction dispersion.

Finally, we proposed a model of the specular-to-diffuse transition ob-
served in measurements of reverberant channels. The model relies on a “prop-
agation graph” where vertices represent scatterers and edges represent the
wave propagation conditions between scatterers. The graph has a recursive
structure, which permits modeling of the transfer function of the graph. We
derived a closed-form expression of the infinite-bounce impulse response.
This expression is used for simulation of the impulse response of randomly
generated propagation graphs. The obtained realizations exhibit the well-
observed exponential power decay versus delay and specular-to-diffuse tran-
sition. One interesting virtue of this type of model is that a diffuse component
can be modeled by assuming specular interactions. The specular-to-diftuse
transition occurs in the model because of a gradually increasing arrival rate of
specular components. After a certain delay threshold, the individual specular
components can no longer be considered as separate. Instead, the sum of
specular components must be considered as a single diffuse component. This
phenomenon is not accounted for in traditional channel models where the
arrival rate is typically assumed constant over time. The proposed model has
not yet been validated experimentally. To this end, key features such as the
slope of the delay-power spectrum, must be derived to permit comparison
of the model with measurement data. Work is currently ongoing in this
direction.
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A.l. INTRODUCTION

Abstract

To save hardware equipment and reduce the effort to calibrate the
system, channel sounding with Tx and Rx antenna arrays is commonly
performed in a time division multiplexing (TDM) mode where the
array elements are successively switched. We refer to this technique
as TDM-MIMO (multiple-input multiple-output) channel sounding.
A recent study [1] shows that the ISI-SAGE algorithm [2], [3] applied
in combination with TDM-MIMO channel sounding makes it possible
to extend the Doppler frequency (DF) estimation range (DFER) by a
factor at least equal to the product of the element numbers of the Tx
and Rx arrays compared to the traditionally used DFER. The extension
is significant when arrays with large element numbers are employed.

In this paper we derive the signal model for TDM-MIMO channel
sounding and report analytical investigations showing that the above
DEFER extension requires selection of switching modes (SMs) tailored
to the array characteristics. The SM of a switched array is the temporal
order in which the array elements are switched. In fact, the traditionally
used SMs of uniform linear and planar arrays where the elements
are switched according to their natural spatial ordering prove to be
inappropriate as they lead to an ambiguity in the joint estimation of
DF and directions. We also introduce the concept of normalized side-
lobe level (NSL) associated to the SM of a switched array. We show
that minimizing the NSL is a sensible criterion for the identification
of SM leading to DF and direction estimates with nearly optimum
performance in terms of root mean square estimation error. Finally
experimental investigations illustrate the impact of the SM of a uni-
form planar array on the behaviour of the DF and direction of arrival
estimates computed with the ISI-SAGE algorithm.

A.1  Introduction

Deploying multiple-element antennas at the transmitter (Tx) and the receiver
(Rx) combined with space-time coding can substantially increase the capacity
of mobile radio communication systems [4], [5] and [6]. A system or tech-
nique using multiple-element Tx and Rx antennas is called a multiple-input
multiple-output (MIMO) system or technique. The design and optimization
of MIMO communication systems require realistic models of the propagation
channel that incorporate dispersion in direction or equivalently space selec-
tivity jointly at both Tx and Rx sites. High-resolution parameter estimation
has become an essential tool to extract the critical model parameters from
measurement data. The improved-search-and-initialization space-alternating
generalized expectation-maximization (ISI-SAGE) algorithm [2], [3] has re-
cently been proposed for joint estimation of the polarization matrix, relative
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delay, Doppler frequency (DF), direction, i.e. azimuth and co-elevation an-
gles, of departure (DoD), and direction of arrival (DoA) of propagation paths
between the Tx site and the Rx site. Experimental investigations in [2], [3]
demonstrate the high potential of the algorithm for detailed propagation
studies.

MIMO channel sounders commonly operate in a time-division multiplex
(TDM) mode in order to save hardware equipment and reduce the effort
to calibrate the system. The sounding signal is fed successively at the ports
of the array elements at the Tx, and while any one of these elements trans-
mits, the ports of the antenna elements at the Rx are sensed successively.
We understand an element pair to be a pair containing an element of the
Tx array in first position and an element of the Rx array in second posi-
tion. A measurement cycle denotes the process where all element pairs are
switched once. A cycle interval is the period separating the beginning of two
consecutive measurement cycles. The separation between the beginning of
two consecutive sensing periods within one measurement cycle is called the
switching interval. The cycle rate and the switching rate are the inverses of
the cycle interval and the switching interval respectively. Notice that the ratio
of the switching rate to the cycle rate is at least equal to the product of the
element numbers of the two arrays.

It was traditionally believed, that the maximum absolute DF that can
be estimated using the TDM-MIMO sounding technique equals half the
cycle rate. Therefore, by keeping the switching rate unchanged, large element
numbers in the arrays result in a low cycle rate and consequently lead to a
small DF estimation range (DFER). However, a recent study [1] has shown
that the maximum absolute DF that can be estimated using the TDM-MIMO
sounding technique actually equals half the switching rate. This enlarged
DEFER is independent of the element numbers of the arrays.

In this paper, we show that the extension of the DFER proposed in [1] may
result in an ambiguity in the estimation of the DF and directions (DoD and
DoA). The estimates of the path parameters are computed in the maximiza-
tion (M-) step of the ISI-SAGE algorithm to be the solution that maximizes a
given objective function. The ambiguity occurs when this objective function
exhibits multiple maxima. This situation may happen when the DFER is en-
larged from minus to plus half the switching rate depending on the switching
mode (SM) and the characteristics (e.g. the layouts and the element radiation
patterns) of the arrays. The SM of an array describes the temporal order in
which the array elements are switched. This paper analyses the impact of the
SMs of the arrays in TDM-MIMO sounding on the joint estimation of DF
and directions using the ISI-SAGE algorithm by means of theoretical and
experimental investigations combined with Monte-Carlo simulations.
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Fig. A.1: Signal model for the TDM-MIMO sounding technique.

The paper is organized as follows. The MIMO radio channel model is
introduced in Section A.2. Section A.3 presents the signal model for TDM-
MIMO channel sounding. In Section A.4 the objective function used in the
M-step of the ISI-SAGE algorithm is derived. Investigations of a case study
considering TDM-SIMO (single-input multiple-output) channel sounding
with a uniform linear array give insight into the ambiguity problem and the
necessary and sufficient conditions for it to occur. In Section A.5 the impact
of the SM on the root mean square estimation errors (RMSEEs) of the DF
and DoA estimates is assessed via Monte Carlo simulations. In Section A.6
experimental investigations compare the performance of the DF and DoA
estimators when applying the conventionally used SM and an optimized
SM to a uniform planar array. Finally, concluding remarks are addressed in
Section A.7.

A.2  Signal Model for MIMO Systems

Let us consider the propagation environment depicted in Fig. A.1. A certain
number, L, of waves propagate along different paths from the M; antenna
elements forming Array 1to the M, antenna elements forming Array 2. Along
its path a wave interacts with a certain number of scatterers. We use the index
k € {1,2} for the arrays. Following [7], we assume that the far-field condition
holds, and that the elements of Array k are confined in a region R, in which
the plane wave approximation is accurate. A coordinate system is specified
at an arbitrary origin Oy in Ry. The individual locations of the elements of
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Array k are determined by the vectors ry,, € R3,m = 1,..., M. Here, R
denotes the real line.

Letu(t) = [u1(t),...,up, (t)]" denote the (complex baseband represen-
tation of the) signal vector at the input of Array 1. Here, [-]T is the transpose
operator. The contribution of the £th wave to the outputs of Array 2 can be
written in vector notation as

s(t;0¢) = apexp{j2mvety (Do) cr(Qre) Tu(t - 7¢). (A1)

In this expression, 6, = [Qy, Q2 ¢, Tp, Ve, ar] is @ vector whose entries are
the parameters characterizing the ¢th path: Q; ,, Q, p, 7¢, v¢, and a, denote,
respectively its DoD, DoA, propagation delay, DE, and complex weight (or
gain). We describe a direction as a unit vector Q with initial point anchored
at the reference location, or equivalently as the terminal point of this vector,
i.e. a point located on a unit sphere centered at the reference point. Then, Q
is uniquely determined by its spherical coordinates (¢, ) € [-7,7) x [0, 7]
according to Q = [cos(¢) sin(8), sin(¢) sin(8), cos(0)]". The angles ¢ and
0 are referred to as respectively the azimuth and the co-elevation of Q. The
Mj.-dimensional complex vector ¢ (Q) represents the response of Array k
to a wave impinging from direction €. Provided coupling effects between
the array elements are negligible, ¢, (Q) = [ fx.. () exp{ji—z (QTrp ) }sm =
1,..., Mi]". The function fi ,(Q) is the complex electric radiation patterns
of the mth element in Array k, and Ay denotes the carrier wavelength.

The signal vector Y(t) = [Yi(#), ..., Yar, (£)]" representing the outputs
of Array 2 is given by

Y(¢) = zL:s(t; 0,) + @W(t), (A.2)
=1

where W(¢t) = [Wi(t),..., WMZ(t)]T is standard M,-dimensional complex
temporally and spatially white Gaussian noise, and N is a positive constant.

A.3  TDM Channel Sounding Technique

Sounding of the propagation channel is performed in a TDM mode according
to the time structure depicted in Fig. A.2. As depicted in Fig. A.1, the sounding
signal is fed via Switch 1 (Sw1) during a sounding period T; successively to the
ports of the elements of Array 1. While any element of Array 1 is active, the
ports of the elements of Array 2 are sensed during T; successively by Switch
2 (Sw2). The period separating two consecutive sensing intervals is denoted
by T,. Clearly, T, > T; and T; = M, T,. A measurement cycle during which all
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element pairs are switched once lasts M; T; seconds. The separation between
the beginnings of two consecutive measurement cycles is called the measure-
ment cycle interval and is denoted by T,,. The cycle repetition rate is the ratio
R= % > 1. Notice that the switching rate T ! is related to the measurement
cyclerate Tc_y1 accordingto T, = M M,R Tc_yl. The guard interval T in Fig. A.2
is irrelevant in the subsequent investigations. The motivation for introducing
this interval can be found in [7]. One measurement run consists of I cycles.

To characterize the SM of a switched array, we first need to define a
(spatial) indexing of the array elements which is then kept fixed. The natural
element indexing for a uniform linear array is according to the element spatial
ordering, starting at one end. Similarly the natural element indexing of a
uniform planar array is determined first by the order of the element row and
then by the element order inside its row. The SM of an array during one cycle
is entirely defined by a permutation of the element indices. Let 7, (i, -) denote
(the permutation describing) the SM of Array k during the ith cycle. Referring
to Fig. A.2, the beginning of the interval when the element pair (m;,m,) is
switched in the ith cycle is ; j,,m, = (i - %) Ty + (111(1', my) — M{rl) T +
(n2(i, my) - %) T:. Clearly, ni(i,my) is the time index of the interval
during which the mth element of Array k is switched during the ith cycle
(mp = 1,..., My). Hence, n;(i,-) maps a spatial index onto a time index.
The inverse mapping 1;'(i,-) (reported on Fig. A.2) determines the temporal
order in which the elements of Array k are sequentially switched in the ith
cycle. Notice that the SM of Array 2 does not depend on which element of
Array 1 is active during each cycle, i.e. 172(i,-) does not depend on m;. For
notational convenience we identify the permutation 7, (i, -) with the vector
(i) = [me(i,my),my = 1,...,Mi]. If (i) = 4,0 = 1,..., 1, the SM
is called cycle-independent. The identity SM #,. = [1,..., Mj] switches the
elements of Array k in their spatial order.

Following the same notation as in [7], the scalar signal at the output of
Sw2 reads

Y(t)=2L:s(t;0e)+\/§q2(t)W(t), (A.3)

e=1
where W (t) denotes standard complex white Gaussian noise and g, (t) is an
indicator function, i.e. with range {0,1}, which takes value one if, and only if,
some element of Array 2 is switched by Sw2. Moreover,

S(t; 05) =y eXp{jZTL'Vgt}Cz(Qz,g)TU(t; Tg)Cl(Ql,g),

where U(t;7,) is the M, x M; sounding matrix U(t;7,) = q,(t)q,(¢) Tu(t -
7¢), with u(t) denoting the signal at the input of Swi. The M, dimensional
vector-valued functions q () characterize the timing of Swk. More specifi-
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cally, the mth entry of q; () is an indicator function which takes value one,
if and only if, Swk switches the mth element of Array k [7].

A.4  Objective Function used in the Estimation of
the DF and the Directions

A.4.1 TDM-MIMO Channel Sounding

According to [7] at each iteration of the ISI-SAGE algorithm, the parameter
estimates of the ¢th path are updated successively in the M-step of the algo-
rithm. This step computes the argument maximizing an objective function
|2(8¢; %¢)|, where 0, = [Q1¢, Qa0 T, v¢] and | - | denotes the norm of the
scalar or the vector given as an argument. Notice that the objective function
coincides with the maximum-likelihood estimate (MLE) of 8, in a one-path
scenario, in which case %,(t) = y(t). The function z(8y; ;) is given by

2(B;2¢) = &(Q2,0) "X (10, ves %) (Que)* (A.g)

with [-]" denoting the Hermitian operator, [-]* representing the complex

conjugate, and & (Q) = |cx(Q)['cx(Q) being the normalized response of
Array k. The entries of the M, x M; dimensional matrix X(7,, vp; X) read

1
Xemym (Tes VesRe) = ) [exP {=j2mvetim,m,}
i=1

Ts
. /; u”(t— 7o) exp{—j2mvet } Xe(t + timy,m,) dt], (A.5)

mg=1,...,Mg, k =12.In (As) xp(t) = y(t) - Z@zl’g,#s(t; égl), with 0,
denoting the current estimate of 8, is an estimate of the so-called admissible

hidden data X,(t) = s(t;6,) + @ q2(t) W(t) calculated in the expectation
(E-) step of the ISI-SAGE algorithm. The reader is referred to [8] for the
properties of the SAGE algorithm and the related terminology.

In the subsequent analysis of the behavior of the objective function versus
the DE, the DoD and DoA we make the following four simplifying assump-
tions: (A) The antenna elements are isotropic; (B) The phase change due to
the DF within T is neglected, i.e. the term exp{—j2mv,t} in (A.5) is set equal
to 1. As shown in [1] this effect can be easily included into the model and
its impact on the performance of the DF estimate proves to be negligible;
(C) We assume that the remaining interference contributed by the waves ¢,
¢ ={1,...,L}/{€} in the estimate X,(t) computed in the E-step of Path £ is

negligible, i.e.
. No
%e(t) =s(£0;) +/ qu(t)W(t).
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Under this assumption, the M-step of Path ¢ is derived based on an equivalent
signal model where only Path ¢ is present. If we further focus the attention on
one particular path, which without loss of generality is selected to be Path 1,
then (A.3) with L = 11is the equivalent signal model for the derivation of the
M-step of Path 1. In this case, %(t) = y(t) and the MLE of 8, is computed
in the M-step. For notational convenience we shall drop the indexing for the
parameters of Path 1 in the sequel; (D) As the focus is on the estimation of
the DE DoD, and DoA, we further assume that the ISI-SAGE algorithm has
perfectly estimated the delay of Path 1 or has knowledge of it. As a result
z(8; y) reduces to a function of Q;, Q,, and v according to

I My M,
z(v, Q1, Qo5 ) = Z Z Z Erm (1) Eam, (Q2)7
i=1 my=1 m=1
T
- exp{=j27Vti my,m, } _/(; u(t=7) y(t+timm,)dt. (A.6)
The notation (-)" designates the true value of the parameter given as an
argument.

Under the above assumptions, by dropping a constant term and normal-
izing by m, (A.6) can be cast as

1
2(v, Q1, Qg5 y) = D Ri(9)Si(Q, V) Ti (02, 7) + V(v, 01, Q) (A7)
i=1

with the notational convention (*) = (+)’ — (-). Moreover,

o .1 v
Ri(v) = }exp{]2nv(1 - %) Tey}s

. 1 M o O . M+l
Si(Qy,v) = A > exp {]27‘[T1 + j2mv (i (i, my) - #) Tt},

1 my=1

M .

T (VZ M ii 2 > QZTrz,m2 0 v( . —MZH)T

(D, V) M > expij m= + 2y (n2(i, ma) = 5 Lt
m2:1

(A.8)

The noise term V (v, Oy, Q,) can be derived analogously to V(v) in [1]. Notice
that the expressions in the arguments of the exponential terms in the sum-
mands of $;(Qy, V) and T;(Q,, V) reveal respectively a coupling depending
on #1(i,-) in the estimation of the DoD and the DF and a coupling depending
on 7,(i,-) in the estimation of the DoA and the DE
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A.4.2  Case Study: TDM-SIMO Channel Sounding with
Uniform Linear Array

In this subsection we investigate in detail the above mentioned coupling and
in particular how the SM affects the objective function of the DF and direction
MLEs. To keep the discussion simple we restrict the attention to a special case
where Array 1 consists of one element (M; = 1) and Array 2 is uniform and
linear. In this case, the DoD cannot be estimated and (A.7) reduces to

I
z(v, Q23 y) = Y Ri(V) Ti(Qa, ¥) + V (v, Q). (A.9)

i=1
We investigate the behavior of the absolute value of (A.9) in the noiseless case
(V(v, Q) = 0). Array 2 consists of M, equidistant isotropic elements with
locations 1y, = [””2AO ,0,0]T, my =1,..., M. The inner products arising in

the response of this array are calculated as QzTrz,m2 =w mzz)“), my=1,..., M,
where w = cos(¢,) sin(6,). The parameter w can be interpreted as a spatial
frequency. It can be also written as w = cos(y) where y is the angle between
the impinging direction and the array axis. This angle is the only characteristic
of the incident direction that can be uniquely determined with a linear array.

The absolute value of (A.9) reads in this case

[2(v, Qa3 )| = |2(, @5 y)|. (A.10)

If the SM is cycle-independent, the right-hand expression in (A.10) factorizes
according to

lz(v, 05 y)| = |G(V (A.11)
where
G) = sir.l(mV/IvTCy),
Is1n(7rvTcy)
T(w,v) = ﬁ Z exp { jmand + j2nv[n2(my) - 2T, }.

21’VL21

We investigate the impact of different SMs on (A.11) for the setting of the
TDM-SIMO system and the one-wave scenario specified in Table A.1. The
wave is incident perpendicular to the array axis and its DF is 0 Hz. Notice
that from (A.10) the behaviour of the objective function only depends on
the DF deviation from the true DF so that the choice of the latter within
the range (- 2T ' 3T ] is irrelevant. F1g A.3(a), A.3(b), and A.3(c) depict the
graphs of respectlvely |IG(V)|, |T(w, )|, and |z(V, @; y)| in (A.11), when the
conventlonally used identity SM, is applied. Notice that the range of v is
(~5%> -] = (~200,200] Hz.
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Fig. A.3: Objective functions for the joint DF and DoA MLEs in the case study (TDM-SIMO
with uniform linear array) where the following SMs are selected: 11, = [1,2,...,8] (c), n,(i) =
[4,2,1,8,5,7,3,6] (d), and a randomly selected cycle-dependent SM (e). Fig. A.3 (a) and (b)
depict the factors of the objective function (see (A.11)) for the identity SM.
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Table A.1: Case study: Setting of the TDM-SIMO system and parameters
of the incident wave

I M1 M2 R Tcy [S] v [HZ] w’

8 1 8 1 0.02 o) o)

Clearly, is %y = 50 Hz. The loci of the pairs (v, @)
where | T'(@, v)| equals its maximum value (= 1) is the line @ = vT,. As can
be observed in Fig. A.3 (c) the product of these two functions, i. e |z(v, @; y)],
exhibits multiple maxima along the above line separated by = in v. These
multiple maxima cause an ambiguity in the ]omt ML estimation of the DF and

DoA when the DFER is selected equal to (- 2T )3T L. Notice that |z(V, @; y)|
exhibits one unique maximum if v € (- 2T s 57 y] Thus, if this SM is used, the
DFER has to be restricted to the above 1nterval in order to avoid the ambiguity
problem.

Fig. A.3(d) and Fig. A.3(e) report respectively the graphs of |z(V, w; y)|
for the cycle-independent SM #, = [4,2,1,8,5,7,3,6] and a cycle-dependent
randomly selected SM. With this selection of the SMs, |z(7V, @; y)| exhibits
a unique maximum and therefore the ambiguity problem does not occur.
One can still see clearly the impact of the periodic behavior of |G(v)| on the
objective function depicted in Fig. A.3(d) as side-lobe stripes at the loci of
the maxima of |G(V)| when the SM is cycle-independent. As exemplified by
Fig. A.3(e) this pattern vanishes completely when using a cycle-dependent
SM. Furthermore, the side-lobes of the third depicted objective function have
much lower magnitude than those of the second objective function.

This study shows that in the worst case (using the identity SM), the
operational DFER is (- 2T ,ZTC ] By appropriately selecting the SM the

DFER can be extended to (— 2T, ' IT ], i.e,, byafactor M, = 8 in this case study
or in general by M;M;R. Furthermore, Fig. A.3(c)-(e) make it evident that
the SMs significantly affect the magnitudes of the side-lobes of the objective
function. This impact is investigated in more detail in Section A.5.

A.4.3  Analysis of the Ambiguity Effect for the Case Study

In this subsection we derive a necessary and sufficient condition for a cycle-
independent SM to lead to an objective function exhibiting multiple maxima.
We also show that modulo-type SMs (and among them the identity SM) cause
the ambiguity problem when the cycle repetition rate R is integer.
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The function z(v, w; ¥) in (A.10) is of the form

I M,
z(v, sy Z Z exp{jPim, }
IMZ i=1 my=1
where @; ,,, = 2711/(1 - ﬂ) Ty + 2711/(112(1 my) — M2+1) T, + m&m,. When

w=0andv =0, |z(V, ; y)| equals its maximum value 1. However, a necessary
and sufficient condition for |z(V, @; )| = 1 to hold is that all the phases in the
double sum are congruent modulo 27. This will be the case if, and only if,

Dimy — Pirtm, =0 (mod 27)
and m2=1,...,M2,1=1,...,I—1 (A.12)

Dimy— DPim1 =0 (mod2rm)
my=1,...,M,-1,i=1,...,1. (A.13)

Hence |z(v, @; y)| exhibits multiple maxima if, and only if, the system of
equations defined by (A.12) and (A.13) has one or more non-trivial solutions
(v, @) € (_%T,’ z_lT,] x [w" -1, " +1]. The trivial solution is (v, @) = (0, 0).

In the sequel, we focus on cycle-independent SMs. In this case 72 (i, m3) —
72(i +1,m;) = 0 and (A.12) reduces to vT,, = K for K € Z n (-2 %],
where Z is the set of integers. Inserting this identity in (A.13) yields

K. 120m) - % (mod1), my=1,...,My -1, (A.14)

where 71,(my) = n2(my) — n2(my + 1). Hence, provided the SM is cycle-
independent, a necessary and sufficient condition for the ambiguity problem
to occur is that the equation system (A.14) has at least one non-trivial solution
(K, d) € (Zn (-2, 8Ly « [0 - 1,0 +1].

A modulo-type SM fulfills the congruence (#(m;) —1) = Jm,+ K (mod
M) for some ], K € Z with ] and M, being relatively prime. As an example,
the commonly used identity SM #, = [1,2,. .., M>] isa modulo-type SM with
J =1and K = 0. For any modulo-type SM, {#,(m;);my = 1,...,Mp — 1} =
{J,] — M3}. Hence (A.14) consists of two different congruences. Elimination
of @ yields K = RK’, with K’ taking any value in Zn (-2, +22]. When R € Z,
the non-trivial solutions for K are the RM,—1values in Zm( katy , %] \ {0}.
Notice that this result is in accordance with the 8 maxima (corresponding to
the 7 non-trivial solutions plus the trivial solution) that can be observed in
Fig. A.3(c).
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A.5  Performance Simulations

The theoretical investigations of the study case reported in the previous sub-
section show that the SM strongly affects the side-lobes of the objective
function of the DF and DoA MLEs. As a consequence the SM will also affect
the robustness of the estimators toward noise since this robustness directly
depends on the magnitudes of the side-lobes.

We define the normalized side-lobe level (NSL) associated with a SM
to be the magnitude of the highest side-lobe of the corresponding objective
function. It is obvious that objective functions with NSL equal to one have
multiple maxima and therefore lead to an ambiguity in the estimation of DF
and DoA, whereas objective functions with NSL less than 1 have a unique
maximum.

We show by means of Monte-Carlo simulations that the NSL associated
with a SM can be used as a figure of merit of this SM for the optimisation
of the performance of the DF and DoA MLEs. The parameter setting of the
considered scenario is the same as that used in the case study (see Table
A.1). Fig. A.4 depicts the RMSEEs of the MLEs v and { versus the output
signal-to-noise ratio y, = IM2P|<x|2|c1(Ql)|2|c2((22)|2/(%) (1] for four SMs
leading to NSLs equal to 0.28, 0.58, 0.80, and 0.85 respectisvely. The symbol P
in the above expression denotes the transmitted signal power. The RMSEEs
are compared to the corresponding individual Cramér-Rao lower bounds
(CRLBs) calculated in [8] assuming parallel SIMO channel sounding.

As shown in Fig. A.4 all curves exhibit the same behavior, i.e. when y,
is larger than a certain threshold, y'', the RMSEEs of ¥ and 1 are close to
the corresponding CRLBs. When y, < ', the RMSEEs increase dramatically
as already shown in [1]. Further simulations show that y' increases along
with the NSL. This behavior can be explained as follows: The probability of
the event that the maximum of any side-lobe of the objective function is
higher than the maximum of its main-lobe is larger when these side-lobes
have high magnitudes. Notice that the threshold effect is well-known in non-
linear estimation such as frequency estimation [9].

We can use the RMSEE curve of the DF MLE under the hypothesis that all
other parameters but the complex gain of the path are known as a benchmark
for the DF MLE performance when all path parameters are unknown. This
curve is indeed a lower bound for the RMSEE curve of the latter DF estimates.
Monte Carlo simulations not reported here show that this benchmark curve
exhibits a threshold y'! = 15 dB and is close to the CRLB of ¥ for y, > y'I.
From Fig. A.4 we observe that the threshold y{ of the RMSEE curve of ¥
obtained for the SM leading to NSL=0.28 is 0.5 dB apart from that of the
benchmark curve. Hence, the former threshold is close to the minimum
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Fig. A.4: RMSEEs of ¥ (solid curves) and v (dotted curves) versus y, computed using the
setting given in Table A.1 for different SMs. The dashed and the dash-dotted lines represent the
CRLBs of ¥ and v respectively. The curves with symbols &, o, O, & have been obtained using 3
cycle-independent SMs and 1 cycle-dependent SM leading to NSL = 0.85,0.80, 0.58, and 0.28
respectively.

achievable threshold. This observation confirms that the NSL is a suitable
figure of merit for the selection of “good” SMs, i.e. leading to MLEs operating
close to optimum.

A.6 Experimental Investigations

In this section, we present experimental investigations that illustrate the im-
pact of the SM on the objective function used in the ISI-SAGE algorithm to
estimate the DF and DoA of propagation paths based on measurement data.
The measurements were performed with the TDM-MIMO channel sounder
PROPSound [10]. The Tx array consisted of 3 conformal sub-arrays of 8 dual-
polarized patches uniformly spaced on a cylinder together with a uniform
rectangular 2 x 2 sub-array of 4 dual-polarized patches placed on top of the
cylinder (M; = 54). At the Rx a 4 x4 planar array with 16 dual-polarized
patches was used (M, = 32). The spacing between the Rx array elements
and the elements of the four Tx sub-arrays is half a wavelength. The selected
carrier frequency was 2.45 GHz. The sounding signal was a pseudo-noise (PN)
sequence of length K = 255 chips with chip duration T, =10 ns. The sensing
interval coincided with one period of the PN-sequence, i.e. Ty = KT, = 2.55
ps. The transmitted power was 100 mW.

The Rx array was mounted outside a window on the 3rd floor of the
Elektrobit AG building in Bubikon, Switzerland. The Tx array was mounted
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Table A.2: Settings of the channel sounder for measurement Scenarios I
and 11

Parameters Scenario I Scenario 11

SMat Array 2 Patch-wise identity SM  Patch-wise optimized SM

T; [ps] 3.05 5.10
T, [ms] 6.2 47.2
1 17
Selected DFER (—m, E] = (_%, ZLTV] _
[Hz] (-81.3,81.3] (—98039,98039]

on the roof of a van moving with approximately 8 m/s away from the building.
The measurements were performed twice along the same route with different
settings of the sounding equipment (see Table A.2). The van was driving
at approximately the same velocity during both measurement recordings
to ensure propagation scenarios with almost identical DFs. The azimuth of
arrival (AoA), the elevation of arrival (EoA) and the DF of the LOS path
can be calculated from the location of the Rx as well as the position and
the velocity of the van to be approximately 5%, 20° and —59 Hz respectively.
The two settings of the sounding equipment were selected in such a way that
11

the maximum DF is in (—57—, 57—] in Scenario I and outside this range
4 cy

but in ( _ZLTH 2LT,] in Scenario II. These intervals were then selected as the
corresponding DFERs for the two scenarios. As explained later, the SM at the
Tx is irrelevant in the investigated situation. At the Rx, we apply a patch-wise
identity SM in Scenario I and a patch-wise optimized SM in Scenario II. The
term “patch-wise” indicates that the two elements of each patch are always
switched consecutively. This is done to mitigate phase noise effect for accurate
polarization estimation.

The ISI-SAGE algorithm is applied to the measurement data to estimate
the individual parameter vectors of L = 4 propagation paths using I = 4
measurement cycles. The parameter estimates of the four paths are initialized
successively with a Non-Coherent Maximum Likelihood (NC-ML) technique
described in [3]. Once the initialization is completed, the E- and M-steps of
the ISI-SAGE are performed as described in [7]. It can be shown that the
objective function used for the joint initialization of v, and ﬂz,g after the
initial delay estimate 7,(0) has been computed is similar to the absolute value
of (A.9) with 7, = %,(0) and %,(t) = y(t) - X524 s(t; 9;,(0)). Since at
that stage, the DoD of the ¢th path has not been estimated yet, the NC-ML
technique is used to initialize vy and ﬁz,g jointly. The SM at the Tx is irrelevant
when this method is applied. Hence, we can use the initialization procedure
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of the ISI-SAGE algorithm to experimentally investigate scenarios similar
to the case study described in Subsection A.4.2. The differences between
the experimental scenarios and the case study are as follows: (1) the SIMO
antenna system considered in the case study is replaced by a MIMO system
in the experimental scenario; (2) a uniform planar array with dual-polarized
elements is used instead of a uniform linear array; (3) the array elements are
not isotropic; (4) in the calculation of £,(t) the contribution of the waves but
the ¢th one were either not or only partially cancelled.

In the sequel we restrict the attention to the LOS path indexed € = 1. To
visualize the behavior of the objective function versus v;, we compute

F(v) = n&ax|z(v1, Q5% = y)|2
2,1

with z(v1, Q25 y) given in (A.9). Notice that T,-((Vlz,l, v1) (see (A.8)) depends
on the real response of the Rx array, i.e. includes the radiation patterns of
the elements in the array. Inserting (A.9) with the noise term omitted in the
definition of F(v;) we obtain

1
F(Vl) = max| Z Ri(ljl)Ti(Qz,l, 1\51)|2
Qo =1
= max |G(91) T(Q,0, %)

021

=T (W) - |G () (A.15)

with T’({/l) = max T(ﬂz)l,f/l).
Q21
The second line follows similarly to (A.11) since the SM is cycle-independent.

Hence, the SM only affects F(v;) via |T'(v;)[>.

The right hand expression in (A.15) will be useful for understanding the
behavior of F(v;) computed from the measurement data. This function is
plotted versus v; ranging in (-81.3Hz,81.3Hz] in Fig. A.5 (top) for both
scenarios. The pulse-train-like behavior of the curves is due to the factor
|G(1)[? in (A.15), which is periodic with period 1/ T¢.,.. The maximum of F(v;)
in Scenario I (with DFER (—ﬁ, ﬁ]), is located at —52 Hz. In Scenario
II (with DFER (—ZLTY, ZLTr]) the maximum of F(v;) is located at —81 Hz.
Notice that these values are the initial DF estimates of the LOS path returned
by the ISI-SAGE algorithm. After four iterations of the algorithm the DF
estimates of the LOS path have converged to —52.5 Hz, and the AoA and EoA
estimates equal 4.6° and 27° respectively in Scenario I. In Scenario II the DF
estimate converges to —60Hz, and the AoA and EoA estimates equal 5.3° and
18.7° respectively. All these values are in accordance with the theoretically
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Fig. A.5: Normalized F(v1) (top) and pseudo-envelope PE(F(v1)) (bottom) computed from the
measurement data obtained in Scenario I (dashed lines) and Scenario II (solid lines). The marks

O and ¢ denote the maxima of F(v,) in Scenario I when the DFER is respectively (— %, ﬁ]
and extended to (— The mark o denotes the maximum of F(v1) in Scenario I (DFER

1 1
- (-3 )

ZT’ZT]

calculated values. The deviation between the two sets of the estimates is due
to the difference in the velocities and the positions of the van during the
measurement recordings.

The pulse-train-behavior of F(v,) due to |G(v;)|* makes it difficult to
visualize the effect of the SM (embodied in |T’(¥)|*) on the former function
when v ranges in (- 2T ' 3T L]. To circumvent this problem we compute an
approximation of |T’ (v1)| from F(v;) as follows: PE(F(v;)) is a pseudo-
envelope (PE) obtained by dividing the range of v; into multiple bins with
equal width of L and connecting the maxima of F(v;) within each bin using
linear 1nterpolat10n Fig. A5 (bottom) reports the computed PE curves for
both scenarlos For Scenario I, PE(F(v;)) remains close to one over the entire
range (- 2T ' 3T L-]. This behavior is due to the identity SM used for the 4 x 4
planar array. In Scenario I, PE(F(v;)) exhibits a dominant lobe and multiple
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side-lobes with significant lower amplitude. The width of the main lobe is
in accordance with the analytically derived value of M% TL, for the separation
between the zero points of the main lobe.

In case the DFER is extended to (_%T,’ ZLTV] in Scenario I, the maximum
of F(v) is located at —97.604 kHz in the initialization step (as shown in Fig.
A5 (bottom)), and stays at this value after 4 iterations. The AoA and EoA
estimates are respectively 70° and 2°. These estimates are obviously artifacts
that result due to the identity SM used at the Rx array.

Notice that the high side-lobes at the boundary of the DF estimation range
are due to the patch-wise switching of the arrays. When the DF is very low
compared to the switching rate as it is the case here, the resulting phase-shift
due to the DF between consecutive sensing intervals of the elements of a patch
is close to zero, which leads to an effective doubling of T,. As a result, the
graph of PE(F(v;)) exhibits two segments of similar shape as shown in Fig.
A.5 (bottom).

The above investigations show experimentally the ambiguity effect that
occurs when the DFER is extended to (_ZLT,’ 2—%] and the identity SM com-
bined with a planar array is used. It also demonstrates that this problem is
avoided by appropriately selecting the SM.

A.7  Conclusion

In this contribution we investigate the behavior of the Doppler frequency
(DF) and direction estimates obtained with the ISI-SAGE algorithm [2] and
[3] when the scheme is used in combination with TDM-MIMO channel
sounding.

Theoretical analysis combined with simulations show that when the DF
estimation range (DFER) is selected to be from minus to plus half the switch-
ing rate as proposed in [1] the switching modes (SMs) of the arrays have
to be selected suitably. It is shown that traditionally used SMs of uniform
linear and planar arrays where the elements are switched according to their
natural spatial ordering are inappropriate as they lead to an ambiguity in the
joint estimation of DF and directions. The investigations also reveal that the
objective function of the DF and direction estimates and in particular the
levels of its side-lobes are strongly affected by the choice of the SM.

We propose to associate to any SM the so-called normalized side-lobe
level (NSL) of the objective function resulting from selecting this SM. Monte
Carlo simulations show that the NSL is a sensible figure of merit for the
identification of SMs leading to DF and direction estimates performing close
to optimum in terms of root mean square estimation error.
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The above theoretical studies are confirmed by experimental investiga-

tions using the ISI-SAGE algorithm. These investigations show that consecu-
tive switching of the two elements of dual polarized patches in an array reduce
the DFER by a factor two. However this reduction is in practice irrelevant as
the switching rate implemented in measurement equipments is usually several
orders of magnitude larger than the maximum Doppler frequency observable
in radio propagation environments.
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B.1. INTRODUCTION

Abstract

In this paper we investigate the impact of the spatio-temporal aper-
ture of a channel sounding system equipped with antenna arrays at the
transmitter and receiver on the accuracy of joint estimation of Doppler
frequency and bi-direction. The contribution of this work is three-fold.
Firstly, we state a spatio-temporal model which can describe parallel as
well as switched sounding systems. The proposed model is applicable
for arbitrary layouts of the spatial arrays. To simplify the derivations
we investigate the special case of linear spatial arrays. However, the
results obtained for linear arrays can be generalized to arbitrary arrays.
Secondly, we give the necessary and sufficient conditions for a spatio-
temporal array to yield the minimum Cramér-Rao lower bound in
the single-path case and Bayesian Cramér-Rao Lower Bound in the
multipath case. The obtained conditions amount to an orthogonality
condition on the spatio-temporal array. Thirdly, we define the Doppler-
bi-direction ambiguity function and derive the necessary and sufficient
conditions for a linear spatio-temporal array to be ambiguous. Based
on the ambiguity function we define the normalized side-lobe level,
which we propose to use as a figure of merit in the design of spatio-
temporal arrays.

B.1  Introduction

The design and optimization of multiple-input multiple-output (MIMO)
communication systems require realistic models of the propagation channel,
which incorporate dispersion in delay, Doppler frequency, direction of de-
parture, direction of arrival, and polarization. In order to develop realistic
parametric models of the channel response it is of great importance to be able
to accurately measure the dispersive behavior of the propagation channel, that
is, simultaneously measure dispersions in the above dispersion dimensions.
Dispersion of the propagation channel in one dimension can be estimated
from an observation using an aperture in the corresponding Fourier domain.
For example, if Doppler frequency is to be estimated, observations at different
time instants are required.

The focus of the paper is on the joint estimation of direction of departure,
direction of arrival and Doppler frequency from observations obtained by
exciting the propagation channel via a spatial aperture and sensing the output
of the channel via another spatial aperture at different time instants, i.e. via
a temporal aperture. All together these three apertures constitute a bi-spatio-
temporal aperture, or a spatio-temporal aperture for short. A spatio-temporal
aperture can be implemented using antenna arrays at the transmitter and
receiver sites. Spatio-temporal sounding systems fall in two groups: parallel
and switched sounding systems.
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A parallel sounding system (such as [1]) is equipped with one transmitter
for each transmit antenna element and one receiver per receive antenna ele-
ment. All transmit array elements are active simultaneously and all outputs
of the receive array elements are observed simultaneously. Snapshots of the
channel are collected at different time instances. Each of the parallel transmit-
ters must transmit a unique signal. The transmitted sounding signals must be
carefully chosen such that their cross- and auto-correlation properties allow
for their separation and sufficient delay resolution respectively.

In switched sounding systems (such as the one used in [2-5]) the sounding
signal generated by a single transmitter is applied to the elements of the
transmit array via a switch. The output of the receive array is sensed via an-
other switch. In this way observations from all antenna pairs of one transmit
antenna and one receive antenna can be achieved. Despite the added switches,
the hardware complexity of switched systems is lower than that of parallel sys-
tems. Furthermore, the cross-correlation properties of the sounding signals
is not an issue in switched channel sounding systems and therefore any code
sequence with the desired autocorrelation property may be applied.

Various algorithms for the estimation of directions and Doppler shifts
from data obtained from spatio-temporal arrays have been proposed, see
e.g. [2-5] and references therein. It is shown in [5] that the design of spatio-
temporal apertures is critical to the joint estimation of Doppler frequency
and bi-direction. Until recently, it was believed that the maximum absolute
Doppler frequency that can be estimated with a switched sounding system
is inversely proportional to the product of the number of elements of the
transmit and receive arrays. This limitation was considered a major draw-back
of switched systems [1]. However, as shown in [4] and [5], this limitation is an
effect caused by the (inappropriate) choice of the spatio-temporal aperture
and is not a fundamental (Nyquist) limit. This inappropriate choice leads
to an ambiguity in the estimation of Doppler frequency and direction [5].
An intuitive interpretation of this effect is that the phase changes induced
by a plane wave at the outputs of the array elements may result either due
to the fact that the wave exhibits a Doppler frequency or due to the wave’s
impinging direction, when switching sounding is used. The ambiguity effect
occurs when it is not possible to distinguish which effect has really caused this
phase changes. In particular it was shown in [5] that by appropriately selecting
the spatio-temporal aperture it is possible to extend the above maximum
Doppler frequency to the largest value that can be estimated with a similar
single-input single-output sounding system. As illustrated by these results,
the theoretical understanding of the impact of the spatio-temporal aperture
on joint bi-direction and Doppler estimators requires a joint treatment of the
spatio-temporal aperture.
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In this paper we investigate the impact of the spatio-temporal aperture
on the accuracy of joint estimation of Doppler frequency and bi-direction.
The contribution of this work is three-fold. Firstly, we state a spatio-temporal
model which can describe parallel as well as switched sounding systems. The
proposed model is applicable for arbitrary layouts of the spatial arrays. How-
ever, to simplify the derivations we investigate the special case of linear spatial
arrays. Secondly, we give the necessary and sufficient conditions for a spatio-
temporal array to yield the minimum Cramér-Rao lower bound (CRLB)
in the single-path case and Bayesian Cramér-Rao Lower Bound (BCRLB)
in the multipath case. The obtained conditions amount to an orthogonal-
ity condition on the spatio-temporal array. A similar condition for azimuth
and elevation estimation has been derived in the single-path case for planar
arrays in [6] and three dimensional arrays in [7]. Thirdly, we define the
Doppler-bi-direction ambiguity function for the proposed spatio-temporal
model. The ambiguity function [8] is a standard means to asses the resolution
ability of radar waveforms and a rich literature exists on ambiguity functions
and related results for various radar systems, see e.g. [9, 10] and references
therein. In the recent work [11] the ambiguity function has been defined
for MIMO bi-static radar systems with parallel transmitters and receivers.
The interested reader is referred to this contribution for an overview and
discussion of recent results in ambiguity functions for mono- and bi-static
radar. The bi-static radar estimation problem is essentially the same as the
problem of parameter estimation of single-bounce propagation paths in the
field of channel sounding for MIMO wireless communications. However, in
real propagation environments single-bounce only propagation cannot be
assumed, and consequently the available radar results do not apply directly. In
the channel sounding literature however, the use of ambiguity functions has
been fairly limited so far. In [12, 13] the delay-Doppler ambiguity function is
computed. To our best knowledge, the ambiguity function has not previously
been defined and calculated for (bi-)spatio-temporal channel sounding. The
ambiguity function presented in this contribution is valid for both parallel
and switched sounding systems. It is a special case of the general ambiguity
function defined in [9]. Based on this ambiguity function we derive the
necessary and sufficient conditions for a linear spatio-temporal array to be
ambiguous. The obtained result generalizes the result from [5] and resembles
the results of the well-studied type-1 (or rank-1) ambiguity effect for spatial
arrays; see e.g. [14-16]. Based on the ambiguity function we also define the
normalized side-lobe level (NSL), which we propose to use as a figure of merit
in the design of spatio-temporal arrays.

The paper is organized as follows. In Section B.2 we introduce a model
of the spatio-temporal sounding system capable of describing both parallel
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Fig. B.1: The considered multi-path propagation environment. The black dots in the regions R,
and R, indicate the positions of the array elements.

and switched systems. In Section B.3 the impact of the spatio-temporal array
on the CRLB and the BCRLB is investigated. In Section B.4 we define the
Doppler-bi-direction ambiguity function which is then used for the analysis
of the above-mentioned ambiguity effect. In Section B.5 we investigate the ef-
fect of the spatio-temporal aperture on the estimation performance by means
of Monte-Carlo simulations. Concluding remarks are stated in Section B.6.

Notation: Throughout this contribution, the following notation is used.
Vectors and matrices have bold faced symbols. Sets are printed in calligraphic
letters (such as A). The notations [-]*, [-]7, and [-]" denote complex conjuga-
tion, transposition and Hermitian transposition, respectively. The notations
[a], and [A], ; mean the pth element of the vector a, and element (p, q) of
the matrix A. The symbol ® denotes the Kronecker product. The notation
A > B means that the matrix A — B is positive semidefinite. We denote a p-
dimensional column vector with unity entries by 1,. The notation | - | stands
for the Euclidean norm of a scalar or vector and the cardinal number of a set.
Expectation is denoted by E[-]. The least integer larger than or equal to a is
denoted by [a]. The symbols Z, R and C stand for the set of integers, the real
line, and the complex plane, respectively.

B.2 System Model

Let us consider the propagation environment depicted in Fig. B.1. The sound-
ing system consists of two antenna arrays referred to as Array 1 and Array 2,
respectively. The index k € {1, 2} is used to distinguish the transmitter (k = 1)
from the receiver (k = 2). The number of elements in Array k is denoted by
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M. At Array k the coordinates are given in carrier wavelengths with respect

to the coordinate system Oy. The displacement of Array k element m; from

the origin of the coordinate system O is denoted by ry ,,, € R3. To simplify

the notation we write r,,, for ry ,,, . The time variable is denoted by ¢ € R.

Referring to Fig. B.1, a certain number L of waves propagate along differ-
ent paths from Array1to Array 2. Along its path a wave interacts with a certain
number of scatterers. We make the following assumptions on the propagation
environment:

A) Following [2], we assume that the far-field condition holds, such that
a plane wave approximation can be applied in a region Ry c R’
surrounding Array k when the other array transmits. This implies that
the set of parameters describing each path is independent of the array
element positions.

B) The propagation paths are assumed to be specular.

C) Weassume that the geometry of the propagation paths is constant through-
out the observation window 7. In other words, the parameters of the
propagation paths remain constant for the whole measurement run.

D) We consider the narrow-band case only. Hence, without loss of generality
propagation delays are assumed to be zero.

E) We assume that the elements of Array 1 and Array 2 are isotropic.

Under Assumptions A-D, the ¢th path can be described by the parameter
vector 0, = [vy, QL, Q;r,g, ocg]T, where v, is the Doppler frequency of Path ¢
and Qy , is a unit vector with the initial point anchored at the origin of Oy
pointing towards the direction of Path £ in R (see Fig. B.1). We denote the
complex gain of path £ as a,. The 8L-dimensional vector 8 = [0/ ,...,0;]"
contains the parameters of all L paths.

B.2.1  Signal Model

Let p, (t) be the (complex base-band representations of the) sounding signal
applied to the input of Array 1 element m;. We consider ] non-overlapping
sounding intervals of length T. The center time instant of the jth sounding
interval is denoted by t;. Thus the jth sounding interval reads 7; = [¢; -
%, tj+ %) The center time instants f, ... t; are selected such that 77,...,7;
are disjoint. For both parallel and switched systems, the observation window
T= U§=1 7T; equals the union of the sounding intervals. Element m; of Array 1
is said to be active during 7; if 7; is a subset of the support of the signal
P, (1), ie. if the sounding waveform is fed to its input terminal. Similarly, an
element of Array 2 is active during 7; if its output terminal is sensed during
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7T;. Furthermore, we say that the antenna pair (1, m;) is active during 7; if
Array 1 element m; and Array 2 element m; are both active during 7;.

For the sake of clarity we first introduce the notation for a parallel sound-
ing system. Thereafter we consider switched sounding and describe a com-
mon model for both switched and parallel systems.

Let pj.m, (t) be the sounding pulse with support 7; applied to the input of
Array 1 element m of a parallel sounding system. Then p,,, (t) is of the form

]
P () =D pimi (1). (B.1)
j=1

We consider the case where the sounding pulses have same energy E and are
mutually orthogonal, i.e.

S i (D8} (DA = E- 835 Sy (B.2)

where §.. is the Kronecker delta function. This orthogonality restriction en-
sures that the signal contributions of different transmitted sounding pulses
can be extracted from the received signal without interference from the other
pulses. Furthermore, it implies that the noise contributions in the extracted
sounding pulses are uncorrelated for different sounding pulses. In practice,
the sounding pulses must be chosen to fulfill (B.2), at least approximately, e.g.
by letting the sounding pulses at different transmitters be differently shifted
versions of the same pseudo-noise sequence.
The output signal of Array 2 element m, is given as

My ]
sz(t) = Z Zsj,mbmz(t’e) + Nmz(t)’ teT, (B.3)

m1:1 j:l

where s ,,m,(t;0) and N, (t) denotes respectively the signal contribution
due to the jth sounding pulse applied to the input of Array 1 element 1, and
the noise contribution to Y,,,(t). The noise contributions across the Array 2
element outputs are assumed to be spatially and temporally white circularly
symmetric complex Gaussian processes, i.e. fulfilling

E[Noy )Ny (£ +7)*] = No - 8y, ms - 6(7), (B.4)

where Nj is a positive constant and J(-) denotes the Dirac delta function.
Under the Assumptions A-E we can write the signal s; ., 1, (£; 0) as

L
Sjmum, (6 0) = Z apexp(j2m(vet + Ql—grm1 + Qler,,,z))pj,ml(t). (B.s5)
=1
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B.2.2  Maximum-Likelihood Estimation of Path Parameters

First we introduce a notation which clearly distinguishes between the parame-
ter of the propagation paths, their estimates, and the free parameter in the log-
likelihood function. We adhere to the following notational convention: () is
an estimate of the parameter given as argument, and (-) is a free parameter in
the log-likelihood function. As an example the symbol v, denotes the Doppler
frequency of Path ¢ of which the estimate 7, is obtained by joint maximization
of the log-likelihood function A (@) with respect to 7, and the remaining free
parameters of 6.

In the sequel we consider the maximum-likelihood estimator of the pa-
rameter vector 0:

6 = argmax A(9), (B.6)
0c&y

where A(0) is the log-likelihood of @ given an observation y;(t),..., yar, (t)
of the processes Yi(t),..., Yy, (t) and & denotes the estimation range of
the parameter given as index. The maximization in (B.6) is over the 8L-
dimensional domain &y."

The log-likelihood of @ given an observation y;(t),..., yar,(t) of Yi(t),

., Yy, (t) reads [2, 17]:

m1:1

- fT zdt}. (B.7)

Due to the orthogonality (B.2) of the transmitted pulses, all “cross terms” in
the leftmost integral of (B.7) vanish. Thus, (B.7) simplifies to the triple sum

AD) - {zm[ [ zymxr) > s;,ml,m(t;é)dr]
] M _
Z Z Sj,"’ll,mz(t;e)

j=1 m1:1

A(B) - Z Z Z Ajmyns (), (B.8)

1m1 lmz 1
where the summands are defined as
Aj,ml,mz (0) é2S)L{{Hj,ml,mz (0)} - Ej,rm,mz ( é) > (B.9)
with

Hi oy (8) 2 /T_ s (£)S s o (1 0)dlt (B.10)
J

"The maximization over £ is computationally prohibitive. However a low-complexity
approximation of the maximum likelihood estimate can be obtained using a space-alternating
generalized expectation-maximization (SAGE) algorithm [2-5].
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and

- R - 2
Ej)m1>m2(0) = /T ‘Sj)m1>m2(t;0)| dt‘ (B‘ll)
j

The integral H j)ml,mz(é) can be split into a signal term and a noise term.
Inserting (B.3) and dropping the terms that are zero due to the orthogonality
condition given in (B.2) we obtain

Hjps (8) = /T iy (£ 0)S s (1, 0)dE + fT Nory (15 (1 0L
] ]

éI\]j,ml,mz(é)
(B.12)

Remembering that the noise contributions are temporally and spatially white,
and applying the orthogonality assumption (B.2), the complex Gaussian ran-
dom variables N, m,(0) are uncorrelated:

E[ N (OIN e s (0)] = Ejmy s (O)N0O 10ty Sy (B13)

B.2.3  Sounding Modes and Their Spatio-Temporal Aperture Matrices

In the following we generalize the system model such that it can account for
any configuration of switched and parallel transmitters and receivers.

Motivated by the particular form of (B.8) we use the term spatio-temporal
sample to denote the signal component which was transmitted from Array 1
element m;, received at Array 2 element m; during 7;. Each sample results
in one term of the sum in (B.8). Therefore each spatio-temporal sample can
be indexed by the triplet (j, m;, m;). In (B.8) the spatio-temporal samples
are obtained from all combinations of one Array 1 element and one Array 2
element for every sounding interval. It follows readily from the derivation of
(B.8) that if any of the spatio-temporal samples are left out, the corresponding
terms in (B.8) will disappear. For instance in a switched system, A(8) have a
similar form, but the triple sum in (B.8) will only be over a subset of the set
of all triplets (j, m;, my).
Definition B.2.1 (Sounding mode): A sounding mode is a subset M of
{L,.... ]} x{,..., M} x{1,..., Mp}.

The log-likelihood function of @ associated to the sounding mode M is
given by

A(é) = Z Aj,ml,mz(é). (B.14)
(j,ml,mz)eM
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We enumerate the elements of a sounding mode M by the index i, i.e. we
define a bijection

{1,...,I} > M, i~ (j(i),m(i), my(i)). (B.15)

Thus, j(i) specifies in which sounding interval sample i was generated. Simi-
larly, the indices m; (i) and m; (i) specify which element of Array 1 and which
element of Array 2 respectively is used to generate sample i. The total number
of spatio-temporal samples acquired in a measurement run is I = |[M].
Thus for a parallel sounding system, where M = {1,...,J} x {1,..., M;} x
{1,..., M,}, the number of samples is I = JM;M,. For a switched sounding
system where one sample is acquired in each sounding interval we have I = J.
Defining A;(0) = A(j(,-),ml(,-),,nz(,-))(()) we can now recast (B.14) as

A(B) = iA,-(é). (B.16)

The choice of indexing in (B.15) is not unique. The particular enumeration of
the elements of a sounding mode only determines the order of the terms in the
sum (B.16) which is irrelevant in the further development. The indexing can
therefore be selected arbitrarily by the system designer. In switched sounding
systems it is natural to select the indices such that j(i) =iand ) < f <--- <
t;. In parallel sounding systems however, indexing purely according to the
temporal order is not possible because the sounding pulses overlap in time.
We define the vector

a; = [t(i),n(i) ", ra(i) ] e R, (B.17)

where t(i) = tj(;), 11(i) = T,y and 12(i) = 1,,(;). We say that a; is the
center point of the ith spatio-temporal sample.

Definition B.2.2 (Spatio-temporal aperture matrix): The 7 x I spatio-temporal
aperture matrix A is determined as

Az[ay,...,a;,...,a;] e R™ (B.18)

with a; defined in (B.17).

Without loss of generality we select the origin of the spatio-temporal
coordinate system such that the columns of A fulfill

I
Zai =0. (B~19)
i=1
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Path #1

]

Fig. B.2: A sounding system with linear arrays. The black dots indicate the centroids of the antenna
elements.

However, as we will see in Subsection B.3.1 this condition has some optimality
property, in the sense that it ensures decoupling in the Fisher information
matrix between the linear (a,) and non-linear (9,) parameters of path ¢. The
spatio-temporal aperture is uniquely defined by the spatio-temporal aperture
matrix A together with the pulse length T.

B.2.4 Linear Antenna Arrays

For sounding systems with linear antenna arrays, as the one depicted in
Fig. B.2, the signal model can be simplified. We say that Array k is linear
if its elements are located along a straight line Dy through the origin of
Oy, i.e. 1y € Dy n Ry. In this case, the position of a point on the array
axis Dy is specified by the signed distance d; € R from the origin of Oy.
Likewise, dj (i) denotes the centroid position of the ith temporal sounding
pulse at Array k. Obviously, the full Qj ,-vector cannot be estimated in this
case but only its projection onto the array axis Dy. Therefore we replace Q ,
by this projection denoted by wy ,. It can be noticed that wy, = cos(yx )
where vy, is the angle between the array axis Dy and Qj,. We call wy,
the spatial frequency of Path € at Array 1. In the sequel we assume one-
dimensional arrays and replace ry by di, and Qy , by wy . Consequently,
a; = [Z’( ) dl( ) dz( )] € R3 0, = [OCg,Vg,a)lg,a)zg]T e Cx ]R3 and
0= [0 . HL] is a 4L-dimensional vector throughout the remainder of
this paper. We also define 9, 2 [vp, w1, 2] € R3>and 9 2 [9],...,9]]7
for the subsequent investigations.
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B.2.5  Specific Examples of Systems Using Linear Arrays

Innumericalexamples we will consider two switched systems named “MIMO-
ULA” and “SIMO-ULA, respectively. The MIMO-ULA system is equipped
with two uniformly spaced linear arrays consisting of My antenna elements
with half-a-wavelength inter-element spacing. The position of element m (i)
isgivenby d (i) = 1 (mk(i) — px), where py is selected such that (B.19) is ful-
filled. We define the antenna element index vector my 2 [m(1),..., mi(I)]"
The SIMO-ULA system is a MIMO-ULA system with M; = 1. For both
MIMO-ULA and SIMO-ULA the uniform temporal sampling

t(i)=(i-&)1, T.>T (B.20)

is selected. Here, T, denotes the time-period between consecutive samples.
With this definition Y1_, £(i) = 0, as required from (B.19). Hence, the spatio-
temporal aperture matrix A of the MIMO-ULA system is fully defined by the
vectors m; and my,. For the SIMO-ULA system it suffices to specify my.

For the MIMO-ULA system the estimation range £y, of 9, is given as

Ey, =& x Ey, x Eu, (B.21)

with &, = (_%T,’ +2LT,] and &,, = (-1, +1]. For the SIMO-ULA system, where
w1,¢ is not estimable, we select £, = {0}.

B.3  Fisher Information Matrix and Cramér-Rao Lower Bounds

In this section we investigate the effect of the spatio-temporal aperture matrix
A on the (conditional) Cramér-Rao lower bound (CRLB) and on the Bayesian
Cramér-Rao lower bound (BCRLB) for the estimation of the entries of the
parameter vector 0. The CRLB is a function of 8, whereas the BCRLB depends
on an assumed prior density function for 6 [18].

In the following subsections we first derive the CRLB for the estimator and
show which criterion the aperture matrix should fulfill in order to yield the
minimum CRLB in a scenario with one propagation path (L = 1). Thereafter
we show that the same criterion minimizes the BCRLB in the multipath case.

B.3.1  The Conditional Cramér-Rao Lower Bound

The CRLB on the variance of the estimation error of an unbiased estimator of
[0],,y can be calculated as the pth diagonal of the inverted Fisher information
matrix:

CRLB([0],) = [F(8)™'] (B.22)

pp’
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In Appendix B.I the Fisher information matrix F(@) for the estimation of 8
is shown to be of the form

Fg9, - Fop,
Fo)= : - (B.23)

Fg,0, -~ Fo,0,

where the sub-matrix Fy, g,, is partitioned as

F F
F()g()e; _ [ apopr ocg“)gr:| ) (B.24)
Fo,a, Fo,9,

Defining the normalized element factor of sounding pulse i (see also Sec-
tion B.4) as

EFy (3 1) é%/|pi(t)|2exp(]’2nvt) dt (B.25)

with pi(t) = pi(i).m(i)(t), the entries Fo,q,,, Fg,q, = FH

a9y’ and Fsgse, of
Fg,0, read

E 4 . .
Foya, = FOSR{ Z;exp(]271(9g—Sg/)Ta,-)EFn(w—v(g/; z)}, (B.26)

2nE . [ ) .
Fy,a, = TOER{(] - Day ;a,- -eXp(]ZT[(Sg—98,)Tai)EFn(Vg—v5/; z)},
(B.27)

and

8m°E N d . .

Fy,9, = No D‘i{ocgocgl Z;aiaiT : exp(]2n(9g—9gr)Ta,-)EFn(Vg—Vg/; z)}
i=

(B.28)

As can be noticed from (B.26)-(B.28), the matrix Fy (0, i general depends
on the parameter vectors 0, and 0. For £ = ¢/, the factor EF,,(v; i) in (B.25)
and the exponential terms in (B.26)-(B.28) are all unity. Therefore, making
use of the condition (B.19) and the identity Y/, a;a] = AAT we obtain

EI 87°E| o)

Fagocg =5 FS@(XZ = 0> and FS@S[ =

AAT. (B.29)
N() NO

As is apparent from (B.29), the matrix Fg,9, depends only on |a,| and not
on the remaining entries of 6. Notice, that the choice of a coordinate system
satisfying (B.19) ensures that Fg,,, = 0 holds. Similar effects have previously
been noticed for radar systems [19], for direction estimation [6], and for
switched sounding systems [2].
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B.3.2  The One-Path Case, Orthogonal Aperture

For the one-path case (L = 1) we have 8 = 6,. For simplicity we drop the
path index ¢ = 1. It follows from (B.23), (B.24) and (B.29) that the Fisher
information matrix reads

EL o7
F 0 = No > B
(6) [0 Fss] (B.30)
with
. . t't t'd; t'd,
Fyg :SﬂzyO}AAT =87%yp,- [d]t d]d, d]d|, (B.31)
dJt djd, dld,
where y, = oc|2£—£ is the signal to noise ratio (SNR) and t = [¢(1),...,t(I)]T,

di 2 [di(1),...,di(I)]T, k =1,2, denote the rows of A.

By inspection of (B.31) we see that the pth diagonal element of Fgg
depends only on the squared norm of the pth row of A, e.g. element (1,1) de-
pends only on |t|*. The off-diagonal elements of Fgg are cross-terms involving
scalar products of different rows of A. For example the off diagonal element
[Fgg]2.1 is proportional to d]' t.

Theorem B.3.1: The CRLBs for the estimation of the Doppler and spatial fre-
quencies fulfill the inequalities

1

CRLB(dy) > —————, k=12, and CRLB(D)>—r—.
872y, 1ldx[? 872y, |t

(B.32)

Moreover, equality in all three inequalities is achieved simultaneously in (B.32)
if, and only if, the rows of A are orthogonal, i.e.

t'd;=0, t'dy=0, anddd;=0. (B.33)

Proof. 1t is shown in [20, pp. 231] that [F]I_,}p < [F'],,p for any p, ie. [F];}P

lower bounds the CRLB for parameter [0],. Using Lemma B.IL3 given in
Appendix B.IT we see that the equality [Fgg];}p = [Fpglp,p is obtained for
all p if, and only if, Fgg is diagonal. By inspection of (B.30) we see that Fgg is
diagonal if, and only if, the rows of A fulfill (B.33). O

Restricting the comparison to the class of apertures with equal diagonal
elements in their associated Fisher information matrices we have the corol-
lary:
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Corollary B.3.2: Within the class of spatio-temporal apertures with identical
values of |t|?, |di|%, and |da|?, the minimum CRLB is obtained if, and only if,
the rows of the aperture matrix are orthogonal.

A result analog to Theorem B.3.1 for the joint estimation of elevation
and azimuth and elevation of arrival of a single path has previously been
published. As shown in [6, 7], the minimum CRLB for joint estimation of
azimuth and elevation from data collected with a three-dimensional array is
achieved if, and only if, the non-diagonal terms of the matrix ¥1_, r5(i)ry (i) 7
vanish.

B.3.3  Specific Examples (Continued)

In the following we demonstrate the impact of the spatio-temporal aperture
on the CRLB in the one-path case. We consider the CRLB of a MIMO-ULA
system with I = M;M,, and the commonly used sequential sounding mode

my(i) = [i/M,], and (B.34)
my(i) = (i—-1 mod M) +1. (B.35)

Equivalently, m; = [,2,...,M;]T ® Iy, and m; = I, ® [1,2,...,M;]".
We chose T, = T. This selection of my(i) ensures that all pairs of one
Array 1 element and one Array 2 element are active once, and, as we will
show in Section B.3.5, that d'd, = 0. The resulting spatio-temporal aperture
matrix yields a non-diagonal Fisher information matrix because t'd; # 0
and the minimum CRLB is not obtained. If in addition M; = M,, the Fisher
information matrix is non-invertible, and hence the CRLB is infinite. For
instance in the case where M; = 10 and M, = 9 the ratios between the CRLBs
obtained for the selected aperture matrix A resulting from (B.34) and (B.35)
and the minimum CRLB for v, w;, and w; are calculated as [F;},]m- [Fogl,, =~

15.4 dB, [Fgp),, - [Feols5 ~ 153 dB, and [Fgy], , - [Feely, ~ 1.27 dB,
respectively.

In the above example the spatial sounding was selected such that all
antenna array elements are active the same number of times during one
measurement run. In the next example we compare this case to the case where
some antenna elements are active more frequently than others.

With My = 8, k = 1,2 we see that |d|> = 84 if all Array k elements are
active 8 times. For comparison we select the spatial sampling schemes such
that m (i) € {1,2,7,8}, i.e. we use only four of the eight elements of each
array. In this case, provided all the used antenna array elements are active
the same number of times (i.e. 16 times) during the measurement run, we
have |dk|2 = 148. If both spatio-temporal apertures fulfill (B.33) we see that
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the CRLB in the latter case is lower than in the former case. The difference
amounts to approximately 2.46 dB.

These two examples clearly show that the sounding mode highly affects
the CRLBs for the estimation of spatial and Doppler frequencies in the one-
path case.

B.3.4 Orthogonal Apertures in the Multipath Case

Motivated by the above orthogonality criterion that applies to the one-path
case, it is of interest to see if this condition holds true in the multipath case as
well. As remarked in Section B.3.1, the Fisher information matrix depends on
the parameters to be estimated. In particular the oft-diagonals of the Fisher
information matrix which enters the proof of Theorem B.3.1 depend on the
path parameters. Thus it is difficult to give a characterization of the minimum
CRLB in the multipath case. To circumvent this obstacle we investigate the
BCRLB.
The BCRLB for the estimation of @ is [18]

BCRLB 2 (G +P)7, (B.36)

where G is the Fisher information matrix averaged with respect to the prior
density A(0)

G: /F(O))L(B)do (B.37)

and the matrix P depends only on the prior (and is independent of the
aperture matrix). The particular choice of prior does not affect our analysis
in the following.

By (B.23) we see that G can be written as

Goo, - Goo,
G=| : S (B.38)
Gg,9, - Gog,p,
with
Go,0, = fFegoe,A(e)de- (B.39)

We remark that the diagonal blocks of G read

-
Gagar 0 :| (B.40)

Go o =
Oue [ 0 Gsese
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with

El|ae*]-E
ngsg = SHZ%AAT; e = 1, ey L, (B41)

where E[|(Xg|2] denotes the expectation with respect to the prior of a,.
We are now able to give the following characterization of the aperture
matrices which yields the lowest BCRLB in the multipath case:

Theorem B.3.3: Let BCRLBy be the BCRLB resulting from the aperture matrix
A and similarly BCRLB, the BCRLB resulting from an arbitrary aperture

matrix A with the property that diag(AA") = diag(AAT). If the inequality
BCRLB, > BCRLB; (B.42)

is fulfilled for any such aperture matrix A then the rows of A are orthogonal.

Proof. We prove Theorem B.3.3 by proving that if the BCRLB of an aperture

matrix A is lower than or equal to the BCRLB of an orthogonal aperture
matrix A, then A is orthogonal as well. By the assumption (B.42),

(G+P) > (G+P)! (B.43)

is fulfilled for any G such that diag(AAT) = diag(AAT ). Making use of (B.69)
given in Appendix B.IT and eliminating the P terms we obtain from (B.43)

G:=>G. (B.44)

Then, by invoking Lemma B.IL.2 in Appendix B.II, and inserting (B.40) we
obtain after elimination of some irrelevant terms

[(AAT) ], , > [(AAT)fl]p,p, for all p. (B.45)

Now, suppose that A is row-orthogonal. Then AAT is diagonal and
[(AAT)™],, =1/[AAT],, forall p.Inserting in (B.45) yields

-

[(AAT) ],

From [21, Theorem 7.7.8] we have that [(AAT)_I]p,p > 1/[AAT]p,p for any
p. Since diag(AAT) = diag(AAT) then 1/[AAT],, = 1/[AAT]p,p for any
p. Hence [(AAT)_I] »p > 1/[AAT], , for any p. Combining this additional
inequality with (B.46) we obtain for any p

> [(AAT)fl]p,p for all p. (B.46)

1 —_— 1

—_— _1 —_—
[AAT]p,p 2 [(AA ) ]P>P 2 [AAT]p,p, (B-47)
o 1
= [(AAT)—I]p)p _ m (B.48)
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By Lemma B.IL.3 given in Appendix B.IL, the two inequalities in (B.47) are

fulfilled for all p if, and only if, AAT s diagonal. Hence, A is row-orthogonal.
O

It is worth noticing the difference between Theorem B.3.1 and Theo-
rem B.3.3. Theorem B.3.1 states that (in the one-path case), the orthogonality
condition (B.33) is a necessary and sufficient condition for the minimum
CRLB to be achieved. The result in Theorem B.3.3 states a necessary (but not
sufficient) condition for an aperture matrix to yield the minimum BCRLB
in the sense of (B.42). The reason for this seemingly weaker result is that the
cross-terms Gy, ¢, £ # €' in the matrices G and G are removed in the step from
(B.44) to (B.45). If the off-diagonal blocks should be taken into consideration,
more specific assumptions must be made about the prior. Considering a prior
and a group of apertures such that G, = 0, € # ¢/, one can prove that row-
orthogonality is a necessary and sufficient condition for an aperture matrix to
yield the minimum BCRLB. The proof is similar to the proof of Theorem B.3.1.

B.3.5  Uniform and Parallel Spatio-Temporal Apertures

In the following, we define the concept of uniformity of a spatio-temporal
aperture matrix and show that uniformity implies that this matrix is row-
orthogonal. For convenience we define the row indices p, g, and r of A such
that{p, g, r} = {1,2,3} isfulfilled. Letbbeacolumnof A,i.e.b € {a;,...,as}.
Then the number of columns of A that coincide with b in the pth and gth
elements can be written as

9pa(®) = [{i € (L., 1} s ([b]p [by) = ([adlp [aily) }-

Definition B.3.4: A spatio-temporal aperture matrix A is (p, q)-uniform if,
and only if, there exists a constant ¢, o such that ¢, (b) = ¢p 4, for all
be{ay,...,as}.

We can now prove a simple lemma which turns out to be helpful for the
design of row-orthogonal spatio-temporal aperture matrices.

Lemma B.3.5: Row p and row q of a (p, q)-uniform spatio-temporal aperture
matrix A are orthogonal.

Proof. Letc! = [c/1,...,c, ] denote the rth row of A and C, = UL_{c,;}.
Then Y1, ¢p.i = 95.4/Cl Yeyec, Cp- Therefore,
I
CJCP = ;Cq’icp’i = Ppq D, Cq D, pr

cq€Cqy  cpeCp

. I _ S 1 . _ T. _
By convention };_; ¢p,; = 0, which implies 3 ¢, ¢p = 0. Thusc;c, =0. O
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As an example, a (2,3)-uniform (i.e., spatially uniform) aperture is a
spatio-temporal aperture where all pairs of antenna array elements (m;, m;)
are active ¢, 3 times during one measurement run. For all spatially uniform
aperture matrices the condition ledz = 0 is fulfilled. For instance, the spatio-
temporal aperture matrix defined by (B.34) and (B.35) is spatially uniform
with ¢, 3 = 1and therefore, ledz = 0 in this case.

For a parallel sounding system with M, transmitters and M, receivers
where all antenna pairs are active simultaneously, we see that I = JM;M,.
In this case, A is (1,2)-uniform with ¢, = My, (1,3)-uniform with ¢35 =
M, and (2,3)-uniform with ¢,3 = J. Therefore, such a system always ful-
fills (B.33). This result agrees with the result in [22, 23], that [Fg,9,]13 =
[Fg,9,]31 = 0 always hold for a parallel system with M; = 1.

From the observation that parallel systems always fulfill (B.33), it might
seem tempting to conclude that parallel systems are preferable to switched
systems. However, the comparison of the CRLBs of different spatio-temporal
apertures must be done with the same SNR and thus with the same I for
all considered apertures. To illustrate the comparison problem we consider
the case where all antenna pairs are active once during the measurement
run. In a parallel system this condition implies that all samples are taken
simultaneously and therefore |t|* = 0. Hence, in this case, Doppler frequency
estimation is not possible. In a switched sounding system the same condition
implies that [t|* > 0 and thus a spatio-temporal aperture with finite CRLB
can be constructed. In general one can always construct a spatio-temporal
aperture of a switched sounding system with a value |t|* larger than that of
a parallel sounding system with the same number of samples. An additional
major difference between parallel and switched systems is that parallel sys-
tems do not allow for adjustments of |dj|* without changing the geometry of
the antenna arrays, as do switched systems.

B.4  Spatio-Temporal Ambiguity Function

In this section we define a (bi-)spatio-temporal ambiguity function for chan-
nel sounding. To our best knowledge, this problem has not previously been
addressed in published work yet.

Definition B.4.1: The Doppler-(bi-)direction ambiguity function of a
(bi-)spatio-temporal channel sounding system is defined to be

- 1 1 . .
1(9,9) = 5 / s5(:0)s:(:8)dt, (B.49)
i=1 Y Ti()

Ela*a <2
where s;(t;0) = 5i(iy my(i),my (i) (£ 0) With S}, m, (t; 0) defined in (B.s).
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The magnitude of the ambiguity function ranges from zero to unity. For
any 9 € Eg, |x(9, 9)| = L In the case where there exists a vector 9 € £, 9 # 9
such that [y(9, 9)| = 1, two signal components with parameter vectors 9 and
9 respectively are indistinguishable. This effect we call the ambiguity effect.

Due to the particular form of the sounding pulses (see e.g. (B.5)), the
ambiguity function in (B.49) can be recast as

. 1d .
x(9,9) = i > exp(—j2m(9 - 9)Ta;) - EF,(v-;i). (B.50)
i=1
Thus, x(9, 9) is a function of the difference vector 9 - 9,ie y(9,9) = xo(9-
9). For simplicity we refer to both x(9, 9) and xo(9) as “ambiguity function”.
It suffices to investigate the behaviour of yo(9) defined as

x0(9) = x(9,0) (B.51)

I
= % Zexp(—jZnSTa,-) -EFy(vs1). (B.52)
i=1

Notice that while the definition of Woodward’s ambiguity function [8]
involves the transmitted signal only, the definition (B.49) includes both the
transmitted temporal-signal and the spatial aperture. A more general class of
ambiguity functions is derived in [9], whereof the definition given in (B.49)
is a special case. It is shown in Appendix B.III that the Doppler-direction
ambiguity function fulfills a constant volume property as does Woodward’s
ambiguity function. Due to this property, ambiguity volume can be moved
from one region of the estimation range to another, but not canceled. Thus,
it a side-lobe of the ambiguity function is suppressed, the corresponding
suppressed ambiguity volume appears elsewhere.

Inspired by the terminology used in antenna theory [24], we call EF, (v; i)
the normalized element factor of the sounding pulse i. When all element
factors are equal, i.e. EF,(v;i) = EF,(v), the ambiguity function simplifies
to

x0(9) = EF,(v) - AF,(9;A), (B.53)
where
I
AF,(9;A) = % Zexp(—jZnSTai) (B.54)
i=1

is the normalized spatio-temporal array factor or array factor for short.
The factorization of (B.53) is analogous to the well-known factorization
in the theory of antenna systems. The radiation pattern of an antenna array
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with identical elements is the product of an element factor and an array
factor [24]. This factorization splits the impacts on the ambiguity function
of the array elements, reflected via the element factor, and of the aperture
configuration, reflected via the array factor. The main concern of this contri-
bution is the impact of the configuration of the spatio-temporal aperture of
a MIMO channel sounder. Thus, the factor of interest in the product (B.53)
is the array factor. Two equivalent conceptual approaches can be followed to
investigate the effect of the aperture configuration only. The first approach
consists merely in restricting the attention to the array factor of the aperture.
The second approach consists in considering an ambiguity function induced
by the aperture with the impact of the element factor dropped. This is achieved
by assuming that the element factor is constant. This assumption is often valid
since the duration of a measurement run is typically large compared to the
duration of a sounding pulse. The fact that both conceptual approaches are
equivalent follows from (B.53).

It follows from the definition (B.54) that the array factor achieves its
maximum value at 9§ = 0, namely |AF,(0; A)| = 1. If there exists a non-zero
9 € &y such that |AF,(9;A)| = 1 is fulfilled, the ambiguity effect occurs,
provided that the element factor is constant. This observation leads to the
following definition.

Definition B.4.2 (Ambiguous array factor): A spatio-temporal array factor
AF,(9; A) is ambiguous if there exist a 9 # 0 in Eg such that |AF,(9;A)| = L

A spatio-temporal array factor that is not ambiguous is termed a non-
ambiguous array factor. If a spatio-temporal aperture yields an ambiguous
array factor we say that the aperture is ambiguous.

In the following we analyze how the spatio-temporal aperture affects the
array factor. In particular we state a necessary and sufficient condition for a
spatio-temporal aperture to be ambiguous.

B.4.1  Specific Examples (Continued)

The following numerical examples illustrate the behavior of the array factor
for different spatio-temporal apertures. We consider a SIMO-ULA system
with I = 64 and M, = 8. Fig. B.3 reports the magnitude of the array fac-
tors corresponding to four different spatio-temporal apertures for (v, w;) €
(_%T,’ +2LT,] x (-1, +1]. In Fig. B.3 (a), m;(i) is given by (B.35). It is apparent
from the figure that the absolute value of the array factor exhibits multiple
maxima of unit magnitude and is therefore ambiguous. In Fig. B.3 (b), m, (i)
is defined by m, (i) = [i/8], i.e., each Array 2 element is active 8 times in
succession. As shown in Fig. B.3 (b) this yields a non-ambiguous array factor
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Case A |AF,(9;A)|
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Fig. B.3: The spatio-temporal arrays (left plots) and corresponding magnitude of the array factors
(right plots) in the four cases (a), (b), (c), and (d) described in the text. Each dot of the aperture
plots denotes one (t(i), d>(i)) point, i.e. the centroid of one spatio-temporal sample.
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with a unique maximum, but a wide main-lobe. Hence high variances of ¥
and @, are to be expected in this case at large SNRs. Furthermore, since the
main-lobe is tilted, an error in the Doppler frequency estimate affects the error
in the direction estimate and vice-versa. The two estimators are statistically
dependent. In Fig. B.3 (c), m; is defined by m; = 13®(3,2,7,1,5, 8,6, 4]T. This
spatial array corresponds to permuting the array element indices and then
applying the spatial sounding given in (B.35). It is apparent from Fig. B.3 (c)
that the array factor is non-ambiguous in this case and its main lobe is
narrower than the one depicted in Fig. B.3(b). However, “stripes” of side
lobes separated by é along the v T, axis are visible. Finally, Fig. B.3 (d) depicts
the array factor when m, results from a random permutation of the vector
Ig ® [1,2,...,8]". The depicted function has a unique maximum and the
magnitude of the highest side lobe is significantly lower than in Fig. B.3 (c).

Due to the factorization (B.53), the constant volume property of the
ambiguity function is fulfilled for the array factor as well. This effect is clearly
visible in Fig. B.3 (a)-(d). In Fig. B.3 (a) the ambiguity volume is concentrated
in eight lobes with unit maximum magnitude. Thus, the array factor depicted
in Fig. B.3 (a) is ambiguous. In Fig. B.3 (b) the volume is mainly located in
the wide main-lobe. In Fig. B.3 (c) the volume is concentrated in the main-
lobe and in stripes of side-lobes. In Fig. B.3(d) there is no large side-lobe
and the main-lobe remains rather narrow. Instead, the ambiguity volume is
distributed to the multiple small-magnitude side-lobes.

B.4.2  Necessary and Sufficient Condition for a Spatio-Temporal Aperture to
be Ambiguous

The following lemma gives a necessary and sufficient condition for a spatio-
temporal aperture to be ambiguous.
Lemma B.4.3: A spatio-temporal aperture is ambiguous if, and only if, there
exists 9 € £g, 9 + 0, such that

(ai—ai+1)T950 modl, i=1,...,1-1 (B.55)

Proof. The spatio-temporal array factor AF,(9;A) has magnitude 1 if, and
only if, the phases of the exponential terms in (B.54) satisfy

2ma 9=2na]9=---=27a; 9 mod 2. (B.56)

The total number of congruences in this system is the factorial of I. Solving
(B.56) is equivalent to solving the I —1 “neighboring” congruences (B.55). The
latter set of congruences is always fulfilled for the “trivial solution” 9 = 0. The
array factor AF,(9;A) is ambiguous if, and only if, (B.56) has a non-trivial
solution (9 £ 0) in &y. O

96



B.4. SPATIO-TEMPORAL AMBIGUITY FUNCTION

B.4.3 Specific Examples (Continued)

In the following we define a class of spatio-temporal apertures for a SIMO-
ULA system called modulo-type apertures and show that the elements in this
class are ambiguous.

Definition B.4.4: A modulo-type spatio-temporal aperture of a SIMO-ULA
system is an aperture satisfying

my(i) = (iK, + K, mod M) +1, (B.57)

where K,, Ky, € Z are relatively prime.

As an example the commonly used spatio-temporal aperture given in
(B.35) is a modulo-type aperture with K, =1and K, = -1.
For a SIMO-ULA system (B.55) reads

—vT+(da(i)—da(i+1))w, =0 mod 1, forallie{l,...,I-1}. (B.58)

It is easy to see that for a modulo-type aperture m (i) —my(i+1) € {-K,, Mp—
K,},foralli € {1,...,1-1}. Therefore, by inserting (B.57) in (B.58) we obtain
the congruences

vI,+ 2K, =0 modl, and 92 M, =0 mod L (B.59)
Solving for (vT}, ;) € (—%, %] x (=1,1] yields the system of equations

2n,

wz:ﬁz) nanm(—%,%], and
vTr:—Ka%+nb, npe{keZ:vT, e (-1,1]}. (B.60)
2

It can be seen that for each n, there exists a unique n; satisfying (B.60) such
that (B.56) holds. Therefore there exist in total M, different pairs (vT}, w;) €
(-1,1] % (-1,1] such that (B.56) is fulfilled. Thus, any modulo-type spatio-
temporal aperture of a SIMO-ULA system is ambiguous. As remarked in
Subsection B.4.1 this effect is clearly visible in Fig. B.3 (a) where the array
factor exhibit M, = 8 different lobes of unit magnitude at the positions
(T, w2) = (—ng[8,ng/4), ng = =3,-2,...,+4.

B.4.4 Component Apertures and Sub-Apertures

It is in general difficult to prove whether for a given spatio-temporal aperture
the system of congruences (B.55) is fulfilled or not. However, in the following
we give the definition of the two concepts of “component aperture” and “sub-
aperture” and show two corollaries of Lemma B.4.3 which are useful for
identifying ambiguous apertures.
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Definition B.4.5 (Component aperture): Let A be a spatio-temporal aperture
matrix. Then the aperture matrix A of a component aperture is obtained by
replacing one or two rows of A by the all-zero row.

Definition B.4.6 (Sub-aperture): Let A be spatio-temporal aperture matrix.
Then the aperture matrix of a sub-aperture is obtained by erasing a number
of columns in A.

Inserting Definition B.4.5 in Lemma B.4.3 yields the corollary:

Corollary B.4.7: A spatio-temporal aperture with one ambiguous component
aperture is ambiguous.

Corollary B.4.8: Any sub-aperture of an ambiguous aperture is ambiguous.

Proof. The proof follows from the observation that if (B.56) is fulfilled then
a subset of the congruences is fulfilled as well. Therefore, if (B.56) is fulfilled
for A, it is fulfilled for A too. |

As an example of Corollary B.4.7, a sufficient condition for an aperture
of a MIMO-ULA system to be ambiguous is that either m; or m; yield an
ambiguous array factor when used in a SIMO-ULA system. Therefore if a
modulo-type aperture is used at either the transmitter or the receiver in
a MIMO-ULA system, the corresponding array factor is ambiguous. It is
worth noting that the most commonly used spatio-temporal apertures are
indeed formed by a combination of a repetition scheme (as the one used in
Fig. B.3(b)) at Array 1 and a modulo-type scheme at the Array 2. Since in this
case the component aperture formed by the temporal aperture and the spatial
aperture at Array 2 is ambiguous, the whole bi-spatio-temporal aperture is
ambiguous.

We see by Corollary B.4.8 and the example given in Subsection B.4.3 that
any aperture formed by leaving out sounding pulse of a modulo-type aperture
is ambiguous. One such aperture was analyzed in [5].

B.5  The Impact of the Spatio-Temporal Aperture on
the Threshold Effect

In the following we investigate the effect of the spatio-temporal aperture
on the root mean-squared estimation error (RMSEE) of the joint Doppler
frequency and spatial frequency estimator. We consider the one-path case
(L =1). To simplify the notation we drop the path index € = 1in the sequel.
Generally the RMSEE of a nonlinear estimator exhibits the same typical
behavior that we sketch here considering the parameter vector 9. Below a
certain threshold ygj[ 4, in signal-to-noise ratio (SNR) the RMSEE of [9] »
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increases rapidly as the SNR decreases [25, 26]. This effect is commonly
known as the threshold effect. The previous sections show that the spatio-
temporal aperture determines the behavior of the array factor AF,(9;A) and
therefore of the ambiguity function yo(9). As can be seen from the examples
given in Section B.4.1, the magnitudes of the side-lobes of the array factor
depend on the spatio-temporal aperture. Consequently the spatio-temporal
aperture also affects the robustness of the estimators toward noise, since this
robustness directly depends on the magnitudes of the side-lobes [25]. In
the following, we use the normalized side-lobe level (NSL) associated with
a spatio-temporal aperture as a figure of merit for noise robustness of the
parameter estimators.

Definition B.5.1: The NSL associated with a spatio-temporal aperture matrix A

is defined as
NSL(A) = 1‘{1)132X|AFH(9;A)|, (B.61)
€

where £ = {9 € &y : %AFH(S;A) = 0,9 # 0} is the set of local maxima of
|AFn(95A)],9 € &y.

If a spatio-temporal aperture is ambiguous there exists by definition at
least one 9 # 0 such that |AF,(9;A)| = 1 and therefore NSL = 1. On the
contrary, a spatio-temporal aperture with NSL less than one has a unique
maximum. In that case the NSL coincides with the magnitude of the highest
side-lobe of the normalized array factor. Generally, the NSL is hard to obtain
analytically but it can however be computed numerically.

To study the relation between the NSL and y in more detail, a method for
computing y! is needed. Motivated by the observation that the estimators at
hand all converge to the CRLB at high SNR, y;})‘[ 3, is defined in the following

as the maximum y, such that the inequality

RMSEE([9],) < 21/CRLB([9],) (B.62)

is fulfilled. The threshold y of the joint estimator 9 is defined as the maxi-
mum of the thresholds of the individual estimators 7, @1, and @, i.e

th » th th th
Yo = maX{Yo,f/’ )}0,(2)1’ ))0,(2)2}' (B'63)

Hence, y'' can be determined if the RMSEE is known. In practice the RMSEE
and P are estimated by means of Monte Carlo simulations.

B.5.1 Specific Examples (Continued)

Fig. B.4 reports the results of a Monte Carlo simulation comparing the RM-

SEEs of ¥, @, and @, using two different orthogonal spatio-temporal aperture
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Fig. B.4: Simulated RMSEE-curves obtained from 1000 Monte Carlo runs using the two different
orthogonal spatio-temporal apertures A, (marked with x) and A, (marked with ¢ ). The dashed
lines are the corresponding CRLBs obtained from (B.32). The solid curves without marks show
the simulated RMSEE of the single-parameter maximum-likelihood estimator with all other
parameters known. A MIMO-ULA type system with My = M, = 8, and I = 64 is used and
91 = 0. Isotropic sounding pulses are assumed (EF(9) = 1).

matrices A, with NSL(A,) = 0.50 and A, with NSL(A,) = 0.63 together with
the corresponding CRLBs. The parameter setting used for this simulation is
reported in the caption of the figure. For comparison we have included the
simulated RMSEE of each single maximum likelihood estimator of v, w;, and
w, with the two other parameters known. These curves are lower bounds on
the RMSEEs when all parameters are estimated jointly.

In the A, case the threshold estimates ', fzg"d)l, and yf)hwz all take the
value 16 dB, hence

Do = max{ Py oy Do, ) = 16 dB; (B.64)
for A, the estimated threshold values are I, = P, =18 dB, i, =17 dB

and consequently " = 18 dB. Defining ?g}jsingle as the largest threshold

estimate for the single-parameter estimators we see that I exceeds )?f)hsin gle

by 2 dB and 4 dB in the A, and A, cases, respectively. The simulation results
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Fig. B.5: Simulated RMSEE-versus SNR for a SIMO-ULA system with settings M, =1, M, = 8
and I = 64. The remaining settings are the same as those reported in the caption of Fig. B.4.
The resulting RMSEESs of three spatio-temporal apertures with different NSLs are plotted. The
dashed lines are the corresponding CRLBs. The solid curves without marks show the RMSEEs of
the single-parameter maximum likelihood estimators when all other parameters are known.

given in Fig. B.4 suggest that one should select an orthogonal spatio-temporal
aperture matrix that yields the lowest possible yh.

We now consider a SIMO-ULA system and assume that w; is known. We
consider three spatio-temporal apertures with NSL = 0.27,0.89, and 0.98,
respectively. The simulated RMSEEs together with the corresponding CRLBs,
and the simulated single-parameter RMSEEs are reported in Fig. B.5. As can
be observed from the figure 7 increases with the NSL. In the NSL = 0.27
case, P exceeds ?g}jsingle by approximately 1 dB.

In the above investigation, a very large number of Monte Carlo runs is re-
quired to estimate the threshold position accurately. Therefore this approach
is not feasible when a large number of spatio-temporal aperture matrices
should be compared. Furthermore, the Monte Carlo simulations commonly
underestimate " due to the low outlier probability [27]. Hence the 1 values
obtained from Fig. B.4 and Fig. B.5 are too optimistic. Several methods for
estimating the threshold value of an estimator are available in the literature.
In [28, 29], Athley describes a method to approximate the RMSEE in the
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Fig. B.6: The estimated RMSEE threshold " as a function of the NSL. The points marked by e
are obtained from the Athley’s method, while the points marked with + are obtained from Monte
Carlo simulations. The simulation setting is described in the caption of Fig. B.5.

threshold region based on the magnitudes of the side-lobes of the ambiguity
function.

Fig. B.6 reports " for different selections of A as a function of the
corresponding NSL. The parameter settings are the same as in Fig. B.5. The
points marked by “e” are obtained using Athley’s method [28, eq. (20)]; the
points with mark “+” are obtained from Monte Carlo simulations with 1000
runs and varying y, in steps of 1 dB. It is apparent from the figure that
the values of ! obtained from the Monte Carlo simulations are maximally
4 dB lower than the j{*-values obtained using Athley’s method. This is to be
expected due to the finite number of Monte Carlo runs and the uncertainty
caused by the 1 dB quantization of y, used in the simulation. As can be seen
for both methods, the obtained estimates " exhibit an increasing trend with
respect to the NSL. Hence, the NSL can be used as a figure of merit to assess
the robustness of spatio-temporal aperture towards noise.

B.6 Conclusions

A novel model of wireless MIMO channel sounding systems was proposed.
This model is based on the concept of (bi-)spatio-temporal aperture and can
describe switched as well as parallel sounding systems. The proposed model
provides a description of the impact of spatio-temporal sounding on the
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joint estimation of Doppler frequency, direction of arrival and direction of
departure. The Fisher information matrix and the conditional Cramér-Rao
lower bounds (CRLBs) on the estimator variances were derived. For the one-
path case it was shown analytically that a spatio-temporal aperture fulfilling
an orthogonality property yields the minimum CRLBs. It was also shown
that the aperture which yields the minimum Bayesian CRLB (BCRLB) in the
multipath case also fulfills this orthogonality criterion.

An ambiguity function for Doppler-bi-direction estimation was defined.
The ambiguity function factorizes into an “element factor” multiplied by an
“array factor” The necessary and sufficient condition for the array factor to be
ambiguous was stated and a certain family of spatio-temporal apertures (the
so-called modulo-type apertures), which includes the most commonly used
apertures, were found to be ambiguous, i.e. to yield an ambiguous array factor.

Monte-Carlo simulations show that the normalized side-lobe level (NSL)
is a sensible figure of merit for the identification of spatio-temporal apertures
performing close to optimum in terms of root mean square estimation error
among the class of spatio-temporal apertures exhibiting the orthogonality
property.

As a general conclusion, when designing a spatio-temporal aperture for
joint estimation of Doppler frequency, direction of departure and direction
of arrival it is not advisable to optimize the temporal or spatial apertures
separately. Joint optimization of the bi-spatio-temporal aperture should be
performed instead.

B.I Derivation of the Conditional Fisher Information Matrix

The Fisher information matrix F(@) for joint estimation of the parameter

vector 0 = [HT,...,H-LF]T from an observation of Yi(t),..., Y;(t) can be
written as
Fgo, - Fgyg,
FO)= + -~ |, (B.65)
_F9L91 - Fo.g,

where we use the notation

9 9
-@A(a) FA(ﬁv) (B.66)

with the complex gradient defined as in [30, Appendix B]. We remark that in
(B.66) the explicit mentioning of the dependence of 6 has been dropped to
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simplify the notation. Using [2, Eq. (22)] Fg (0, €an be rewritten as

2 [ 9si(t,0) 0si(t,0)
F = %R - dt
%% = N, { f% 2 36,

i1 20,/
2 ! aS,'(Z'; 9@) 85*(1‘; 05/) }
- / Rl b, (Bey)
No { ; Ty 98¢ 20,

where s; (2, 0) = $i(i) m,(i),ms(i) (£ 0) With s}, m, (2; 0) given in (B.5). Insert-
ing (B.5) and (B.25) in (B.67) yields (B.24).

B.II Technical Lemmas

Lemma B.IL1 (Modified version of [21, Observation 7.1.2]): Letfc {L,...,n}
be an index set and U(f3) and V() be the principal sub-matrices of the positive
definite n x n matrices U and V formed by deleting the rows and columns
complementary to those indexed by . Then, we have

Ux>V=U(p)=V(p). (B.68)

Proof. Let x be a vector with arbitrary entries in the components indicated
by S and zero entries elsewhere. Let x(3) be the sub vector of x indicated by
B. Thus x"Ux = x(B)HU(B)x(B) and x"Vx = x(B)HV(B)x(B). The lemma
follows from insertion into x7Ux > x"Vx. O

We remark that for positive definite matrices Q and R
Q'>R'=R>Q. (B.69)

A proof of (B.69) is given in [21, Theorem 7.7.4].

Lemma B.IL2: Let Q and R be n x n positive definite matrices and let 3 c
{1,...,n} be an index set. Then the implication

R>Q=[(QB)) oy 2 [(R(B) pps pP=1L...,m (B.70)
holds.

Proof. From R > Q and Lemma B.IL.1 it follows that R(f3) > Q(f3). Then by
(B.69) we have (Q(f)) ™" > (Q(B))". Then Lemma B.IL.2 follows by applying
Lemma B.IL.1. O

Lemma BIL3: A positive definite matrix Q fulfills [Q '], = 1/[Q],p for all
p if, and only, if Q is diagonal.
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Proof. Itis easily checked that if Q is diagonal, then [Q '], , = 1/[Q ], for
all p.

We now prove the converse, i.e. if [Q7'],, = 1/[Q '], for all p then Q
is diagonal. Let Q,, = Q be an n x n positive definite matrix and partition it as

Q,= [Q”l ]"], (B.71)
]n ﬂn

where 7 is a scalar, j,, is a vector, Q,,_; is the upper left (n—1) x (n—1) principal
matrix of Q,,. Inversion of Q,, yields

1
Q) = ————. (B.72)
M +35Q 0,

Assume that [Q},'],,, = 1/[Q,],,p for all p and therefore in particular

[Qzl]n,n =1/[Qulnn =1/1n- (B.73)

Then (B.72) implies #,, + ng;l_ljn =1n orj:'le_ljn = 0. Since Q,, is positive
definite so is Q. Thus j"'Q,L,j, = 0 if, and only if, j, = 0. To complete
the proof we repeat the argument for Q,,_1,Q,,_, ..., Q, to show thatj, , =
0,j, ,=0,...,j, = 0and thus Q, is diagonal. O

B.III  Constant Volume Property of the Ambiguity Function

In the following the ambiguity volume V,my, = [z |xo(9)[*d9 is derived.
Making use of (B.49) some straightforward algebraic manipulations leads to

2

éZ/exp(jZ”(Vt“‘dl(i)wl+d2(i)w2))|pi(t)|2dt d9

amb =

(IE)2 f Z [ exp(an(ve+ di(iyan + ds(i)wa)lpi( 1) P

X Z/eXP( 2avt’ +di(i"w, + dy (i wy)) | pir (t)[Pdt’ d9

i’=1

I 1
(IE)2 >z (B.74)

i=1i'=1
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and

22 [f Ipi(0)Plpi (1)
x /;exp(jzn((t— t')v+
(di(i) = di (i) w; + (d2(i) — da2(i")) w5))d9 dtdt’
= [[ 1pePIpi ()P [ exp(jon(t - #)v) dvdrd’

X '/:1 exp(j2r(di(i) — di(i")) wy) dw;

. /j exp(j271(da(i) - da(i"))0>) dews
=4 -sinc (2n(di (i) - di(i"))) x sinc (2n(da(i) - da(i")))
< [ Ipi(t)Plps (D)t (8.75)

sm(x)

The function sinc(+) in (B.75) is defined as sinc(x) = ,x # 0 and
sinc(0) = 1. We notice that the integral term [ |p;(t)|*|ps (t)|2dt in (B.75)
vanishes for index values i, i’ such that (i) # #(i"). Similarly, sinc(27(dj (i)-
di(i"))) is zero for i,i" such that 2(dy (i) — dx(i")) is an integer. Thus, by
selecting spatio-temporal array such that for any i, i’ with #(i) = ¢(i") at least
one of the quantities 2(d; (i) — di(i")) and 2(d,(i) — d2(i")) is an integer, the
terms z; i/, i # i’ are zero. This condition holds for switched sounding systems
where i # i’ < t(i) # t(i"). The condition also holds for systems equipped
with uniform linear arrays with half-wavelength inter-element spacing.
For a spatio-temporal array such that z; ; = 0, i # i’ the ambiguity volume

reads
4 Z =1%i,i _ 4 Zzl‘:lf |pi(t)|4dt

(IE)? (IE)? '
Thus, for this class of spatio-temporal arrays, the ambiguity volume depends
only on the second order moment E and fourth order moments [ |p;(t)[*dt,
i =1,...,1 of the transmitted sounding pulses.

Vamb (B-76)
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C.1

C.1. INTRODUCTION

Abstract

Due to the significantly reduced cost and effort for system calibra-
tion time-division multiplexing (TDM) is a commonly used technique
to switch between the transmit and receive antennas in multiple-input
multiple-output (MIMO) radio channel sounding. Nonetheless, Baum
et al. [1, 2] have shown that phase noise of the transmitter and receiver
local oscillators, when it is assumed to be a white Gaussian random
process, can cause up to around 100 % errors of the estimated channel
capacity of a low-rank MIMO channel when using the standard chan-
nel matrix estimator. Experimental evidence shows that consecutive
phase noise samples affecting measurement samples collected with real
TDM-MIMO channel sounders are correlated. In addition the spatio-
temporal aperture induced by the selected switching schemes has an
impact on the ordering of the phase noise samples in the estimation of
the channel matrix estimate. This paper investigates how both effects
affect the channel capacity estimator based on the standard channel
matrix estimator. We show by means of Monte Carlo simulations that
by using an experimentally obtained ARMA model of phase noise the
predicted error of the ergodic capacity estimate is reduced compared
to the case where phase noise is white and Gaussian. We also show that
the estimated ergodic capacity is highly influenced by the choice of the
spatio-temporal aperture.

Introduction

To save hardware cost and alleviate the needed calibration procedures, most
advanced multiple-input multiple-output (MIMO) radio channel sounders
rely on a time-division multiplexing (TDM) technique. In such a system,
which is represented schematically in Fig. C.1, a single sounding waveform
generator is connected to a number of transmit antennas via a switch. Simi-
larly, the output terminals of the receive array are sensed via another switch.
Thereby channel observations are made via a spatio-temporal aperture [3].

Receiver

Transmitter

exp (jo (1))

Fig. C.1: Model for TDM-MIMO channel sounding with phase noise.
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It has been shown recently that the concatenated phase noise of the two
oscillators in the transmitter and the receiver affects the estimation of MIMO
channel capacity when using the standard channel matrix estimator to obtain
a capacity estimate [1, 4]. For short we call this concatenated noise the phase
noise of the sounding system. The effect of phase noise on MIMO capacity
estimation is studied in [4] assuming that phase noise is a random walk
process. Theoretical investigations reported in [1, 2] show that, provided phase
noise is white and Gaussian, it leads to large measurement errors in terms of
estimated channel capacity of a low-rank MIMO channel. In [2] a number
of analytical results are given under the assumptions that the TDM, i.e. the
spatio-temporal array [3], fulfills a separability condition and that the phase
noise process is white. However, experimental studies [5] show that phase
noise cannot be assumed white on the time-scale of a measurement period,
which is the observation period critical for capacity estimation. In addition,
the spatio-temporal aperture induced by the used switching schemes has
an impact on the ordering of the phase noise samples in the estimation of
the traditional channel matrix estimate. Both effects significantly affect the
performance of capacity estimation based on this matrix estimator. Finally, it
is worth mentioning that non-separable spatio-temporal arrays exist that are
more efficient than separable spatio-temporal arrays, in the sense that they
lead to better performance of bi-direction and Doppler frequency estimators
(3, 6].

In this paper we analyze the combined impact of phase noise correla-
tion and spatio-temporal aperture of a TDM-MIMO sounding system on
the capacity estimation based on the traditional channel matrix estimator
using the experimental phase noise model developed in [5]. We compare the
performance of separable and non-separable spatio-temporal arrays for the
purpose of capacity estimation.

C.2  System Model

We consider the TDM sounding system depicted schematically in Fig. C.1
with N transmit antennas and M receive antennas. As depicted in this figure
the observed signal is modulated with a time varying phasor exp(jo(t)).

C.2.1 Phase Noise Model

In the model proposed in [5], which we adopt here, the phase noise ¢(t) is
split into a non-stationary long-term component ¢y (t), and a wide-sense-
stationary short-term component @g(t) such that

o(ti) = ou(tx) + os(te), k=1,2,..., (C.1)
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normalized sample autocorrelation function

— — ARMA fitting

0.5}

Amplitude [linear]

-0.5

o 50 100 150 200
Lag [us]

Fig. C.2: Normalized sample autocorrelation function and autocorrelation function of the ARMA
process fitted to the short-term component of phase noise [5].

where f is the kth sample time instant. The short-term component is mod-
elled as an auto-regressive moving-average (ARMA) process. The long-term
component is modelled as an auto-regressive integrated moving average
(ARIMA) process. We refer to [5] for the specifications of these two processes.
On the scale of one measurement cycle, i.e. the period needed to sense all
MN sub-channels of the MIMO system the long-term component of phase
noise can be considered as constant. Without loss of generality we equate it
to zero: ¢ (t;) = 0. Fig. 2 depicts the normalized sample autocorrelation
function of the short term component of a measured phase noise series,
together with the normalized autocorrelation function of an ARMA process
fitted to this component. The sampling period T of the measured phase noise
is T = 2.54 us. It corresponds to twice the duration of a 127-chip long sequence
with a chip rate of 100 MHz. The same sampling period is used in the selected
phase noise model, i.e. ty = kT in (C.1).

C.2.2  Signal Model for TDM Sounding

The coeflicient hy,, of the sub-channel consisting of the mth transmit ar-
ray element, the propagation channel, and the nth receive array element is
measured with the transmitter switch in position n and the receiver switch
in position m (see Fig. C.1). At time f; a measurement is acquired with the
transmitter and receiver switches in position n(k) and m(k) respectively.
The sequence {(tx, m(k),n(k))} defines the spatio-temporal array of the
sounding system [3, 6]. The process of acquiring one measurement of the full
M x N channel matrix H, [H] 1, = By, is called a measurement cycle. The kth
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measurement belongs to the cycle with index i(k). A spatio-temporal array
is separable if it fulfills [2]

tk = i(k) Te + [trx]n(r) + [trx]m(i)> (C.2)

where try and tgy are vectors of dimensions N and M respectively, and T, =
MNT is the cycle duration.

Four examples of spatio-temporal arrays [3] are reported in Fig. C.3.
Array A is the traditionally used identity array [3, 6]. Array B is a cycle-
dependent spatio-temporal array optimized for joint Doppler frequency and
direction estimation [3, 6]. Array C is a modified version of Array A where
the receiver switching scheme has been changed to achieve non-separability.
Array D is a modified version of A, where the receiver switching sequence
has been modified in such a way that for every transmit antenna, the receive
antennas are switched in a different, randomly selected, order. Arrays B, C,
and D are not separable.

The channel matrix G; measured during cycle i is of the form [1]

G, =Hoexp(j®;), i=1...,1, (C3)

where [@;() ln(kynk) = ¢(tk), exp(-) is the element-wise exponential, o
denotes the Hadamard product, and I stands for the number of cycles. To
simplify the notation we introduce the phase noise matrices

Q; =exp(j®;), i=1,...,L (C.4)

It should be noticed that the ordering of the phase noise samples in @; is
determined by the spatio-temporal array. Thus the matrices ®; and G; also
depend on the spatio-temporal array.

C.2.3 Estimation of Capacity

When the channel is not known at the transmitter, but fully known at the
receiver, its capacity at signal-to-noise ratio p reads [7]

C(HH") = log, det(I + £HH"), (C.s)

where H denotes the Hermitian transpose of H. A straightforward estimate
of C(HHY) is C(HH®), where HHH is an estimate of HHY. In the sequel we
consider the standard estimate of HH" computed based on measurements
of H obtained with the considered TDM-MIMO channel sounder under the
assumption that channel noise is zero:

1
HHH = 7 Z G,Gi. (C.6)
1

In Section C.5 we comment further on the choice of the capacity estimator.
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C.3 A Scenario When Capacity Estimation is
Unaffected by Phase Noise

We consider the case where I = 1 and give the necessary and sufficient
condition on the phase noise matrix such that C(HH" ) = C(GG") is fulfilled
when H has rank one.

Theorem: Let H = abT where a and b are vectors with non-zero elements
and let G = Ho ©. Then

C(HH") = C(GG") & @ = U113V, (C7)

where Uand V are unitary matrices and 1, is an all-one vector of dimension p.
Proof. For any matrix H we have the condition

c(HHY) = ¢(GGM") « G =UHv, (C.8)

where U and V are unitary matrices. By the assumptions of the theorem the
right-hand identity in (C.8) reads

ab’ 0 ® = UHV (C.9)
=Uab'V. (C.10)

Using the identity ab” o @ = diag(a)® diag(b) [1, Lemma 1], with diag(-)
denoting the diagonal matrix with diagonal elements equal to the elements of
the vector given as an argument, in (C.10) yields

diag(a)® diag(b) = Uab V. (C.11)
Solving for ® we obtain
© = diag(a) 'Uab'V diag(b) . (C.12)

Noticing that for a diagonal matrix D and a unitary matrix S, there exists a
unitary matrix S such that SD = DS we can recast (C.12) as

© = Udiag(a) "ab" diag(b)™'V (C.13)
= ﬁlMIITVV, (C.14)
which is the sought identity. o

Example: We consider the case where the phasor exp(j$(t)) can be as-
sumed constant during the time needed to switch all receive antennas once.
This is the case when the normalized autocorrelation function is assumed
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close to unity for a time lag less that M T or, expressed in standard terminol-
ogy, when the coherence time of the short-term component of the phase noise
is larger than M T. Then [®],,, = 6, holds for all receive antenna indices m.
We see that in this case

Q= [9111\/1 9211\/[ e GNIM] (C.ls)
= Iy} diag(6y,.. ., 0x) (C.16)

and therefore, by Theorem 1, C(HH™) = C(GG!).

C.4 Numerical Results

Fig. C.4 reports the results of a Monte Carlo simulation of the ergodic capacity
estimate using the four spatio-temporal arrays defined in Fig. C.3 and the
experimental phase noise model described in Subsection C.2.1. In each Monte
Carlo run a rank-1 channel matrix H (i.e. a key-hole channel) with a single
non-zero eigenvalue of HH'! equal to M is generated. Phase noise is generated
according to the model given in [5]. The estimate of the ergodic capacity
resulting from one spatio-temporal array at a specific signal-to-noise ratio
is obtained by averaging over the capacity estimates computed from 100
Monte Carlo runs with this setting. The ergodic capacity estimates for the
case without phase noise and for the case with uncorrelated Gaussian phase
noise [1] are also given for comparison purpose.

As can be seen from Fig. C.4 all four simulation curves lie between the “No
phase noise” and “Uncorrelated phase noise” curves. Obviously, the lower the
curve is, the better the performance of the estimator is. We conclude that the
experimental phase noise model leads to a lower ergodic capacity estimate
compared to the uncorrelated phase noise case. The error reduction is a result
of the correlation among consecutive phase noise samples. Furthermore, the
performance of the ergodic capacity estimator is significantly affected by
the choice of the spatio-temporal array. Arrays A and B yield equal ergodic
capacity estimates, while the ergodic capacity estimate is slightly lower for
Array C. Among the tested arrays, Array D yields the highest ergodic capacity
estimate.

The reason for the gross difference in ergodic capacity estimate for Ar-
ray D compared to Arrays A, B, and C, is that the columns (and the rows) of
the phase noise matrix ®; are whitened due to the sample ordering induced
by Array D. It should be remarked that despite the similar performance of
the ergodic capacity estimators obtained with Arrays A, B and C, Array B is
superior in terms of higher accuracy and robustness of joint Doppler and bi-
direction estimates of path parameters [3, 6].
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Fig. C.3: Four spatio-temporal arrays with M = N = 8, I = 2 and the timing scheme defined
as ty = kT, where the sampling T is 2.54 us. Array A is the commonly used identity array
[6]; Array B is a cycle-dependent and non-separable array [6]; Array C is a modified version
of Array A where the receiver switching pattern is modified to achieve a non-separable array;
Array D is a non-separable array.
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Fig. C.4: Ergodic capacity estimate versus signal-to-noise ratio for a rank-1 channel as described

in the text. The spatio-temporal arrays marked A, B, C, and D are defined in Fig. C.3.
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C.5 Discussion

The numerical results presented in the previous section have shown that
short-term correlation of phase noise combined with appropriate choice of
the spatio-temporal array aperture enable to significantly reduce the impact
of phase noise on the capacity estimation based on the traditional channel
matrix estimator. Another straightforward way to reduce this impact is to
consider more than one cycle in (C.6), provided the channel can be assumed
time-invariant over the duration of all the considered cycles [8]. The example
in Section C.3 provides with some indication on an additional alternative:
Select the bandwidth of the feedback loop in the phase-locked loop of the local
oscillators in such a way that the resulting short-term phase noise exhibits a
coherence time larger than M T. In this method, the selected bandwidth de-
pends on both the number of elements in the receive array and the duration of
the sounding sequence. Interestingly, the number of elements in the transmit
array is not critical here.

However, the above approaches do not avoid the additional problem
that, in practice, the measured matrices {G;} are also impaired by additive
noise, an effect which also impairs on the accuracy of the capacity estimator
C (ﬁﬁT{) This problem, and in fact the sensitivity to phase noise as well, is
a consequence of the fact that the traditionally used estimator in (C.6) does
not take into account these two noises. Estimators of HH™ and H can be de-
rived that exploit the statistical properties of these noises in order to mitigate
their effects. Estimates H constructed from estimates of the parameters of
a parametric model of H seems to offer a promising solution. An example
is the recently published phase noise compensated SAGE estimator for the
estimation of path parameters [9]. This work shows that the effect of phase
noise can be mitigated by taking its statistical property into consideration in
the signal model underlying the derivation of the path parameter estimators.
However, an open issue is how the mismatch between the physical world and
the approximation of it provided the parametric model affects the capacity
estimate.

C.6 Conclusions

This paper has presented some results on the impact of TDM-MIMO channel
sounding on the estimation of MIMO channel capacity using the traditional
channel matrix estimator. The necessary and sufficient condition on the phase
noise matrix for the capacity estimate to be unaffected by phase noise is given.
It is shown by means of Monte Carlo simulations that the choice of spatio-
temporal array heavily impacts on the accuracy of the capacity estimator in
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the presence of correlated phase noise. It was found that non-separable arrays
exist that lead to the same capacity estimation error as separable arrays. As
shown in [3, 6], the use of non-separable arrays leads to a lower mean square
error and better ambiguity resolution abilities when used for estimation of
Doppler frequency and bi-direction.
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D.1. INTRODUCTION

Abstract

Due to the significantly reduced cost and effort for system calibra-
tion time-division multiplexing (TDM) is a commonly used technique
to switch between the transmit and receive antennas in multiple-input
multiple-output (MIMO) radio channel sounding. Nonetheless, Baum
et al. [1, 2] have shown that phase noise of the transmitter and receiver
local oscillators, when it is assumed to be a white Gaussian random pro-
cess, can cause large errors of the estimated channel capacity of a low-
rank MIMO channel when the standard channel matrix estimator is
used. Experimental evidence shows that consecutive phase noise sam-
ples affecting measurement samples collected with real TDM-MIMO
channel sounders are correlated. In this contribution a capacity esti-
mator that accounts for the phase noise correlation is proposed. The
estimator is based on a linear minimum mean square error estimate
of the MIMO channel matrix. It is shown by means of Monte Carlo
simulations assuming a measurement-based phase noise model, that
the MIMO channel capacity can be estimated accurately for signal-to-
noise ratios up to about 35 dB.

D.1  Introduction

To save hardware cost and alleviate the needed calibration procedures, most
advanced multiple-input multiple-output (MIMO) radio channel sounders
rely on a time-division multiplexing (TDM) technique. In such a system,
which is represented schematically in Fig. D.1, a single sounding waveform
generator is connected to a number of transmit antennas via a switch. Simi-
larly, the output terminals of the receive array are sensed via another switch.
Thereby channel observations are made via a spatio-temporal aperture [3].

It has been shown recently that concatenated phase noise of the two
oscillators in the transmitter and the receiver affects the estimation of MIMO
channel capacity when using the standard channel matrix estimator to obtain
a capacity estimate [1, 4]. For short we call this concatenated noise the phase

Receiver

exp(jp(tr)) Wk

Fig. D.1: Model for TDM-MIMO channel sounding with phase noise.
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noise of the sounding system. The effect of phase noise on MIMO capacity
estimation is studied in [4] assuming that phase noise is a random walk
process. Theoretical investigations reported in [1, 2] show that, provided phase
noise is white and Gaussian, it leads to large measurement errors in terms
of estimated channel capacity of a low-rank MIMO channel. In [2] analytical
results are given under the assumptions that the TDM, i.e. the spatio-temporal
array [3], fulfills a separability condition and that the phase noise process is
white. However, experimental studies reported in [5] show that phase noise
cannot be assumed to be white or a random walk on the time-scale of a
measurement period [5, 6]. In addition, the spatio-temporal array induced by
the used switching schemes [3] determines the ordering of the phase noise
samples in the estimation of the standard channel matrix estimate. Both
effects significantly affect the performance of capacity estimation based on
this matrix estimator [7].

In this paper we propose an new method for estimation of the channel
capacity from phase-noise impaired measurement data. The estimator relies
on linear minimum mean-square-error (MMSE) estimation of the channel
transfer matrix. The performance of the proposed estimator in terms of es-
timation accuracy is compared to standard estimators using the phase-noise
model developed in [5].

D.2  Signal Model for Phase-Noise Impaired TDM-MIMO Sounding

We consider the TDM sounding system depicted schematically in Fig. D.1
with N transmit antennas and M receive antennas. To allow for measurements
of the full M x N channel matrix H, [H] s, = hymy, the sounder is equipped
with a switch at the transmitter and a switch at the receiver. The channel
matrix H is assumed to be constant during one measurement run.' The coef-
ficient h,,, of the sub-channel consisting of the nth transmit array element,
the propagation channel, and the mth receive array element is measured with
the transmitter switch in position 7 and the receiver switch in position m (see
Fig. D.1). The receiver acquires K samples indexed by k = 1,.. ., K. Sample k is
obtained at time t; with the transmitter switch in position n(k) € {1,..., N}
and receiver switch in position m(k) € {1,..., M}. Thus, at time instant
tj the system performs a measurement of the channel coefficient h,, () (x)-
The sequence {(tx, m(k),n(k))} defines the spatio-temporal array of the
sounding system [3, 8]. We define the index set KC,,,, to be the set of sample

"The validity of this assumption depends on how rapidly the channel varies and on the
duration of the measurement. Assuming a stationary channel is necessary for the definition of
channel capacity given in Subsection D.3.1.

124



D.2. SIGNAL MODEL FOR PHASE-NOISE IMPAIRED TDM-MIMO SOUNDING

indices for which sub-channel (m, n) is measured, i.e.

Ko = {k :(m(k), n(k)) = (m,n)}. (D.1)

The cardinality of KC,,,, denoted by #/C,,,,, is equal to the number of samples
acquired from sub-channel (m, n).

As depicted in Fig. D.1, the observed signal is modulated with a time-
varying phasor exp(jg(t)) due to the phase noise in the oscillators of the
sounding system. The kth sample is modeled as

8k = Pmioynio) - exp(jo(tk)) + wi (D.2)

where {wy} is a white Gaussian noise process with sample variance o2. We
define the measurement signal-to-noise ratio (SNR) as y = o7 /0,, where o}
is the variance of one channel coefficient. We consider the case where phase
noise ¢(t) can be modeled as a wide-sense stationary process with mean zero
and a known autocorrelation function R, (7). This assumption hold true if
the time-span during which measurements are acquired is sufficiently short.
With the time-span considered in the following, this condition can be met by
commercially available channel sounders [5].

We define a K x M N sounding matrix S that rearranges the vectorized
channel matrix vec(H) according to the order in which the sub-channels are
measured:

Ron(1yn(1)

(D.3)

S-vec(H) = | hp(kyn(k)

(i (x)
i.e. the entries of row k of the sounding matrix are all zeros except for the
entry corresponding to the entry h,,(x),(x) of the vectorized channel ma-
trix vec(H). As an example consider a sounding system with M; = M, =
2, and K = 8 using the identity sounding mode with [n(1),...,n(8)] =
(1,1,2,2,1,1,2,2], [m(1),...,m(8)] = [1,2,1,2,1,2,2,1]. In this case,

1 hy
1 hy
1 hn hi
1| [~z hy,
S-vec(H) = ) | ho = e (D.4)
1 ha, hy
1 hiy
| 1‘ -hzz
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We can now, after defining the three vectors

g ¢ w1
g=|:|, o= : |, and w=z| : |, (D.s)

recast (D.2) in the compact form
g =[S -vec(H)]oexp(jo) +w, (D.6)

where o denotes the Hadamard (or element-wise) product and the exponen-
tial function is taken element-wise. Notice that if #; < t; < --- < tg then the
entries of the vectors defined in (D.5) are ordered according to the temporal
order.

In the case where each of the sub-channels is measured I times, the ob-
tained measurements can be arranged in matrices {G;} such that the entries
fulfils [G; (k)] m(k)yn(k) = §k Where i(k) € {1,...,1} is a cycle-index assigned
to sample k. There is a certain degree of freedom in the choice of i(k): if the
samples gx and g are both acquired from the same sub-channel we are free to
choose to assign the cycle indices as i(k) = 1,i(k") =2 ori(k) =2,i(k") = 1.

D.3  Estimation of Capacity

When the channel is not known at the transmitter, but fully known at the
receiver, its capacity at SNR p reads [9]

C(HH") = log, det(Iy + £HH"), (D.7)

where H" denotes the Hermitian transpose of H. The problem considered
here is to estimate the capacity C(HH™) from the noisy observation g. It is
important to distinguish between the SNR p in (D.7) at which we compute the
capacity and the SNR y during the measurement of g. In general we wish to
be able to compute capacities for other SNRs than the SNR prevailing during
the measurement, i.e. for p # y.

D.3.1  The Standard Capacity Estimator

The standard capacity estimator is defined as [1, 2, 7]
Cya = C(HHH), with HHH = (D.8)

where (-) denotes the estimate of the random element given as an argument.
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We remark that the standard estimator can be applied only when I sam-
ples from each sub-channel are available. It is also worth mentioning that the
standard estimator depends on the choice of i ( k). Therefore for the remainder
of the paper we chose i(k) according to the temporal ordering of the samples,
i.e. the first sample of sub-channel (m, n) is in G; and the second sample is
in Gy, etc.

D.3.2  Capacity Estimation by Averaging [6]

In [6] it is proposed to estimate the channel matrix by computing the average
of H of the data acquired during the measurement:

. 1
Havg = } Zle (D.9)
i=

This estimator can be generalized to non-cycled sounding as:

N 1
Havg |mn = . (D.10)
[ g] #,Cmn ke%nn gk

The capacity estimate Cavg is then defined as Cavg £ C (I:IanI:I';vg). This estima-

tor leads to an estimation error lower than that of the standard estimator [6]
and is independent of the choice of i(k).

D.3.3 Capacity Estimator based on a Linear MMSE Channel Estimate

Neither of the above estimators exploit the knowledge of the phase noise
autocorrelation R, (7). In the following we develop a new estimator for H that
takes this knowledge into account. The estimator relies on separate estimation
of the moduli (magnitudes) and the arguments (phases) of the channel coef-
ficients {h,,, }. Knowing the magnitude matrix Z = |H| and the phase angle
matrix Y £ 2« H we can recover the channel transfer matrix as

H = Zoexp(jY). (D.11)
Similarly, an estimate of H can be obtained from estimates of Z and Y as
H = Z o exp(jY). (D.12)

We estimate the magnitude matrix Z by averaging the magnitudes of the
acquired measurement data as

N 1
Z)mn = . (D.13)
2= 7= 3
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It is straightforward to show that [Z],, , this is an asymptotically consistent
estimator of |h,,,| when the SNR y tends to infinity.

The estimate of Y is less obvious. Using the definition of the phase oper-
ator 2, provided in Appendix D.I, we define the vector x = [xy,...,xx]" of
phases

xk = Aam(k)n(k)gk’ (D14)

where 2, . gk denotes the phase of g such that 2, . g € [ -
Am(k)yn(k)> T+ Gm(kyn(k)) With the real number a,,(x),(x) defined in Ap-
pendix D.I. Thus, x is available for the estimation of the matrix of phases Y
where element (m, n) of Y is defined as

11>

Ymn Lamnhmw (D~15)
Introducing the vector y = vec(Y) we obtain the following expression for x
x=Sy+¢+vV, (D.16)

which is valid when the measurement SNR y is high. In (D.16), the vector

v £ [v,...,vk]" is a real-valued additive noise resulting from the additive

noise w. As shown in Appendix D.II, v can be approximated as v ~ A/(0, %I)
The linear MMSE estimate of y from x is obtained as [10]

V= xTZ;Iny, (D.17)

where Xy denotes the covariance matrix of x and Z,y is the covariance ma-
trix of x and y. We assume that the phases of the channel coefficients are
uncorrelated random variables with mean zero. This assumption is a “worst
case” as in this case the estimator cannot exploit any correlation between the
phases of the sub-channels. We further assume that each element of y has
variance %2 corresponding to the variance of a random variable uniformly
distributed on the interval [-m, 7). Monte Carlo simulations of the mean
square estimation error show that this assumption is indeed appropriate.
Under these assumptions, E(y) = 0 and X, = %ZI. Hence, Zy reads

Sy = E(xy") = SE(yy') =82, = Ts. (D.18)

where we made use of the fact that ¢ and v have zero-mean and therefore by
(D.16), E(x) = 0. Using (D.16) and (D.18) the covariance matrix of x can be
derived as

2
Te=588T+3,+ 51, (D.19)
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Table D.1: Simulation Settings

Setting Value
M

N

I 2
K 128
9 kT
Sample time T 2.54 US
Monte Carlo Runs 100
rank (H) 1
y = 0/op 20 dB'
p 35 dBT

"When no other values are given.

where X, is the known covariance matrix of ¢ defined as
[Zglke = Ry (ti — te). (D.20)
Finally, we propose to use the capacity estimator:
Cumse = C(HA™), (D.21)
where H is given in (D.12) with 7 obtained from (D.13), and Y obtained from

(D.17) as Y = vec™\(¥).

D.4 Numerical Results

We now compare the proposed estimator and the estimators reported in Sub-
sections D.3.1 and D.3.2 by means of Monte Carlo simulations. The simulation
settings are reported in Table. D.1. On the time-scale used in the simulations
presented in this contribution, the phase noise process can be modeled as an
auto-regressive moving-average (ARMA) process of order (7,6) [5, 7]:

7 6
Pk =) bpPr_p+ Y. 0gdi_g+di, @i =(kT) (D.22)
p=1 q=1

where the driving process {dy} is a white Gaussian process with sample
variance ofl and T denotes the sample time. The phase noise process was
measured using a commercially available sounder as described in [5]. Fig. D.3
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depicts the sample autocorrelation function of the measured phase noise
series together with the autocorrelation function and the coefficients of the
fitted ARMA process [5].” The sample time T = 2.54 us corresponds to twice
the duration of a 127-chip long sequence with a chip rate of 100 MHz.

In each Monte Carlo run a rank-1 channel matrix H (i.e. a key-hole
channel) is generated.” Then phase noise is generated according to the above
model. The average capacity estimates are obtained by averaging over the
capacity estimates computed from 100 Monte Carlo runs.

Two different spatio-temporal arrays named Array A and Array B are
considered. The two arrays defined by m(k) and n(k) are given in Fig. D.2.
Array A is the commonly used identity array [3, 8] and Array B is a non-
separable spatio-temporal array optimized for high accuracy and robustness
of joint Doppler frequency and direction estimation [3, 8]. Array A is separa-
ble in the sense that it fulfills the condition [2]

tp = i(k)TC + [tTX]l’l(k) + [tRX]m(k)’ (D.23)

where t1y and try are vectors of dimensions N and M respectively and T, =
MNT.

Fig. D.4 reports the averaged estimated capacities obtained with the three
estimators when Array A and Array B given in Fig. D.2 are used. The resulting
capacity estimates are plotted as functions of the SNR p asin (D.7). Fig. D.4(a)
reports the estimates obtained using Array A. As can be seen from the figure,
all three estimators overestimate the capacity for p > 18 dB. It can be observed
that in this scenario, the estimators Cavg and CMMSE show the same accuracy,
while the standard estimator Cyq is less accurate. Fig. D.4(b) reports the
estimates using Array B. It can be observed that the estimators Ceq and Cyyq
perform significantly worse compared to Fig. D.4(a) as also reported in [7],
while the estimation accuracy of the proposed estimator Cypysg improves
drastically. In Fig. D.4(b), the capacity estimates diverge 51gn1ﬁcantly from
the true capacity at about 13 dB for estimators Cyq and Cavg, and at about
35 dB for the proposed estimator CMMSE. In practice, MIMO communication
systems seldom operate at SNRs as high as 35 dB. Thus, the proposed capacity
estimator can be seen to return valid estimates at SNRs considered in practice.

In Fig. D.5 the capacity estimates and the mean-square channel estimation
error obtained with Array B are reported versus the measurement SNR y for

*The parameter values reported in [5] differ from the values in Fig. D.3 even-though the
same measurement data was used. This discrepancy is due to an unfortunate misprint in [5].

*The impact of phase noise to estimation of capacity is most significant for low rank
channels [1, 2]. Thus, despite the fact that a key-hole channels are rare under realistic
propagation conditions, the low rank channel is useful for assessing the robustness of a capacity
estimator towards phase noise.
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—— Measured phase noise
— — Fitted ARMA process

0.02

0.01

Autocorrelation function

-0.01

o 1 2

Time-lag [s]

k 1 2 3 4 5 6 7

¢ -0.239 -0353 -1.085 0442 0508 0.227 -0.212
0 1.340 1.314 0.431 0.260 0.295 0.238 —

T=254ps, 02=4.44-10""rad®

Fig. D.3: Sample autocorrelation function (solid line) and autocorrelation function of the ARMA
process fitted to the short-term component of phase noise (broken line) [5]. The table reports the
parameters of the fitted ARMA process.

all three estimators. The mean square error of the channel matrix estimates
is computed by averaging the Frobenius norm of the error matrices H — H
generated in the Monte Carlo runs. It is apparent that the proposed MMSE
estimator yields a capacity estimation error lower than those obtained with
the other estimators and that it approaches the exact capacity for y higher than
about 20 dB. Furthermore, it can be seen that the proposed estimator yields
a five times lower mean square error than that achieved with the averaging
approach (D.g) for y > 20dB. This improvement results because the MMSE
estimator exploits the known autocorrelation of the phase noise.

D.s Conclusions

This paper has presented a new estimator for the MIMO channel capacity
for the case where the available channel measurements are impaired by both
phase noise and additive noise. The proposed estimator relies on separate
estimation of the magnitudes and phases of the channel coefficients and
exploits knowledge of the phases noise autocorrelation function. This au-
tocorrelation function can be obtained by calibration measurements of the
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Fig. D.5: Averaged capacity estimates and mean square error of the channel matrix estimates
versus SNR y. Array B is used. Upper panel: Estimated capacity with p = 35 dB. Lower panel:
Mean square error of the channel matrix estimates.

channel sounder. The proposed capacity estimator was compared to conven-
tional methods using two different spatio-temporal arrays. It was found by
simulation that the accuracy of the proposed capacity estimator is higher
when the measurement data is acquired using a non-separable array than
when using a separable identity array. Interestingly, the opposite effect applies
when the standard capacity estimator is applied: here the separable array leads
to the best performance. In conclusion, the simulation results show that the
proposed estimator leads to a significant improvement in the estimation of
channel capacity from phase-noise impaired measurement data compared to
the conventional estimators.

D.I Definition of the Angle Operator

The angle of a complex number is a real number that takes a value on an
interval of length 27, e.g the interval [a — 7, a + 7) where a is a real number.
We define the mapping

2,:C—>la-ma+m) st c=|c|lexp(j<qc). (D.24)

Notice that a can be any real number. For example it is customary to select a =
0. However, this causes problems when considering angles between pairs of
complex numbers. As an example the numbers exp(j(7 - §)) and exp(j(7+
%)), differ in angle by %, whereas <o exp(j(m—%)) - 2oexp(j(n+%)) = ZF.

We assume that the variance of the phase noise components is sufficiently

small such that the phases of the samples taken from sub-channel (m, n) all
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Fig. D.6: The noise projection in the complex plane used to compute an approximation of v in
(D.16).

lie in the interval [ 2ohuu — 55 £0hmn + 5] with high probability. In this case
we can define an angle mapping <, where the value of a,,, is defined as
the angle of the geometric mean of the set of samples taken from a specific
sub-channel (m, n):

1
Flmn
amn = 20| [] (&) - (D.25)

kelpn |gk|

For phase noise processes with sufficiently small sample variance, this per-
sub-channel definition of the angle operator enables computation of phase
differences between phases of measurements acquired from the same sub-
channel by subtraction of the phases.

D.II The Additive Noise in (D.16)

The kth noise sample v in (D.16) denotes the phase contribution due to
the additive complex noise sample wy. As illustrated in Fig. D.6, wy can be
decomposed into the radial component w}. and the tangential component
Jjwy. When |wy| is sufficiently small compared to |h,,(x)n(k)| We can use the
approximation |hm( K)n(k) [vi ~ w}(. Since wy is a zero-mean circular symmet-
ric complex Gaussian random variable, the tangential component is Gaussian
distributed with variance o2 /2. Then, when the above approximation is valid,
vk ~ N (0, % ). Thus the covariance matrix of v is ﬁl.
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E.l. INTRODUCTION

Abstract

In this contribution, we derive a probability distribution suitable
for characterizing bi-azimuth (azimuth of arrival and azimuth of de-
parture) direction dispersion of individual path components in the
response of the propagation channel. This distribution belongs to the
family of generalized von-Mises-Fisher distributions. The elements in
this family maximize the entropy under the constraint that the ex-
pectations and correlation matrix of the directions are known. The
probability density function (pdf) of the proposed distribution is used
to describe the bi-azimuth power spectrum of individual path compo-
nents. An estimator of the parameters of the pdf is derived and applied
to characterize the spreads in both azimuth of departure and azimuth of
arrival, as well as the correlation between both azimuths of individual
path components. Preliminary results from an experimental investiga-
tion demonstrate the applicability of the proposed characterization in
real environments.

E.1  Introduction

Due to the heterogeneity of the propagation environment, the received signal
at the receiver (Rx) of a radio communication system is the superposition of
a number of components. Each individual component, which we call “path
component’, is contributed by an electromagnetic wave propagating along a
path from the transmitter (Tx) to the Rx. Along this path, the wave inter-
acts with a certain number of objects referred to as scatterers. Due to the
geometrical and electromagnetic properties of the scatterers, the individual
path components may be dispersive in delay, direction of departure (DoD),
direction of arrival (DoA), polarizations, as well as in Doppler frequency
when the environment is time-variant.

Path components can be observed in the response of the channel and
any characterizing function derived from this response. As an example, in
Fig. E.1 we show two estimated power spectra with respect to azimuth of
departure (AoD) and azimuth of arrival (AoA) at specific delays calculated
from measurement data using the Bartlett beamformer [2]. In the sequel, we
refer to these spectra as (bi-azimuth) Bartlett spectra. A certain number of
spots can be observed. Each spot corresponds to either one or more spe-
cific path components. It can be observed from Fig. E.1 (a) and (b) that the
path components are spread in AoA and AoD. Moreover, they appear tilted.
Both effects are due to the geometrical and electromagnetic properties of the
scatterers along the paths, as well as the response - in particular the limited
resolution - of the measurement equipment.
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Fig. E.1: Examples of two bi-azimuth Bartlett spectra calculated at specific relative delays (78 ns,
133 ns) from the correlator output of the channel sounder [1] in (a) an office; (b) a big hall. In the
calculation, the responses of the Tx and Rx arrays in vertical-polarization only are considered.
The details of the measurement campaign and measurement setup are provided in Section E.5.

Recently, estimation of the characteristics of individual path components
have gained much attention. The conventional approach consists in estimat-
ing the channel response and any characterizing functions derived from this
response. An example of the characterizing function is the power spectrum
and a traditional estimate of it is the Bartlett spectrum. However, due to the
response of the measurement equipment, the path components are blurred
and consequently, their spreads are artificially increased. In recent years,
several model-based estimation techniques have been proposed to estimate
the nominal azimuth and azimuth dispersion of the path components at one
side of the link [3] [4] [5]. These techniques are based on the assumption that
the azimuth power spectra of individual path components exhibit a shape
which is close to that of the probability density function (pdf) of a certain
distribution, like the uniform distribution [4], the (truncated) Gaussian dis-
tribution [3] [4] and the von-Mises distribution [5].

In this contribution, we propose an entropy-maximizing bi-direction (i.e.
DoD and DoA) distribution to characterize bi-direction dispersion by means
of the mean directions and correlation matrix between both directions. Such
distributions have been derived in [6] and are called generalized von-Mises-
Fisher distributions. We consider the case of horizontal-only propagation.
The von-Mises-Fisher distribution is described by three free parameters (two
vector parameters and one matrix parameter) that we identify. To do so, we as-
sume that in the case where the path components are slightly dispersive the bi-
azimuth distribution is close to a two-dimensional (2-D) truncated Gaussian
distribution. Furthermore, we derive a maximum likelihood estimator for the
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parameters of the pdf of the von-Mises Fisher distribution. This estimator is
applicable in time-variant environments, i.e. when fast-fading occurs [7].
The organization of this contribution is as follows. In Section E.2, we
derive the pdf of the bi-variate von-Mises-Fisher distribution. Section E.3
presents the signal model describing bi-azimuth dispersion of path compo-
nents. The maximum likelihood estimator of the parameters of the pdf is
derived in Section E.4. Section E.5 presents the result of the experimental
investigation. Finally concluding remarks are made in Section E.6.

E.2  Von-Mises-Fisher Distribution

Following the nomenclature in [8], we use a unit vector Q to characterize a
direction. In the considered case of horizontal-only propagation, the vector Q
has its initial point anchored at the origin O of a coordinate system specified
in the region surrounding the array of interest, and terminal point located
on a unit circle S; centered at O. The vector Q is uniquely determined by its
azimuth ¢. The one-to-one relation between Q and ¢ is

Q= e(¢) = [cos(¢),sin(¢)]" (E.1)

with [-]T denoting transposition.

Among all probability distributions on S;, the von-Mises distribution ap-
pears to be a natural candidate to describe direction dispersion by individual
path components, provided the characterization of direction dispersion is
only by means of the mean direction E[Q] [8]. The von-Mises distribution
shares the same virtue as the Gaussian distribution, namely it maximizes the
entropy among the family of probability distributions on the circle with the
constraint that the second central moment is fixed. Notice that the second
central moment of a circular distribution is the direction spread [8]. It is
uniquely determined by the norm of the mean direction. Indeed, if o denotes
the direction spread, then oq = \/1- |E[Q]|? [8]. The pdf of the von-Mises
distribution reads [6, Sect. 2.1]

f(Q) = exp{KQ Q},

2nly ( )
where I,,(-) is the modified Bessel function of the first kind and order n,

> 0 is called the concentration parameter, and Q = e(¢) denotes a unit
vector with azimuth ¢ equal to the azimuth of E[Q]. The azimuth distribution
induced by the von-Mises distribution via the mapping (E.1) has the pdf [9, P.
36]

f(¢) = exp{xcos(¢ - ¢)}. (E2)

21()
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By a generalization of terminology, the azimuth probability distribution with
the pdf (E.2) is referred to the von-Mises distribution as well.

Note that throughout the paper, azimuth variables are within the range
[-7, 7). Addition and subtraction of azimuth variables are defined in such a
way that the resulting angle lies in the range [ -7, 7). When « is large, typically
K>7,

(¢-¢)° ~ |o-af (E:3)
holds, which leads to the approximation cos(¢—¢) ~ 1—3(¢ — ¢). Inserting

this approximation in (E.2) yields the Gaussian pdf fg(¢) = L exp{—5(¢-

_ V2n
$)*} [9, P.37].

In the sequel, we derive a bivariate pdf of the DoA Q,; and the DoD Q,
for horizontal-only propagation. The symbols with subscript 1 and 2 are with
respect to the Tx array and the Rx array respectively. It is shown in [6] that
the maximum entropy bi-direction distribution when the expectations E[ ;]
and E[Q,] and the correlation matrix E[Q,Q; | are specified has a pdf of the
form

F(Q1,Q,) = C-exp{a; Q; +a) Q, + Q] AQ,}, (E.4)

where C denotes a normalization factor, aj,a, € R*! and A ¢ R**2. Fol-
lowing [6] we refer to this distribution as the generalized von-Mises-Fisher
distribution.

The parameters a;, a; and A in (E.4) are free parameters, the specification
of which depends on the particular problem at hand. To find the appropriate
expressions of aj, a; and A for our particular application, i.e. the character-
ization of bi-azimuth dispersion, we postulate that, for slightly distributed
path components, the bi-azimuth pdf induced by (E.4) via the mapping (E.1)
should be close to the truncated pdf of a 2-D Gaussian distribution:

fG(Sbb ¢2) o< exp{—2(1 i p2) . [(¢1;¢1)
+(¢2—¢32)2_2p(¢1—¢1)(¢2—§52)]}' -

(%] 0102

Notice that the traditional meaning of the parameters o0y, 0, and p as second-
order central moments of a bivariate Gaussian distribution does not hold any
more for the pdf (E.5) due to the fact that the azimuth ranges are bounded.
In the case where the path components are slightly dispersive, the approxi-
mation in (E.3) is valid for both AoA and AoD. In addition, the approximation

(¢1— ¢1) (g2 - $2) ~ (21— Q) "R(Q2 - Q) (E.6)
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holds where

(i -1 [cos(¢r—2) —sin(¢r - §2)
REBOPOB() = | Gn(g- ) cos(i-) |

The matrix B(¢) is the orthonormal matrix that rotates the vector e(¢) to
[0,1]. Hence, B($) = [e'(¢) e($)] with e*(¢) = e(¢ + 7/2) denoting
the unit vector portside orthogonal to e(¢). The right-hand-side of (E.6) is
rotational invariant, i.e. it does not change when for any specific index i €
{1,2}, Q;, Q; and e(¢;) are rotated by an identical arbitrary azimuth.

Inserting (E.3) and (E.6) into (E.5) and identifying (E.4) and (E.5), we
obtain after some straightforward algebraic manipulations

P Ki\ -
aim ——(1-p\ [ ), i je{1,2), i%)

Ki

with the definitions «; = o} 2i=1,2. Inserting the right-hand-sides in (E.4)
yields the sought pdf:

£, 9) = C-exp{ £ VPK”‘ZQI O+
Ky — P\p/ K1K2 Qz P\/_K/1372€2 Q;RQZ}- (E.7)

The normalization constant C can be computed from the expression derived
in [10, P. 167] for the general form (E.7):

e B (e )

m=0

From (E.7) the joint pdf of ¢; and ¢, is calculated to be

(o) = Cexpl (525 ) cos( - )

( lp\/W) cos(¢2 — $2)

Px /Kle

os[(¢1 - ¢1)—(¢2—¢32)]}- (E.8)
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Fig. E.2: Contour plots of the bi-azimuth pdf (E.8) with parameter settings ¢\ = ¢, = 90° and (a)
(k1, %2, p) = (30,40,0.5), (b) (x1, %2, p) = (2,2,-0.5).

Fig. E.2 illustrates the contour plots of (E.8) for two different settings of
the parameters «;, k; and p. It can be observed that when «; and «; are large,
the contour lines are close to tilted ellipses. This is consistent with the fact that
the pdf (E.8) is close to a bivariate normal pdf in this case. When both %; and
x are small, the contour lines are still close to ellipses in a range enclosing
(¢1, $2). This observation indicates that in this region the pdf (E.8) can be
approximated by a bivariate normal pdf as well.

E.3  Signal Model for Bi-azimuth Dispersion by Path Components in
MIMO Channel Sounding

We consider horizontal-only propagation and narrow-band transmission.
The latter condition implies that the product of the signal bandwidth times the
channel delay spread is much smaller than one. Following the nomenclature
in [8], the continuous-time output signal of the Rx array reads

Y(t) =H(t)s(t) + W(t)

- [ [ ex@ent@) (s ed0don s+ W, (ko)

The M,-D complex vector Y(t) € CM2*! contains the output signals of the Rx
array observed at time instance ¢. The matrix H(t) € CM2*Mi represents the
time-variant transfer matrix of the MIMO system. The M;-D vector s(t) €
CM! denotes the complex envelope of the transmitted signal. The function
h(t; ¢1, ¢2) is referred to as the (time-variant) bi-azimuth spread function of
the propagation channel [8]. In a scenario where the electromagnetic energy
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propagates from the Tx to the Rx via D paths, h(; ¢1, ¢2) can be decomposed
as

D
h(t; 1, ¢2) = Zhd(t; b1, ¢2). (E.10)
d=1

The summand h,;(t; ¢1, ¢2) denotes the dth path component in h(t; ¢y, $2).
The noise component W(¢) € CM>*! in (E.9) is a vector-valued circularly
symmetric, spatially and temporally white Gaussian process with component
spectral height o2. Finally, the complex vectors

ci(@) = [cin(@)s- s Cim,(@)s-scing,(¢)] e CM™,i=1,2

are the responses of the Tx array (i = 1) and the Rx array (i = 2).
Moreover, we make the following assumptions regarding the properties
of some components in (E.9):

a. The channel is sounded during N non-overlapping intervals of dura-
tion T. Thus, the overall sounding period is of the form U_, [¢,, t, + T)
where t,, denotes the beginning of the nth interval and t,4; > t, + T,
n=1,...,N.

b. The sounding signal s(¢) is known to the Rx. Its components are or-
thonormal’, i.e.

ty+T
f s()s()dt =Ty, nell,...,N]
Iy

- Here, Iy denotes an identity matrix of dimension given as an index.
c. The transfer matrix H(¢) fluctuates over the overall sounding period,
but it is constant within individual observation intervals:
H(t)=H(t,) =H,, te[t,t,+T).
Similarly, the bi-azimuth spread function h;(t; ¢1, ¢,) arising in (E.10)
is constant within individual observation intervals:
ha(t; @1, $2) = ha(tns $1,62) = han(1, $2),  t€[tn, tn+T).

The processes hg ,(¢1,¢2), n € [1,...,N], d€[l,...,D] are uncor-
related complex (zero-mean) orthogonal stochastic measures, i.e.

E[h;,n(¢l’ (/)Z)hd’,n'((p{’ (p;)] =
Pi( b1, $2)8un8aard (1 — ¢1)8(d2 — ¢5), (E.11)

"The orthogonality of the signal components can be obtained by using different sounding
techniques, such as time-division [11] and frequency-division multiplexing. It can be also
nearly achieved by using different pseudo-noise (PN) sequences or differently-shifted versions
of the same PN sequence as the components of the sounding signal s(¢).
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where (-)* denotes the complex conjugate, &(.y and §(-) represent the
Kronecker delta and the Dirac delta function respectively, and P;(¢;,
¢2) = E[|hg..(¢1, ¢2)|*] is the bi-azimuth power spectrum of the dth
path component. Thus, identity (E.11) implies that the spread functions
of different individual path components or at different observation
intervals are uncorrelated. This scenario is referred to as the incoherent-
distributed-source case in the literature (see e.g. [12]).

d. The spectrum Py(¢y, ¢,) describes the manner the average power of
the dth path component is distributed with respect to both AoD and
AoA. We assume P;(¢1, ¢2) = Py - f1(d1, ¢2) with P, representing the
total average power of the dth path component and f;(¢1, ¢, ) being of
the form (E.8) with path-specific parameters

04 = [Pas a2 Kar>Kaz pal-

E.4 Maximum Likelihood Estimation

Let 0 denote a vector containing the model parameters in (E.9)
0= [O’i,Pl,Pz, ...,Pp,0,0,,..., BD]

Under the assumption that the components of s(t) are orthonormal, the M, x
M, matrices

—

th+T
H, = / y(t)s(t)Hdt, n=1,...,N (E.12)
tn

form a sufficient statistic for the estimation of 0. It can be shown that H,, = H+
N, where N, e CM>*M1 3 =1 .. Nisa sequence of independent random

matrices the entries of which are independent circularly symmetric Gaussian

random variables with variance ¢2.

The maximum likelihood estimate of 0 based on the observation Y(t) =
y(t) during the sounding interval UY_,[t,, t, + T) is a solution of [2]:

0= argméix{—lnHEH - tr[(Z)_lﬁ‘.]} (E.13)

with tr[-] representing the trace of the matrix given as an argument and

% = E[vec[H,] - vec[H,]"]

= ZPd/] a(g)er (¢1)]1®[ca($2)ch' ($2)]fa (1, ¢2)drdds + 0nag

(E.14)
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Fig. E.3: (a): Bi-azimuth Bartlett spectrum calculated from the received signal as is; (b): Bi-
azimuth Bartlett spectrum calculated from the matrix X in (E.14) parameterized with the
estimate 0; (c): Contour lines of the estimated bi-azimuth power spectrum using the proposed
characterization by means of the von-Mises-Fisher pdf (E.8).

where the operator vec[-] stacks the columns of the given matrix into a vector
and ® denotes the Kronecker product. In (E.13) the matrix

1
N

—

2= vec[H,]vec[H,]"

M=

n=1

is an estimate of £ computed from the observation y(t) over UN_,[t,, t, + T).

Calculation of § requires (5D +1)-D maximization operations. The SAGE
algorithm described in [13] can be used to compute a low-complexity approx-
imation of the maximum likelihood estimator in (E.13).

E.5 Preliminary Experimental Investigation

In this section, we assess the applicability of the characterization by means of
the von-Mises-Fisher pdf (E.8) in a real environment. The measurement data
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were obtained with the MIMO wideband radio channel sounder Elektrobit
Propsound CS [1]. The measurement campaign was conducted in a big hall at
a center frequency of 5.2 GHz with bandwidth 100 MHz. The Tx and Rx were
both equipped with two similar 9-element circular arrays. The polarization di-
rection of the elements is 45° slanted with respect to the vertical. The positions
of the Rx and Tx were kept fixed. The hall was crowded with people moving
around during the measurement runs. This introduced time variations of
the channel response. The equipment collects wideband measurement data.
However, the narrowband model developed in Sect. E.3 can still be applied
by considering the correlator output of the channel sounder at some specific
relative delay.

We specifically selected a propagation scenario and for that scenario,
a relative delay at which only few path components can be observed. The
Bartlett spectrum shown in Fig. E.1 (b) corresponds to such a situation with
two or, possibly, three path components. Portion of this Bartlett spectrum
including the path components is reproduced in Fig. E.3 (a).

The SAGE algorithm is used to estimate the parameters of the path com-
ponents. In this preliminary study, we assume that the number of path com-
ponents is known in advance. In the considered case, this number equals 3,
which coincides with the amount of the path components that can be visually
identified from the Bartlett spectrum shown in Fig. E.1 (b). We consider verti-
cal polarization only, i.e. the vectors ¢;(¢), i = 1,2 used in the calculation of £
in (E.14) are the array responses for vertical polarization. The initial estimates
of the parameters of the individual path components are computed using
a combination of the successive interference cancelation method described
in [13] and an estimator derived based on the generalized array manifold
model [14]. At each iteration of the SAGE algorithm, the parameter estimates
of one path component and the estimate of the noise spectral height o2 are
updated. The admissible hidden data is selected to be the sum of the path
component, of which the parameters are estimated, and an M,-D noise vector
with statistical properties identical to those of W(t) weighted by 1/\/3. The
definition and meaning of the weighting factor are given in [13].

The obtained parameter estimates are reported in Table E.1. Estimates
64; = \/1/kai»d = 1,2,3, i = 1,2 of the azimuth spreads of the path
components expressed in degree are also provided. Fig. E.3 (c) depicts the
estimated bi-azimuth power spectrum

3 A
P(¢1,¢2) = Zpdfd((pl:ﬁbz), (E.15)
d=1

where f;(¢1, ¢2) denotes the pdf f(¢1,¢,) in (E.8) parameterized with the
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Table E.1: Parameter estimates in the experimental investigation.

d Qa1 ¢ap  Rag 041 Kdz  0Odp pd Py/a}

48°  8° 6.29 22.9° 480 2.6° 0.02 15.5dB
34°  4° 15375 4.6° 1836 13.4° -0.83 4.69dB
3 154° 24° 233.02 3.8° 320 3.2° 070 11.1dB

estimate éd- From Fig. E.3 (c), we observe that the path components are
significantly more concentrated than the corresponding components in the
Bartlett spectrum shown in Fig. E.3 (a). Moreover, the third path component
in Fig. E.3 (c) appears to be stronger than the first component even though
Ps < Py. This is because the power spectrum of the third path component is
more concentrated than the spectrum of the first component.

Fig. E.3 (b) depicts the Bartlett spectrum calculated from the recon-
structed signal with the bi-azimuth power spectrum (E.15). Notice that the
spectral height estimate EE is also considered in the calculation. The blurring
effect due to the limited resolution in azimuth of the used arrays is clearly
demonstrated. As a result, the path components in the Bartlett spectrum
exhibit significantly larger spreads compared to the spreads of the estimated
components. Notice that the Bartlett spectrum shown in Fig. E.3 (b) looks
similar to the spectrum in Fig. E.3 (a). Furthermore, it is observed that the
magnitude of the path components depicted in Fig. E.3 (b) is lower than
that observed in Fig. E.3 (a). This is consistent with an analytical result not
reported here, which shows that the power estimate of a path component is
reduced, compared to the true value, by a certain amount depending on the
residual interference. This interference results since the path components are
not estimated exactly due to either model mismatch or errors in the parameter
estimation.

Calculations show that the ratio of the maximum of the Bartlett spectrum
computed from the reconstructed signal with ¢2 = 0 to the maximum of
the Bartlett spectrum calculated from the received signal, is equal to 68.7%.
Experimental investigations also show that this number reduces to 37.7%
when the ISIS algorithm [11] derived based on the specular-scatterer model
is applied to the same measurement data. This observation, together with the
conclusions drawn from Fig. E.3, demonstrate that the von-Mises-Fisher pdf
(E.8) provides an appropriate characterization of bi-azimuth dispersion by
individual path components.
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E.6 Conclusions

In this contribution, we proposed a bi-variate generalized von-Mises-Fisher
probability density function (pdf) suitable for characterizing bi-azimuth (az-
imuth of arrival and azimuth of departure) dispersion of individual path
components. We also derived an estimator of the parameters of the pdf. Pre-
liminary experimental results demonstrated the applicability of the proposed
characterizing method in real situations. These results also made evident that
the path components are noticeably more concentrated in the bi-azimuth
plane compared to their corresponding footprints in the Bartlett spectrum.

References

[1] E. Bonek, N. Czink, V. M. Holappa, M. Alatossava, L. Hentild, ]J. Nuutinen,
and A. Pal, “Indoor MIMO measurements at 2.55 and 5.25 GHz - a comparison
of temporal and angular characteristics,” in Proceedings of the 15th IST Mobile
Summit, 2006.

[2] H.Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Trans. Signal Processing, vol. 13, pp. 67-94, July
1996.

[3] T. Trump and B. Ottersten, “Estimation of nominal direction of arrival and
angular spread using an array of sensors,” Signal Processing, vol. 50, pp. 57-69,
Apr. 1996.

[4] O.Besson and P. Stoica, “Decoupled estimation of DoA and angular spread for
spatially distributed sources,” IEEE Trans. Signal Processing, vol. 49, pp. 1872
1882, 1999.

[5] C. B. Ribeiro, E. Ollila, and V. Koivunen, “Stochastic maximum likelihood
method for propagation parameter estimation,” in Proceedings of the 15th IEEE
International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), vol. 3, Sept. 5-8 2004, pp. 1839 — 1843.

[6] K. V. Mardia, “Statistics of directional data,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 37, pp. 349393, 1975.

[7] M. Bengtsson and B. Ottersten, “Low-complexity estimators for distributed
sources,” IEEE Trans. Signal Processing, vol. 48, no. 8, pp. 2185-2194, Aug. 2000.

[8] B.H. Fleury, “First- and second-order characterization of direction dispersion
and space selectivity in the radio channel,” IEEE Trans. Information Theory,
no. 6, pp. 2027-2044, Sept. 2000.

[9] K.V.Mardia and P. E. Jupp, Directional Statistics. ~John Wiley and Sons, Ltd.,
2000.

[10] P E.Jupp and K. V. Mardia, “A general correlation coefficient for directional
data and related regression problems,” Biometrika, vol. 67, pp. 163-173, 1980.

150



E.6. CONCLUSIONS

B. H. Fleury, P. Jourdan, and A. Stucki, “High-resolution channel parameter
estimation for MIMO applications using the SAGE algorithm,” in Proceedings
of International Zurich Seminar on Broadband Communications, vol. 30, Zurich,
Switzerland, Feb. 2002, pp. 1-9.

S. Shahbazpanahi, S. Valaee, and M. Bastani, “Distributed source localization
using ESPRIT algorithm,” IEEE Transactions on Signal Processing, vol. 49, no. 10,
pp- 2169-2178, 2001.

B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. L. Pedersen,
“Channel parameter estimation in mobile radio environments using the SAGE
algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, pp.
434-450, Mar. 1999.

D. Asztély, B. Ottersten, and A. L. Swindlehurst, “A generalized array manifold
model for local scattering in wireless communications,” in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
1997.

151






Paper F

Parametric Characterization and
Estimation of Bi-Azimuth and Delay
Dispersion of Individual Path
Components

Xuefeng Yin, Troels Pedersen, Nicolai Czink, and Bernard H. Fleury

The European Conference on Antennas and Propagation, EuCAP 2006

153



PAPER F. PARAMETRIC CHARACTERIZATION AND ESTIMATION OF BI-AZIMUTH AND DELAY
DISPERSION OF INDIVIDUAL PATH COMPONENTS

© 2006 IEEE
The layout has been revised.

154



E1. INTRODUCTION

Abstract

In this contribution, we derive a distribution that is suitable for
characterizing biazimuth (azimuth of arrival and azimuth of departure)
and delay dispersion of individual path components in the response of
the radio channel. This distribution maximizes the entropy under the
constraint that its first and second moments are specified. We propose
to use the density function of the derived distribution to characterize
the shape of the biazimuth-delay power spectrum of individual path
components. The applicability of this characterization in real condi-
tions is assessed using measurement data.

F1  Introduction

Due to the heterogeneity of the propagation environment, the response of
the radio channel is the superposition of a certain number of components.
Each component, which we call a “path component’, is contributed by an elec-
tromagnetic wave propagating along a path from the transmitter (Tx) to the
receiver (Rx). Along this path, the wave interacts with a certain number of ob-
jects called scatterers. Due to the geometrical and electromagnetic properties
of the scatterers, a propagation path may be dispersive in delay, direction of
departure, direction of arrival, polarizations, as well as in Doppler frequency
when the environment is time-variant. As a consequence, an individual path
component may be spread or dispersed in these dispersion dimensions.

Recently, estimation of dispersive characteristics of individual path com-
ponents has gained much attention. Conventional methods rely on estimation
of the channel response and any characterizing functions derived from this
response. An example of a characterizing function is the power spectrum. A
traditional estimate of the power spectrum is the Bartlett spectrum, i.e. the
spectrum calculated using the Bartlett beamformer [1]. However, due to the
ambiguity function of the measurement equipment, the path components in
the Bartlett spectrum are blurred and consequently, their spreads are artifi-
cially increased. In recent years, several methods based on parametric models
have been proposed to estimate the nominal azimuth and azimuth spread of
path components at one side of the link [2], [3], [4]. These estimators make
use of the assumption that the azimuth power spectrum of individual path
components exhibits a shape close to the density function of a distribution,
like the uniform distribution within a certain interval [3], the (truncated)
Gaussian distribution [2], 3] and the von-Mises distribution [4].

Recently, the density function of a bivariate von-Mises-Fisher distribution
has been proposed to characterize the shape of the biazimuth (azimuth of
departure (AoD) and azimuth of arrival (AoA)) power spectrum of individ-
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ual path components [5]. The von-Mises-Fisher distribution maximizes the
entropy under the constraint that its first and second moments are specified.
In [s5], the proposed characterization method is assessed in real conditions
using measurement data.

In this contribution, we derive an entropy-maximizing distribution suit-
able for characterizing biazimuth-delay dispersion of individual path compo-
nents. More specifically, the density function of this distribution is used to
characterize the shape of the biazimuth-delay power spectrum of individual
path components. The density function is parameterized by some free pa-
rameters. To identify these parameters, we postulate that in the case where
a path component is slightly dispersed, the proposed density function is
close to a truncated multivariate Gaussian density function. Experimental
investigations assess the applicability of the proposed characterization in real
situations.

The organization of this contribution is as follows. In Section E.2, we de-
rive the entropy-maximizing biazimuth-delay density function. In Section E.3,
the signal model is presented. Section F.4 shows the results and discussions
of the experimental investigations. Finally concluding remarks are stated in
Section Fs.

E2  Entropy-Maximizing Biazimuth-Delay Density Function

Following the nomenclature in [6], we use a unit vector Q to characterize
a direction. This vector has its initial point anchored at the origin O of a
coordinate system specified in the region surrounding the array of interest,
and terminal point located on a unit sphere S, centered at O. In the case of
horizontal-only propagation, the terminal point of Q islocated on a unit circle
S;. The one-to-one relation between Q and the azimuth ¢ is in this case

Q = e(9) = [cos(9).sin(¢)]" (F1)

with [-]T denoting transposition.
Among all distributions on S, the von-Mises distribution maximizes the
entropy provided the first moment

Ba = /Qf(ﬂ)dﬂ

is specified [6], [7]. Here, f(Q) denotes the density function of any distribu-
tion on S;. Notice that [ f(Q)dQ = 1. The density function of the von-Mises
distribution is given by [8, P. 36]

f(Q) = exp{KQ Q} (E2)

21()
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with Ip(-) denoting the modified Bessel function of the first kind and order
0, k > 0 being the concentration parameter, and Q € S,. For x > 0, Q is the
mode of f(Q) and Q = |uq || g holds. Here, | - | denotes the Euclidean
norm. It is shown in [6] that the root second central moment of a distribution
on Sy, i.e. the direction spread g, is uniquely determined by the norm of the
first moment: gg = /1 — | g% It follows from this result that the von-Mises
distribution also maximizes the entropy under the constraint that the mode,
provided that it exists, and the direction spread are specified. In [9], the von-
Mises density function has been used to characterize the shape of the azimuth
power spectrum of individual path components.

Among all distributions on S; x S;, the generalized von-Mises-Fisher
distribution [7] maximizes the entropy under the constraints that the first

moments .

Ho, = /Qif(ﬂl,ﬂz)dﬂldﬂz, i=1,2 (E3)
and second moments in the matrix

To0, = f 0,Q] £(Q, Q,)d0,dQ, (F4)

are specified. In (E3) and (E4), f(Q;,Q,) is the density function of any
distribution on S; x S;. The density function of the generalized von-Mises-
Fisher distribution is of the form [7]

(0, Qy)=C- exp{aIrQl + a;er + QIAQZ}, (Es)

where C denotes a normalization constant, while a;, a, € R*! and A «
R?*? are free parameters. This density function has been proposed in [5] to
characterize the shape of the biazimuth power spectrum of individual path
components. In this case, Q, Q, are written to be Q; = e(¢;), i = 1,2 with
¢ and ¢, denoting the AoD and AoA respectively. The expressions of the
free parameters a;, a; and A are identified in [5]. Experimental investigations
reported in this reference showed that this density function can be used to
characterize the shape of the biazimuth power spectrum of individual path
components.

Following the same approach as used in [5], we derive in the sequel a
distribution suitable to describe dispersion of individual path components
in Q;, Q, and propagation delay 7. More specifically, the density function of
the sought distribution characterizes the shape of the biazimuth-delay power
spectrum of individual path components.

We define the parameter vector v = [Q, Q] , 7]T. The density function
f(y) of the distribution maximizing the entropy with its first moment

Hy = f vf(y)dy
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and second moments in the matrix
z = [y f(w)dy
specified, is of the form [7]
f(y) < exp{bTy +y By}, (E6)

where b € R and B € R>* are free parameters.

The biazimuth-delay distribution induced by the above entropy-maxi-
mizing distribution via the mapping [¢1, ¢, 7] + [e(¢1)T,e(¢2)T, 7] has
density function

f(@1:62,7) = F(¥)|y=e(o1) T e(92) .7 (E7)

To identify the expressions of the vector b and the matrix B, we assume
that in the case where dispersion of individual path components is small,
the density function in (F.) is close to a truncated multivariate Gaussian
density function. Define the parameter vector @ = [¢1, ¢2, 7] T. The truncated
Gaussian density function is of the form

1 1 »
fo(w) o< wexp{—i(w—ﬂwff«w (w-p,)}, (E8)

with g, = [¢1, $2, 7] T denoting the mode of f(w) and

O.ﬁil P$1420¢10¢,  P¢70¢,07
o= 04,0, o2 04,07 |- (F9)
@ Pdr1¢20¢10¢, b2 P¢r70¢,07 9
P110¢, 07 P¢210¢,07 03

Notice that strictly speaking, the traditional meaning of oy, 04,, P65 Pgi 7
and pg,. as second-order central moments of a 3-variate Gaussian distribu-
tion does not apply anymore to (E8), due to the fact that the azimuth ranges
are bounded. However, these parameters provide good approximations of
these moments when Og,> Op, are small. For notational convenience, we use
p1, p2 and py; to denote pg, 7, pg,r and pg, 4, respectively.

In the case where dispersion of a path component is sufficiently small, the
following approximations hold:

(¢1— 1) ($2— $2) ~ [e(¢1) — e(d1)] "R[e($2) — e(2)] (E10)
(¢i— @) (1—7) ~ [e(¢:) —e(¢:)]Te($i + 7/2) (1 - 7) (E11)
(¢i—¢:)* ~ le(¢i) —e(di) (F12)

with i € {1,2} and

R - cos({)l—({_)z) —sin(_gf)l—_(/_)Z)
sin(¢1—¢2)  cos(¢1—¢2) |
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fns]  4[°] §[°] orlns] m o0p[°] 2 0y, [] 2 o

(a) 5 —40 0 1 5 25.6 10 18.1 -04 -03 -03
(b) 8 0 -100 0.5 50 8.1 30 10.5 -0.5 0.6 -0.2

Fig. F1: 3 dB-spread surfaces calculated using the density function (F13) with parameter settings
given above.

The motivation for selecting the matrix R and the meaning of this matrix are
described in [5]. Notice that subtraction of azimuth variables arising in the
right-hand side in (E.8) and the left-hand sides in (F.10)-(E12) is defined in
such a way that the resulting angle lies in the range [-7, 7).

Inserting (F10), (F11) and (E12) into (E8) and identifying (E7) and (E8),
yields for (E7)

f(1,62,7) = D - exp{a; cos(¢1 — ¢1) + a3 cos(p — ¢2)
+ (T—‘Z’)[(X3Sin(¢1—(/-)1)+ (X4Si1’l(¢2—¢-)2)]
+ as(1-17)*+ agcos[(¢1— ¢1) - (¢2— $2)]}, (E13)

where D is a normalization factor, while ay, . . ., ag are given by

1

o = ;[Kl(pg -1) + Vxika(prz - prp2) s
1

a = E[Kz(pf -1) +/Kik2(p12 — PIPZ)]’

a3 =/x1(prp2 - p1)/(aoy),
ay = /K2(pr2p1 - p2)/(aoz),

1 1-pf
2a 05
= VKK (pipa = p1a)
.=
a
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with x; = 1/ aéi, i = 1,2 denoting the concentration parameters in AoD and
AoA respectively and a = p3 + p}, + p — 2ppp1p2 — L.
Fig. F1 depicts the 3 dB-spread surface

() fnonn) = b} g

computed using the density function (F13) for the two parameter settings also
reported in this figure. We observe that these surfaces are close to ellipsoids
when «; and «; are large. This is reasonable as the density function (F.13) is
close to the density function of a truncated multivariate Gaussian distribution
(E.8) in the case of small dispersion. Notice that the 3 dB-spread surface of the
multivariate Gaussian distribution is an ellipsoid.

E3  Signal Model

We consider the case where the path components are dispersed in biazimuth
and delay. Following the nomenclature in [6], the continuous-time (complex
baseband representation of the) output signal of the Rx array reads

Y0 = [ (g0 st - (s g g2 1)didgadr = WD),
(E1s)

In (F15), Y(t) € CM2>*! contains the output signals of the Rx array elements
observed at time instance t, s(t) € CM*! denotes the complex baseband
representation of the transmitted signal, and the function h(t; ¢1, ¢, 7) is
referred to as the (time-variant) biazimuth-delay spread function of the prop-
agation channel. In a scenario where the electromagnetic energy propagates
from the Tx to the Rx via D paths, h(t; ¢1, ¢2, 7) can be decomposed as

D
h(t’ ¢1’ ¢2’T) = Zhd(t> ¢1’ ¢2) T)- (Fl6)
d=1

The summand h;(t; ¢1, ¢2, 7) denotes the dth path component. The noise
vector W(t) € CM2lin (E15) is a circularly symmetric, spatially and tem-
porally white complex Gaussian process with component spectral height ¢2.
Finally, ¢;(¢) = [cin(®),...» im, (@), ..., cia (¢)]T € CMi¥L, i = 1,2 are the
responses of the Tx array and the Rx array respectively.

We assume that the biazimuth-delay spread functions h;(t; ¢1, ¢2, 7),
d € {1,..., D} are uncorrelated complex (zero-mean) orthogonal stochastic
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measures, i.e.

E[hy(t; ¢1, ¢2, 7) “har (5 61, 65, 7)] =
Py(¢1, ¢2,7) 8440100 (¢1 — ¢1)8(¢2 — 93)8(7 - 1), (F17)

where (-)* denotes complex conjugate, §.. and §(-) represent the Kronecker
delta and Dirac delta function respectively, t and ¢’ are discrete time instants
at which the spread function are sampled, and

Py(¢1, $2,7) = E[|ha(t; 1, ¢2, 7)[]

is the biazimuth-delay power spectrum of the dth path component. Identity
(E17) implies that the spread functions of different individual path compo-
nents or at different observation instants are uncorrelated. With the above as-
sumptions, h(t; ¢1, ¢, T) is also an uncorrelated complex zero-mean stochas-
tic measure specified by

E[h(t; ¢1, ¢2, 7)"h (1 ¢}, 63, 7)] =
P(1, $2,7)8118 (1 — ¢1)8(p2 — ¢3)8(7~7')  (E18)

with P(¢1, 92, 7) = Ty Pa($1, 9. 7).
The biazimuth-delay spectrum P;(¢1, ¢, 7) describes the manner the

average power of the dth path component is distributed with respect to AoD,
AoA and delay. We assume that

Py(¢1,¢2,7) = Py~ f(d1, $2, 75 04),

where P; represents the total average power of the dth path component and
f(¢1, ¢2, 75 0,) is the density function (F13) with path-specific parameters

04 = [Pra> Pod> T Kid> Kad> Or s PLd> Pod> P12,d ) -

Clearly, the center of gravity of Py(¢;, ¢2, 7) coincides with (¢; 4, ¢2.4, Ta)
i.e. the location at which the density function f(¢1, ¢2,7;0,) exhibits its
maximum. The shape of P;(¢1, ¢, 7) is determined jointly by «; 4, x3 4, 07,

P1,d> P2,d> and P12,d-
Let 0 denote a vector containing the model parameters in (F.15)

0= [O’V%,Pl,Pz,...,PD,01,02,...,0D].

A stochastic maximum likelihood estimator of 6 can be easily derived [10] for
the case where the spread functions of the path components are Gaussian. Due
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Table F1: Setting of the measurement equipment.

Carrier frequency  5.25 GHz

Bandwidth 200 MHz
Chip frequency 100 MHz
Code length 255 Chips
Tx array height 1.53m
Rx array height 0.82m

to the property expressed in (E17), the spread functions of distinct path com-
ponents or at different time instants are independent. The SAGE algorithm
[11] can be easily implemented as a low-complexity approximation of the
maximum likelihood estimator. Due to the space limitation, the descriptions
of the maximum likelihood estimator and the SAGE algorithm are omitted in
this paper.

E4 Experimental Investigations

The measurement data were collected using the MIMO wideband radio chan-
nel sounder Elektrobit Propsound CS [12] [13]. The setting of the equipment
is reported in Table E1. The Tx and Rx were both equipped with two identical
50-element dual-polarized omni-directional arrays (See Fig. F.2). The polar-
ization direction of the elements is +45° slanted with respect to the vertical.

The measurement experiment was conducted in a big hall. During the
measurement procedure, the hall was crowded with people moving around.
These movements introduced time variations of the channel response. The
positions of the Rx and Tx were kept fixed during the measurement proce-
dure. Fig. F3 (a) and Fig. E3 (b) show a photograph of the surroundings of
the Tx and the Rx respectively. Fig. F.4 depicts the map of the premises. We
notice that the Rx position is in the hall and the Tx is located at the entrance of
a corridor. The data of 900 measurement cycles were collected within a period
of 60 s. A measurement cycle refers to the interval within which all 50 x 50
subchannels are sounded once.

In order to maintain low computational complexity, the measurement
data collected using two identical subarrays of the Tx and Rx arrays are
considered. Each subarray consists of 9 dual-polarized elements uniformly
spaced on a cylinder (See Fig. F2). Fig. E5 depicts the estimated delay power
spectrum obtained by averaging the squared responses of the 81 subchannels
of the 9 x 9 MIMO system. Again, to limit the computational effort the
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R ng ot 9-el enent
subarray used for
the estimtion of
bi azi nut h- del ay
di sper si on.

Fig. E2: Illustration of the antenna arrays used in the Tx and the Rx of the channel sounder.

(a) Surroundings of the Tx. (b) Surroundings of the Rx.

10000

Fig. E4: Map of the premises where the measurement experiment was conducted. The Tx and Rx
locations are marked with “P1” and “Rx10” respectively.
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Fig. F5: Estimated delay power spectrum.

observation samples collected from delay 160 ns to delay 270 ns are considered
in the estimation process.

In the SAGE algorithm, the dynamic range for the path power estimates
is set to be 30 dB with respect to the maximum power estimate. The Bartlett
beamformer [1] is used to initialize the path parameter estimates. The param-
eters that the Bartlett beamformer is incapable to estimate are set to certain
predefined values. So, the estimates of the concentration parameters x; 4, k5 4
d =1,...,D are set to 50 and the estimates of the coefficients p; 4, p2.4> p12.4
d = 1,...,D equal 0. With this setting it is assumed a priori that the path
components are close to being specular and that no dependency occurs across
the considered dispersion dimensions.

After 10 SAGE iteration cycles, the parameter estimates of 20 path compo-
nents are obtained. Table F.4 reports the values of these estimates. The mean
of the delay spread estimates of these components is 5.0 ns. The AoD spread
estimates range from 4.4° to 16.2° with a mean equal to 9.0°. The AoA spread
estimates range from 3.2° to 8.8° with a mean 5.0°. The difference between the
AoA and AoD spread estimates can be attributed to the different structures
of the environments surrounding the Tx and the Rx. From these results we
observe thatin a closed environment, e.g. in a corridor where the Tx is located,
path components exhibit larger angular spreads than in an open environment,
like the hall where the Rx is located.

Fig. F.6 depicts Bartlett(£), Bartlett(2(#)) and the estimated power spec-
trum P(¢1, ¢2, 7). The notations “Bartlett(£)” and “Bartlett(£(0))” denote
the Bartlett spectrum calculated from respectively the sample covariance
matrix and the covariance matrix computed based on the parameter estimate
0. The estimated power spectrum P(¢y, ¢2, 7) is given by

20
P(¢1,¢2,7) = Zpd'f(¢>1,¢2,T;9d), (F19)

d=1
where 0, denotes the estimate of the path-specific parameter 6. Note that
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Fig. F.6: Estimated biazimuth-delay power spectrum.
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although the biazimuth power spectra are plotted versus delay in Fig. E6, the
power spectrum of individual path components is estimated in AoA, AoD
and delay jointly.

From Fig. F.6 we observe that the estimated power spectra of individual
path components are more concentrated than the corresponding footprints
observed in Bartlett(X(8)). The blurring effect observed in Bartlett(£(8)) is
due to the product of the ambiguity functions of the Tx and Rx array responses
in azimuth. Bartlett(2) and Bartlett(Z(8)) are observed to be similar. In the
following, the ratio tr[Zs(0)]/tr[£] is calculated, which can be conceived as
the fraction of the signal power extracted from the sample covariance matrix.
Here, tr[-] denotes the trace of the matrix given as an argument. The signal-
only covariance matrix 25(0) is calculated using the parameter estimate 0
with the noise variance estimate 62 set to zero. This ratio equals 87.6 % for
the considered case.

Although Bartlett(2) and Bartlett(£(8)) in Fig. F6 are observed to be
similar, their significant global and local maxima slightly differ. This dif-
ference might be due to the fact that in the parameter estimation process,
the assumption of horizontal-only propagation is used. However, from the
photographs shown in Fig. E.3 we see that this assumption may not hold for
all propagation paths. This inconsistency may introduce estimation errors
as shown by further simulation studies. Another reason which might lead
to this effect is that the derived density function (F.13) only provides an
approximation to the shape of the effective power spectrum of individual path
components. Estimation errors might result in the case where the difference
is significant.

Fig. E7 depicts the estimated 3 dB-spread surfaces (F14) with the true
path component parameters replaced by their estimates. The color of the
surfaces codes the path power estimates according to the included color scale.
We observe that some of the surfaces are not symmetric with respect to the
axes of the delay, the AoD and the AoA. This effect indicates dependency
of dispersion of individual path components across different dispersion di-
mensions. Some recent published works, e.g. [9], assume that dispersion of
individual propagation paths in different dimensions (e.g. in delay and in
AoA) is independent. Clearly, this assumption does not hold for some of
the estimated path components in the investigated propagation environment.
Further investigations are necessary in order to assess whether this observa-
tion is valid for all types of environments or not.
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Fs Conclusions

In this contribution, we derived a distribution which is suitable for charac-
terizing biazimuth (azimuth of arrival and azimuth of departure) and delay
dispersion of individual path components in the response of the propagation
channel. This distribution maximizes the entropy under the constraint that
its first and second moments are specified. The density function of the dis-
tribution characterizes the shape of the biazimuth-delay power spectrum of
individual path components.

Preliminary experimental investigations were conducted to assess the
applicability of the proposed characterization in real situations. From the
obtained results we observed that dispersion of the path components in both
azimuths and delay is much smaller than that one might infer from the
corresponding footprints in the Bartlett spectrum. Moreover, the estimated
power spectra of some path components are not symmetric with respect to
the axes of the delay, the azimuth of arrival and the azimuth of departure. This
indicates dependency across different dispersion dimensions. The results also
show that the characterization method should include dispersion in elevation.
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G.1. INTRODUCTION

Abstract

In this contribution, the Fisher-Bingham-5 (FBs) probability den-
sity function (pdf) is used to model the shape of the direction power
spectral density function (psdf) of individual path components in the
radio channel. The FBs distribution is selected because, among all
direction distributions, it maximizes the entropy under the constraints
that the first and second distribution moments are specified. A SAGE
(Space-Alternating Generalized Expectation-maximization) algorithm
is derived based on this model for estimation of the parameters char-
acterizing the direction psdf of each path component in a multi-path
scenario. The performance of the SAGE algorithm is evaluated using
measurement data. Preliminary results show that the estimated direc-
tion psdfs of individual path components exhibit different ovalnesses
and tilt angles. These density functions are noticeably more concen-
trated than the corresponding footprints in the Bartlett spectrum.

G.1  Introduction

Due to the heterogeneity of the propagation environment, the response of
the radio channel can be viewed as the superposition of a certain number
of components. Each component, which we refer to as “path component’,
is contributed by an electromagnetic wave propagating along a path from
the transmitter (Tx) to the receiver (Rx). Along this path, the wave interacts
with a certain number of objects called scatterers. Due to the geometrical
extent and the nonhomogeneous electromagnetic properties of the scatterers,
a path may be dispersive in delay, direction of departure, direction of arrival,
polarizations, as well as in Doppler frequency when the environment is time-
variant. As a consequence, an individual path component may be spread in
these dispersion dimensions. Modeling of these dispersion phenomena is
required for the design and optimization of mobile communication systems
and thus, experimental knowledge of the dispersive characteristics of path
components is necessary.

In recent years, estimation of the dispersive characteristics of individ-
ual path components in multiple dimensions has attracted much attention.
Some of the techniques are derived using the assumption that the normalized
power spectral density function (psdf) of individual path components can
be described using a certain probability density function (pdf). In [1], the
product of the von-Mises pdf and the exponential pdf is used to model the
normalized delay-Azimuth-of-Arrival (AoA) psdf. In [2] and [3], the von-
Mises-Fisher and Fisher-Bingham-5 (FB;) pdfs are used to characterize the
normalized AoA-Azimuth-of-Departure (AoD) psdf and direction (azimuth
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and elevation) psdf respectively. The normalized delay-AoA-AoD psdf is
characterized using a 3-variate pdf derived in [4].

In this contribution, we derive a SAGE algorithm to estimate the direction
(azimuth and elevation) power spectrum of individual path components. The
normalized direction psdf is modeled using the FB, pdf as described in [3].
The SAGE algorithm is applied to measurement data to estimate the direction
power spectra of multiple dispersive path components.

This contribution is organized as follows. In Section G.2, a signal model
for channel sounding is presented and characterization of the normalized
direction psdf using the FB; pdf is introduced. In Section G.3, the estimators
of the model parameters are derived within the SAGE framework. Section G.4
shows the experimental results. Finally concluding remarks are provided in
Section G.5.

G.2 Signal Model

In this contribution, we focus on the dispersive characteristics of individual
path components in direction of arrival (DoA). The channel sounding system
considered has a SIMO (single-input multiple-ouput) configuration with a
single Tx antenna and a M-element Rx antenna array. The signal model,
the characterization method, and the estimation method derived here can
be easily modified to handle a MISO (multiple-input single-ouput) channel
sounding configuration where dispersion in direction of departure (DoD) is
of interest.

We consider narrow-band transmission, which implies that the product
of the signal bandwidth times the channel delay spread is much smaller than
one. Following the nomenclature in [5], the continuous-time output signal of
the Rx array of the SIMO system reads

Y(t) = H(t)u(t) + W(t) e CM

= [/;zc(ﬂ)h(t;ﬂ)dﬂ]u(t) + W(t). (Ga)

The complex vector Y(t) contains the output signals of the Rx array observed
at time instance f. The scalar function u(t) denotes the complex envelope
of the transmitted sounding signal at time t. The vector H(t) represents the
time-variant response of the SIMO system. We assume that () is known to
the Rx and that fOT u(t)u(t)*dt = 1, where [-]* denotes complex conjugate
and T represents the duration of observation interval. The function h(¢; Q) is
the (time-variant) DoA spread function of the propagation channel [5]. Here,
Q denotes the DoA, which is defined to be a unit vector with initial point
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anchored at the origin O of a coordinate system located in the vicinity of the
Rx array. The end point of Q lies on a unit sphere S, centered at O. The DoA Q
is uniquely determined by the spherical coordinates (¢, 0) € [-7, 7) x [0, 7]
of its end point according to the relation

cos(¢) sin(8)
Q = [ sin(¢) sin(0) |. (G.2)
cos(0)
The angles ¢ and 0 are referred to as the AoA and elevation of arrival (EoA)
respectively. The noise W(¢) in (G.1) is a vector-valued, circularly symmetric,
spatially and temporally white Gaussian process with component spectral

height o2. We assume that 02 can be measured and therefore is known in
advance. In (G.1) the complex vector

() = [a(Q), 2 (Q), ..., em(Q)]T (G.3)

with [-]T denoting transposition is the responses of the Rx array. In a scenario
where the electromagnetic energy propagates from the Tx to the Rx via D
paths, the DoA spread function h(t; Q) can be decomposed as

D
h(:Q) =Y ha(t:Q). (G.4)
d=1

The summand h,(t; Q) denotes the dth path component in h(#; Q).
We assume that the transfer vector H(t) fluctuates over the overall sound-
ing period, but remains constant within individual observation intervals:

H(t)=H,, te[t,,t,+T)andne[l,...,N]. (G.5)

Here, t,, denotes the time instance at which the nth observation interval
starts and N represents the number of observation intervals. Similarly, the
spread functions h;(t;Q), d = 1,..., D arising in (G.4) are constant within
individual observation intervals:

ha(t;Q) = ha(t; Q) = hg,(Q), te[tyty+T). (G.6)

The processes hy,(Q), n € [1,...,N], d € [1,...,D] are assumed to be
uncorrelated complex (zero-mean) orthogonal stochastic measures, i.e.

E[hz,n(ﬂ)hd’,n’(ﬂl)] = Pd(Q)‘Snn’add"S(Q - Q/)- (G-7)

Here, §.y and J(-) represent the Kronecker delta and the Dirac delta func-
tion respectively, and P;(Q) = E[|h4,(Q)[*] denotes the direction psdf of
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the dth path component. Identity (G.7) implies that the spread functions of
distinct individual path components or at different observation intervals are
uncorrelated. This scenario is referred to as the uncorrelated scattering case in
the literature (see e.g. [5]).

The direction psdf P;(Q) describes the manner the average power of the
dth path component is distributed on the unit sphere S,. It can be written as

Py(Q) =P;- fa(Q) (G.8)

with P, representing the average power of the dth path component and f,;(Q)
being a normalized direction psdf.

In this contribution, we assume that f;(Q) coincides with the FB; pdf [6].
Among all distributions on the unit sphere S,, the FB; distribution [6] maxi-
mizes the entropy under the constraints that the distribution first and second
moments are specified. The first moment of the distribution is parameterized
by the nominal direction, while the second moments are characterized by
parameters describing the concentration and the ovalness of the spreads of
f1(Q) on S;. The pdf frp,(Q) reads

frps (@) = Cx, ) " exp{xy; @+ x-n[(y, 2)* - (y; 2)°1},  (G.o)

where k¥ > 0 represents the concentration parameter and # € [0,1/2) is an
ovalness factor. In (G.9), C(x, n7) denotes a normalization constant depending
on x and 7, y,, y,, and y; € R’ are unit vectors. The matrix I = [y,,y,,y,] is
uniquely determined by three angular parameters 6, ¢ and « according to

sin(0) cos(¢) —sin(¢p) cos(f)cos(¢p)| |1 0 0
T =|sin(8)sin(¢) cos(¢) cos(8)sin(@)|-]0 cos(a) —sin(a)].
cos(H) 0 —sin(6) 0 sin(a) cos(a)
(G.10)
In (G.10), ¢ and 6 coincide with respectively the azimuth and the elevation
of the nominal direction. The angle « describes how the pdf is tilted on S,.
A detailed description of the meanings of y,, y, and y; can be found in [6].
Note that when 7 equals 0, the FB, pdf does not depend on the values of & and
the equal-value contours of fgp, (Q) are circles. For 7 € (0,1/2), the equal-
density contours of the pdf exhibit the ovalness, which becomes significant as
1 increases. The equal-value contours resemble ellipses when « is small. Fig.
G.1 depicts the FB, pdf for the parameter setting reported in the caption of
this figure.
The parameters of f;(Q) are concatenated in 84 = [$g, 04, k4, 14> ¥g].
We use a vector 6 to represent all unknown model parameters in (G.1), i.e.

05[Pl,Pz,...,PD,él,éz,...,éD]. (G.11)
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Fig. G.1: The FB; pdf with ¢ =135°, 0 = 18°, a = 144°, k = 80 and # = 0.375. The color bar to the
right of the plot shows the magnitude expressed in linear scale.

G.3 Estimation of the Model Parameters

In a scenario with multiple path components, as depicted by (G.1), the prob-
lem at hand is to estimate the parameter vector 6. Maximum likelihood
estimation of @ requires to solve a 6D dimensional non-linear optimization
problem. The high computational complexity involved prohibits the imple-
mentation of the maximum likelihood estimation in practise. In the sequel, we
derive a SAGE algorithm [7] as an approximation of the maximum likelihood
estimator of 0.

G.3.1 Admissible hidden data

We choose the subsets of parameters updated at the different iterations of
the SAGE algorithm to be the sets including the parameters characterizing
individual path components. Hence, in Iteration i = 1,2,..., the parameter
subset 8, = [P;,0,] with d = [(i —1) mod D] +1is updated.

We define the admissible hidden data associated with 8 as

Xq(t) = Hy(t)u(t) + W(1)

= [/;zc(ﬂ)hd(t;ﬂ)dﬂ]u(t) +W(1). (G12)

It follows from the properties of h;(t; Q) that H;(t) is constant within indi-
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vidual observation intervals, i.e.

Hi(t) = Hy, = [ c(@)hy,(0)d0. (G13)
2
The output of a correlator
~ th+T
H,, = / xg(Hu(t)*dt, n=1,...,N (G.14)
tn
when the input is the observation X;(¢) = x4(t) can be written as
I:Id,n = Hd,n + Ny, (G.15)
whereN, e CM,n=1,...,Nisa sequence of N independent random vectors,

the entries of which are independent circularly symmetric Gaussian random
variables with variance ¢2. Invoking the central limit theorem, the elements
of Hy, in (G.12) are assumed to be Gaussian random variables. The vectors
H;,,...,Hy y form a sufficient statistic for the estimation of 6.

G.3.2  Expectation Step

In the Expectation (E-) step of Iteration i, we compute the expectation of the

likelihood of 8, conditioned on the observation Y(t) = y(t) and assuming

that 0 = 9 1.

Q(848"") = E[A(Quxa)[Y(£) = y(£), 8" )], (G.16)

Here, 5[1_1] denotes the parameter estimates obtained in the (i — 1)th iter-
ation and A(Q4;x,) represents the log-likelihood function of Q, given an
observation X;(t) = x4(t). It can be shown that (G.16) is of the form

Sli-1] a5 gl
Q840" ) =~ In|=, (84)] - tr[ (2, (84)) " -2, (0" )], (Gaay)
where tr[-] is the trace of the matrix given as an argument and X (8y) is the

covariance matrix of I:Id,,,:
2, (04) = Pu fg (Q)e(Q)H£,(Q)dQ + 021 (G.18)
2

with [-] denoting the Hermitian operator. In (G.17), fﬁd(()) is the condi-
tional covariance matrix of H, ,, given the observation y(t) for 6. It can be

shown that iﬁd (g[i]) is calculated as
s Ali] Ali] Al 5 2li]
2,(00)=24,(0,)+25,(0,)[Za(0 )] (Za-2Z4,004))

[2a(@)] 24,05, (Gao)
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where
UNEES NN
p(0) =) 2g,(047) + oI, (G.20)
d=1

and

= 1
EH:N

I:InHIn_I (G.21)

M=

n=1

with H, = " Ty(t)u(t)*dt,n=1,...,N.

G.3.3 Maximization Step

In the M-step, the estimate 55] is calculated as

1]). (G.22)

551] = argn}ﬂxQ(ﬂdrH\[k
By applying a coordinate-wise updating procedure similar to the one used
in [8], the required multiple-dimensional maximization can be reduced to
multiple one-dimensional maximization problems. This coordinate-wise up-
dating still remains within the SAGE framework with the admissible data
given in (G.12).

G.3.4 Initialization Step

In the initialization step, the nominal AoAs and EoAs of the path components
are estimated using a SAGE algorithm derived based on the specular-path
model [8]. The parameters which cannot be estimated using this method
are set equal certain predefined values. More specifically, the estimates of
the concentration parameters x4, d = 1,..., D are set equal to 100 and the
ovalness parameters are set equal to zero. With this setting it is assumed a
priori that the path components are close to specular path components. This
initialization procedure has proved to work well for measurement data in the
experimental scenarios in which it was tested.

G.4 Experimental Investigations

The measurement data were collected using the Elektrobit Propsound CS
switched channel sounder [2] in an office building. The sounder was used in a
MISO (multiple-input single-output) configuration where the Rx has a single
antenna and the Tx is equipped with a 50-element omnidirectional antenna
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(a) Surroundings of the Tx.  (b) Surroundings of the Rx.
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Fig. G.2: Photographs and map of the premises where the measurement experiment was
conducted.

array. A detailed description of the sounder, the array and the measurement
settings can be found in [2]. During the measurement, the Rx was located
in a corridor and the Tx was placed in an office room. Two photographs
and the map shown in Fig. G.2 depict the surroundings of the Rx and Tx.
The locations of the Tx and the Rx are marked with the symbols © and ®
respectively on the map. During the measurement period, both Tx and Rx
were fixed. People were moving in the office where the Tx was located. These
movements created the randomness of the radio channel. Due to this fact,
the uncorrelated scattering condition as depicted in (G.7) is considered to be
valid.

The data obtained from 50 consecutive measurement cycles covering a
period of 3.3 seconds are considered. A measurement cycle is referred to
as the interval within which all 50 subchannels are sounded once. In this
preliminary study, we investigate dispersion of individual path components
in direction of departure and neglect dispersion in other dimensions. To this
aim, we consider the output of the Rx antenna within the relative delay bin
160-170 ns. The narrow-band signal model (G.1) is applicable in the consid-
ered scenario for this delay bin. The parameter estimators derived based on
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Table G.1: The estimates of the parameters obtained using the SAGE algorithm.

d ¢q[°] 04[°] ks  Ha &4 [°] P4107°1 BPy/P [dB]
1 -84 4 140 0.33 59.3 7.10 0
2 114 -4 160 0.49 15.8 5.72 -1
3 44 -10 923 0.00 26.5 5.19 -1
4 -24 8 923 0.17 144.0 4.10 -2

the SAGE algorithm can be easily modified to estimate the parameters of the
DoD psdfs of individual path components.

The SAGE algorithm is applied while assuming that the number of the
path components is known and equals 4 in the considered scenario. Totally
10 SAGE iteration cycles are performed. Here, an iteration cycle is referred to
as the procedure in which the estimates of all elements in 6 are updated once.
In the M-step we select the quantization step to coincide with the resolution
of the calibration measurements, i.e. be 2° in both azimuth and elevation.

Fig. G.3 depicts the estimation results returned by the SAGE algorithm.
The parameter estimates are reported in Table G.1. The notation Bartlett(-)
arising in the captions of Fig. G.3(a) and Fig. G.3(b) denotes the power spec-
trum estimate obtained with Bartlett beamformer [9] using the covariance
matrix given as an argument. Fig. G.3(c) demonstrates the azimuth-elevation
psdf corresponding to the estimate of the direction psdf P(Q) of the radio
channel. It can be observed that the azimuth-elevation psdfs of individual
path components estimated using the SAGE algorithm are noticeably more
concentrated than the corresponding footprints visible in Bartlett(Xy (9)).
These psdfs differ in concentration, ovalness and tilt angle. The “blurring”
effect arising in the Bartlett spectrum is due to the response of the Rx array.

The footprints of the path components shown in Bartlett(Zy (5)) and
Bartlett(¥) are observed to be similar. This implies that the reconstructed
covariance matrix computed using the parameter estimates is close to the
sample covariance matrix. We also observe some differences in the shapes
and the (local) maxima of the corresponding footprints. These differences are
supposed to be caused by discrepancies between the “true” normalized psdfs
of individual path components and the FB, pdf. Another possible reason
for the difference is that dispersion in other dimensions, e.g. in delay, is not
considered.
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Fig. G.3: Estimates of the azimuth-elevation psdf within the delay bin 160-170 ns. The estimates
of the parameters are shown in Table G.1. The indices of the path components reported in Table
G.1 are consistent with those given in Figure G.3(c).
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G.5 Conclusions

In this contribution, we derived a SAGE algorithm for estimation of the pa-
rameters characterizing the direction power spectral density function (psdf)
of individual path components in a radio propagation channel. The Fisher-
Bingham-5 probability density function (pdf) was used to describe the nor-
malized direction psdf of individual path components. The performance of
the SAGE algorithm was evaluated using measurement data. From the results
we observed that the Bartlett spectrum computed with the signal covariance
matrix calculated using the SAGE estimates is similar to the Bartlett spectrum
computed with the sample covariance matrix. The estimated psdfs of indi-
vidual path components exhibit different ovalness and tilt angle. Moreover
they are more concentrated than the corresponding footprints in the Bartlett
spectrum. These results indicated that dispersive path components exist in
real propagation channels. In such a case, the conventional algorithms de-
rived based on the specular-path model are inappropriate for estimation of
the parameters of these path components. As shown in [10], the mismatch
between the specular-path model and the “true” dispersive feature of path
components results in significant errors of estimation of the path parameters
with large probabilities of occurrence.
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H.1. INTRODUCTION

Abstract

In this contribution, a multi-variate probability density function
(pdf) is derived and used to describe the normalized direction-(i.e.
azimuth and elevation)-delay power spectral density of individual dis-
persed components in the response of the propagation channel. This
pdf maximizes the entropy under the constraint that its first and second
moments are specified. We use a SAGE algorithm, as an approximation
of the maximum-likelihood method, to estimate the parameters of the
component direction-delay power spectral densities from measure-
ment data. The experimental results show that the proposed pdf and
the SAGE algorithm form altogether an effective tool to characterize
direction-delay dispersion in the propagation channel.

H.1 Introduction

Due to the heterogeneity of the propagation environment, the received signal
at the receiver (Rx) of a radio communication system can be modelled as
the superposition of a number of components originating from waves prop-
agating along specific propagation paths. Each component may be dispersive
in delay, direction of departure (DoD), direction of arrival (DoA), Doppler
frequency and polarization. Dispersion of individual components in these
dimensions significantly influences the performance of communication sys-
tems using MIMO (multiple-input multiple-output) techniques [1].

In conventional parametric models for the MIMO wideband propaga-
tion channel, such as [2, Chapter 3], [3] and [4], dispersion of individual
components is modeled using a cluster of multiple specular components
estimated from measurement data. The cluster parameters, such as the nom-
inal direction and direction spread, can be calculated for each cluster from
the parameter estimates of the specular components assigned to this cluster.
However, as shown in [5], the extracted dispersion parameters (e.g. azimuth)
of the specular components do not accurately characterize the true disper-
sive behavior of the original component when this component is dispersed.
This phenomenon limits the reliability of channel models derived based on
specular components estimated from measurement data collected in real
environments. Therefore, in order to design more realistic channel models we
need appropriate parametric models characterizing dispersion of individual
components, as well as efficient estimators of the parameters entering these
models.

In recent years, various algorithms have been proposed for the estimation
of the dispersive characteristics of individual components in the channel
response [1, 6-8]. These algorithms estimate the parameters describing the
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power spectral density (psd) of individual components. In real environments,
a component psd can be irregular due to the heterogenous physical and
electromagnetic properties of the scatterers with which the waves generating
this component interact. The center of gravity and spreads of a component psd
are considered as the characteristic dispersion parameters. The algorithms
proposed in these contributions estimate these parameters by approximating
the component psd with a certain probability density function (pdf), e.g. in
azimuth-of-arrival (AoA) [6-8] and in AoA and azimuth of departure (AoD)
[1]. The values of the parameter estimates obtained by using these algorithms
depend on the underlying pdfs. However, no rationale behind the selection
of the pdfs is given in these contributions. Furthermore, the performance of
these algorithms has not been investigated using measurement data.

In order to obtain accurate estimates of the dispersion parameters, a
rationale relying on the maximum-entropy (ME) principle [9] is proposed
in [10-12] for the selection/derivation of the pdfs characterizing component
psds. This rationale utilizes the assumptions that each component psd has
fixed center of gravity and spreads, and moreover, no information is available
for any other properties, such as the exact shape and number of local maxima,
of the component psd. The center of gravity and the spreads of a component
psd are described by the first and second moments of a pdf. Thus, using the
ME principle we derive a pdf which satisfies the constraint of fixed first and
second moments, while maximizes the entropy of any other constraint. The
estimates of the dispersion parameters obtained by modeling the component
psd with this entropy-maximizing pdf provide the “safest” results in the sense
that, they are more accurate than the estimates computed using a pdf subject
to any constraint that is invalid in real situations. Based on this rationale, a
bivariate von-Mises-Fisher pdf and a Fisher-Bingham-5 (FB;) pdf are derived
for modeling the component psd in AoA and AoD [10] and in elevation and
azimuth [11, 12] respectively. Experimental investigations using measurement
data demonstrate that these characterizations are applicable in real environ-
ments.

In this contribution, we consider a single-input multiple-output (SIMO)
scenario where the propagation channel is dispersive in DoA (i.e. azimuth and
elevation of arrival) and delay. We propose to characterize the component
DoA-delay psd by a multi-variate pdf. The applicability of this characteri-
zation method is evaluated using measurement data. With proper modifi-
cations, the characterization method can be used to describe dispersion of
individual components in DoD (i.e. azimuth and elevation of departure) and
delay in a multiple-input single-output (MISO) scenario.

The organization of this contribution is as follows. In Section H.2, the
signal model for SIMO channel sounding is presented. Section H.3 introduces

188



H.2. SIGNAL MODEL AND ASSUMPTIONS

the derived pdf characterizing the shape of the component DoA-delay psd.
In Section H.4, the SAGE estimators of the parameters of the psd are briefly
described. Section H.5 presents the results from experimental investigations.
Finally, concluding remarks are addressed in Section H.6.

H.2  Signal Model and Assumptions

In this section, we introduce the signal model for SIMO channel sounding
and state our assumptions on dispersion in DoA and delay in the propagation
channel.

H.2.1  Signal Model for SIMO Channel Sounding

The channel sounder considered here has a single antenna in the Tx and M
antennas in the Rx. We focus on a scenario where the propagation channel is
dispersive in delay 7 € R and DoA Q. Here, Q is defined to be a unit vector
with initial point anchored at the origin O of a coordinate system located
in the vicinity of the Rx array. The end point of € lies on a unit sphere S,
centered at O [13]. The DoA Q is uniquely specified by the azimuth of arrival
¢ € [-m, +m) and the elevation of arrival 6 € [0, 7] according to

cos(¢) sin(8)
Q=e(¢$,0) =|sin(¢)sin(0) |. (H.1)
cos(0)

Following the nomenclature in [13], in one measurement period the continu-
ous-time (complex baseband representation of the) output signal of the mth
Rx antenna reads

Ym(t):/_:o fS em(Q)u(t—1)H(Q, 7)dQdr + Wy(1),  (Hoa)

where ¢,,(Q) denotes the response of the mth Rx antenna, u(t) represents
the transmitted signal, and H(Q, 7) is referred to as the DoA-delay spread
function of the propagation channel. The noise component W,,(t) in (H.2)
is a circularly symmetric, spatially and temporally white complex Gaussian
process with spectral height o?2.

In a scenario with D components, H(Q, 7) can be decomposed as

D
H(,7) = 3 Ha(Q,7), (H3)
d=1
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where the summand H;(Q, 7) represents the DoA-delay spread function of
the dth component.
Replacing H(Q, 7) in (H.2) with the sum in (H.3), Y,,,(¢) can be recast as

D
Yo () = 2 Sam(t) + Wan(1), (H.4)
d=1
where S; ,,,(¢) is the dth component in the received signal, i.e.

Sum(t) = /: fszcm(n)u(t- DHy(Q,7)d0dr.  (H.s)

H.2.2  Assumptions for the DoA-Delay Spread Functions

We assume that the component spread function Hy(Q, 7),d € {1,..., D} are
uncorrelated complex (zero-mean) orthogonal stochastic measures, i.e.

E[Hy(Q,7) Hy (Q', 7)) = Py(Q,7)0440(Q - Q)S(7-7"), (H.6)

where (-)* denotes complex conjugation, §.. and §(-) represent the Kronecker
delta and the Dirac delta function respectively, while

P4(€,7) = E[|[Ha(Q, 7)’] (H.7)

is the DoA-delay power spectrum of the dth component. Identity (H.6)
implies that the DoA-delay spread functions of different components are
uncorrelated.

Invoking (H.3), (H.6) and (H.7), we can easily show that the spread func-
tion H(Q, 7) of the propagation channel is a complex zero-mean orthogonal
stochastic measure, i.e.

E[H(Q,7)"H(Q',7)] = P(Q,1)6(Q-Q")é(r- 1), (H.8)
where
P(Q,7) = iPd(Q, 7) (H.9)
d=1

is the DoA-delay power spectrum of the propagation channel. The component
power spectrum Py (€, 7) can be written as

Pi(Q,71) =Py f1(Q, 1), (H.10)

with P; and f;(Q, 7) representing respectively, the total average power and
the (normalized) direction-delay power spectral density (psd) of the dth
component.
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H.3 The Direction-Delay Power Spectral Density

In this subsection, we use the Maximum Entropy (ME) rationale proposed in
[10, 11] to derive a pdf for modeling the component DoA-delay psd f;(Q, 7).
We make the assumption that each component psd has its fixed center of
gravity and spreads in DoA and in delay. These parameters are represented by
the first and the second moments of the pdf. The sought pdf maximizes the
entropy under the constraint that its first and second moments are specified.

An ME pdf fuge(€Q, 7) of the direction variable Q and the delay variable
7 under the constraint that its first and second moments are specified, has the
form [14]

T B}
ME(Q, T) o< exp{[fi: ?:| I:g_ _cb:| I:(i: ?]} , (H.11)

where Q represents the mean direction with azimuth ¢ and elevation 6,
ie. Q = e(4,0), T denotes the mean delay, [-]T represents the transpose
operation, A € R3*® describes the spread of fyr(Q, 7) in direction, b € R
determines the concentration of fyg(Q, 7) in delay, and ¢ € R® describes the
dependence of the spread of fyg(Q, 7) in direction and in delay.

The parameters A, c and b arising in (H.11) are all free parameters. We now
determine these parameters under the assumption that the conditional pdfs
of (H.11) with respect to delay and direction coincide with the Gaussian pdf
and the FB; pdf respectively. These two pdfs are selected specifically because
they also maximize the entropy with specified first and second moments.

The Gaussian pdf for the variable delay reads

f(1) o< exp{-b(7 - 7)*}. (H.12)
The FB, pdf reads [15]
feps (Q) o< exp{xy] @+ {[(y; Q)" - (y @)1}, (H.a3)

where ¥ > 0 and { € [0,x/2) are respectively the concentration parameter
and the ovalness parameter of the distribution on the unit sphere S,, while
¥ ¥, and y; € R? are unit vectors. The matrix I' = [y,,y,,y;] is uniquely
determined by the three angular parameters ¢, 6 and « according to

I=

sin(G_) cos(g{)) —sin(_gf)) cos(@_) cos({)) 1 0 0
sin(0) si_n(</>) cos(¢) cos(0) sir_l(gb) 10 cos(a) —sin(a)],
cos(0) 0 —sin(6) 0 sin(a) cos(a)
(H.14)
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where 0 and ¢ coincide with respectively the elevation and the azimuth of the
mean direction, i.e. the first moment of frp, (Q). The angle « describes tilt of
the pdf on S,. An illustrative description of the meanings of y,, y, and y, can
be found in [15].

Under the assumption that the pdf fyg (Q, 7) in (H.11) has the conditional
direction pdf (H.13) and the conditional delay pdf (H.12), the sought pdf (H.11)
is calculated to be

ME(Q, T) o< exp{KﬂTQ +QTA(1, ¢, f)Q
~b(t-7)*-21g" (@ -Q)(r-7)}. (Has)

In (H.15), the matrix A is a function of the delay 7, the ovalness coefficient ,
as well as the angles a and f§ that jointly describe how fyvg(Q, 7) is tilted in
the direction-delay space, 77 describes the dependence between the spread in
direction and in delay, and

sin ¢ cos 8 — sin O cos ¢ sin B
g= —cos ¢ — sin O sin ¢ sin B
cos Osin B

We assume that the component direction-delay psd f;(Q, 7) in (H.10) is
well approximated by the pdfin (H.15), i.e.

fa(Q, 1) = fue(Q,7;0,), (H.16)
where 6 contains the component-specific parameters
0,=[Qs 74 kg (4 aa Pa fa bal.

The center of gravity of f;(Q, ) coincides with (Qg4, 7;), while the shape of
fa(Q, 7) is determined jointly by the parameters x4, {4, g, B4, 14 and by.

The component azimuth-elevation-delay psd f;(¢, 6, 7) is induced from
fa(Q, 7) via the mapping (¢, 6, 7) — (Q, 1) to be

f2(9.6,7) = sin(6) - fu(. D] )
=sin(6) - fmue(Q, 7 Bd)lﬂze(qﬁ,@)' (H.17)

Here, sin(6) is the Jacobian resulting from the change of variables. Fig. H.1
depicts an example of the 3 dB-spread surface

1., -
{0.0.0:0.0.1) = 1139 (H.18)
computed using (H.17) for the parameter setting reported in this figure.
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Fig. H.1: 3 dB-spread surface of the azimuth-elevation-delay psd calculated using (H.15) with the
parameter setting given above.

H.4 Parameter Estimator using a SAGE Algorithm

In a scenario with D dispersed components, the unknown parameters in the
signal model (H.2) can be concatenated in the vector

0=[P,...,Pp,0;,...,0p]. (H.19)

The ML estimator of 6 can be derived from the signal model (H.2) [16]. How-
ever, this estimator requires the solution of a 10 D-dimensional maximization
problem, which is too complex for implementation in real applications. As an
alternative, we resort to a SAGE algorithm [12, 13] as an approximation of the
ML estimator. Due to the limitation of space, we will not describe the SAGE
algorithm in this contribution.

H.5 Experimental Investigations

To assess whether the proposed characterization is applicable in real situ-
ations, we use the SAGE algorithm to estimate the direction-delay power
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Fig. H.3: Estimated delay power spectrum of the received signal.

spectrum (H.9) of a propagation channel from measurement data collected
using the MIMO wideband channel sounder Propsound CS in the measure-
ment campaign described in [17, 18]. We select a measurement conducted in
an office, the premises of which are shown in Fig. H.2. A description of the
measurement setting can be found in [10]. The locations of the Rx and Tx were
kept fixed during the measurement. A 50-element omni-directional antenna
array was used in the Tx. The Rx was equipped with a single omni-directional
antenna. A detailed description of the configuration of the Tx antenna array
can be found in [19, Fig. 2]. During the measurement, people were moving
in the room where the Tx was located. These movements introduced time
variations of the channel response.

The data of 200 measurement cycles were collected within a period of 13
seconds. A measurement cycle is referred to as the interval within which all
50 subchannels are sounded once. Fig. H.3 depicts the estimated delay power
spectrum calculated from the data.

The SAGE algorithm was used to compute an estimate P(Q, 7) of the
direction-delay power spectrum P(Q, 7) in (H.9) within the delay ranging
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Fig. H.4: 3 dB-spread surfaces of estimated component azimuth-elevation—delay power spectra.
The color of the surfaces codes the component power estimates.

from 100 ns to 135 ns. The estimated number of components D is set according
to the number of observed dominant local maxima of the direction-delay
Bartlett spectrum computed from the measurement data within this delay
range: D =10. Fig. H.4 depicts the 3 dB-spread surfaces (H.18) of the estimated
component azimuth-elevation-delay psds. The color of the surfaces codes the
estimated component power.

Fig. H.5 depicts the estimated azimuth-elevation-delay power spectrum
calculated using the Bartlett beamformer [20] and the azimuth-elevation—-
delay power spectrum estimate

P($,6,7) =sin(6) - P(Q,7)|ze(4,0)

obtained from the parameter estimates computed with the SAGE algorithm.
The notation “Bartlett(X)” in Fig. H.5 represents the power spectrum estimate
calculated using the Bartlett beamformer applied to the covariance matrix X
given as an argument. For notational brevity, we call such a spectrum “Bartlett
spectrum” in the sequel. The matrices £ and £(8) denote respectively the
sample covariance matrix and the covariance matrix computed based on
P(Q,1).

It is apparent from Fig. H.5 that the individual components in P(¢, 6, 7)
are much more concentrated than the corresponding components in both
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Bartlett spectra. Furthermore, the symmetry axes of the individual compo-
nents of P(¢, 0, 7) are not parallel to the azimuth and elevation axes. This
asymmetry is due to the dependence across different dispersion dimensions.
Notice that the Jacobian in (H.17) can also induce an artificial tilting of the
components. However, in this particular example most of the components in
P(¢, 6, 7) are concentrated in an elevation range around 90°, i.e. over which
the impact of the Jacobian is insignificant.

It can be observed from Fig. H.5 that the spectra Bartlett(2) and Bart-
lett(Z(8)) are similar. However, some of the foot prints arising in Bartlett(%)
do not have their counterpart in Bartlett(2(8)), which indicates that the
number of components D specified in the SAGE algorithm is less than the true
number of components in the channel response. Furthermore, Bartlett()
and Bartlett(Z(0)) are slightly different in their significant global and local
maxima. A possible explanation for this effect is that the derived pdf (H.17)
only provides an approximation to the effective psd of individual components.

H.6 Conclusions

In this contribution, we characterized the normalized direction-delay power
spectral density of individual dispersed components in the response of the
propagation channel with a probability density function (pdf). The proposed
pdf maximizes the entropy under the constraint that its first and second
moments are specified. A SAGE algorithm was used to estimate the pa-
rameters of the component direction—-delay power spectra from measure-
ment data. The results showed that the Bartlett spectra obtained from the
reconstructed signal covariance matrix computed using the SAGE estimation
result look similar to those calculated using the sample covariance matrix.
Furthermore, the estimated component direction-delay power spectra are
much more concentrated than their counterpart in the Bartlett spectra. These
results demonstrate that the proposed pdf along with the SAGE estimator
provide an effective tool to characterize direction-delay dispersion in the
propagation channel.
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I.1. INTRODUCTION

Abstract

In this contribution a propagation model is derived based on the
so-called propagation graph. It is shown by means of Monte Carlo
simulations that the obtained model as a result of its inherent structure
predicts an exponentially decaying power-delay-profile as commonly
reported from measurements. Furthermore, the power-delay-profile
obtained with the proposed model exhibit a transition from specular
components at small delays to diffuse components at long delays. This
feature was also observed, especially in experimental investigations for
ultra wide band systems.

L1 Introduction

The design and optimisation of modern radio communication systems re-
quire realistic models of the radio propagation channel, which incorporate
dispersion in delay, Doppler frequency, direction of departure, direction of
arrival, and polarisation. Often radio communication systems are assessed
by Monte Carlo simulations in which stochastic models are used to generate
synthetic realisations of the response of the radio propagation channel.

Traditional stochastic radio channel models reflect the statistical proper-
ties of the (time-variant or time-invariant) impulse response of the channel
between the input of any antenna element at the transmitter site and any
antenna element at the receiver site. The probability distributions of the pa-
rameters of the channel impulse response are generally difficult to obtain from
environment parameters such as the scatterer size and density. Instead, the
model parameters are often inferred from measurements. Motivated by ex-
perimental results conventional models implement an exponentially decaying
power-delay-profile by including various ad-hoc constraints on the random
model parameters. The two contributions [1] and [2] follow this approach. In
these models a key parameter for modelling the arrival times of individual
signal components is the “cluster arrival rate”. However this parameter is
difficult to derive from a propagation environment. In the model given in [3]
the scattering coeflicients are corrected to obtain the effects observed from
measurements like the exponential decay of the power-delay-profile. These
approaches, however, do not reflect the underlying physical mechanisms that
lead to this decaying behaviour.

A different approach is followed Franceschetti in [4] where the radio
propagation mechanism is modelled as a “stream of photons” performing
a continuous random walk in a cluttered environment with constant clutter
density. The transmitted signal is a pulse of finite duration. When a photon
interacts with an obstacle, it is either absorbed (with a certain probability)
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or scattered and changes direction. The Franceschetti model is mainly a de-
scriptive model for the delay power spectrum; it is not possible to obtain
realisations of the channel impulse responses from this model. Furthermore,
the model does not cover the transition from specular to diffuse signal con-
tributions as observed in [5].

In this contribution we present a stochastic model of the radio-propaga-
tion environment based on a random propagation graph. The model can
incorporate dispersion in delay, (bi)-directions, Doppler frequency, etc. The
aim is to obtain a stochastic model that leads to realisations of the channel
response with features similar to those observed in measured responses.

The remaining part of the paper is organised as follows. Section I.2 reviews
the needed fundamentals of directed graphs. In Section 1.3 the stochastic
propagation graph is described. Using this model, we give an example of the
resulting power-delay-profile in Section I.4. Concluding remarks are adressed
in Section I.5.

L2 Directed Graphs

Following [6] we define a directed graph G as a pair (V, &) of disjoint sets
(of vertices and edges) together with the two mappings init : £ — ) and
term : £ — V assigning every edge e € & an initial vertex init(e) and
a terminal point term(e). An edge e € & that fulfils init(e) = term(e)
is called a loop. Two edges e and e’ are parallel if init(e) = init(e’) and
term(e) = term(e’). A walk (of length K) in a graph G is a non-empty
alternating sequence (v, e1,v2, €2, ..., ek, Vk+1) of vertices and edges in G
such that init(e;) = v and term(e) = viy, 1 < k < K. A path is a walk,
with no parallel edges and where the vertices v,,...,vg_; are distinct. If a
path that fulfils v; = vk, is called cycle.

1.3 Propagation graphs

A propagation graph is a special case of a directed graph. An example of a
propagation graph G = (V,€) with V = {Tx,Rx,S],...,S6} is shown in
Fig. L.1. The vertices of a propagation graph model the transmitter (Tx), the
receiver (Rx) and the scatterers (S1,...,56). The edges model the visibility be-
tween vertices meaning that a signal emitted from the initial vertex is received
delayed and attenuated at the terminal vertex. In the depicted case, the signal
emitted from the Tx vertex is observed by the Rx, S1, S4 and S6 vertices,
whereas a signal emitted from S3 or Ss is not observable from any vertex. We
restrict the discussion to propagation graphs with no loops nor parallel edges.
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Sae

Fig. L1: One realisation of a propagation graph with six scatterers.

In this case we may identify the edge e with (init(e), term(e)) € V? and write
e = (init(e), term(e)) with a slight abuse of notation. With this identification,
£ ¢ V2. If we consider two vertices v1, v, € V then e = (v, v3) € & is fulfilled
with probability P.. As the propagation graphs contain no loops, P, ,y = 0.
The Tx is a source, and hence there exists no edge with Tx as terminal point,
that is P(, ) = 0. Likewise, the Rx vertex is considered a sink and therefore
Pryy) = 0.

The spatial positions of a vertex (a scatterer) v € ) with respect to
some arbitrary origin is given by a spatial displacement r, ¢ R ¢ R’
where R denotes the real line and R is the region in which the scatterers
that significantly affect the propagation mechanisms between the Tx and
Rx are located. The propagation time of the signal propagating along edge
e = (v1,v,) can be calculated as

Ate =ty — 1y, ¢ (L1)

where ¢ ~ 3-10%2 s the speed of light (in air) and | - | denotes the Euclidian
norm.

We model a wave interaction with a scatterer v as a scatter-gain g, weight-
ing all signals arriving at v. The gain can be complex if we work in complex
base-band notation (e.g. of narrow-band and wide-band signals) or a real
number if we describe the signals directly (e.g. for ultra-wide-band signals).
In both cases, we restrict the magnitude of g, as |g,| < 1. In this contribution
we assume that g, = g for all v, where g is a known constant. In general
gy might be modelled as a random variable. We assume an inverse squared
distance power law. Therefore the gain of the signal being scattered by init(e)
observed at term(e) is given by

Ae=g- A're_z. (I1.2)
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Note that g is not dimensionless; it is given in [s*]. Thus, a, is dimensionless.

A propagation path G is defined asa walk € = (vy, €1, v2, €2, . . ., €k, Vi, +1)
in G that fulfils v; = Tx and vk,+1 = Rx. The propagation path (Tx, (Tx, Rx),
Rx) is called the line-of-sight path provided it exists. The set of all propagation
pathsin G is denoted by £(G). The signal received at the Rx is a superposition
of all signal components each propagating via a propagation path € € £L(G).
The number of signal components in the received signal therefore equals the
cardinality of £(G). This number can be finite as in the case depicted in Fig. .1
or infinite if there exists at least one path connecting Tx and Rx with a cycle.

The delay 7, and gain a, of a propagation path € € £(G) can be calculated
by repetitively using (I.1) and (I.2) as

K, Ke
Qp = H ae, and T, = Z AT, (1.3)
k=1 k=1

Hence, the impulse response hg(7) of the propagation graph can be obtained
as

hg(r)= ) he(7) (L4)

eL(G)

with he(7) = a;8(7 — 7,), where §(+) is the Dirac unit impulse.

L4  Simulation Study

In the sequel we investigate the power-delay-profile of the propagation graph
model by means of a Monte-Carlo simulation. In this simulation the following
scenario is assumed:

1. A constant number N of scatterers is assumed.
2. The region R is assumed to be a rectangular solid box.

3. The positions of the N scatterers Sl,...,SN are drawn according to a
uniform distribution defined on R.

4. The Tx and Rx have fixed coordinates, i.e. r1y, r'rx € R and are known
vectors.

5. We define P, as

1 if e = (Tx, Rx),
P, ={Pys ife=(v,v2), wherev; e V\{Tx}, v, € V\{Rx}, and
0

otherwise.
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Table 1.1: Parameter setting for the simulation

Parameters Values

R [0,2] x [0,3] x [0,5] m?
7y [1.8,2.0,0.5]Tm
IRy [1.0,1.0,4.0]Tm

N 50

4 0.1s%

Py 0.08

Number of Monte Carlo runs 100

The settings are given in Table L1. The region R has a volume of 30 m* which
yield an scatter density of roughly 1.7m™>. In each Monte Carlo run, the
propagation graph is generated randomly and the resulting 7,’s and «,’s are
computed.

The (averaged) power-delay-profile Eg[|hg(7)[*] (assuming a small, but
finite observation bandwidth) is reported together with three individual chan-
nel realisations in Fig. I.2. It appears from the figure that the proposed model
exhibits an exponentially decaying power-delay-profile. Since we assumed
an inverse squared distance power law, the exponential power decay stems
from the structure of the propagation model alone. The individual channel
realisations are depicted as a scatter plot of the (7, |as|*)’s obtained for each
channel realisation. The reported individual channel realisations all exhibit
the same behaviour: for 7 < A7(rypy) = [rry — ry| - ' ~ 12.4 ns, the
channel impulse response is zero; for 7 > A7y ry) the “occurrence rate” of the
signal contribution increases with the delay. As a result the impulse response
consists of a specular short-delay part (including the line-of-sight path) and a
diffuse tail part for large delay with a transitional mix of specular and diffuse
components in the intermediate delay range. This transition effect is observed
from measurements in [5]. The behaviour is expected since for a longer delay
the signal is spread through the propagation graph and an increasing number
of components exist.

Ls Conclusions

A propagation model based on a stochastic propagation graph was proposed.
A propagation graph is defined by a set of vertices (scatterers) and a set of
edges (visibility between scatterers). These parameters can be drawn ran-
domly according to some probability density function. Based on measure-
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Estimated Delay Power Spectrum
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Fig. I.2: Estimated delay power spectrum and three individual realisations of the channel impulse

response. The parameter setting is given in Table 1.
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ment results conventional models implement an exponentially decaying po-
wer-delay-profile by various assumptions. These approaches, however, do
not reflect the underlying physical mechanisms that lead to this decaying
behaviour. It was shown by simulation that assuming an inverse squared
distance power decay, the proposed model yields the often observed expo-
nentially decaying power-delay-profile. This effect stems from the structure
of the propagation graph and is not obtained by introducing any artificial
assumptions. The channel realisations obtained from the model also exhibit a
transition from specular contributions for low delays to a diffuse part at long
delays as observed in measurements. The model can be easily extended to
include dispersion in directions of departure and arrival.

References

[1] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath
propagation channel,” IEEE J. Sel. Areas Commun., vol. SAC-5, no. 2, pp. 128-137,
Feb. 1987.

[2] Q. H. Spencer, B. Jefts, M. Jensen, and A. Swindlehurst, “Modeling the statistical
time and angle of arrival characteristics of an indoor multipath channel,” IEEE J.
Sel. Areas Commun., vol. 18, no. 3, pp. 347-360, 2000.

[3] J. Laurila, A. F. Molisch, and E. Bonek, “Influence of the scatterer distribution
on power delay profiles and azimuthal power spectra of mobile radio channels,”
Proceedings of the IEEE 5th Int. Symposium on Spread Spectrum Techniques and
Applications, vol. 1, pp. 267-271, 1998.

[4] M. Franceschetti, “Stochastic rays pulse propagation,” IEEE Trans. Antennas
Propag., vol. 52, no. 10, pp. 2742-2752, Oct. 2004.

[5] J. Kunisch and J. Pamp, “Measurement results and modeling aspects for the
UWB radio channel,” in Ultra Wideband Systems and Technologies, 2002. Digest
of Papers. 2002 IEEE Conf. on, May 2002, pp. 19—24.

[6] R. Diestel, Graph Theory.  Springer-Verlag, 2000. [Online]. Available:
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/

209






Paper ]

Radio Channel Modelling Using
Stochastic Propagation Graphs

Troels Pedersen, and Bernard H. Fleury

IEEE International Conference on Communications. ICC 2007

211



PAPER J. RADIO CHANNEL MODELLING USING STOCHASTIC PROPAGATION GRAPHS

© 2007 IEEE
The layout has been revised.

Erratum: Equation (].1) on page 216 should read:

Ac(f) = ge-exp(—j2nt.f), ecé&.
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J.1. INTRODUCTION

Abstract

In this contribution the radio channel model proposed in [1] is
extended to include multiple transmitters and receivers. The propa-
gation environment is modelled using random graphs where vertices
of a graph represent scatterers and edges model the wave propagation
between scatterers. Furthermore, we develop a closed form analytical
expression for the transfer matrix of the propagation graph. It is shown
by simulation that impulse response and the delay-power spectrum of
the graph exhibit exponentially decaying power as a result of the recur-
sive scattering structure of the graph. The impulse response exhibits a
transition from specular to diffuse signal contributions as observed in
measurements.

J.1  Introduction

The design and optimisation of modern radio communication systems re-
quire realistic models of the radio propagation channel, which incorporate
dispersion in delay, Doppler frequency, direction of departure, direction of
arrival, and polarisation. Often radio communication systems are assessed
by Monte Carlo simulations in which stochastic models are used to generate
synthetic realisations of the response of the (radio) propagation channel.

Traditional stochastic radio channel models reflect the statistical proper-
ties of the (time-variant or time-invariant) impulse response of the channel
between the input of any antenna element at the transmitter site and the
output of any antenna element at the receiver site. The probability distri-
butions of the parameters of the channel impulse response are generally
difficult to obtain from environment parameters such as the scatterer size and
density. Instead, the model parameters are often inferred from measurements.
Motivated by experimental results, conventional models implement an expo-
nentially decaying delay-power spectrum and impulse response magnitude
by including various ad-hoc constraints on the random model parameters.
The two contributions [2] and [3] follow this approach. In these models a key
parameter for modelling the arrival times of individual signal components is
the “cluster arrival rate”. However this parameter is difficult to derive from
a propagation environment. In the model given in [4] the scattering coefhi-
cients are corrected to account for the effects observed experimentally like the
exponential decay of the delay-power spectrum. These approaches, however,
do not reflect the underlying physical mechanisms that lead to this decaying
behaviour.

A different approach is followed by Franceschetti in [5] where the radio
propagation mechanism is modelled as a “stream of photons” performing a
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continuous random walk in a cluttered environment with constant clutter
density. The transmitted signal is a pulse of finite duration. When a photon
interacts with an obstacle, it is either absorbed (with a certain probability) or
scattered and changes direction. The Franceschetti model is mainly a descrip-
tive model for the delay-power spectrum; it is not possible to obtain realistic
realisations of the channel impulse responses from this model. Furthermore,
the model does not cover the transition from specular to diffuse signal contri-
butions as observed in [6] for ultra wide band measurements. This transition
effect is well-known within the field of room acoustics [7]. In a recently
published work [8] Andersen et. al model the exponentially decaying power
of the diffuse tail of the impulse response by applying Sabines reverberation
formula commonly used in room acoustics. In the work presented in [1] the
propagation environment was modelled using random graphs where vertices
of a graph represent scatterers and edges model the wave propagation between
scatterers. When a graph is generated, the corresponding realisation of the
channel impulse response can be computed by exhaustively searching for
propagation paths that connect the transmitter to the receiver. The obtained
impulse response exhibits the specular-to-diffuse transition.

In this contribution we extend the model described in [1] to include multi-
ple transmitters and receivers. We develop a closed form analytical expression
for the transfer matrix. The derivation is inspired from the method used in the
room acoustical model proposed in [9].

The remaining part of the paper is organised as follows. In Section J.2
the modelling concept based directed graphs is presented and a model of the
propagation environment is introduced. In Section J.3 an analytical expres-
sion for the transfer matrix of the propagation graph is derived. Numerical
examples are given in Section J.4 and concluding remarks are addressed in
Section J.5.

J.2 Modelling Propagation Using Graphs

In the following we describe the underlying principles for modelling the
propagation mechanisms using graphs. In a typical propagation scenario, the
electromagnetic signal emitted by a transmitter propagates through the envi-
ronment interacting with a number of objects called scatterers. The receiver,
which is usually placed away from the transmitter, picks up the transmitted
signal. If a line-of-sight exists between the transmitter and receiver, direct
propagation occurs. In other cases, indirect propagation via one ore more
scatterers can occur. In the following we represent the propagation envi-
ronment as a directed graph where the vertices represent the transmitters,
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receivers, and scatterers, and the edges represent visibilities between the ver-
tices. First, the necessary notation is introduced.

J.2.1  Directed Graphs

Following [10] we define a directed graph G as a pair (V, £) of disjoint sets (of
vertices and edges) together with the two mappings init : £ — V and term :
€ — V assigning every edge e € £ an initial vertex init(e) and a terminal
vertex term(e).

Two edges e and e’ are parallel if init(e) = init(e’) and term(e) =
term(e’). When the discussion is restricted to graphs without parallel edges
we may identify the edge e with (init(e),term(e)) € V?* and write e =
(init(e), term(e)) with a slight abuse of notation. With this identification,
EcVA

A walk (of length K) in a graph G is a non-empty alternating sequence
(v1, e1,v2, €2, ..., ek, vi41) of vertices and edges in G such that init(ex) = vy
and term(ey) = vy, 1 < k < K. An edge e € £ that fulfils init(e) = term(e) is
called a loop. Thus, by definition, a loop is a walk of length 1. A path is a walk,
without parallel edges, where the vertices v, . . ., vk_j are distinct. A path that
fulfils v; = vk is called a cycle. The outdegree of a vertex v denoted by deg;, (v)
is the number of edges with initial vertex v.

J.2.2  Propagation Graphs

A propagation graph is a directed graph G = (V, £) where the vertices model
transmitters, receivers and scatterers, and the edges model the propagation
conditions between the vertices.

The vertex set of a propagation graph is a union of three disjoint sets: V =
Ve UVs UV, where V; = {Txl,..., TxM;} is the set of transmit vertices, V; =
{Rxl,...,RxM;} the set of receive vertices, and Vs = {S1,...,SN} is the set
of scatterer vertices. Fig. ].1 shows a propagation graph for a communication
system with M; = 5 transmitters, M, = 3 receivers, and N = 6 scatterers. The
depicted graph has one cycle. Each vertex v € V is assigned a coordinate in
space with respect to a coordinate system and arbitrarily selected origin. The
vector r, € R ¢ R?, denotes the displacement vector of v from the origin of
the coordinate system. The set R is the region in which contains the scatterers
that significantly affect the propagation mechanisms between the transmitters
and a receivers in the graph.

In the case depicted in Fig. J.1, all transmit vertices are located in the close
proximity of each other, away from the other vertices which is also the case
for the receive vertices. This corresponds to the case where the transmitter
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and receiver sites are equipped with antenna arrays. This is not the case in
multi-user systems, where the transmitters and receivers are spread evenly in
space.

The edges of a propagation graph model the propagation, or the visibility,
between vertices meaning that a signal emitted from the initial vertex is
observed in a filtered (e.g. delayed and attenuated) version at the terminal
vertex. Due to this conceptual interpretation of an edge, a propagation graph
does not have parallel edges. In this case we may identify the edge e with
(init(e), term(e)) € V? and write e = (init(e), term(e)) with a slight abuse
of notation. With this identification, £ € V. Notice that G may have “anti-
parallel” edges, i.e. if the edge e = (v,v') is in the graph, the edge ¢’ = (v/,v)
can exist. We restrict the discussion to propagation graphs where scatterers
cannot “see” themselves. Hence we only deal with graphs without loops.
However, the propagation graphs may have cycles. The transmit vertices are
considered as purely sources with outgoing edges. Likewise, the receivers are
considered as sinks with only incoming edges.

The signal propagates in the graph in the following way. Each transmitter
emits a signal that propagate via the edges of the graph. The signals observed
by a receiver vertex is the sum of the signals arriving via the incoming edges.
The scatterers sum up the signals arriving via the incoming edges and re-emit
the sum-signals via the outgoing edges. When a signal propagates along an
edge, or interacts with a scatterer, the signal undergoes dispersion in time,
depending on the length of the edge and the particular scattering mecha-
nisms. The joint mechanism of propagating along an edge and interaction
with a scatterer is assumed linear, thus the time dispersion of the signal can
be represented as a convolution with an impulse response or, in the Fourier
domain, as a multiplication with a transfer function.

J.2.3  Model of the Propagation Mechanisms

In the following we discuss a model where the propagation along the edges is
assumed to be non-dispersive in delay in the sense that the impulse response
of each edge is merely a scaled and delayed Dirac impulse. Let g, and 7, denote
respectively the complex gain and propagation time of edge e. Thus the edge
transfer functions A, ( f) takes the form

Ac(f) = ge-exp(j2nt.f), ecé. (J.1)

The complex gain g, includes the gain due to the propagation loss along edge e
and the scattering coefficient due to the interaction at term(e). This scatterer
model is suitable in situations where the electromagnetic properties of the
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Fig. J.1: A propagation graph with four transmit vertices (M, = 4), three receive vertices (M, = 3),
and six scatterer vertices (N = 6).

scatterers are constant over the bandwidth of the transmitted signal. In the
sequel a method for determining the edge gains and attenuations is described.
The propagation time 7, of a signal propagating along edge e = (v,v’) in
& can be calculated from the coordinates of v and v’ as
r, — Iy
T, = M, (J.2)
¢
where ¢ ~ 3-10% m/s is the speed of light (in vacuum) and | - | is the Euclidean
norm. The power gain |g|* of e € £ is defined as

2
|ge|2=( . |) KRR (J:3)

1+t — 1y

For large edge lengths |r, —r,/|, (].3) behaves like the standard inverse squared
distance power law. Notice that since deg (v) = 0 if and only if e ¢ &,
and the term 1 + |r, — r,/| > 1, the gain |g,|* is finite for all e € V2 The
definition (J.3) ensures that the power leaving a vertex is always smaller than
the power entering the vertex. The phase of g, can be chosen according
to some appropriate model. As an example, when a multiuser systems is
modelled, this phase can be assumed to be uniformly distributed on the
interval [0; 271). However, if the transmitters and receivers forms arrays, then
more careful modelling of the phases is necessary.
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J.2.4  Modelling Systems With Antenna Arrays

Considering a system where the transmit antennas are spatially grouped such
that they form an array, it is customary to make the so-called ‘small-scale
characterisation’ This assumption states that the overall geometry of each
propagation path is the same for all antenna elements of one antenna array.
This corresponds to a propagation graph where all elements of an array share
the same visibilities. We can distinguish ‘small’ and ‘large’ arrays as follows:

An array A C V; of transmit vertices is a small array, if, and only if, for
any edge e = (v,v') from a transmitter vertex v € A to a receiver or scatterer
vertex v/ € Vs UV, the set of edges {(v",v') : v"' € A} is a subset of £. If an
array is not small then it is a large array. The generalisation of the definition
to include receive antennas is obvious.

In the situation depicted in Fig J.1, the transmit antennas Txl, Tx2, Tx3
and Tx4 form an array A = {Txl,Tx2,Tx3,Tx4}. As can be seen from
the figure, edge (Txl, Rx1) exists. Since there is not an edge (Tx4,Rx1) in
the graph, the array A is a large array. It can be checked that the sub-array
{Tx1, Tx2, Tx3} form a small array.

It should be noticed that not all practical arrays are small (see [11] for an
example). However, by applying appropriate restrictions on the edge-set of
the graph, the propagation graphs can be used to model both small and large
arrays. For a small array .4, it seems to be natural to assume that the edge
gains of the set of edges which connects the elements of A to a particular
vertex v ¢ A all have the same phase.

J.3  The Transfer Matrix of a Propagation Graph

In the following we derive the input-output relation of a propagation graph.
By the definition of the propagation graph, there are no other signal sources
than the vertices in V. Thus by assuming that the propagation mechanisms
are linear and time-invariant, the Fourier domain version of the input-output
relation can be written as

Y(f) = H(N)X(f), (J.4)

where H(f) is M, x M transfer matrix. The M;-dimensional input signal
X(f) is defined as

X(f) = [X(f)seer Xan (] (.5)

where X,,,(f) is the signal emitted by transmitter Txm, and [-]T denotes the
transposition operator. The output signal vector Y(f) is defined as

Y(f) = [%(f)>---» Y (N7 (.6)
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where Yy, (f) is the Fourier transform of the signal observed by receiver Rxm.
Similar, to X(f) and Y(f) we can define a vector Z(f) to describe the
signal observed at the scatterers as

Z(f) = [Z:(f)s-- - 2n(H)]T (J.7)

where the nth entry denotes the Fourier transform of the signal observed at
scatterer vertex Sn.
We form the M; + M, + N dimensional complex state vector C(f) as

C(f) =[G Cul(F)s - Cotraren (NI (-8)

where C, (f) is the state variable of vertex v,,. By selecting the indexing of the
vertices according to

Vt, H=1,...,M1
Vy € Vr, n=M;+1,...,M;+ M, (19)
VS, n=M+My+1,...,M;+ M, +N,

it is seen that
c(f) =[XNHYANZ(HT. (J.10)

Let us for a moment consider the edge e = (v, v,,) in £. A filtered version
of the signal C,,(f) emitted by vertex v, is observed at vertex v,. The signal
observed at vertex v, via edge e reads A, (f)C,(f) where A.(f) is the edge
transfer function defined in (J.1). In other words, the transfer function A, (f)
describes the propagation along the edge e, i.e. the propagation delay, attenu-
ation, and the scattering coefficient at the initial vertex of e. By collecting the
edge transfer functions to a matrix using the indexing described in (J.9) we
obtain the weighted adjacency matrix A(f) € CMi+MatrN)x(Mi+Ma+N) oof the
entire propagation graph G:

A v (f) if (vy,ve) €&,
[A(S) ] = (o) f mo (J.11)
0 otherwise.
Element n, n" of A(f) is the transfer function from vertex v, to vertex v, of
G. Due to the selected vertex indexing the weighted adjacency matrix can be
partitioned as

0 0 0
A(f)=|D(f) 0 R(f)| (J.12)
T(f) 0 B(f)
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where 0 denotes a zero matrix of the appropriate dimension and

D(f) e CM>Mi connects transmitters to receivers (J.13)
R(f) € CM2*N connects scatterers to receivers (J.14)
T(f) € CN*Mi connects transmitters to scatterers (J.15)
B(f) e cN*N interconnects the scatterers. (J.16)

The special structure of A(f) origins from the structure of the propagation
graph. The first M; rows are zero because, we do not accept incoming edges
into the transmitters. Likewise column M; + 1,..., M; + M, are all zero
since the receiver vertices have no outgoing edges. Furthermore, since the
propagation graph contains no loops the entries of the main diagonal of the
adjacency matrix A( f) are zero. Therefore the entries of the main diagonal of
B(f) are zero.
The state vector C(f) can be rewritten as the sum

c(f) = 3 (), (J17)
k=0

where Ci(f) = [Xx(f)T, Ye ()T, Z(f)T]T denotes the signal contribution
that has propagated along k edges. The signal emitted by the transmitters has
not propagated via any edges and therefore X, (f) = X(f). For k = 0 we have

Co(f) =[X(f)T,07,0T], (J.18)
and for k > 1 we have the recursive relation:
Cra(f) =A(NCk(f), k21 (J.19)

As a consequence of (J.17), the output signal vector can be decomposed
as the sum

wn=§n0x (1.20)

where Y (f) is the received signal component that has propagated via k edges
from the transmitter to the receiver. Thus Y; () is the component originating
from direct propagation from the transmitters to the receivers. By direct
computation of C;( f) using (J.19) and (J.18) we see that

0
Ci(f) = A(f)Co(f) = | D(NHX(S) |- (J21)
T(f)X(f)
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It follows from (J.21) that

Yi(f) = D(HX(S)- (J.22)

By inspection of the series A%(f), A>(f),... it is readily recognised that

0 0 0
AR(f) = |R(HBFHAT(S) 0 R(HBFUS |, k>2. (J.23)
BSU(AHT(f) 0 Br(Y)

Inserting (J.22) and (J.23) into (J.20) and using (J.19) yields

Y(f) = Yi(f) + kf: Yi(f) 1.24)
- D(N)X(f) + kiR(f)B"‘z(f)T(f)X(f) 1.25)
[P0+ X REOB (AT |X() 026
_ [D(f) + R(A(X - B(H)) ()] X(F). (1.27)

H(f)

Identity (J.27) is obtained using geometric series for matrices [12, p. 427],
which holds under the condition that the maximum of the eigenvalue magni-
tudes of B( f) is less than unity for all frequencies considered. This constraint
is always fulfilled for a propagation graph due the definition of the edge gain
(J.3).

Equation (J.19) shows the structure of the propagation mechanism. The
radio signal is re-scattered successively in the propagation environment. This
effect results in the geometric series in (J.26). From (J.27) we see that the
transfer matrix H(f) consists of the two following terms: D(f) represent-
ing direct propagation between the transmitters and receivers and R(f) (I -
B(f))'T(f) describing indirect propagation.

J.4 Numerical Examples

Using the analytical results from Section J.3 we are able to compute the
transfer matrix of a particular propagation graph. The propagation graph is
fully defined by the vertex set, the vertex locations, and the edge set of the
graph. Thus, a propagation graph can be generated stochastically by randomly
placing the vertices and generating the edges set.
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In the sequel we investigate the impulse response and the delay-power
spectrum of the propagation graph model by means of a Monte-Carlo exper-
iment. The following scenario is assumed:

The region R is assumed to be a rectangular solid box.

To simplify the discussion we consider a single-input single-output
(M; = M, = 1) system. The locations of the transmitter and receiver
vertices are fixed throughout the experiment.

The number N of scatterers is assumed constant.

The positions of the scatterer vertices are drawn according to a uniform
distribution defined on R.

We define the occurrence probability P, of an edge (v,v") € V2 as

Py if (v,v') = (Tx, Rx)
0 ifv=1'
0 ifv/ = Txorv = Rx, and

Pyi; otherwise,

Py =

where Pg;, denotes the probability of the direct propagation between the
transmitter and receiver. When Py;, = 0 the direct term D(f) in (J.27)
takes the value zero corresponding to a non-line-of-sight scenario.
When Py, = 1 direct propagation between transmitter and receiver
always occurs which corresponds to a line-of-sight scenario. In this case
D( f) is non-zero.

The parameter settings are given in Table J.1. In each Monte Carlo run the
following steps are performed:

1.

2.

3.

Generate scatterer positions r,, v € V.
Generate the edge set £.
Compute the transfer function H(f) for the frequencies f = fuin,

fmin+Af)~~->fmax

Compute the inverse Fourier transform of the transfer function apply-
ing a Hanning window to reduce side-lobes.

An example of an obtained transfer function for Py, = 0,1 and corre-
sponding impulse response are reported in Fig. J.2. The magnitude of the
transfer function for the Py, = 0 exhibits fading over the considered fre-
quency band, whereas the function obtained in the Py, = 1 case, which
is about 10 dB higher, is more constant. The reported impulse responses
magnitudes are roughly exponentially decaying. In the reported case, the
impulse responses exhibit a concentration of power into “clusters”. Inspection
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Table ].1: Parameter setting for the simulation

Parameters Values

R [0,5] x [0,10] x [0,3.5] m®
I'Tx [1.8, 2.0, 0.5]Tm
I'Rx [1.0, 4.0, 1.0]"m
N 20

g 0.8 s

Pvis 0.8
Number of Monte Carlo runs 1000
Signal bandwidth [ fmin> fmax] [2,3] GHz
Af 0.5MHz
IFFT window Hanning
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Fig. ].2: Examples of transfer functions (top) and the corresponding impulse responses (bottom)
for Pair = 1 (thick line) and Pgir = 0 (thin line). The dotted vertical line marks the propagation
delay of the direct edge between the transmitter and the receiver (line-of-sight). The parameter

setting used in the simulations is listed in Table J.1.
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Average Received Power [dB]

. . . . . . . . .
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
x1077
Delay [s]

Fig. J.3: Delay-power spectrum computed from the Monte Carlo experiment for Pair = 1 (thick
line) and Pg;x = 0 (thin line). The dotted vertical line marks the propagation delay of the direct
edge between the transmitter and the receiver. The parameter setting is listed in Table ].1.

of the vertex positions of the particular realisation revealed that this effect is
not caused by geometrically clustering of the scatterers but is an effect of the
structure of the graph.

An estimate of the delay-power spectrum can be obtained by computing
the mean squared-magnitude of the generated impulse response realisations.
Estimates of the delay-power spectra for Py, = 0,1 each obtained from 1000
realisations of the impulse response are shown in Fig. ].3. Apart from the
high-magnitude of the direct component in the Pg;; = 0,1, both delay-power
spectra in Fig. .3 show similar behaviour: the tails of the delay-power spectra
in exhibit an exponential decay in both cases. This exponentially decaying
power, which is not obtained by ad-hoc restrictions on the model parameters,
is a result of recursive scattering in the graph.

To investigate the finer structure of the impulse response, it is necessary to
have a better resolution in the delay domain. Therefore, we report in Fig. J.4
the absolute value of an impulse respons obtained with Py, = 1 using the
parameter settings given in Table ].1, but with the frequency range extended
such that fi.x = 10 GHz. The impulse response in this case exhibits a specular-
to-diffuse transition, i.e. the early part of the profile, dominated by specular
contributions, is preceded by a diffuse tail. This shows that the model is able
to jointly treat the specular and diffuse components of the impulse response.

J.s  Conclusions

A propagation model based on a stochastic propagation graph was proposed.
The propagation model proposed [1] was extended to account for multi-
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Fig. ].4: Impulse response magnitude obtained from the model with Pg;, = 1. The parameter setting
is as listed in Table ].1, but fmax has been set to 10 GHz.

input multi-output systems. Moreover, a closed form expression for the input-
output relation was obtained.

A propagation graph is defined by a set of vertices (transmitters, receivers,
and scatterers) and a set of edges (visibility between vertices). These param-
eters can be drawn randomly according to some joint probability density
function.

Based on measurement results conventional models implement an expo-
nentially decaying absolute impulse response and delay-power spectrum by
various assumptions. These approaches, however, do not reflect the underly-
ing physical mechanisms that lead to this decaying behaviour. It was shown
by Monte Carlo simulations that assuming an inverse squared distance power
decay, the proposed model yields the often observed exponentially decaying
absolute impulse response and delay-power spectrum. This effect stems from
the structure of the propagation graph and is not obtained by introducing any
artificial assumptions.

The realisations of the impulse response obtained from the proposed
model also exhibit a transition from specular contributions for low delays to
a diffuse part at long delays as observed in measurements. The model can be
easily extended to include dispersion in directions of departure and arrival.
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