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Abstract

�is thesis spans over three strongly related topics inwireless communication:
channel-sounding, -modeling, and -estimation. �ree main problems are
addressed: optimization of spatio-temporal apertures for channel sounding;
estimation of per-path power spectral densities (psds); and modeling of re-
verberant channels.

We develop a theory for optimization of spatio-temporal apertures used
in multiple-input multiple-output (mimo) channel sounding. Initially, we
focus on joint estimation of bi-direction and Doppler frequency from time-
division multiplexing (tdm)mimomeasurements. We introduce and analyze
a bi-spatio-temporal ambiguity function for spatio-temporal channel sound-
ing.�e analysis reveals that by proper design of the spatio-temporal aperture,
the maximum estimable Doppler frequency of a tdm-mimo sounder is as
high as that of a traditional single-input single-output sounder. We give the
necessary and su�cient conditions for spatio-temporal apertures tominimize
theCramér-Rao lower bound on the joint bi-direction andDoppler frequency
estimation. �e spatio-temporal aperture also impacts on the accuracy of
mimo-capacity estimation from measurements impaired by colored phase
noise. We present an improved capacity estimator, which exploits the second
order statistics of the phase noise and the structure of the spatio-temporal
aperture.

Next we turn to the problem of estimating the per-path psd resolved in
directions and delay. We model the per-path psds using entropy maximizing
probability density functions (pdfs); the pdfs are de�ned by their �rst- and
second-order moments. We derive estimators of these parameters and illus-
trate their applicability on measurement data. �e obtained spread estimates
are signi�cantly smaller, and the estimated psds aremuchmore concentrated,
than corresponding results from literature. �ese �ndings indicate that the
per-path directional spreads (or cluster spreads) assumed in standard models
are set too large.

Finally, we propose amodel of the specular-to-di�use transition observed
in measurements of reverberant channels. �e model relies on a “propa-
gation graph” where vertices represent scatterers and edges represent the
wave propagation conditions between scatterers. �e graph has a recursive
structure, which permits modeling of the transfer function of the graph. We
derive a closed-form expression of the in�nite-bounce impulse response.�is
expression is used for simulation of the impulse response of randomly gener-
ated propagation graphs. �e obtained realizations exhibit the well-observed
exponential power decay versus delay and specular-to-di�use transition.
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Dansk resumé

Denne Ph.D. afhandling omhandler tre stærkt forbunde emner: måling, mo-
dellering og estimering af radiokommunikationskanaler. Tre hovedproblemer
behandles: optimering af rum-tid sampling i radiokanalmålesystemer, en-
keltvis estimering af e�ektspektre af signalkomponenter i radiokanaler med
�ervejsudbredelse samt modellering af e�erklangsfænomener.

Der udvikles en teori for optimering of rum-tid aperturer i multi-input
multi-output (mimo)målesystemer.Der fokuseres først på samlet bestemmel-
se af dopplerfrekvens og udstrålings/indstrålings retninger ud fra tidsmul-
tiplexede målinger af mimo kanaler. Dere�er indføres en ‘ambiguityfunktion’
for dette estimeringsproblem. Analyse af ambiguityfunktionen viser, at den
højeste dopplerfrekvens, der kan bestemmes entydigt, afhænger af rum-tid
aperturet. Ved passende design af målesystemets rum-tid apertur er den øvre
grænse for den estimerbare dopplerfrekvens for mimo systemer lige så høj
som for traditionelle målesystemer med en sender- og en modtagerantenne.
Der gives den nødvendige og tilstrækkelige betingelse for, at et givet rum-
tid apertur minimerer Cramér-Rao begrænsningen på doppler-retnings be-
stemmelse. Rum-tid aperturet har også ind�ydelse på hvor nøjagtigt mimo-
kanalkapaciteten kan estimeres nårmålesystemets fasestøj tages i betragtning.
Ved at udnytte kendskab til fasestøjens autokorrelationsfunktion og struktu-
ren af rum-tid aperturet, udledes en forbedret kapacitets estimator.

Dernæst behandles estimering af sprednings egenskaber for udbredelses-
veje i et miljø med �ervejsudbredelse. E�ektspektret for en udbredelsesvej
modelleres ved hjælp af en entropi-maximerende fordelingsfunktion (pdf).
Denne pdf er givet ved det første og andet moment, for hvilke en estimator
udledes. Estimatorens anvendelighed illustreres ved brug af måledata. De
opnåede spredningsestimater er væsentligt mindre end tidligere publicere-
de estimater, hvor traditionelle metoder er anvendt. Estimeringsresultaterne
indikerer, at signalspredningen for de enkeltvise signalveje kan være overvur-
deret i standardiserede radiokanalmodeller.

Til slut opstilles en model for overgangen fra separate til di�use sig-
nalkomponenter som kan observeres i målinger af radiokanaler med e�er-
klang. Modellen bygger på en ‘udbredelsesgraf ’, hvori punkter repræsente-
rer objekter i udbredelses miljøet, og kanter representerer bølgeudbredelsen
mellem objekter. Der udledes et udtryk for grafens overføringsfunktion, der
gælder for signalkomponenter der udbredes via et vilkårligt antal interak-
tioner. Overføringsfunktionen anvendes til simulering af impulsresponset
af stokastisk genererede udbredelsesgrafer. Impulsresponserne udviser den
førnævnte overgang fra separate til et di�ust signalbidrag.
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Preface

�is thesis is submitted to the International Doctoral School of Technology
and Science at Aalborg University, Denmark, in partial ful�llment of the
requirements for the degree of doctor of philosophy. Chapters 1–4 provides
an introduction and brief description of the contributions of the thesis. �e
main body consists of ten papers referred to as Paper A–Paper J published
in peer-reviewed conferences and journals listed at pp. xv–xvi. �e work
has been carried out during the period September 2004 – August 2008 at
the Department of Electronic Systems, Aalborg University. It has been sup-
ported in part by Elektrobit and in part by the project ict-217033 Wireless
Hybrid Enhanced Mobile Radio Estimators (where). Parts of the work have
been performed within the ict-216715 fp7 Network of Excellence inWireless
COMmunication (newcom++) and its predecessor newcom.

Numerous people have in one way or another inspired my curiosity and
encouraged me to pursue the study of radio communications. I am grate-
ful to the members of the radio amateur club in Svendborg (oz7fyn e.d.r.
Svendborg Afdeling) who spurred my interest in radio communications.�e
�rst semester at Aalborg University took part in a student project on radio
channel modeling supervised by the, now retired, Associate Professor Johan
Brøndum. A�er completing the present thesis on the same topic, I can but
admire his bravery of teaching the topic to freshmen!

As I �ew to Dallas to present Paper A at the Globecom 2004 conference,
I experienced a striking example of the unforeseeable nature of inspiration.
It was my �rst conference and, in fact, my �rst trip outside Europe. It was
a long �ight Aalborg-Billund-Frankfurt-Dallas. At the boarding counter in
Frankfurt airport, I had to answer a questionnaire about my profession, the
purpose of the journey, etc. I handed in the �lled-out form to a lady with
a prominent smile. She brie�y checked my answers and informed me that
she had a few questions. ‘Why are you going to usa?’ she asked; ‘I am going
for a conference’, I answered. ‘What is the name of the conference?’ was her
next question. Mildly annoyed, I told her politely that I already gave her
that information in the questionnaire. My answer did not please her, but she
kept smiling. A�er a dozen questions, she concluded her interrogation by the
asking:

‘Can you please tell me, in layman’s terms, what the topic of the
paper you are going to present at the conference is?’

Her question tookmeby surprise.However simple the questionwas, I realized
that answering it was not so easy. How do one explain the topic of optimi-
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zation of spatio-temporal apertures in channel sounding in layman’s terms?
I decided not to—in lieu, I attempted to explain what channel sounding is.
A�er a moment of though I replied:

‘Well, If you go down in your basement and shout “Hello” as loud
as you can, you hear an echo.’

‘Yes’, she said, still smiling. I continued:

‘. . . and if you shout “Hello” in your living room, the echo sounds
di�erent.’

‘Yes it does’ she said and nodded heavily. I carried on;

‘I shout “Hello” with radio waves and listen to the echo.’

�e lady now smiled more than ever and replied in an excited high-pitched
voice:

‘Oooh!�at’s a very good explanation—I understood everything
perfectly!’

Although I didn’t answer her question exactly, I was allowed on board the
�ight to Dallas.�e conference went well. I would like to thank that lady from
American Airlines; her question inspired my further study of the analogy be-
tween acoustical and electromagnetic wave propagation and in turn inspired
me to the radio channel model in Papers I and J of this thesis.

I wish to express my gratitude and thanks to my supervisor Professor, Dr.
sc. techn. Bernard H. Fleury for providing me supervision and guidance of
the past years. I deeply admire his persevering pursuit of the highest scienti�c
standards. I also want to acknowledge my present and former colleagues and
fellow PhD students at Aalborg University: �omas Arildsen, Kazimieras
Bagdonas, Mads Græsbøll Christensen, Joachim Dahl, Bin Hu, Jesper Høj-
vang Jensen, Gunvor Elisabeth Kirkelund, Morten Holm Larsen, Hans Laur-
berg,MichaelNielsen, LaustOlsen, Romain Piton,Darius Plausinaitis, Ste�en
Præstholm, Christo�er Rødbro, Gerhard Steinböck, and Karsten V. Sørensen
for many pleasant and inspiring discussions. I would like to direct a special
thanks to my friend and former colleague Xuefeng Yin for the countless
discussions of technical and non-technical nature. I will never forget his
enthusiastic and curious approach to research, which I highly appreciate.

Last, but not least, I thank my friends and family, but most of all Mette,
for her priceless help, understanding, and support.

Troels Pedersen
Aalborg, December 2008
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Chapter1
Introduction and Motivation

Radio communications is an indispensable technology of a modern society.
Its applications range frompure convenience, such as the remote keys for cars,
to the essential mobile communications for emergency use. Radio communi-
cations is naturally applied when wired communication is impractical (e.g. in
mobile telephony) or impossible (e.g. data transfer from the ground to aircra�
or satellites). Radio communication systems exist for nearly any range; from
cable replacement in the so-called personal area networks to communications
between the Earth and distant space probes.

A radio communication system consists of one or more transmitters
which create a dynamic electromagnetic �eld, and one or more receivers
away from the transmitters sensing the electromagnetic �eld.�e �eld at the
receiver is to some degree related to the emitted �eld.�us, provided accept-
able propagation conditions exist, one may encode information in the �eld
emitted at the transmitter and recover parts of this information by sensing
the �eld at the receiver. Obviously, the engineering of a radio communication
system relies on speci�ed requirements to the system, such as the type of
information to be transmitted, the required quality and reliability of the
transmission, etc.�ese speci�cations are, however, insu�cient by themselves
to guarantee successful design of a communication system. In addition to
these prede�ned requirements, invention, design, testing, and optimization
of radio communication systems rely heavily on knowledge of the relation
between the electromagnetic �eld generated at the transmitter and the sensed
�eld at the receiver site.�us, knowledge of this relation is a prerequisite for
the engineering of modern wireless communication systems.

For the purpose of studying or designing communication systems, it
brings great conceptual simpli�cation to model such a system as a collection
of basic constituents as depicted schematically in Fig. 1.1: the transmitter, the
transmit antennas, the receive antennas, the receiver, and the propagation
environment. �e transmitter generates the input (vector) signal x(t) (the
voltage or current) applied to the input ports of the transmitter antennas.
�e transmitter antennas excite an electromagnetic wave which propagates
throughout the environment. As the electromagnetic wave reaches the re-
ceiver antennas, it induces a signal y(t) (voltage or current) at their output
ports. We de�ne the radio channel as the system where the input signal x(t)

1
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xM1
(t)

xm1
(t)

x1(t)
Transmitter

yM2
(t)

ym2
(t)

y1(t)
Receiver

x(t) =
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x1(t)
⋮

xm1(t)⋮
xM1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(t)
⋮

ym2(t)⋮
yM2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1.1: A radio communication systemwith M1 transmit antennas andM2 receive antennas.�e
transmitter applies the signal x(t) to the inputs of the transmit antennas. �ereby the antennas
emit an electromagnetic �eld which propagates through the environment and interacts with
obstacles illustrated by the gray objects. Away from the transmitter, the �eld induces the signal
y(t) at the outputs of the receive antennas.

is applied and the output y(t) is observed, i.e, from the input of the transmit
antenna array to the output of the receive antenna array.�e problem at hand
is to obtain knowledge on the radio channel necessary for designing, testing,
or optimizing wireless communication systems.

In the remainder of this chapter we de�ne and motivate the key cra�s of
radio channel characterization: channel sounding, modeling and estimation.
In Section 1.1 the interconnections between these three cra�s are outlined.We
further detail their de�nitions and purposes in Sections 1.2–1.5.

1.1 Channel Characterization: �e Trinity of Sounding, Estimation,
and Modeling

�e problem of radio channel characterization consists of three mutually de-
pendent cra�s: sounding,modeling, and estimation. As summarized in Fig. 1.2,
various kinds of information are exchanged between these three cra�s. In
the following we discuss these three cra�s and the exchanged information
in further detail.

In channel sounding channel measurements are performed by applying
a known signal to the transmit antennas and observing the output signal of

2



1.1. CHANNEL CHARACTERIZATION: THE TRINITY OF SOUNDING, ESTIMATION, AND MODELING

Estimation

Sounding

Modeling

Estimates

Models

Re
qu
ire
m
en
ts

D
at
a

O
bservations

Predictions

Models

Fig. 1.2: �e trinity of channel characterization: sounding, modeling, and estimation.

the receive antennas. Since the transmitted signal is known, information on
the relation between the transmitted and received signals can be gathered.
�e output of channel sounding is the measurement data. It is sometimes
possible to observe a phenomenondirectly from themeasurement data.�ese
observations may then inspire the channel modeling process. �e design
and planning of experiments relies on a priori information.�is information
allows for the planner to decide uponwhich antennas to apply, which scenario
to investigate, at which frequency to transmit, etc. �e information takes
the form of predictions of phenomena of interest, and speci�cation of the
measurement settings required to obtain the necessary estimation accuracy.

Channel modeling is the cra� of creating (mathematical) representations
or descriptions of the radio channel. Models can be based on theoretical
considerations as well as on measurements. �e models give, however, only
approximate descriptions of the propagation conditions, and thus, there is no
guarantee that their predictions hold true. One main objective of modeling
is to organize available information about the channel in a form useful for
the design of communication systems. �is process relies on channel obser-
vations and estimates of model parameters. �e design of estimators thus
naturally depends on the models.

Channel estimation is concerned with extracting parameter values from
channel measurements.1 To do so, estimators of the considered model pa-
rameters must be developed. �e input data to a channel estimator is the
measurement data. To allow for a certain precision of the parameter estimates,

1 We are here concerned only with channel estimation for the use in channel sounding
and modeling, and not with channel estimators for receiver algorithms.
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the estimator requires certain properties of the measurement data. �is can
be requirements on themeasurement design, the type ofmeasurement signal,
the measurement bandwidth, etc.

�e end-result of the channel characterization process is the knowledge
gained about the features of the channel, which is essential for system de-
sign. �is knowledge may be qualitative or quantitative information on the
observed phenomena.�is information is o�en conveyed in formof a channel
model. As previously stated, the system developer relies on this information
for the design of radio communication systems. �e knowledge allows the
system designer to approach the questions of “how can the observed phe-
nomena be exploited”, “how can the best performance of the communication
system be achieved”, and “what is the performance of the system”. It should,
however, be kept in mind that none of the three cra�s of sounding,modeling,
or estimation are directly relevant to the designers of radio communication
systems; only the outcome of the process, i.e., the model, is.

1.2 De�nition of a (Mathematical) Model

In this thesis we will frequently use mathematical models. It is therefore
worthwhile to de�ne the concept of a (mathematical) model. We �rst give a
de�nition of this concept and then re�ne the de�nition to the particular case
of a mathematical model. �ere are numerous de�nitions of the concept of
a “model” available in the literature.�e interested reader is referred to [1–3]
for further examples of de�nitions. �e following de�nition will serve as an
outset for our subsequent discussion of radio channel models:

De�nition 1.2.1 (Model): A model is a representation of a part of the real world
created for a particular purpose.

�is de�nition is inspired from the de�nitions given in the references [1]
and [2]. De�nition 1.2.1 consists of three basic components2:

Purpose: �e purpose of a model.

Scope: �e part of the real world which the model is supposed to represent.

Formulation: �e type of representation used in the model.

Of these three components, the purpose is the most fundamental: it can
be well-de�ned without having a scope or a formulation in mind. On the
contrary, it is meaningless to settle upon a scope unless we know what the
purpose of the model is; nor is it sensible to formulate something we do
not know what it is. To some extent, the purpose dictates the scope and

2In the references [1] and [2] only the “purpose” is discussed; the “scope” and “formula-
tion” are not discussed in relation with the de�nition of a model.
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1.3. PURPOSES OF RADIO CHANNEL MODELS

determines, at least partly, the type of formulation. A model is evaluated with
respect to its purpose [2]: To evaluate a model one must answer the question
“Does themodel suit the purpose?” Amodel well-suited for a speci�c purpose
might render completely useless for another.

�e representation can take di�erent forms: Architects o�en use card-
board, whereas physicists and engineers frequently use mathematical repre-
sentations. Since we are solely interested in mathematical models of radio
communication channels, a further precision of the concept of a mathemati-
cal model is bene�cial. We shall adhere to the de�nition from [1]:

De�nition 1.2.2 (Mathematical model): A mathematical model is an abstract,
simpli�ed mathematical construct related to a part of reality and created for a
particular purpose.

Compared toDe�nition 1.2.1, De�nition 1.2.2 has been delimited tomath-
ematical models; the basic components (purpose, scope, formulation) re-
main. For reasons of brevity, we use the term “model” for “mathematical
model” throughout.

1.3 Purposes of Radio Channel Models

Channel models for radio communications are used for (at least) three di�er-
ent purposes:

1. for the study of propagation e�ects,

2. for the design of communication systems, and

3. for the simulation of communication systems.

�is observation suggests that models may be categorized according to their
purpose as respectively study, design, and simulation models.

Study models are used as tools to better understand the propagation
phenomena governing the radio channel. Understanding the impact of prop-
agation e�ects is useful to a system designer—without this understanding the
designer has no clue of the existence of propagation phenomenawhich should
be mitigated or could possibly be exploited. O�en the models are inspired by
measurements or by simpli�cations of Maxwell’s theory of electromagnetism
[4, 5]. �e scope of a model falling into this category naturally depends on
the particular phenomenon of interest and thus numerous di�erent types
of formulations exist. Since their purpose is to help the understanding of
phenomena, study models are evaluated on their explanatory qualities, an-
alytic simplicity, and prediction accuracy.�ere are numerous study models
throughout literature, of which we give two examples. In the seminal work
[6], Clarke proposes a model for studying the correlation properties of the
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received signal envelope. Our second example is the more recent model by
Franceschetti [7], which describes the e�ect of environment parameters on
the delay-power spectrum.

Design models are the mathematical models assumed in the design of
communication systems.�esemodels form the basis for analytical treatment
of (parts of) the communications systems to be designed. Communication
systems are usually complex enough by themselves. Hence analytic simplicity
is crucial for design models. But the models should still represent, at least in
a simplistic way, the speci�c phenomena considered. Typically designmodels
are inspired and/or justi�ed by a certain study model. Illustrative exam-
ples can be found in the development of detection/demodulation algorithms,
which relies on simpli�ed channel models. �e models used in the design
of narrow-band receivers include the additive white Gaussian noise channel,
and the Raleigh fading channel [8, 9].

Simulation models are used to evaluate the performance of (parts of) a
communication system by simulation. Performance measures, like bit-error-
rates, are in most cases intractable for mathematical analysis [8]. To evaluate
the performance of communication systems we must, therefore, resort to
numerical methods. It is common practice to perform numerical simulations
using various Monte Carlo methods [10]. To this end, stochastic simulation
models of the radio channel are necessary. Obviously, one could use a simu-
lation model with the same assumptions as the design model. �is provides
a test whether the design is good if the model assumptions hold true. But such
a test cannot be used as an indication of how the equipment performs in a
real-world scenario. Another option is to use a more realistic model to test
the equipment. A simulation model therefore has (at least) two con�icting
objectives: it should 1) mimic the propagationmechanisms accurately, and, as
a great number ofmodel realizations are necessary, 2) have low computational
complexity. An early example of a simulationmodel is themodel by Jakes [11],
which is essentially a simulation version of the model by Clarke [6]. A more
recent examples include the bi-directional simulation models [12–14]. Most
standardized models, such as the 3gpp [15], winner [16], cost 259 [17, 18],
and ieee 802.16 [19] are simulation models.

Considering themutually contradicting requirements to amodel dictated
by the above model purposes, it is evident that no single model can satisfy
them all. Consequently, the literature on radio channel models is rich on
models for various purposes, scopes, and formulations.

Commonly, users of channel models work in �elds of communication
engineering.�e usersmay be experts in the �eld of receiver design or testing.
Naturally those engineers are specialists within their �eld, but cannot be
expected to have expertise in the creation of channel models too. �e users
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of channel models must chose among the great many existing models to �nd
one suiting their purpose. One cannot expect these engineers to read detailed
scienti�c papers on the development and validation of speci�c models. In
lieu, to choose an appropriate model, they may rely on textbooks, tutorials,
reviews, or surveys written by channel modeling experts. A number of such
overviews exists in papers (e.g., [20–27]) and books (e.g., [28–36]). It appears,
however, that none of these overviews base their approach on a de�nition
of the model concept—at least none of the publications [20–36] states their
de�nition. Instead, the most o�en followed the procedure is to categorize
models according to the phenomena which they describe, or which assump-
tions they rely on. As a result, di�erent models are compared with respect
to their computational complexity, disregarding their purposes. To a channel
modeling expert this might be of minor concern; but to the non-expert such
approaches may lead to an unbalanced view of the virtues and shortcomings
of models.

1.4 Purposes of Channel Sounding

Why do we perform measurements of the radio channel? Parsons [28, p. 221]
states two objectives:

“It is o�en of interest tomakemeasurements which shed some light on
the propagationmechanisms that exist in the radio channel but engineers
are usually more interested in obtaining parameters that can be used
to predict the performance, or performance limits, of communication
systems intended to operate in the channel.”

�e two di�erent objectives can be reformulated as: 1) gaining insight into
the propagation mechanisms and 2) to extract model parameters from mea-
surement data. Objective 1 is a matter of extracting knowledge of the channel
throughmeasurements. However, scienti�c knowledge can only be gained by
use of a proper scienti�c method [37].�is method requires according to [37]
a separation between the hypothesis statement and the hypothesis test.�ere-
fore, the �rst objective contains two purposes: one is to make observations
and to state hypothesis; another is to test the hypothesis, or inmodel terms, to
validate the model. Objective 2 is a matter of estimation of model parameters
from themeasurement data.We call this procedure “model calibration”. In ad-
dition to these three purposes, it is o�ennecessary to evaluate the applicability
of estimation algorithms using measurement data.
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We therefore �nd it useful to distinguish between four di�erent purposes
of channel measurements:

Observation of propagation phenomena: �e measurement data can be used
for observing new propagation phenomena. Such observations are es-
sential to the statement of new hypotheses in the form of studymodels.

Model validation: It is usually possible to predict phenomena from a study
model. It is thus a natural validity test to design experiments speci�cally
with the purpose to check if the predictions hold true.

Model calibration: According to the discussion of the purposes of radio chan-
nel models in Section 1.3, simulation models are generally designed
from available studymodels.�e settings of these parameters are some-
times known from the description of the intended propagation en-
vironment. It is, however, o�en necessary to “calibrate” a model by
estimating parameter values from measurement data.

Test of estimation algorithms: When testing parameter estimators it is o�en
necessary to assess whether the estimation methods are robust enough
to be used for real measurements. To this end, it is necessary to use a set
of measurement data to test, and possibly adjust, the implementation
of the estimators.

Due to a number of reasons, measurement campaigns are seldommade—
and almost never used—for a single purpose only. Measurement campaigns
are time-consuming and expensive. �ey are therefore usually planned for
multiple purposes. Another reason is that propagation phenomena are o�en
discovered while testing estimators or during model calibration and vali-
dation. �is process is quite natural and cost-e�ective. �ere is, however, a
caveat: to observe a phenomenon from a set of data, create a model to �t
these data, and therea�er to use the same set of data to validate the model
is a circular argument [37] which potentially leads to erroneous conclusions.
An excellent example of how to avoid this problem is the contribution by
Turin et al. [38]:�e authors �rst state an initial model (i.e. their hypothesis),
then perform the measurements, validate the model, and �nally, inspired by
observations made while validating their initial model, propose a revised
model (i.e. a new hypothesis). �e revised model is not validated with the
same measurement data. Instead, its validation is le� to future measurement
campaigns.

1.5 Purposes of Channel Estimation Algorithms

�e purpose of channel estimation algorithms can be de�ned in a more
straightforward manner compared to the previous discussion of modeling

8



1.6. ORGANIZATION OF THE THESIS

and sounding. �e purpose of a channel estimation algorithm is to extract
values for model parameters from measurement data. Parameters estimates
are necessary for model validation, where estimates are compared to the
predictions of a model. Similarly, they are used for model calibration, where
parameters of a model are determined from calibration measurements.

As an example of the estimation process, we consider the parameter es-
timation of a probabilistic channel model. Let us consider the case where we
havemade ameasurement and recorded the observation data d. Now,we state
a model for d and make the assumption that d is an outcome d = Z of a
random variable Z ∼ fZ(z; θ), where fZ(z; θ) denotes the probability density
function (pdf) of Z speci�ed by the unknown parameter θ. An estimate
of θ can be obtained as θ̂ = T(d), where T is a mapping of d into the
parameter space. �e example shows, that both the channel model fZ(z; θ)
and the data d are part of the estimation process. Clearly, the model de�nes
what to estimate from the data and, thus, the model can be considered as
an input for the estimation process. In this example we have considered a
statistical channel model, but the estimation process is essentially the same
for deterministic models.

According to the preceding discussion, channel estimation relies on two
principal inputs: the sounding data and the model. �e types of parameters
to be estimated are determined by the channel model under consideration.
Here, the term “parameters” is used in a fairly broad sense; e.g. a power
spectrum can be considered a parameter for some models. Due to the great
number of di�erent models with di�erent scopes, the type of entities to be
estimated are rather diverse. Also the kind and amount of measurement data
in�uence which types of parameters are estimable, as well as the achievable
precision. �us, to enable estimation of the desired model parameters at the
necessary precision, certain requirementsmust be accounted for in the design
of measurement equipment, and planning of measurement campaigns.

1.6 Organization of the �esis

�is chapter has discussed the motivation for radio channel characteriza-
tion for use in the engineering of radio communication systems. We de�ned
channel characterization as a process in which the three cra�s of sounding,
modeling, and estimation interact.�e outcome of the characterization pro-
cess is knowledge of the relationship between the transmitted and received
signals.�is outcome is o�en provided in the form of mathematical models.
We discern between study, design, and simulation models according to their
purposes.
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�e remaining parts of the thesis are organized as follows:

Chapter 2 de�nes the mathematical notation and concepts which we rely on
in Chapters 3 and 4

Chapter 3 presents the three topics of the thesis. Each topic description is
concluded by the statement of a question.

Chapter 4 outlines the contributions of the thesis with respect to the ques-
tions posed in Chapter 3.�is chapter is shaped as a brief overview and
summary of Papers A–J. Conclusions and outlook are provided at the
end of the chapter.

Papers A–J are ten contributions published in peer-reviewed conferences and
journals.�e layouts of the papers have been adapted to the thesis, but
the wording and notation are kept tel quel in the original published
versions.�us, the notation used in the papers di�ers from the one in
Chapters 2–4.
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Chapter2
Some Preliminaries

In Chapter 1 we de�ned the notion of radio channel models and related them
to channel sounding and parameter estimation. In this chapter we develop a
general model for the study of multiple-input multiple-output (mimo) radio
channels.�e purpose of the model is to introduce the notation and concepts
used in Chapters 3 and 4.

2.1 A Generic Representation of Radio Communication Channels

We consider a radio communication system with M1 transmit antennas and
M2 receive antennas as depicted in Fig. 2.1. We represent the transmitted and
received signals by their complex baseband [8] (vector) signals

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
⋮

xm1(t)⋮
xM1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(t)
⋮

ym2(t)⋮
yM2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1)

xM1(t)
xm1(t)

x1(t)

Array 1

R1

R2

yM2(t)
ym2(t)

y1(t)

Array 2

Fig. 2.1: A radio communication system where Array 1 transmits and Array 2 receives. �e signal
x(t) is applied to the M1 inputs of Array 1; the signal y(t) is observed at M2 outputs of Array 2.
�e elements of Array k are con�ned in a regionRk , k = 1, 2.
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respectively. Here, xm1(t) is the input signal of transmit antenna m1 and
ym2(t) is the output signal of receiver antennam2. We represent the observed
signal as the sum of two components

y(t) = s(t) + n(t), (2.2)

where s(t) denotes the x(t)-dependent signal component.�e signal n(t) in
(2.2) represents any interfering signal or noise contribution unrelated to the
transmitted signal x(t). As an example n(t) could represent thermal noise in
the receiver itself.�erefore, n(t) is termed the noise component.

In this thesis the main interest lies in the characterization of the sig-
nal component. We shall therefore not consider the properties of the noise
component in much detail. �e remainder of the chapter is devoted to the
representation of the signal component.

2.2 �e Delay-Spread Function

We assume that the signal component can be represented by the integral
equation

s(t) = ∫ H(t, τ)x(t − τ)dτ, (2.3)

where we have introduced the M2 ×M1 integral kernelH(t, τ).�is kernel is
thematrix equivalent of the input delay-spread function in Bello’s terminology
[39]. �ere exist other kernels equivalent to H(t, τ) [39]; but for our use,
the delay-spread function su�ces. For short we refer to H(t, τ) as the delay-
spread function. In (2.3) the variable t denotes the time at which the signal
is observed by the receive array, whereas t − τ is the time at which the
signal is applied to the input of the transmit array. �erefore, τ is called the
(propagation) delay.

Referring to (2.3), for a given delay-spread function the signal compo-
nent can be obtained for any transmitted signal. �us, neglecting the noise
component in (2.2), the radio channel is represented entirely by its delay-
spread function. �e delay-spread function allows for the representation of
delay dispersion in time-variant channels. It is practical to consider the special
cases where a channel is time-invariant, non-dispersive in delay, or both.

De�nition 2.2.1 (Time-invariant channel): A time-invariant channel has a
delay-spread function of the form H(t, τ) = Ht(τ), where Ht(τ) is is the
channel impulse response. �e signal component of a time-invariant channel
reads

s(t) = ∫ Ht(τ)x(t − τ)dτ. (2.4)
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De�nition 2.2.2 (Channel, non-dispersive in delay): �e delay-spread function
of a channel, which is non-dispersive delay, is of the formH(t, τ) = Hn(t)⋅δ(τ).
HereHn(t) is the time-varying (mimo) channel matrix. �e signal component
thus reads

s(t) = Hn(t)x(t). (2.5)

De�nition 2.2.3 (Time-invariant channel non-dispersive in delay): A channel
that is non-dispersive in delay and time-invariant, has a delay-spread function
of the formH(t, τ) = Htn ⋅δ(τ).�e termHtn(t) is the (mimo) channel matrix.
�e signal component reads in this case

s(t) = Htnx(t). (2.6)

�e symbol δ(⋅) used in De�nitions 2.2.2 and 2.2.3 denotes the Dirac delta.
Time-invariance may be assumed for environments where changes occur

slowly enough to be neglected for the considered transmission time duration.
Similarly, a channel can be assumed non-dispersive in delay if the Fourier
transform of the delay-spread function Fτ{H(t, τ)}( f ) with respect to the
delay variable is (approximately) constant for frequencies within the band-
width of the transmitted signal.

2.3 �e Bi-Directional Delay-Spread Function

We now describe a channel representation using the delay-spread function.
�e terminology “bi-directional ” indicates that the function can describe
both the direction of departure and the direction of arrival of waves prop-
agating from the transmitter to the receiver.

A characterization of �rst- and second-order moments of directional
spread functions is given in [40]. Bi-directional channel representations are
implicitly used in ray-tracing simulations [27, 28]. �e bi-directional prop-
erty also underlies the angular extensions of the model by Saleh and Valen-
zuela [41] proposed in [42, 43]. In the contribution by Zwick [13] a “spa-
tial impulse response” is introduced which is essentially the same idea. �e
term “directional impulse response” is used in [43]. In [44] the “double-
directional model” is described relying on the bi-directional representation.
�e bi-directional delay-spread function is also used in conjunction with
stochastic models for Monte Carlo simulations as in, e.g., [12].

Again, we consider the propagation environment depicted in Fig. 2.1, but
introduce two assumptions:

Plane waves: Following [45], we assume that the far-�eld condition holds,
such that a plane wave approximation can be applied in a region R2
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O

b Ω =
⎡⎢⎢⎢⎢⎢⎣

cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

⎤⎥⎥⎥⎥⎥⎦
θ

ϕ
sin
(ϕ)

sin
(θ)

cos(ϕ) sin(θ)

cos(θ)

Fig. 2.2: De�nition of the direction vectorΩwith respect to the coordinate systemO.�e direction
vector can be uniquely related to its azimuth angle ϕ and co-elevation angle θ by the expression
shown in the �gure.

surrounding Array 2 when Array 1 transmits, and vice versa. �is as-
sumption implies that the same set of plane waves impinge on all
elements of Array k when the other array transmits. �e plane-wave
assumption allows us to characterize the antennas by their complex
�eld patterns [11, 32, 46].

Constant geometry: We assume that the gross geometries of the propagation
paths remain constant throughout the observation time. �us, the di-
rections, delays, Doppler frequencies, and polarization properties are
assumed to be constant.

In addition we make two assumptions on the transmit and receive arrays:

Time-invariant antennas: We assume for simplicity that the complex �eld
patterns of the antennas [11, 32, 46] are constant over time.

Antennas with no delay dispersion: We assume that the array elements are
non-dispersive in delay.

�e complex electric �eld pattern of element mk of Array k is a two-
dimensional complex function [11, 32, 46]

ck,mk
(Ω) =

⎡⎢⎢⎢⎢⎣
c(θ)k,mk

(Ω)
c
(ϕ)
k,mk
(Ω)
⎤⎥⎥⎥⎥⎦
, (2.7)

where (2.7) c(θ)k,mk
(Ω), and c

(ϕ)
k,mk
(Ω) are, respectively, the vertical and hori-

zontal components of its complex electric �eld pattern. �e direction vector
Ω is de�ned as in Fig. 2.2. We de�ne the 2×Mk polarimetric steering matrix
of Array k to be

Ck(Ω) = [ck,1(Ω) ⋯ ck,mk
(Ω) ⋯ ck,Mk

(Ω)] . (2.8)
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�e �eld patterns in (2.8) are allmeasuredwith respect to the same coordinate
system Ok with origin inRk . With this de�nition the delay-spread function
can be formulated as

H(t, τ) = ∫
S2
∫
S2

C2(Ω2)TH(t, τ,Ω1 ,Ω2)C1(Ω1)dΩ1dΩ2, (2.9)

where the 2 × 2 complex kernel H(t, τ,Ω1,Ω2) is the bi-directional delay-
spread function of the radio channel. In (2.9), [⋅]T denotes the transpose
operator. Its entries are named according to

H(t, τ,Ω1,Ω2) = [hθθ(t, τ,Ω1,Ω2) hθϕ(t, τ,Ω1,Ω2)
hϕθ(t, τ,Ω1,Ω2) hϕϕ(t, τ,Ω1 ,Ω2)] , (2.10)

where the superscripts denote the transmit-receive polarization pair. It ap-
pears from (2.9) that by the aforementioned assumptions on the environ-
ment we have achieved a separation of the delay-spread function into an
environment-related kernel H(t, τ,Ω1,Ω2) and the two system-dependent
steering matrices C1(Ω1) and C2(Ω2).

Invoking De�nition 2.2.1–2.2.3 in (2.9), the corresponding bi-directional
delay-spread functions reads

H(t, τ,Ω1,Ω2) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ht(τ,Ω1,Ω2) by De�nition 2.2.1

Hn(t,Ω1,Ω2) ⋅ δ(τ) by De�nition 2.2.2

Htn(Ω1 ,Ω2) ⋅ δ(τ) by De�nition 2.2.3

(2.11)

with the same naming convention for the entries of the 2 × 2 kernels as in
(2.10).

�e main limitations of the bi-directional representation are directly re-
lated to those of the assumptions underlying its derivation. In particular, the
plane-wave assumption over both arrays is an issue for some environments.
�e assumption of constant geometry limits the time-duration for which the
representation is valid. �e assumption of time-invariant antenna responses
is relevant in, e.g., cellular phones where the hand and the head of the user
in�uence the antenna �eld patterns.�e assumption of non-delay-dispersive
antenna elements is not valid for ultra-wideband systems.�e representation
can, however, be extended to account for delay dispersion of the antennas.We
let the bi-directional representation rest for now. We will return to it later in
Section 2.5.
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2.4 �e Multipath Propagation Assumption

We now introduce the frequently used multipath propagation assumption.
Multipath propagation is an elegant and intuitive way to describe many ob-
served phenomena such as fast fading, delay- and Doppler-power spectra,
etc. [6, 21, 28, 31, 32, 34].�e assumption of multipath propagation simpli�es
the mathematical representation of the radio channel in heterogeneous envi-
ronments.�e multipath assumption also allows for physical interpretations
of observed phenomena.

Due to its conceptual and analytical simplicity, the multipath assumption
or similar ideas appear in numerous di�erent models. In fact, most modern
simulation and design models for mobile and indoor communications rely
on some sort of multipath description of the propagation scenario. Multipath
propagation is assumed so frequently that it is o�en referred to as a fact,
see e.g. [11, 28, 34, 47]. However, multipath propagation cannot be directly
observed, but can only be inferred from the behavior of observed signal.
We therefore stress that multipath propagation is indeed assumed in the
formulation of a channel model.

�e received signal is modeled as a superposition of L signal components
contributed by waves propagating along di�erent paths

s(t) = L

∑
ℓ=1

sℓ(t). (2.12)

�e signal sℓ(t) denotes the portion of s(t)which is contributed by the wave
propagating via Path ℓ.

�e concept of a propagation path implies an approximation of the prop-
agationmechanisms.�e approximation depends on the particular de�nition
of what a propagation path is.�e precise de�nition of the term “path” varies
throughout the literature. One frequently used de�nition is that a path con-
sists of the trajectory along which a wave or ray travels from the transmitter
to the receiver, under interaction with a number of so-called scatterers.

De�nition 2.4.1 (Propagation path): A (propagation) path is de�ned as a se-
quence of scatterers and the corresponding wave interactions.

For the multipath model we obtain a decomposition of the delay-spread
function according to

H(t, τ) = L

∑
ℓ=1

Hℓ(t, τ), (2.13)

whereHℓ(t, τ) denotes the delay-spread function of Path ℓ. Furthermore, the
assumptions in De�nitions 2.2.1–2.2.3 carry over to the delay-spread function

16



2.5. THE BI-DIRECTIONAL MULTIPATH REPRESENTATION

of each path; thus:

Ht(τ) = L

∑
ℓ=1

Ht,ℓ(τ), Hn(t) = L

∑
ℓ=1

Hn,ℓ(t), and Htn =
L

∑
ℓ=1

Htn,ℓ . (2.14)

2.5 �e Bi-Directional Multipath Representation

Wenow rewrite the bi-directional delay-spread functionde�ned in Section 2.3
when the the multipath assumption holds.

Assuming that the plane-wave assumption holds for each path and invok-
ing (2.9) we can express the delay-spread function of Path ℓ as

Hℓ(t, τ) = ∫
S2
∫
S2

C2(Ω2)THℓ(t, τ,Ω1,Ω2)C1(Ω1)dΩ1dΩ2, (2.15)

where Hℓ(t, τ,Ω1,Ω2) is the bi-directional delay-spread function of Path ℓ.
�us by (2.13), the delay-spread function can be recast as

H(t, τ) = L

∑
ℓ=1

H(t, τ)
= L

∑
ℓ=1
∫
S2
∫
S2

C2(Ω2)THℓ(t, τ,Ω1,Ω2)C1(Ω1)dΩ1dΩ2

= ∫
S2
∫
S2

C2(Ω2)T [ L

∑
ℓ=1

Hℓ(t, τ,Ω1,Ω2)]C1(Ω1)dΩ1dΩ2. (2.16)

Comparing this result to (2.9) it follows that the bi-directional delay-spread
function reads

H(t, τ,Ω1,Ω2) = L

∑
ℓ=1

Hℓ(t, τ,Ω1,Ω2). (2.17)

Making use of (2.17) in De�nitions 2.2.1–2.2.3 yields

Ht(τ,Ω1,Ω2) = L

∑
ℓ=1

Ht,ℓ(τ,Ω1,Ω2), (2.18)

Hn(t,Ω1,Ω2) = L

∑
ℓ=1

Hn,ℓ(t,Ω1,Ω2), (2.19)

and

Htn(Ω1,Ω2) = L

∑
ℓ=1

Hnt,ℓ(Ω1,Ω2). (2.20)
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2.6 �e Specular Bi-Directional Multipath Representation

�e interactions along a propagation path may, due to the geometric extents
and electromagnetic properties of the scatterers, disperse the signal in delay,
Doppler, bi-direction, and in polarization under each scatterer-interaction.
We refer to this dispersion phenomenon as “per-path dispersion”. �e per-
path dispersion is small compared to inter-path dispersion and may in some
cases be neglected. �is simpli�cation leads to the modeling of a path as a
series of successive specular re�ections.�is motivates the use of the attribute
“specular” in connection with a propagation path when it is non-dispersive in
delay, Doppler, and bi-direction.

De�nition 2.6.1 (Specular path): A path is specular when its bi-directional
delay-spread function reads

Hℓ(t, τ,Ω1,Ω2) = Γℓ exp(− j2πνℓt)δ(τ − τℓ)δ(Ω1 −Ω1,ℓ)δ(Ω2 −Ω2,ℓ).
(2.21)

�e parameters of a specular path are: the 2 × 2 complex polarization matrix
Γℓ, the Doppler frequency νℓ, the delay τℓ, and the two unit vectors Ω1,ℓ, and
Ω2,ℓ specifying the direction of departure and direction of arrival, respectively,
as shown in Fig. 2.3.

We use the term “dispersive path” to refer to a path that is non-specular.
�e remainder of the chapter is devoted to the characterization of bi-

direction delay Doppler dispersion under the specular-path assumption.�is
form of representation is especially relevant since most available high-resolu-
tion channel parameter estimators are derived based on it.

�e entry of H(t, τ) corresponding to transmit antenna m1 and receive
antenna m2, which we call the delay-spread function of subchannel (m1,m2),
reads

[Hℓ(t, τ)]m2m1 = ∫
S2
∫
S2

cm2(Ω2)THℓ(t, τ,Ω1,Ω2)cm1(Ω1)dΩ1dΩ2.

(2.22)
A�er inserting (2.21) in (2.22) and integrating over Ω1 and Ω2 we obtain

[Hℓ(t, τ)]m2m1 = cm2(Ω2,ℓ)TΓℓ cm1(Ω1,ℓ)δ(τ − τℓ) exp(− j2πνℓt). (2.23)

�us, the bi-directional delay-spread function of Path ℓ is determined by the
parameter set

θℓ = {Γℓ ,Ω1,ℓ ,Ω2,ℓ , τℓ , νℓ}. (2.24)

Recalling that Γℓ is a complex matrix with four entries and that the two unit
vectors Ω1,ℓ and Ω1,ℓ can be represented by their azimuth and co-elevation

18



2.6. THE SPECULAR BI-DIRECTIONAL MULTIPATH REPRESENTATION

R2

O2

m2

rm 2

R1

O1

m1

r
m

1

Pat
h ℓ

Path 1

Path L

Ω
2,ℓ

Ω 1,ℓ

Array 1 Array 2

Fig. 2.3: A specular multi-path propagation environment [Paper B]. �e black dots indicate the
position of the antenna elements. �e M1 transmit antennas of Array 1 are con�ned in a region
R1. Antenna m1 is at position rm1 with respect to the origin O1 measured in carrier wave-lengths.
Similarly the M2 receive antennas of Array 2 are in the regionR2 with the position of antenna
m2 given by rm2 with respect to O2. �e signal propagates via L paths from Array 1 to Array 2.
�e direction of departure of Path ℓ is determined by the unit vectorΩ1,ℓ . Similarly, the direction
of arrival is determined by Ω2,ℓ .

angles, in total 14 parameters are required to specify one path.�us, the delay-
spread function H(t, τ) is speci�ed by totally 14L parameters. It is possible,
however, to simplify the model by introducing further assumptions.

An important example of such a simpli�ed bi-directional representation
is obtained by assuming isotropic1 antenna elements.�is assumption implies
for subchannel (m1,m2) that

cm2(Ω2,ℓ)TΓℓ cm1(Ω1,ℓ) = αℓ exp( j2πΩT

1,ℓrm1 + j2πΩT

2,ℓrm2), (2.25)

where αℓ is termed the complex gain of Path ℓ and the antenna positions are
given by the vectors rm1 , rm2 de�ned in Fig. 2.3.�us, in this case

[Hℓ(t, τ)]m2,m1 = αℓ exp( j2πνℓt+ j2πΩT

1,ℓrm1+ j2πΩ
T

2,ℓrm2)δ(τ−τℓ). (2.26)
In total 8 parameters are necessary to determine the delay-spread function in
(2.26).

Further simpli�cations can be obtained by applying De�nitions 2.2.1,
2.2.2, and 2.2.3. For the time-invariant case (De�nition 2.2.1) we have the

1 Expression (2.25) is valid provided that each of the arrays consists of antenna elements
with identical responses, apart from a phase-shi� due to the displacement from the origin of
the array. Obviously, this condition is ful�lled for isotropic array elements. In this general case,
however, αℓ may depend on Ω1,ℓ and Ω2,ℓ .
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expression

[Ht,ℓ(t, τ)]m2m1 = αℓ exp( j2πΩT

1,ℓrm1 + j2πΩT

2,ℓrm2)δ(τ − τℓ) (2.27)

with 7 parameters. For a channel non-dispersive in delay (De�nition 2.2.2) we
also need 7 parameters:

[Hn,ℓ(t)]m2m1 = αℓ exp( j2πνℓt + j2πΩT

1,ℓrm1 + j2πΩT

2,ℓrm2). (2.28)

Finally, in the time-invariant and delay non-dispersive case (De�nition 2.2.3)
we obtain

[Htn,ℓ(t, τ)]m2m1 = αℓ exp( j2πΩT

1,ℓrm1 + j2πΩT

2,ℓrm2) (2.29)

with 6 parameters.
�e bi-directional multipath representation and derivatives thereof are

used in both study models (see e.g. [27, 44, 45]) and simulation models (see
e.g. [12–14, 17, 48]).�e bi-directional specular multipath representation can
be used as a study model in channel estimation. To this end, estimation
algorithms must be derived. When used in simulation models, a common
approach is to draw the path parameters according to an assumed probability
density function, which then needs to be determined by calibrationmeasure-
ments (cf Section 1.4).
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Chapter3
Topics of the �esis

In this chapter we describe the three main topics covered in the Papers A–J
included in the thesis. We conclude each topic description with a statement of
the questions considered in these papers.�e �rst topic presented in Section 3
regards sounding systems. More speci�cally, we are here concerned with
sounding systems for measurement of the spatial properties of the channel.
�e second topic discussed in Section 3.2 is concerned with modeling and
estimation of the per-path dispersion in delay and bi-direction.�e last topic
stated in Section 3.3 is the modeling of reverberant indoor channels.

3.1 Spatio-Temporal Channel Sounding

Due to the many di�erent model types and scopes, there exist numerous
di�erent sounding techniques for collecting various kinds of measurement
data [28, 47, 49–51]. Also spatially resolved measurements can be obtained by
di�erent methods. �e sounding systems may use one of the following four
approaches to obtain spatial resolution at the transmitter, at the receiver, or at
both sites:

Directional antenna: Measurements are performed with a highly directive
antenna [46] oriented in di�erent directions [42]. While the hardware
necessary for this sounding method is relatively simple, this method is
slow (in the range of seconds or minutes [34]) due to the rotation of
the antenna. �erefore this method is suitable only for measurements
of stationary environments.

Antenna array: Measurements are performed using an array of antenna el-
ements [52–55]. �e directional resolution is obtained via array pro-
cessing methods. �e measurements can be performed continuously,
and therefore there are practically no constraints on the stationarity of
the measurement environment. �e hardware complexity and cost is
high because of the required parallel transmitters and/or receivers.�e
calibration of the transmitter/receiver chains is also cumbersome. In
the case of parallel transmitters, the sounding signals must be chosen
to allow for separation of the received signals into its components from
each of the transmitters.
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Synthetic antenna array: An antenna array is simulated by taking measure-
ments with a single antenna placed at a number of di�erent positions.
�e positions of the antenna are therea�er considered as element posi-
tions of a synthetic array [56]. Provided that the environment remains
constant during the whole measurement, it is possible to process the
measurement data by standard array processing methods [56]. As with
the rotated directional antenna this method is time-consuming, and
can therefore only be applied in stationary environments.

Switched antenna array: �e sounder is connected to the transmit/receive
antenna array via a switch. �e switch makes it possible to transmit
or receive with one antenna element at the time. �is technique is
several orders of magnitudes faster than that using a synthetic array or
directional antenna [51, 57–61]. �e complexity and calibration e�ort
is limited since only one transmitter/receiver is necessary. Due to the
limitations in switching speed, the environment is required to be quasi-
stationary. Additionally, since the measurements are not performed
simultaneous for all antennas, phase and frequency stability of the os-
cillators of the transmitter or receiver is an issue. One further weakness
of using a switched antenna array at the transmitter is the rather limited
power that the switch can accommodate. �is limitation is especially
critical in outdoor measurements.

It is thus possible to obtain spatial resolution at the transmitter or at the
receiver site, or both. Indeed, modern sounding systems commonly apply
spatial resolution techniques at both sites. �e above techniques may be
combined. For instance, the sounder presented in [51] relies on a combination
of a switched transmitter antenna array and an antenna array the receiver with
fully parallel receivers. Another example is the channel sounder presented in
[62]. Here, 16 fully parallel transmitters are connected directly to the transmit
array, while the 32 receive antennas are sensed by via 8 switches via 8 parallel
receivers. Commercially available sounders are most o�en equipped with
switched arrays at both the transmitter and the receiver [51, 57, 59–61]. We
therefore discuss this sounding technique in further detail.

Fig. 3.1 shows a time-division-multiplexing (tdm) or a switched sounding
system. Switch 1 feeds the sounding signal to the inputs of the Array 1 ele-
ments. Similarly, the outputs of theArray 2 elements are sensed by the receiver
via Switch 2. In thisway any subchannel can bemeasured.�e sounding signal
u(t) can be chosen as a sum of time-shi�ed sounding pulses

u(t) = I

∑
i=1

pi(t). (3.1)
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Fig. 3.1: A switched sounding system.�e known sounding signal u(t) is applied to the transmitter
antenna via a Switch 1.�e output terminals of the receiver antennas is sensed via Switch 2.�us,
a time-division-multiplexed channel measurement y(t) is obtained.

Di�erent types of sounding pulses may be considered. O�en applied sound-
ing pulses consist of a maximum-length sequence [45]. Another option is a
chirp signal [51]. �e signal component s(t) of the observed signal y(t) =
s(t) + n(t) is a superposition

s(t) = I

∑
i=1

si(t), (3.2)

where the ith signal component si(t) is obtained with Switch 1 in position
m1(i) and Switch 2 in position m2(i):

si(t) = ∫ [H(t, τ)]m2(i)m1(i)pi(t − τ)dτ. (3.3)

In the case where the temporal variations of H(t, τ) are small for the
duration of pi(t) we can make use of the following approximation

H(t, τ) ≈ H(ti , τ), for t ∈ Ti (3.4)

where sample time ti is the center time of the support Ti of pi(t). Under this
approximation, the signal component si(t) is the form

si(t) = ∫ [H(ti , τ)]m2(i)m1(i)pi(t − τ)dτ. (3.5)

It appears from (3.5) that the signal component si(t) is the ith sounding pulse
�ltered by a channel speci�ed by the sample time ti , and the two antenna
indices m1(i), and m2(i). We de�ne the ith spatiotemporal sample as one
signal component si(t) impaired by the noise component of y(t).

A switched 1 sounding system allows for acquisition of one sample at each
of the sample times t1, . . . , tI . In this case the channel coe�cient of si(t) is

1We present here a simpli�ed version of the theory developed fully in Paper B. In the
more general theory of Paper B we can de�ne spatiotemporal samples and sounding modes
for systems with an arbitrary numbers of parallel transmitters and receivers.
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thus fully speci�ed by the triplet of indices

(i ,m1(i),m2(i)) ∈ {1, . . . , I} × {1, . . . ,M1} × {1, . . . ,M2}. (3.6)

We de�ne a sounding mode as the set of triplets from which measurements
are obtained:

M= {(i ,m1(i),m2(i)) ∶ i = 1, . . . , I} . (3.7)

If the radio channel varies between consecutive sample times, i.e., if the
channelmatrixH(ti , τ) is not constant for i = 1, . . . , I, then the acquired set of
channel measurement data is a�ected by the order in which the subchannels
are measured. Consequently, estimators relying on these data will be a�ected
by the choice of sounding mode. In the following we are concerned with two
such estimation problems where the sounding mode is of importance.

Estimation of Doppler Frequency and Bi-Direction in Switched Sounding

Wenowconsider the estimation of the parameters of the non-delay-dispersive
channel model given in (2.26). �e set of parameters to be estimated is θ ={θ1, . . . , θL} with θℓ = {αℓ , νℓ ,Ω1,ℓ ,Ω2,ℓ}.

�e ith spatiotemporal sample is obtained at time ti from transmitter
antenna m1(i) at position rm1(i) and receiver antenna m2(i) positioned at
rm2(i). Insertion in (2.26) yields for the channel coe�cient of sample i

[Hn(ti)]m2(i)m1(i) =
L

∑
ℓ=1

αℓ exp ( j2πaT

i ϑℓ) , (3.8)

where

ai =
⎡⎢⎢⎢⎢⎢⎣

ti
rm1(i)

rm2(i)

⎤⎥⎥⎥⎥⎥⎦
and ϑℓ =

⎡⎢⎢⎢⎢⎢⎣
νℓ
Ω1,ℓ

Ω2,ℓ

⎤⎥⎥⎥⎥⎥⎦
. (3.9)

�e observed channel coe�cients in (3.8) are thus speci�ed by the spatio-
temporal aperture matrix:

A = [a1, . . . , ai , . . . , aI] . (3.10)

Given a set of sample times {t1, . . . , tI} and the layouts of the two antenna
arrays, the sounding mode completely specify A.

As apparent from (3.8), the data available for estimation of θ depend on
the aperture matrix (and thus on the sounding mode). Consequently, the
performance of the estimator in terms of accuracy and noise-robustness is
in�uenced by the spatiotemporal aperture.

In the design of a sounding system, there is a degree of freedom to select
the timing scheme and soundingmode. It is, however, a standard approach to
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group the measurement of sub-channels into sounding cycles [34, 61]. In each
sounding cycle all sub-channels aremeasured once.�e cycle time denoted by
Tcy between the start of two successive sounding cycles ful�lls the inequality

Tcy ≥ M1M2Tr, (3.11)

where Tr denotes the minimal time between successive spatio-temporal sam-
ples. It is commonly believed, by an intuitive argument [34, 61], that the
maximum estimable Doppler frequency is given by invoking the Nyquist-
Shannon Sampling�eorem [63] as (2Tcy)−1. With this result the maximum
estimable Doppler frequency is accordingly reduced by a factor (M1M2)−1
compared to a single-input single-output (siso) sounding system [34, 61]. For
sounding systems with a large number of transmitter and receiver antennas
this results in a signi�cant limitation on the maximum Doppler frequency,
and thus on the maximum velocity of any moving object in the measurement
environment.

To illustrate the importance of this limitation we consider an example
where the transmittermoves directly toward the receiver at a speedV emitting
a carrier with wavelength λc . �e signal component propagating directly
from the transmitter to the receiver (the direct component) has Doppler
frequency V/λc [28, 32, 34]. We are interested in computing the highest
speed denoted by Vmax, such that the Doppler frequency of the direct com-
ponent is estimable. We let the maximum estimable Doppler frequency equal(2TrM1M2)−1, hence

Vmax = λc
2TrM1M2

. (3.12)

As a numerical example consider the measurements presented in Paper A.
�e carrier wave length is λc = 0.12m, and the sounding system is equipped
with M1 = 54 transmitter antennas and M2 = 32 receiver antennas, yielding
M1M2 = 1728. We obtain by setting Tr = 5.1 µs, for the two cases M1M2 = 1
(siso) and M1M2 = 1728 (mimo)

Vmax = 0.12m

2 ⋅ 5.1 µs ⋅M1M2
=
⎧⎪⎪⎨⎪⎪⎩
20 ⋅ 103 km/h, M1M2 = 1,
12 km/h, M1M2 = 1728. (3.13)

In the siso case, the speed limit does not pose problems for use in terrestrial
applications, whereas it severely limits the applicability in the mimo case.

It is important to notice that the Nyquist-Shannon Sampling �eorem
[63] gives the minimum sampling frequency by which one can represent a
band-limited signal and still recover the original signal without error. For
Doppler frequency and direction estimation, it is, however, not the objective
to be able to recreate the signal without error. It su�ces to be able to estimate
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Fig. 3.2:Measurement of a time-invariant, delay non-dispersive channel with a switched sounding
system impaired by phase noise. �e noise phasor e jφ(t) represents the concatenated phase noise
of the transmitter and receiver oscillators.

the parameters of interest with a small error. �us the Nyquist-Shannon
Sampling �eorem cannot be directly applied for the determination of the
maximum estimable Doppler frequency.

It was shown in [64] that by appropriately selecting the temporal sampling
scheme, the maximum estimable Doppler frequency is limited by (2Tr)−1
even for mimo sounders. �e results of [64] include Doppler frequency es-
timation, but does not consider estimation of bi-direction. A question arises
from this observation:How to select the spatio-temporal aperture such that the
estimation accuracy of joint Doppler frequency and bi-direction is optimum?

Phase-Noise Impaired Switched Sounding

Another situation where the sounding mode in�uences the measurement
results is the case of phase-noise impaired switched sounding [65, 66]. To
illustrate the problem, we consider the system depicted in Fig. 3.2.

Wemeasure a time-invariant channel that is non-dispersive in delay with
a phase-noise impaired sounder.We represent the impairment by single phase
noise process φ(t) concatenating phase noise of the oscillators in the trans-
mitters and receivers. Although the propagation channel Htnδ(τ) is time-
invariant, phase noise causes the measured channel to vary over time. An
expression for the signal contribution si(t) is obtained from (3.3) by inserting
Htnδ(τ)e jφ(t) forH(t, τ):

si(t) = ∫ [Htnδ(τ)e jφ(t)]m2(i)m1(i)pi(t − τ)dτ (3.14)

= [Htn]m2(i)m1(i)e
jφ(t)pi(t). (3.15)

For a sounding pulse of su�ciently short duration, the following approxima-
tion is valid for a band-limited phase noise process φ(t):
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e jφ(t)pi(t) ≈ e jφ(t i)pi(t). (3.16)

Making use of this approximation, we achieve from (3.15)

si(t) = gi pi(t), gi = [Htn]m2(i)m1(i) ⋅ e
jφ(t i). (3.17)

From this expression it appears that gi depends on ti ,m1(i) andm2(i). Due to
the random noise phasor, the obtained coe�cients {g1, . . . , gI} are stochastic
variables.�e phase of coe�cient gi reads

∠gi =∠ ([Htn]m2(i)m1(i)) + φ(ti). (3.18)

As a result, the expectation of∠gi is

E[∠gi] =∠ ([Htn]m2(i)m1(i)) + E[φ(ti)] , (3.19)

where E[⋅] denotes the expectation operator. It appears from (3.19) that the
sequence {E[∠gi]} depends on the sounding mode. It follows similarly,
that for correlated {φ(ti)}, the cross correlations of {∠gi} depend on the
soundingmode as well.We thus reach the conclusion that the soundingmode
a�ects the statistical properties of {gi} and in turn the estimators relying on
the measurement y(t).

A speci�c estimation problem where the phase stability of the sounding
system is of importance is the problem of estimating themimo channel capac-
ity from measurement data [65–70]. �e capacity of a time-invariant, non-
delay-dispersive deterministic mimo channel is de�ned as [71, 72]

C = max
Σ∶tr (Σ)=M1

log2 det(I + ρ

M1
HtnΣH

H

tn) , (3.20)

where Σ is the covariance matrix of the transmitted signal x(t) normalized
such that tr (Σ) = M1 and ρ = E[x(t)Hx(t)] /N0 is the signal-to-noise
ratio with N0 denoting the one-sided spectral height of the noise component.
Rather than performing the maximization required to evaluate (3.20), it is
customary to consider the case, where the channel is unknown to the trans-
mitter, and thus select Σ = I.�is choice leads to

C(HtnH
H

tn) = log det(I + ρ

M1
HtnH

H

tn) . (3.21)

�is quantity is, despite the fact that it ismerely amutual information between
the transmitted signal and the received signal, commonly referred to as the
mimo channel capacity with no channel knowledge at the transmitter [73].
Recently, measurements of the mimo capacity have been reported in a great
number of publications.
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Due to the noise phasor, the matrixHtn in (3.21) is unknown and, conse-
quently, the capacity cannot be computed. Instead, the capacitymust to be es-
timated from a set of measurement data.�e standard estimate of C(HtnH

H

tn)
from a noisy measurement G of Htn impaired by both additive and phase
noise is C(GGH) [65–70].

�e contribution [74] considers the e�ect of additive measurement noise
on the standard capacity estimate. It is shown that the additive noise leads
to an overestimation of the channel capacity. It has been shown recently that
phase noise of the sounding system a�ects the estimation of mimo channel
capacity when using the standard capacity estimate [65–67]. �e e�ect of
phase noise on mimo capacity estimation is studied in [67] assuming that
phase noise is a random walk process. �eoretical investigations reported
in [65, 66] show that, provided phase noise is white and Gaussian, it leads
to large measurement errors in terms of estimated channel capacity when
the channel matrix has low rank. In [66] analytical results are given under
the assumptions that the sounding mode ful�lls a separability condition and
that the phase noise process is white. However, experimental studies reported
in [70] show that phase noise cannot be assumed to be white or a random
walk on the time-scale of a measurement period [68, 70]. Furthermore, the
spatio-temporal arrays optimized for joint Doppler-direction estimation do
not in general ful�ll the separability condition.

�is leads us to a second question regarding the selection of sounding
mode: How does the sounding mode in combination with the correlated phase
noise of the sounding system a�ect the estimation ofmimo channel capacity, and
how can the sounding mode be accounted for in the capacity estimator?

3.2 Modeling and Estimation of Per-Path Dispersion

As described in Chapter 2, modern stochastic channel models commonly rely
on the multipath assumption, i.e., the response of the channel is modeled as a
superposition of components where each component represents the response
of one propagation path which may be dispersive or specular.

It is shown in [75–78] that the per-path dispersion has an impact on
important metrics of a channel model, such as, the mimo channel capacity
and diversity. Realisticmodels including the per-path dispersion are therefore
important to accurately assess the impact on systemperformancewith respect
to these metrics.

Several models of per-path dispersion have been proposed in the litera-
ture.�emost wide-spread approach, pioneered by Saleh and Valenzuela [41]
and extended by others [13, 14, 42, 43], is to model the per-path response as a
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superposition of specular components. Assuming uni-polarized antennas,
and dropping the polarization superscript in (2.11) we have for the time-
invariant case in (2.28)

ht,ℓ(τ,Ω1,Ω2) =∑
q
αℓqδ(τ − τℓq)δ(Ω1 −Ω1,ℓq)δ(Ω2 −Ω2,ℓq), (3.22)

where the complex gain αℓq, the delay τℓq, the direction of departure Ω1,ℓq,
and the direction of Ω2,ℓq are random variables. �e specular components
belonging to path ℓ are assumed to be grouped or “clustered” around a center
of gravity in the bi-direction-delay domain.

We remark that the term “cluster” introduced in [41] has been used in
several di�ering meanings in the literature. �e large intra-cluster delays of
[41] suggests that the term originally referred to a group of signal components
arriving via di�erent paths, and not the decomposition of the response of a
single path as in (3.22). In directionally resolved measurements, where the
spatial resolution admit resolution of the responses of individual paths, the
term cluster has been used in the meaning of the response of a single path
[42, 79, 80].

For simulation models it is necessary to generate realizations of the ran-
dom parameters in (3.22). �is includes choosing realistic pdfs of these pa-
rameters. Similarly, for design models, parameters describing the per-path
dispersionmust be chosen realistically in order to yield systems that will work
under realistic conditions.�ese pdfs are generally not readily available, but
must be inferred frommeasurements. Hence, for this purpose it is important
to be able to reliably estimate the per-path dispersion parameters from mea-
surement data.

�e clustering approach proposed in [41] and later applied by other re-
searchers [42, 79–84] comprises three steps:

1. Estimate a number of specular components.

2. Group the obtained estimates according to a clustering rule.

3. Estimate the cluster parameters of the de�ned clusters.

�e �rst step is typically performed by applying a high-resolution estimation
method such asclean [42, 85],music [86, 87], esprit [57, 88],rimax [89, 90],
or sage [45, 91]. In step two, various heuristic clustering rules and algorithms
have been proposed and applied to measurement data [41, 42, 79–84]. Most
of these techniques rely on visual clustering performed by a trained operator
[41, 42, 79, 81, 82]. In the third step cluster parameters, most o�en �rst- and
second-order moments of each cluster, are estimated.

As the cluster model is an extension of the specular model, the clustering
approach extends the specular estimation techniques. �ere are, however, a
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few issues to be considered. �e clustering approach relies on accuracy of a
high-resolution method; but these methods are most o�en derived for well-
separated specular components—a condition which is obviously not ful�lled
for estimation of per-path dispersion. Under such conditions the output of
the high-resolution estimators may contain estimation artifacts not related
to the propagation conditions. An example of this problem follows from the
analysis presented in [92] where a slightly dispersive path results in a heavy-
tailed distribution of the estimated specular components. Hence, relying on
this type of estimator, may result in large variances of the spread estimates.
�e applied clustering rules are also problematic from a scienti�c viewpoint.
�e use of visual inspection does not only make a systematic evaluation of
the accuracy of these methods di�cult but renders their repeatability and
objectivity questionable. From a practical point of view, the clustering meth-
ods require large amounts of time-consuming manual work. �e amount of
manual work has been alleviated by the introduction of (semi-)automatic
clusteringmethods [79–81, 83, 84], but to be replaced by another set of heuris-
tics involving parameter setting of these algorithms. �e accuracy of these
methods, however, remains cumbersome to analyze statistically due to the
heuristic nature of their clustering rules.

Another approach to the estimation of per-path dispersion parameters
is to rely on a non-specular path model and to estimate the parameters of
this model directly [93]. Hence, in contrast to the clustering approach, this
procedure requires the development of new high-resolution estimators for
the parameters of each path model. �e available methods are reviewed in
[93]. Rather than modeling the response of a path, we focus on modeling
and estimation of the per-path power spectral density (psd). �e psd of a
path is de�ned as follows. Assuming that the spread functions of the paths
are uncorrelated and wide-sense stationary complex (zero-mean) orthogonal
stochastic measures [40] we have

E[ht,ℓ(τ,Ω1,Ω2)h∗t,ℓ′(τ′,Ω′1,Ω′2)] =
Pℓ(τ,Ω1,Ω2)δℓℓ′δ(τ − τ′)δ(Ω1 −Ω′1)δ(Ω2 −Ω′2). (3.23)

In (3.23) δℓℓ′ is the Kronecker delta.�e bi-direction delay psd Pℓ(τ,Ω1 ,Ω2)
in (3.22) of Path ℓ reads

Pℓ(τ,Ω1,Ω2) = E[∣ht,ℓ(τ,Ω1,Ω2)∣2] . (3.24)

For a model of the type (3.22), ful�lling the uncorrelated scattering (us)
condition [39, 40], i.e, each of the terms in (3.22) are statistically uncorrelated,
the per-path psd can be interpreted as follows: Since the psd is non-negative
and since the integral
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∫∫∫ Pℓ(τ,Ω1 ,Ω2)dτdΩ1dΩ2 = Pℓ (3.25)

is �nite, the psd of Path ℓ can be recast as a product of Pℓ and a non-negative
function integrating to unity

Pℓ(τ,Ω1 ,Ω2) = Pℓ ⋅ f (τ,Ω1 ,Ω2; θℓ), (3.26)

where the vector θℓ holds the parameters of f (τ,Ω1,Ω2; θℓ). We may thus
interpret the function f (τ,Ω1,Ω2; θℓ) as the joint pdf of the random variables
τℓq ,Ω1,ℓq, and Ω2,ℓq in (3.22).�us by assuming a particular pdf, the estima-
tion problem at hand amounts to estimating the parameters θℓ de�ning the
pdf in (3.26), and the power Pℓ.

In the literature there exists a number of contributions proposing various
pdfs for estimation of dispersion in various dispersion domains [93–95]. It
is, however, not obvious which pdf to select. Since this choice a�ects the the
accuracy of the corresponding estimators [93] this issue merits further con-
sideration. We are particularly interested in estimating the �rst- and second-
order moments of the psd since these parameters are required in numerous
design and simulation models. It thus appears natural to pose the question:
“How should the model of the non-specular path be chosen for the purpose of
estimating the second order moments of path components dispersed in delay
and direction from measurement data?”

3.3 Reverberation Models for Indoor Radio Channels

�e third topic treated in this thesis is modeling of the channel impulse
responses of indoor radio channels. In particular, we study the “specular-
to-di�use” transition observed in experimentally obtained channel impulse
responses.

In the ultra-wide-band measurements presented in [96], it is observed
that the impulse response of an indoor channel exhibits a specular-to-di�use
transition. For the purpose of describing the problemwe consider the channel
impulse response ht(τ) of a single-input single-output communication sys-
tem operating in a time-invariant channel. �e transition e�ect is illustrated
in Fig. 3.3.�e early part of the response is dominated by specular components
while the later part is a di�use ‘tail’, of which the power decreases exponen-
tially as the delay increases.

�e simulationmodels presented in [96–98] take this transition e�ect into
account by modeling the impulse response as a sum of specular components
and a single exponentially decaying di�use term:

ht(τ) = hspecular(τ) + hdi�use(τ), (3.27)
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log ∣ht(τ)∣

τ

Specular
components

Di�use
component

Fig. 3.3: An example of a channel impulse response illustrating the specular-to-di�use transition.
�e magnitude of ht(τ) is depicted on a logarithmic scale versus the delay τ. �e early part of
the response is predominantly specular, while the later part consists of an exponentially decaying
di�use ‘tail’.

where hspecular(τ) is modeled as a superposition of specular components

hspecular(τ) = L

∑
ℓ=1

αℓδ(τ − τℓ) (3.28)

and the di�use component hdi�use(τ) is an zero-mean complex Gaussian
random process with delay-power spectrum

E[∣hdi�use(τ)∣2] = ⎧⎪⎪⎨⎪⎪⎩
0 τ < τdi�
Pdi� exp(−τ/T), τ ≥ τdi� .

(3.29)

�is approach is reasonable for simulationmodels but is, however, inadequate
as a studymodel since it does not re�ect the propagationmechanisms leading
to the transition e�ect.

A di�erent approach is followed by Franceschetti in [7, 99, 100], where
the radio propagation mechanism is modeled as a “stream of photons” per-
forming a continuous randomwalk in an isotropically cluttered environment.
When a photon interacts with an obstacle, it is either absorbed (with a certain
probability) or scattered in a random direction.�e delay power spectrum is
derived in a closed-form expression directly re�ecting the impact of the en-
vironment parameters.�e obtained expression consists of a “coherent part”
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corresponding to the direct component and a “non-coherent part” stemming
from scattered power. While able to jointly describe the direct (the coherent
part) and the di�use components (the non-coherent part), Franceschetti’s
model does not represent the specular-to-di�use transition.

As does the radio channel, the delay-power spectrum of the acoustical
channel exhibits an exponential decay [101]. In the �eld of room acoustics
there is a well-developed theory quantifying this decay rate. A key feature of
the room acoustical response is the “reverberance time” of a room for which
several models exists [101–104]. �e reverberance time is directly related to
the power decay rate of the impulse response [101]. Also, a similar specular-
to-di�use transition e�ect is well-known in acoustics [101].�is e�ect is also
attributed to a reverberation phenomenon [101].

As a matter of fact there exist a well-developed statistical theory for
reverberant electromagnetic �elds in convex cavities [105]. Most of the re-
sults are, however, derived under the assumption that the boundaries are
perfect conductors. �e theory is well-suited for analysis of the so-called
“reverberation chambers” with metal clad walls used for electromagnetic
compatibility testing; but the theory does not apply directly to the normal
indoor propagation environments with �nitely conducting walls.

�ere exists a number of contributions [106–112] where the analogy be-
tween reverberant acoustical and electromagnetic �elds is exploited to model
the delay-power spectrum.�e earliest work appears to be [106] by Holloway
et al. Here, the statistical acoustical reverberation theory by Sabine [102] and
Eyring [103] is applied with slight modi�cations to model the delay-power
spectrum of reverberant indoor radio propagation environments.�e model
is further re�ned in [107, 109]. In the contributions [108, 110], acoustical
reverberation theory has been applied to analyze the electromagnetic �eld in
reverberation chambers. Recently, Andersen et al. [111, 112] have transcribed
Sabine’s acoustical reverberation theory to electromagnetic reverberation in
large room environments.

From this discussion of the available models describing the delay-power
spectrum of reverberant indoor channels it appears that these models are in
general not well-suited as study models to describe the specular-to-di�use
transition e�ect.�erefore, to investigate the e�ect further—and in particular
to determine how it depends on the propagation environment—it is necessary
to develop a suitable studymodel which jointly describes specular and di�use
signal components. We thus arrive at the question: How can the specular and
di�use components of the channel impulse response be modeled jointly?
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Chapter4
Contributions of the �esis

�is chapter summarizes the contributions of the thesis.�e contributions fall
into three categories. In each of the three categories, we have found a number
of questions to be addressed in the thesis. For ease of reference we name these
questions as:

Q1 How to select the spatio-temporal array such that the estimation accu-
racy of joint Doppler frequency and bi-direction is optimized? How
does the sounding mode in combination with the correlated phase
noise of the sounding system a�ect the estimation of mimo channel
capacity, and how can the sounding mode be accounted for in the
capacity estimator?

Q2 How should the model of the non-specular paths be chosen for the
purpose of estimating the �rst- and second-order moments of path
components dispersed in delay and direction frommeasurement data?

Q3 How can the specular and di�use components of the channel impulse
response be modeled jointly?

We provide an overview of the contributions of Papers A–J in Table 4.1. In the
table we indicate which questions and which �elds the papers address.

Paper Field of Contribution Question

Sounding Estimation Modeling

A ✓ ✓ ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Q1

B ✓ ✓
C ✓ ✓
D ✓ ✓

E ✓ ✓ ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Q2

F ✓ ✓
G ✓ ✓
H ✓ ✓

I ✓ } Q3
J ✓

Table 4.1: A tabular overview of the questions and contributions of the papers presented in this
thesis. �e labels Q1,Q2, and Q3 refer to the questions stated in the text.
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4.1 Optimization of Spatio-Temporal Apertures in Channel Sounding

Papers A–D deal with the research question Q1. Papers A and B focus on
the selection of spatio-temporal arrays for joint Doppler and bi-direction
estimation. In Paper C and Paper D we study how phase noise of the channel
sounder a�ects the measurement accuracy. In particular we focus on how
phase noise a�ects the estimation of mimo channel capacity. In Paper C
the problem is analyzed, and in Paper D we propose an improved capacity
estimator, that can account for the spatio-temporal array.

Paper A We study the e�ect of the spatio-temporal aperture on the estima-
tion of Doppler frequency and bi-direction. We analyze the objective
function of the sage algorithm [64, 113, 114] and show that extension
of the Doppler frequency estimation range as proposed in [64] leads to
an ambiguity in the joint estimation of Doppler and bi-direction. It is
also shown that the occurrence of this ambiguity e�ect is determined
by the sounding mode. More speci�cally, it is shown that on the one
hand the so-called modulo-type sounding modes, including the most
commonly used identity sounding mode, all lead to the ambiguity
e�ect. On the other hand, one can select sounding modes such that
the ambiguity e�ect does not occur. Simulations indicate that the root-
mean-square error of the Doppler-direction estimator depends heavily
on the normalizedmagnitude of the side lobes of the objective function.
�is �nding motivates the de�nition and use of the normalized side-
lobe level as a �gure of merit to assess the sounding modes. Finally,
experimental results show that by using an appropriate soundingmode
the Doppler frequency can be estimated up to the range proposed in
[64], even in a practical multipath scenario.

Paper B �e signal model assumed in Paper A is based on the signal models
fromprevious papers [64, 113, 114], whichwhere created for the purpose
of developing estimators. In Paper A these models are modi�ed to
include the spatio-temporal aperture.While the previous signalmodels
are appropriate for describing the estimation algorithms, they signif-
icantly complicate the analysis of the impact of the spatio-temporal
apertures on the estimation accuracy. In particular they are inadequate
to describe parallel sounding systems.�erefore, a more general signal
model is developed in Paper B in which the spatio-temporal aperture
is represented in a straight-forward manner. Based on this new system
model, we introduce the Doppler-(bi-)direction ambiguity function.
�e de�nition is inspired by the ambiguity theory used in the analy-
sis and design of radar systems. It can be shown that the ambiguity
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function is proportional to the objective function for the noise-less
one-path scenario analyzed in Paper A. �e results of the ambiguity
analysis generalize the results presented in Paper A. We derive the
Cramér-Rao lower bound (crlb) on the estimation error for Dopp-
ler frequency and bi-direction. �e spatio-temporal aperture appears
directly in the expression of the crlb. �is leads to the derivation of
a necessary and su�cient condition for spatio-temporal aperture to
minimize thecrlbs forDoppler and bi-direction estimation in the one-
path scenario. In essence the condition is that the apertures in time
and space should all be mutually orthogonal. We prove that the same
orthogonality condition is necessary to yield the minimum Bayesian
crlb in the multipath scenario.

Paper C We analyze the combined impact of phase-noise correlation and
sounding mode in a tdm-mimo sounding system on the capacity es-
timation based on the standard channel matrix estimator using the
experimentally obtained phase-noise model developed in [115]. Monte
Carlo simulations show that the predicted error of the ergodic capacity
estimate is reduced compared to the case where phase-noise is white
and Gaussian. We also show that the estimated ergodic capacity is
highly in�uenced by the choice of the spatio-temporal aperture [Pa-
per B]. It is found that there exist non-separable apertures which lead to
the same capacity estimation error as separable apertures. However, the
observations presented in Paper C raise a major concern regarding the
feasibility of the standard capacity estimator, when applied to phase-
noise impaired channel measurements.

Paper D In this paper we propose a new mimo channel capacity estimator.
�e estimator is designed for the case where the available channel mea-
surements are impaired by both phase-noise and additive noise. �e
proposed estimator exploits knowledge of the phase-noise autocorre-
lation function, which can be obtained by calibration measurements of
the channel sounder.�e accuracy of the proposed estimator is assessed
by Monte Carlo simulations. �e proposed estimator yields reliable
estimates at signal-to-noise ratios relevant for wireless communication
systems. �e simulation results reveal an interesting phenomenon re-
lated to the spatio-temporal aperture. While a non-separable aperture
deteriorates the estimation accuracy of the conventional capacity esti-
mator, it oppositely improves accuracy of the proposed estimator.
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4.2 Modelling and Estimation of the Per-Path Power Spectra

�e Papers E, F, G, and H are concerned with Q2. We approach this problem
by formulating a study model of the power spectral density (psd), designing
an estimator of the model parameters, testing the applicability on measure-
ment data, and �nally, using the estimator onmeasurement data.�e steps of
the methodology require signi�cant amounts of work and some of the steps
need to be revised; as the models improve, the estimators need to be adapted
as well. We present preliminary results of this ongoing process in Papers E, F,
G, and H.

Paper E In this contribution, we propose a characterization of the bi-azimuth
(azimuth of arrival and azimuth of departure) dispersion of individual
paths. For this purposewe introduce a bivariate generalized von-Mises-
Fisher pdf and a maximum-likelihood estimator for its parameters.
�is distribution maximizes the entropy under the constraint that its
�rst- and second-order moments are speci�ed.

Preliminary experimental investigations were conducted to assess the
applicability of the proposed characterization in real situations. �e
experimental results show that the estimated per-path psds are no-
ticeably more concentrated in the bi-azimuth plane compared to the
corresponding estimates obtained with the classical Bartlett spectrum.

Paper F We propose a characterization of bi-azimuth-delay dispersion of in-
dividual paths. As in Paper E, the characterization relies on an entropy
maximizing psd. Again, the obtained experimental results show that
the per-path bi-azimuth-delay dispersion is signi�cantly smaller than
that one might infer from the corresponding footprints in the Bartlett
spectrum.�e obtained results also indicate dependency between dis-
persion in the azimuth and the delay dimensions.

Paper G We characterize the directional per-path psd paths using the Fisher-
Bingham-5 pdf. We derive a sage estimator for the model parameters,
and apply the estimator to measurement data.�e estimated per-path
psd are more concentrated than the corresponding footprints in the
Bartlett spectrum

Paper H We model the per-path psd in the direction-delay domain. We use
a sage algorithm to estimate the parameters of the direction–delay
power spectral densities from measurement data.
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4.3 Channel Modelling Using Stochastic Propagation Graphs

Paper I and Paper J focus on Q3. We develop a study model with the purpose
of investigating the transition e�ect described in Section 3.3.

Paper I In this contribution we propose a channel model for the purpose of
studying the specular-to-di�use transition e�ect. Wemodel the propa-
gation environment by using random graphs.�e vertices of a “propa-
gation graph” represent scatterers and its edges model the propagation
path in between scatterers.We propose amethod to randomly generate
propagation graphs with the intent to simulate a single-room scenario.
Since the graph is not assumed cycle-free, reverberation phenomena
can be modeled. Due to its recursive scattering structure the obtained
model predicts an exponentially decaying delay-power spectrum as
commonly reported from measurements. Furthermore, the obtained
impulse responses exhibit a specular-to-di�use transition.

Paper J In this contribution the propagation graph model proposed in Pa-
per I is extended to include multiple transmitters and receivers. We
develop a closed-form analytical expression for the transfer matrix of
the propagation graph.�is expression allows for faster computation of
the received signal for a given propagation graph.�is property makes
the model feasible for computer simulations.

4.4 Discussion and Outlook

�e thesis concerns three strongly related cra�s in wireless communications:
channel-sounding, -modeling, and -estimation.We have addressed three top-
ics of central relevance to these cra�s: optimization of spatio-temporal aper-
tures for channel sounding, estimation of per-path power spectral densities
(psds), and modeling of reverberant channels.

Wehave developed a theory for optimization of spatio-temporal apertures
used in multiple-input multiple-output (mimo) channel sounding. We �rst
focused on joint estimation of bi-direction andDoppler frequency from time-
division multiplexing (tdm) mimomeasurements. We have derived the nec-
essary and su�cient conditions for spatio-temporal apertures tominimize the
Cramér-Rao lower bound for the joint estimation of bi-direction and Dopp-
ler frequency. We introduced and analyzed a bi-spatio-temporal ambiguity
function for spatio-temporal channel sounding. �e analysis revealed that
by proper design of the spatio-temporal aperture, the maximum estimable
Doppler frequency of a tdm-mimo sounder coincides with that of a tradi-
tional single-input single-output sounder.�e derived ambiguity function is
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a means to test for "rank-1 ambiguity", i.e., to test whether ambiguity occurs
in the one-path case. Consequently, the developed theory applies only in the
strict sense to the one-path case. However, themeasurement results presented
in Paper A demonstrate the utility of the theory in real measurement sce-
narios.�e theory of spatio-temporal array optimization for joint estimation
of Doppler frequency and bi-direction can be applied to other systems than
radio channel sounding, e.g., in the design of bi-static mimo radar systems.

It was shown that the spatio-temporal aperture a�ects the accuracy of
mimo-capacity estimation from measurements impaired by colored phase-
noise. We have proposed an improved capacity estimator, which exploits the
second-order statistics of phase noise and the structure of the spatio-temporal
aperture.We found that the proposed estimator, in contrast to previously pub-
lished capacity estimators, works well for spatio-temporal arrays optimized
for joint estimation of Doppler frequency and bi-direction. �e derivation
of the estimator relies on three main assumptions. Firstly, we have derived
the capacity assuming a wide-sense stationary phase-noise process. �us,
we have neglected the non-stationary nature of phase-noise. Further work
is necessary to clarify if the capacity estimator can be extended to account
for this e�ect. Secondly, we have derived a capacity estimator for the mimo
channel including the antennas of themeasurement system. Since the antenna
arrays of measurement systems in most cases di�er from the antennas of a
communication systems, this e�ect should be investigated further. Secondly,
we assumed that the mimo channel matrix is time-invariant throughout the
measurement. �is assumption may not be ful�lled for real measurement
scenarios. �e considered capacity metric, which assumes a static channel,
is not valid for the time-variant case. A more relevant approach would be to
develop an estimator of the ergodic capacity.

�e second topic considered in the thesis is estimation of the per-path
psds resolved in directions and delay. We modeled the per-path psds using
entropy-maximizing probability density functions (pdfs); the pdfs are de�ned
by their �rst- and second-ordermoments.Wehave derived estimators of these
parameters. �e applicability of these estimators has been tested by using
them to process measurement data. �e main intent with this test was to
evaluate the estimators in real measurement scenarios. Nonetheless, we were
able to make an important empirical observation from this preliminary work:
�e obtained spread estimates are signi�cantly smaller and the estimated psds
are much more concentrated than corresponding results found in the litera-
ture. �ese �ndings indicate that the per-path directional spreads assumed
in standard models are set too large. Further experimental investigations are
needed to con�rm this hypothesis. Initially, this can be done by processing
already available measurement data. �eoretically, however, a test of this
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hypothesis should be made from experiments designed especially for this
purpose, and not from previously available data. If the observation holds
true, this e�ect should by considered in (standardized) simulation models
including direction dispersion.

Finally, we proposed a model of the specular-to-di�use transition ob-
served inmeasurements of reverberant channels.�emodel relies on a “prop-
agation graph” where vertices represent scatterers and edges represent the
wave propagation conditions between scatterers. �e graph has a recursive
structure, which permits modeling of the transfer function of the graph. We
derived a closed-form expression of the in�nite-bounce impulse response.
�is expression is used for simulation of the impulse response of randomly
generated propagation graphs. �e obtained realizations exhibit the well-
observed exponential power decay versus delay and specular-to-di�use tran-
sition. One interesting virtue of this type ofmodel is that a di�use component
can be modeled by assuming specular interactions. �e specular-to-di�use
transition occurs in themodel because of a gradually increasing arrival rate of
specular components. A�er a certain delay threshold, the individual specular
components can no longer be considered as separate. Instead, the sum of
specular components must be considered as a single di�use component.�is
phenomenon is not accounted for in traditional channel models where the
arrival rate is typically assumed constant over time.�e proposed model has
not yet been validated experimentally. To this end, key features such as the
slope of the delay-power spectrum, must be derived to permit comparison
of the model with measurement data. Work is currently ongoing in this
direction.
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A.1. INTRODUCTION

Abstract

To save hardware equipment and reduce the e�ort to calibrate the
system, channel sounding with Tx and Rx antenna arrays is commonly
performed in a time division multiplexing (TDM) mode where the
array elements are successively switched. We refer to this technique
as TDM-MIMO (multiple-input multiple-output) channel sounding.
A recent study [1] shows that the ISI-SAGE algorithm [2], [3] applied
in combination with TDM-MIMO channel soundingmakes it possible
to extend the Doppler frequency (DF) estimation range (DFER) by a
factor at least equal to the product of the element numbers of the Tx
and Rx arrays compared to the traditionally used DFER.�e extension
is signi�cant when arrays with large element numbers are employed.

In this paper we derive the signal model for TDM-MIMO channel
sounding and report analytical investigations showing that the above
DFER extension requires selection of switching modes (SMs) tailored
to the array characteristics.�e SM of a switched array is the temporal
order inwhich the array elements are switched. In fact, the traditionally
used SMs of uniform linear and planar arrays where the elements
are switched according to their natural spatial ordering prove to be
inappropriate as they lead to an ambiguity in the joint estimation of
DF and directions. We also introduce the concept of normalized side-
lobe level (NSL) associated to the SM of a switched array. We show
that minimizing the NSL is a sensible criterion for the identi�cation
of SM leading to DF and direction estimates with nearly optimum
performance in terms of root mean square estimation error. Finally
experimental investigations illustrate the impact of the SM of a uni-
form planar array on the behaviour of the DF and direction of arrival
estimates computed with the ISI-SAGE algorithm.

A.1 Introduction

Deployingmultiple-element antennas at the transmitter (Tx) and the receiver
(Rx) combinedwith space-time coding can substantially increase the capacity
of mobile radio communication systems [4], [5] and [6]. A system or tech-
nique using multiple-element Tx and Rx antennas is called a multiple-input
multiple-output (MIMO) system or technique. �e design and optimization
ofMIMO communication systems require realisticmodels of the propagation
channel that incorporate dispersion in direction or equivalently space selec-
tivity jointly at both Tx and Rx sites. High-resolution parameter estimation
has become an essential tool to extract the critical model parameters from
measurement data.�e improved-search-and-initialization space-alternating
generalized expectation-maximization (ISI-SAGE) algorithm [2], [3] has re-
cently been proposed for joint estimation of the polarization matrix, relative
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delay, Doppler frequency (DF), direction, i.e. azimuth and co-elevation an-
gles, of departure (DoD), and direction of arrival (DoA) of propagation paths
between the Tx site and the Rx site. Experimental investigations in [2], [3]
demonstrate the high potential of the algorithm for detailed propagation
studies.

MIMO channel sounders commonly operate in a time-divisionmultiplex
(TDM) mode in order to save hardware equipment and reduce the e�ort
to calibrate the system. �e sounding signal is fed successively at the ports
of the array elements at the Tx, and while any one of these elements trans-
mits, the ports of the antenna elements at the Rx are sensed successively.
We understand an element pair to be a pair containing an element of the
Tx array in �rst position and an element of the Rx array in second posi-
tion. A measurement cycle denotes the process where all element pairs are
switched once. A cycle interval is the period separating the beginning of two
consecutive measurement cycles. �e separation between the beginning of
two consecutive sensing periods within one measurement cycle is called the
switching interval. �e cycle rate and the switching rate are the inverses of
the cycle interval and the switching interval respectively. Notice that the ratio
of the switching rate to the cycle rate is at least equal to the product of the
element numbers of the two arrays.

It was traditionally believed, that the maximum absolute DF that can
be estimated using the TDM-MIMO sounding technique equals half the
cycle rate.�erefore, by keeping the switching rate unchanged, large element
numbers in the arrays result in a low cycle rate and consequently lead to a
small DF estimation range (DFER). However, a recent study [1] has shown
that the maximum absolute DF that can be estimated using the TDM-MIMO
sounding technique actually equals half the switching rate. �is enlarged
DFER is independent of the element numbers of the arrays.

In this paper, we show that the extension of the DFER proposed in [1]may
result in an ambiguity in the estimation of the DF and directions (DoD and
DoA). �e estimates of the path parameters are computed in the maximiza-
tion (M-) step of the ISI-SAGE algorithm to be the solution that maximizes a
given objective function. �e ambiguity occurs when this objective function
exhibits multiple maxima. �is situation may happen when the DFER is en-
larged fromminus to plus half the switching rate depending on the switching
mode (SM) and the characteristics (e.g. the layouts and the element radiation
patterns) of the arrays. �e SM of an array describes the temporal order in
which the array elements are switched.�is paper analyses the impact of the
SMs of the arrays in TDM-MIMO sounding on the joint estimation of DF
and directions using the ISI-SAGE algorithm by means of theoretical and
experimental investigations combined with Monte-Carlo simulations.

54



A.2. SIGNAL MODEL FOR MIMO SYSTEMS

Fig. A.1: Signal model for the TDM-MIMO sounding technique.

�e paper is organized as follows. �e MIMO radio channel model is
introduced in Section A.2. Section A.3 presents the signal model for TDM-
MIMO channel sounding. In Section A.4 the objective function used in the
M-step of the ISI-SAGE algorithm is derived. Investigations of a case study
considering TDM-SIMO (single-input multiple-output) channel sounding
with a uniform linear array give insight into the ambiguity problem and the
necessary and su�cient conditions for it to occur. In Section A.5 the impact
of the SM on the root mean square estimation errors (RMSEEs) of the DF
and DoA estimates is assessed via Monte Carlo simulations. In Section A.6
experimental investigations compare the performance of the DF and DoA
estimators when applying the conventionally used SM and an optimized
SM to a uniform planar array. Finally, concluding remarks are addressed in
Section A.7.

A.2 Signal Model for MIMO Systems

Let us consider the propagation environment depicted in Fig. A.1. A certain
number, L, of waves propagate along di�erent paths from the M1 antenna
elements formingArray 1 to theM2 antenna elements forming Array 2. Along
its path a wave interacts with a certain number of scatterers. We use the index
k ∈ {1, 2} for the arrays. Following [7], we assume that the far-�eld condition
holds, and that the elements of Array k are con�ned in a regionRk , in which
the plane wave approximation is accurate. A coordinate system is speci�ed
at an arbitrary origin Ok in Rk . �e individual locations of the elements of
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Array k are determined by the vectors rk,m ∈ R
3 ,m = 1, . . . ,Mk . Here, R

denotes the real line.
Let u(t) ≐ [u1(t), . . . , uM1(t)]T denote the (complex baseband represen-

tation of the) signal vector at the input of Array 1. Here, [⋅]T is the transpose
operator. �e contribution of the ℓth wave to the outputs of Array 2 can be
written in vector notation as

s(t; θℓ) = αℓ exp{ j2πνℓt}c2(Ω2,ℓ)c1(Ω1,ℓ)Tu(t − τℓ). (A.1)

In this expression, θℓ ≐ [Ω1,ℓ ,Ω2,ℓ , τℓ , νℓ , αℓ] is a vector whose entries are
the parameters characterizing the ℓth path: Ω1,ℓ ,Ω2,ℓ , τℓ , νℓ , and αℓ denote,
respectively its DoD, DoA, propagation delay, DF, and complex weight (or
gain). We describe a direction as a unit vector Ω with initial point anchored
at the reference location, or equivalently as the terminal point of this vector,
i.e. a point located on a unit sphere centered at the reference point. �en, Ω
is uniquely determined by its spherical coordinates (ϕ, θ) ∈ [−π, π) × [0, π]
according to Ω = [cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)]T.�e angles ϕ and
θ are referred to as respectively the azimuth and the co-elevation of Ω. �e
Mk-dimensional complex vector ck(Ω) represents the response of Array k
to a wave impinging from direction Ω. Provided coupling e�ects between
the array elements are negligible, ck(Ω) = [ fk,m(Ω) exp{ j 2πλ0 (ΩTrk,m)};m =
1, . . . ,Mk]T.�e function fk,m(Ω) is the complex electric radiation patterns
of the mth element in Array k, and λ0 denotes the carrier wavelength.

�e signal vector Y(t) ≐ [Y1(t), . . . ,YM2(t)]T representing the outputs
of Array 2 is given by

Y(t) = L

∑
ℓ=1

s(t; θℓ) +√N0

2 W(t), (A.2)

where W(t) ≐ [W1(t), . . . ,WM2(t)]T is standard M2-dimensional complex
temporally and spatially white Gaussian noise, and N0 is a positive constant.

A.3 TDM Channel Sounding Technique

Sounding of the propagation channel is performed in a TDMmode according
to the time structure depicted in Fig. A.2. As depicted in Fig. A.1, the sounding
signal is fed via Switch 1 (Sw1) during a sounding period Tt successively to the
ports of the elements of Array 1. While any element of Array 1 is active, the
ports of the elements of Array 2 are sensed during Ts successively by Switch
2 (Sw2). �e period separating two consecutive sensing intervals is denoted
by Tr. Clearly, Tr ≥ Ts and Tt = M2Tr. A measurement cycle during which all
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element pairs are switched once lasts M1Tt seconds.�e separation between
the beginnings of two consecutive measurement cycles is called the measure-
ment cycle interval and is denoted by Tc y.�e cycle repetition rate is the ratio

R ≐ Tc y
M1Tt
≥ 1. Notice that the switching rate T−1r is related to the measurement

cycle rateT−1c y according toT
−1
r = M1M2RT

−1
c y .�e guard intervalTg in Fig.A.2

is irrelevant in the subsequent investigations.�e motivation for introducing
this interval can be found in [7]. One measurement run consists of I cycles.

To characterize the SM of a switched array, we �rst need to de�ne a
(spatial) indexing of the array elements which is then kept �xed.�e natural
element indexing for a uniform linear array is according to the element spatial
ordering, starting at one end. Similarly the natural element indexing of a
uniform planar array is determined �rst by the order of the element row and
then by the element order inside its row.�e SM of an array during one cycle
is entirely de�ned by a permutation of the element indices. Let ηk(i , ⋅) denote
(the permutation describing) the SMofArray k during the ith cycle. Referring
to Fig. A.2, the beginning of the interval when the element pair (m1,m2) is
switched in the ith cycle is ti ,m1 ,m2 ≐ (i − I+1

2 )Tc y + (η1(i ,m1) − M1+1
2 )Tt +(η2(i ,m2) − M2+1

2 )Tr. Clearly, ηk(i ,mk) is the time index of the interval
during which the mkth element of Array k is switched during the ith cycle
(mk = 1, . . . ,Mk). Hence, ηk(i , ⋅) maps a spatial index onto a time index.
�e inverse mapping η−1k (i , ⋅) (reported on Fig. A.2) determines the temporal
order in which the elements of Array k are sequentially switched in the ith
cycle. Notice that the SM of Array 2 does not depend on which element of
Array 1 is active during each cycle, i.e. η2(i , ⋅) does not depend on m1. For
notational convenience we identify the permutation ηk(i , ⋅) with the vector
ηk(i) = [ηk(i ,mk),mk = 1, . . . ,Mk]. If ηk(i) = ηk , i = 1, . . . , I, the SM
is called cycle-independent. �e identity SM ηk = [1, . . . ,Mk] switches the
elements of Array k in their spatial order.

Following the same notation as in [7], the scalar signal at the output of
Sw2 reads

Y(t) = L

∑
ℓ=1

s(t; θℓ) +√N0

2 q2(t)W(t), (A.3)

whereW(t) denotes standard complex white Gaussian noise and q2(t) is an
indicator function, i.e. with range {0,1}, which takes value one if, and only if,
some element of Array 2 is switched by Sw2. Moreover,

s(t; θℓ) = αℓ exp{ j2πνℓt}c2(Ω2,ℓ)TU(t; τℓ)c1(Ω1,ℓ),
where U(t; τℓ) is the M2 ×M1 sounding matrix U(t; τℓ) ≐ q2(t)q1(t)Tu(t −
τℓ), with u(t) denoting the signal at the input of Sw1. �e M2 dimensional
vector-valued functions qk(t) characterize the timing of Swk. More speci�-
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cally, the mkth entry of qk(t) is an indicator function which takes value one,
if and only if, Swk switches the mkth element of Array k [7].

A.4 Objective Function used in the Estimation of
the DF and the Directions

A.4.1 TDM-MIMO Channel Sounding

According to [7] at each iteration of the ISI-SAGE algorithm, the parameter
estimates of the ℓth path are updated successively in the M-step of the algo-
rithm. �is step computes the argument maximizing an objective function∣z(θ̄ℓ; x̂ℓ)∣, where θ̄ℓ ≐ [Ω1,ℓ ,Ω2,ℓ , τℓ , νℓ] and ∣ ⋅ ∣ denotes the norm of the
scalar or the vector given as an argument. Notice that the objective function
coincides with the maximum-likelihood estimate (MLE) of θ̄ℓ in a one-path
scenario, in which case x̂ℓ(t) = y(t).�e function z(θ̄ℓ; x̂ℓ) is given by

z(θ̄ℓ; x̂ℓ) ≐ c̃2(Ω2,ℓ)HXℓ(τℓ , νℓ; x̂ℓ)c̃1(Ω1,ℓ)∗ (A.4)

with [⋅]H denoting the Hermitian operator, [⋅]∗ representing the complex
conjugate, and c̃k(Ω) ≐ ∣ck(Ω)∣−1ck(Ω) being the normalized response of
Array k.�e entries of the M2 ×M1 dimensional matrix X(τℓ , νℓ; x̂ℓ) read
Xℓ,m2 ,m1(τℓ , νℓ; x̂ℓ) = I

∑
i=1

[ exp{− j2πνℓti ,m1 ,m2}
⋅ ∫

Ts

0
u∗(t − τℓ) exp{− j2πνℓt}x̂ℓ(t + ti ,m1 ,m2)dt], (A.5)

mk = 1, . . . ,Mk , k = 1, 2. In (A.5) x̂ℓ(t) = y(t) − ∑L
ℓ′=1,ℓ′≠ℓ s(t; θ̂ℓ′), with θ̂ℓ′

denoting the current estimate of θℓ′ , is an estimate of the so-called admissible

hidden data Xℓ(t) = s(t; θℓ)+√N0

2 q2(t)W(t) calculated in the expectation
(E-) step of the ISI-SAGE algorithm. �e reader is referred to [8] for the
properties of the SAGE algorithm and the related terminology.

In the subsequent analysis of the behavior of the objective function versus
the DF, the DoD and DoA we make the following four simplifying assump-
tions: (A) �e antenna elements are isotropic; (B) �e phase change due to
the DF within Ts is neglected, i.e. the term exp{− j2πνℓt} in (A.5) is set equal
to 1. As shown in [1] this e�ect can be easily included into the model and
its impact on the performance of the DF estimate proves to be negligible;
(C) We assume that the remaining interference contributed by the waves ℓ′,
ℓ′ = {1, . . . , L}/{ℓ} in the estimate x̂ℓ(t) computed in the E-step of Path ℓ is
negligible, i.e.

x̂ℓ(t) = s(t; θℓ) +
√

N0

2
q2(t)W(t).
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Under this assumption, theM-step of Path ℓ is derived based on an equivalent
signal model where only Path ℓ is present. If we further focus the attention on
one particular path, which without loss of generality is selected to be Path 1,
then (A.3) with L = 1 is the equivalent signal model for the derivation of the
M-step of Path 1. In this case, x̂1(t) = y(t) and the MLE of θ̄1 is computed
in the M-step. For notational convenience we shall drop the indexing for the
parameters of Path 1 in the sequel; (D) As the focus is on the estimation of
the DF, DoD, and DoA, we further assume that the ISI-SAGE algorithm has
perfectly estimated the delay of Path 1 or has knowledge of it. As a result
z(θ̄; y) reduces to a function of Ω1, Ω2, and ν according to

z(ν,Ω1,Ω2; y) = I

∑
i=1

M2

∑
m2=1

M1

∑
m1=1

c̃1,m1(Ω1)∗ c̃2,m2(Ω2)∗
⋅ exp{− j2πνti ,m1,m2} ∫ Ts

0
u(t − τ′)∗y(t + ti ,m1 ,m2)dt. (A.6)

�e notation (⋅)′ designates the true value of the parameter given as an
argument.

Under the above assumptions, by dropping a constant term and normal-
izing by 1

IM1M2
, (A.6) can be cast as

z(ν,Ω1,Ω2; y) = I

∑
i=1

Ri(ν̌)Si(Ω̌1, ν̌)Ti(Ω̌2, ν̌) + V(ν,Ω1,Ω2) (A.7)

with the notational convention (̌⋅) ≐ (⋅)′ − (⋅). Moreover,

Ri(ν̌) ≐ 1

I
exp{ j2πν̌ (i − I+1

2 )Tc y},
Si(Ω̌1, ν̌) ≐ 1

M1

M1

∑
m1=1

exp{ j2π Ω̌
T

1 r1,m1

λ0
+ j2πν̌ (η1(i ,m1) − M1+1

2 )Tt},
Ti(Ω̌2, ν̌) ≐ 1

M2

M2

∑
m2=1

exp{ j2π Ω̌
T

2 r2,m2

λ0
+ j2πν̌ (η2(i ,m2) − M2+1

2 )Tr}.
(A.8)

�e noise termV(ν,Ω1,Ω2) can be derived analogously toV(ν) in [1].Notice
that the expressions in the arguments of the exponential terms in the sum-
mands of Si(Ω̌1, ν̌) and Ti(Ω̌2, ν̌) reveal respectively a coupling depending
on η1(i , ⋅) in the estimation of the DoD and the DF and a coupling depending
on η2(i , ⋅) in the estimation of the DoA and the DF.
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A.4.2 Case Study: TDM-SIMO Channel Sounding with
Uniform Linear Array

In this subsection we investigate in detail the above mentioned coupling and
in particular how the SMa�ects the objective function of theDF and direction
MLEs. To keep the discussion simple we restrict the attention to a special case
where Array 1 consists of one element (M1 = 1) and Array 2 is uniform and
linear. In this case, the DoD cannot be estimated and (A.7) reduces to

z(ν,Ω2; y) = I

∑
i=1

Ri(ν̌)Ti(Ω̌2, ν̌) + V(ν,Ω2). (A.9)

We investigate the behavior of the absolute value of (A.9) in the noiseless case
(V(ν,Ω2) = 0). Array 2 consists of M2 equidistant isotropic elements with
locations r2,m2 = [m2λ0

2 , 0, 0]T, m2 = 1, . . . ,M2.�e inner products arising in

the response of this array are calculated as ΩT

2 r2,m2 = ωm2λ0
2 ,m2 = 1, . . . ,M2,

where ω ≐ cos(ϕ2) sin(θ2). �e parameter ω can be interpreted as a spatial
frequency. It can be also written as ω = cos(ψ) where ψ is the angle between
the impinging direction and the array axis.�is angle is the only characteristic
of the incident direction that can be uniquely determined with a linear array.

�e absolute value of (A.9) reads in this case

∣z(ν,Ω2; y)∣ = ∣z(ν̌, ω̌; y)∣. (A.10)

If the SM is cycle-independent, the right-hand expression in (A.10) factorizes
according to ∣z(ν̌, ω̌; y)∣ = ∣G(ν̌)∣ ⋅ ∣T(ω̌, ν̌)∣ , (A.11)

where

G(ν̌) ≐ sin(πν̌ITc y)
I sin(πν̌Tc y) ,

T(ω̌, ν̌) ≐ 1

M2

M2

∑
m2=1

exp{ jm2πω̌ + j2πν̌[η2(m2) − M2+1
2 ]Tr}.

We investigate the impact of di�erent SMs on (A.11) for the setting of the
TDM-SIMO system and the one-wave scenario speci�ed in Table A.1. �e
wave is incident perpendicular to the array axis and its DF is 0 Hz. Notice
that from (A.10) the behaviour of the objective function only depends on
the DF deviation from the true DF so that the choice of the latter within
the range (− 1

2Tr
, 1
2Tr
] is irrelevant. Fig. A.3(a), A.3(b), and A.3(c) depict the

graphs of respectively ∣G(ν̌)∣, ∣T(ω̌, ν̌)∣, and ∣z(ν̌, ω̌; y)∣ in (A.11), when the
conventionally used identity SM, is applied. Notice that the range of ν̌ is(− 1

2Tr
, 1
2Tr
] = (−200, 200]Hz.

61



PAPER A. JOINT ESTIMATION OF DOPPLER FREQUENCY AND DIRECTIONS IN CHANNEL SOUND-
ING USING SWITCHED TX AND RX ARRAYS

∣G(ν̌
)∣

(a), ∣G(ν̌)∣

ω̌

(b), ∣T(ω̌, ν̌)∣, identity SM

ω̌

(c), ∣z(ν̌, ω̌; y)∣, identity SM

ω̌

(d), ∣z(ν̌, ω̌; y)∣, cycle-independent optimized SM

ω̌

(e), ∣z(ν̌, ω̌; y)∣, cycle-dependent optimized SM

M
ag
n
it
ud

e
of
∣T(ν̌

,ω
)∣an

d
∣z(ν̌

,ω̌
;y
)∣

ν̌[Hz]

0.5

0

0

0

0

0

-1

-1

-1

-1

1

1

1

1

1

0
50 100 150 2000-50-100-150-200

0.2

0.4

0.6

0.8

1

Fig. A.3: Objective functions for the joint DF and DoA MLEs in the case study (TDM-SIMO
with uniform linear array) where the following SMs are selected: η2 = [1, 2, . . . , 8] (c), η2(i) =
[4, 2, 1, 8, 5, 7, 3, 6] (d), and a randomly selected cycle-dependent SM (e). Fig. A.3 (a) and (b)
depict the factors of the objective function (see (A.11)) for the identity SM.
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Table A.1: Case study: Setting of the TDM-SIMO system and parameters
of the incident wave

I M1 M2 R Tc y [s] ν′ [Hz] ω′

8 1 8 1 0.02 0 0

Clearly, the period of ∣G(ν̌)∣ is 1
Tc y
= 50 Hz. �e loci of the pairs (ν̌, ω̌)

where ∣T(ω̌, ν̌)∣ equals its maximum value (= 1) is the line ω̌ = ν̌Tr. As can
be observed in Fig. A.3 (c) the product of these two functions, i.e. ∣z(ν̌, ω̌; y)∣,
exhibits multiple maxima along the above line separated by 1

Tc y
in ν̌. �ese

multiplemaxima cause an ambiguity in the jointML estimation of the DF and
DoA when the DFER is selected equal to (− 1

2Tr
, 1
2Tr
]. Notice that ∣z(ν̌, ω̌; y)∣

exhibits one uniquemaximum if ν̌ ∈ (− 1
2Tc y

, 1
2Tc y
].�us, if this SM is used, the

DFER has to be restricted to the above interval in order to avoid the ambiguity
problem.

Fig. A.3(d) and Fig. A.3(e) report respectively the graphs of ∣z(ν̌, ω̌; y)∣
for the cycle-independent SM η2 = [4, 2, 1, 8, 5, 7, 3, 6] and a cycle-dependent
randomly selected SM. With this selection of the SMs, ∣z(ν̌, ω̌; y)∣ exhibits
a unique maximum and therefore the ambiguity problem does not occur.
One can still see clearly the impact of the periodic behavior of ∣G(ν̌)∣ on the
objective function depicted in Fig. A.3(d) as side-lobe stripes at the loci of
the maxima of ∣G(ν̌)∣ when the SM is cycle-independent. As exempli�ed by
Fig. A.3(e) this pattern vanishes completely when using a cycle-dependent
SM. Furthermore, the side-lobes of the third depicted objective function have
much lower magnitude than those of the second objective function.

�is study shows that in the worst case (using the identity SM), the
operational DFER is (− 1

2Tc y
, 1
2Tc y
]. By appropriately selecting the SM the

DFER can be extended to (− 1
2Tr

, 1
2Tr
], i.e., by a factorM2 = 8 in this case study

or in general by M1M2R. Furthermore, Fig. A.3(c)–(e) make it evident that
the SMs signi�cantly a�ect the magnitudes of the side-lobes of the objective
function.�is impact is investigated in more detail in Section A.5.

A.4.3 Analysis of the Ambiguity E�ect for the Case Study

In this subsection we derive a necessary and su�cient condition for a cycle-
independent SM to lead to an objective function exhibiting multiple maxima.
We also show thatmodulo-type SMs (and among them the identity SM) cause
the ambiguity problem when the cycle repetition rate R is integer.
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�e function z(ν̌, ω̌; y) in (A.10) is of the form

z(ν̌, ω̌; y) = 1

IM2

I

∑
i=1

M2

∑
m2=1

exp{ jΦi ,m2},
where Φi ,m2 ≐ 2πν̌ (i − I+1

2 )Tc y + 2πν̌ (η2(i ,m2) − M2+1
2 )Tr + πω̌m2. When

ω̌ = 0 and ν̌ = 0, ∣z(ν̌, ω̌; y)∣ equals itsmaximumvalue 1. However, a necessary
and su�cient condition for ∣z(ν̌, ω̌; y)∣ = 1 to hold is that all the phases in the
double sum are congruent modulo 2π.�is will be the case if, and only if,

Φi ,m2 −Φi+1,m2 ≡ 0 (mod 2π)
m2 = 1, . . . ,M2, i = 1, . . . , I − 1 (A.12)and

Φi ,m2 −Φi ,m2+1 ≡ 0 (mod 2π)
m2 = 1, . . . ,M2 − 1, i = 1, . . . , I . (A.13)

Hence ∣z(ν̌, ω̌; y)∣ exhibits multiple maxima if, and only if, the system of
equations de�ned by (A.12) and (A.13) has one or more non-trivial solutions(ν̌, ω̌) ∈ (− 1

2Tr
, 1
2Tr
] × [ω′ − 1,ω′ + 1].�e trivial solution is (ν̌, ω̌) = (0, 0).

In the sequel, we focus on cycle-independent SMs. In this case η2(i ,m2)−
η2(i + 1,m2) = 0 and (A.12) reduces to ν̌Tc y = K for K ∈ Z ∩ (−RM2

2 , RM2

2 ],
where Z is the set of integers. Inserting this identity in (A.13) yields

K ⋅ η̇2(m2)
RM2

≡ ω̌
2 (mod 1), m2 = 1, . . . ,M2 − 1, (A.14)

where η̇2(m2) ≐ η2(m2) − η2(m2 + 1). Hence, provided the SM is cycle-
independent, a necessary and su�cient condition for the ambiguity problem
to occur is that the equation system (A.14) has at least one non-trivial solution(K , ω̌) ∈ (Z ∩ (−RM2

2 , RM2

2 ]) × [ω′ − 1,ω′ + 1].
A modulo-type SM ful�lls the congruence (η2(m2)− 1) ≡ Jm2+K (mod

M2) for some J ,K ∈ Z with J and M2 being relatively prime. As an example,
the commonly used identity SM η2 = [1, 2, . . . ,M2] is amodulo-type SMwith
J = 1 and K = 0. For any modulo-type SM, {η̇2(m2);m2 = 1, . . . ,M2 − 1} ={J , J −M2}. Hence (A.14) consists of two di�erent congruences. Elimination
of ω̌ yieldsK = RK′, withK′ taking any value inZ∩(−M2

2 ,+M2

2 ].WhenR ∈ Z,

the non-trivial solutions forK are the RM2−1 values inZ∩(−RM2

2 , RM2

2 ] / {0}.
Notice that this result is in accordance with the 8 maxima (corresponding to
the 7 non-trivial solutions plus the trivial solution) that can be observed in
Fig. A.3(c).
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A.5 Performance Simulations

�e theoretical investigations of the study case reported in the previous sub-
section show that the SM strongly a�ects the side-lobes of the objective
function of the DF and DoAMLEs. As a consequence the SM will also a�ect
the robustness of the estimators toward noise since this robustness directly
depends on the magnitudes of the side-lobes.

We de�ne the normalized side-lobe level (NSL) associated with a SM
to be the magnitude of the highest side-lobe of the corresponding objective
function. It is obvious that objective functions with NSL equal to one have
multiple maxima and therefore lead to an ambiguity in the estimation of DF
and DoA, whereas objective functions with NSL less than 1 have a unique
maximum.

We show by means of Monte-Carlo simulations that the NSL associated
with a SM can be used as a �gure of merit of this SM for the optimisation
of the performance of the DF and DoA MLEs. �e parameter setting of the
considered scenario is the same as that used in the case study (see Table
A.1). Fig. A.4 depicts the RMSEEs of the MLEs ν̂ and ψ̂ versus the output
signal-to-noise ratio γo ≐ IM2P∣α∣2∣c1(Ω1)∣2∣c2(Ω2)∣2/(N0

Ts
) [1] for four SMs

leading to NSLs equal to 0.28, 0.58, 0.80, and 0.85 respectively.�e symbol P
in the above expression denotes the transmitted signal power. �e RMSEEs
are compared to the corresponding individual Cramér-Rao lower bounds
(CRLBs) calculated in [8] assuming parallel SIMO channel sounding.

As shown in Fig. A.4 all curves exhibit the same behavior, i.e. when γo
is larger than a certain threshold, γtho , the RMSEEs of ν̂ and ψ̂ are close to
the corresponding CRLBs.When γo < γtho , the RMSEEs increase dramatically
as already shown in [1]. Further simulations show that γtho increases along
with the NSL. �is behavior can be explained as follows: �e probability of
the event that the maximum of any side-lobe of the objective function is
higher than the maximum of its main-lobe is larger when these side-lobes
have high magnitudes. Notice that the threshold e�ect is well-known in non-
linear estimation such as frequency estimation [9].

We can use the RMSEE curve of theDFMLE under the hypothesis that all
other parameters but the complex gain of the path are known as a benchmark
for the DF MLE performance when all path parameters are unknown. �is
curve is indeed a lower bound for the RMSEE curve of the latter DF estimates.
Monte Carlo simulations not reported here show that this benchmark curve
exhibits a threshold γtho = 15 dB and is close to the CRLB of ν̂ for γo > γtho .
From Fig. A.4 we observe that the threshold γtho of the RMSEE curve of ν̂
obtained for the SM leading to NSL=0.28 is 0.5 dB apart from that of the
benchmark curve. Hence, the former threshold is close to the minimum
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Fig. A.4: RMSEEs of ν̂ (solid curves) and ψ̂ (dotted curves) versus γo computed using the
setting given in Table A.1 for di�erent SMs. �e dashed and the dash-dotted lines represent the
CRLBs of ν̂ and ψ̂ respectively. �e curves with symbols ◇, ◻, ◯, △ have been obtained using 3
cycle-independent SMs and 1 cycle-dependent SM leading to NSL = 0.85, 0.80, 0.58, and 0.28
respectively.

achievable threshold. �is observation con�rms that the NSL is a suitable
�gure of merit for the selection of “good” SMs, i.e. leading to MLEs operating
close to optimum.

A.6 Experimental Investigations

In this section, we present experimental investigations that illustrate the im-
pact of the SM on the objective function used in the ISI-SAGE algorithm to
estimate the DF and DoA of propagation paths based on measurement data.
�e measurements were performed with the TDM-MIMO channel sounder
PROPSound [10].�e Tx array consisted of 3 conformal sub-arrays of 8 dual-
polarized patches uniformly spaced on a cylinder together with a uniform
rectangular 2×2 sub-array of 4 dual-polarized patches placed on top of the
cylinder (M1 = 54). At the Rx a 4× 4 planar array with 16 dual-polarized
patches was used (M2 = 32). �e spacing between the Rx array elements
and the elements of the four Tx sub-arrays is half a wavelength.�e selected
carrier frequencywas 2.45GHz.�e sounding signalwas a pseudo-noise (PN)
sequence of length K = 255 chips with chip duration Tc = 10 ns. �e sensing
interval coincided with one period of the PN-sequence, i.e. Ts = KTc = 2.55
µs.�e transmitted power was 100 mW.

�e Rx array was mounted outside a window on the 3rd �oor of the
Elektrobit AG building in Bubikon, Switzerland. �e Tx array was mounted
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Table A.2: Settings of the channel sounder for measurement Scenarios I
and II

Parameters Scenario I Scenario II

SM at Array 2 Patch-wise identity SM Patch-wise optimized SM

Tr [µs] 3.05 5.10

Tc y [ms] 6.2 47.2

Selected DFER[Hz] (− 1
2Tc y

, 1
2Tc y
] =(−81.3, 81.3] (− 1

2Tr
, 1
2Tr
] =(−98 039, 98 039]

on the roof of a vanmovingwith approximately 8m/s away from the building.
�e measurements were performed twice along the same route with di�erent
settings of the sounding equipment (see Table A.2). �e van was driving
at approximately the same velocity during both measurement recordings
to ensure propagation scenarios with almost identical DFs. �e azimuth of
arrival (AoA), the elevation of arrival (EoA) and the DF of the LOS path
can be calculated from the location of the Rx as well as the position and
the velocity of the van to be approximately 5o, 20o and −59 Hz respectively.
�e two settings of the sounding equipment were selected in such a way that
the maximum DF is in (− 1

2Tc y
, 1
2Tc y
] in Scenario I and outside this range

but in (− 1
2Tr

, 1
2Tr
] in Scenario II. �ese intervals were then selected as the

corresponding DFERs for the two scenarios. As explained later, the SM at the
Tx is irrelevant in the investigated situation. At the Rx, we apply a patch-wise
identity SM in Scenario I and a patch-wise optimized SM in Scenario II.�e
term “patch-wise” indicates that the two elements of each patch are always
switched consecutively.�is is done tomitigate phase noise e�ect for accurate
polarization estimation.

�e ISI-SAGE algorithm is applied to the measurement data to estimate
the individual parameter vectors of L = 4 propagation paths using I = 4
measurement cycles.�e parameter estimates of the four paths are initialized
successively with aNon-CoherentMaximumLikelihood (NC-ML) technique
described in [3]. Once the initialization is completed, the E- and M-steps of
the ISI-SAGE are performed as described in [7]. It can be shown that the
objective function used for the joint initialization of ν̂ℓ and Ω̂2,ℓ a�er the
initial delay estimate τ̂ℓ(0) has been computed is similar to the absolute value

of (A.9) with τℓ = τ̂ℓ(0) and x̂ℓ(t) = y(t) − ∑ℓ−1
ℓ′=1 s(t; θ̂′ℓ′(0)). Since at

that stage, the DoD of the ℓth path has not been estimated yet, the NC-ML
technique is used to initialize ν̂ℓ and Ω̂2,ℓ jointly.�e SM at the Tx is irrelevant
when this method is applied. Hence, we can use the initialization procedure
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of the ISI-SAGE algorithm to experimentally investigate scenarios similar
to the case study described in Subsection A.4.2. �e di�erences between
the experimental scenarios and the case study are as follows: (1) the SIMO
antenna system considered in the case study is replaced by a MIMO system
in the experimental scenario; (2) a uniform planar array with dual-polarized
elements is used instead of a uniform linear array; (3) the array elements are
not isotropic; (4) in the calculation of x̂ℓ(t) the contribution of the waves but
the ℓth one were either not or only partially cancelled.

In the sequel we restrict the attention to the LOS path indexed ℓ = 1. To
visualize the behavior of the objective function versus ν1, we compute

F(ν1) ≐max
Ω2,1

∣z(ν1,Ω2,1; x̂1 = y)∣2
with z(ν1,Ω2,1; y) given in (A.9). Notice that Ti(Ω̌2,1, ν̌1) (see (A.8)) depends
on the real response of the Rx array, i.e. includes the radiation patterns of
the elements in the array. Inserting (A.9) with the noise term omitted in the
de�nition of F(ν1) we obtain

F(ν1) =max
Ω̌2,1

∣ I

∑
i=1

Ri(ν̌1)Ti(Ω̌2,1, ν̌1)∣2
=max

Ω̌2,1

∣G(ν̌1)T(Ω̌2,1, ν̌1)∣2
= ∣T ′(ν̌1)∣2 ⋅ ∣G(ν̌1)∣2 (A.15)

with T ′(ν̌1) ≐max
Ω̌2,1

T(Ω̌2,1, ν̌1).
�e second line follows similarly to (A.11) since the SM is cycle-independent.
Hence, the SM only a�ects F(ν1) via ∣T ′(ν̌1)∣2.

�e right hand expression in (A.15) will be useful for understanding the
behavior of F(ν1) computed from the measurement data. �is function is
plotted versus ν1 ranging in (−81.3Hz, 81.3Hz] in Fig. A.5 (top) for both
scenarios. �e pulse-train-like behavior of the curves is due to the factor∣G(ν̌1)∣2 in (A.15), which is periodicwith period 1/Tc y.�emaximumof F(ν1)
in Scenario I (with DFER (− 1

2Tc y
, 1
2Tc y
]), is located at −52 Hz. In Scenario

II (with DFER (− 1
2Tr

, 1
2Tr
]) the maximum of F(ν1) is located at −81 Hz.

Notice that these values are the initial DF estimates of the LOS path returned
by the ISI-SAGE algorithm. A�er four iterations of the algorithm the DF
estimates of the LOS path have converged to −52.5 Hz , and the AoA and EoA
estimates equal 4.6o and 27o respectively in Scenario I. In Scenario II the DF
estimate converges to −60Hz, and the AoA and EoA estimates equal 5.3o and
18.7o respectively. All these values are in accordance with the theoretically
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Fig. A.5: Normalized F(ν1) (top) and pseudo-envelope PE(F(ν1)) (bottom) computed from the
measurement data obtained in Scenario I (dashed lines) and Scenario II (solid lines). �e marks
◻ and ◇ denote the maxima of F(ν1) in Scenario I when the DFER is respectively (− 1

2Tc y
, 1
2Tc y
]

and extended to (− 1
2Tr

, 1
2Tr
]. �e mark ○ denotes the maximum of F(ν1) in Scenario II (DFER

= (− 1
2Tr

, 1
2Tr
]).

calculated values. �e deviation between the two sets of the estimates is due
to the di�erence in the velocities and the positions of the van during the
measurement recordings.

�e pulse-train-behavior of F(ν1) due to ∣G(ν1)∣2 makes it di�cult to
visualize the e�ect of the SM (embodied in ∣T ′(ν̌1)∣2) on the former function
when ν̌ ranges in (− 1

2Tr
, 1
2Tr
]. To circumvent this problem we compute an

approximation of ∣T ′(ν̌1)∣ from F(ν1) as follows: PE(F(ν1)) is a pseudo-
envelope (PE) obtained by dividing the range of ν1 into multiple bins with
equal width of 1

Tc y
and connecting the maxima of F(ν1)within each bin using

linear interpolation. Fig. A.5 (bottom) reports the computed PE curves for
both scenarios. For Scenario I, PE(F(ν1)) remains close to one over the entire
range (− 1

2Tr
, 1
2Tr
]. �is behavior is due to the identity SM used for the 4 × 4

planar array. In Scenario II, PE(F(ν1)) exhibits a dominant lobe andmultiple
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side-lobes with signi�cant lower amplitude. �e width of the main lobe is
in accordance with the analytically derived value of 2

M2

1
Tr

for the separation
between the zero points of the main lobe.

In case the DFER is extended to (− 1
2Tr

, 1
2Tr
] in Scenario I, the maximum

of F(ν1) is located at −97.604 kHz in the initialization step (as shown in Fig.
A.5 (bottom)), and stays at this value a�er 4 iterations. �e AoA and EoA
estimates are respectively 70o and 2o. �ese estimates are obviously artifacts
that result due to the identity SM used at the Rx array.

Notice that the high side-lobes at the boundary of theDF estimation range
are due to the patch-wise switching of the arrays. When the DF is very low
compared to the switching rate as it is the case here, the resulting phase-shi�
due to theDF between consecutive sensing intervals of the elements of a patch
is close to zero, which leads to an e�ective doubling of Tr. As a result, the
graph of PE(F(ν1)) exhibits two segments of similar shape as shown in Fig.
A.5 (bottom).

�e above investigations show experimentally the ambiguity e�ect that
occurs when the DFER is extended to (− 1

2Tr
, 1
2Tr
] and the identity SM com-

bined with a planar array is used. It also demonstrates that this problem is
avoided by appropriately selecting the SM.

A.7 Conclusion

In this contribution we investigate the behavior of the Doppler frequency
(DF) and direction estimates obtained with the ISI-SAGE algorithm [2] and
[3] when the scheme is used in combination with TDM-MIMO channel
sounding.

�eoretical analysis combined with simulations show that when the DF
estimation range (DFER) is selected to be fromminus to plus half the switch-
ing rate as proposed in [1] the switching modes (SMs) of the arrays have
to be selected suitably. It is shown that traditionally used SMs of uniform
linear and planar arrays where the elements are switched according to their
natural spatial ordering are inappropriate as they lead to an ambiguity in the
joint estimation of DF and directions. �e investigations also reveal that the
objective function of the DF and direction estimates and in particular the
levels of its side-lobes are strongly a�ected by the choice of the SM.

We propose to associate to any SM the so-called normalized side-lobe
level (NSL) of the objective function resulting from selecting this SM. Monte
Carlo simulations show that the NSL is a sensible �gure of merit for the
identi�cation of SMs leading to DF and direction estimates performing close
to optimum in terms of root mean square estimation error.
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�e above theoretical studies are con�rmed by experimental investiga-
tions using the ISI-SAGE algorithm.�ese investigations show that consecu-
tive switching of the two elements of dual polarized patches in an array reduce
the DFER by a factor two. However this reduction is in practice irrelevant as
the switching rate implemented inmeasurement equipments is usually several
orders ofmagnitude larger than themaximumDoppler frequency observable
in radio propagation environments.
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Abstract

In this paper we investigate the impact of the spatio-temporal aper-
ture of a channel sounding system equipped with antenna arrays at the
transmitter and receiver on the accuracy of joint estimation of Doppler
frequency and bi-direction.�e contribution of this work is three-fold.
Firstly, we state a spatio-temporal model which can describe parallel as
well as switched sounding systems. �e proposed model is applicable
for arbitrary layouts of the spatial arrays. To simplify the derivations
we investigate the special case of linear spatial arrays. However, the
results obtained for linear arrays can be generalized to arbitrary arrays.
Secondly, we give the necessary and su�cient conditions for a spatio-
temporal array to yield the minimum Cramér-Rao lower bound in
the single-path case and Bayesian Cramér-Rao Lower Bound in the
multipath case. �e obtained conditions amount to an orthogonality
condition on the spatio-temporal array.�irdly, we de�ne theDoppler-
bi-direction ambiguity function and derive the necessary and su�cient
conditions for a linear spatio-temporal array to be ambiguous. Based
on the ambiguity function we de�ne the normalized side-lobe level,
which we propose to use as a �gure of merit in the design of spatio-
temporal arrays.

B.1 Introduction

�e design and optimization of multiple-input multiple-output (MIMO)
communication systems require realistic models of the propagation channel,
which incorporate dispersion in delay, Doppler frequency, direction of de-
parture, direction of arrival, and polarization. In order to develop realistic
parametric models of the channel response it is of great importance to be able
to accuratelymeasure the dispersive behavior of the propagation channel, that
is, simultaneously measure dispersions in the above dispersion dimensions.
Dispersion of the propagation channel in one dimension can be estimated
from an observation using an aperture in the corresponding Fourier domain.
For example, if Doppler frequency is to be estimated, observations at di�erent
time instants are required.

�e focus of the paper is on the joint estimation of direction of departure,
direction of arrival and Doppler frequency from observations obtained by
exciting the propagation channel via a spatial aperture and sensing the output
of the channel via another spatial aperture at di�erent time instants, i.e. via
a temporal aperture. All together these three apertures constitute a bi-spatio-
temporal aperture, or a spatio-temporal aperture for short. A spatio-temporal
aperture can be implemented using antenna arrays at the transmitter and
receiver sites. Spatio-temporal sounding systems fall in two groups: parallel
and switched sounding systems.
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A parallel sounding system (such as [1]) is equipped with one transmitter
for each transmit antenna element and one receiver per receive antenna ele-
ment. All transmit array elements are active simultaneously and all outputs
of the receive array elements are observed simultaneously. Snapshots of the
channel are collected at di�erent time instances. Each of the parallel transmit-
ters must transmit a unique signal.�e transmitted sounding signals must be
carefully chosen such that their cross- and auto-correlation properties allow
for their separation and su�cient delay resolution respectively.

In switched sounding systems (such as the one used in [2–5]) the sounding
signal generated by a single transmitter is applied to the elements of the
transmit array via a switch. �e output of the receive array is sensed via an-
other switch. In this way observations from all antenna pairs of one transmit
antenna and one receive antenna can be achieved. Despite the added switches,
the hardware complexity of switched systems is lower than that of parallel sys-
tems. Furthermore, the cross-correlation properties of the sounding signals
is not an issue in switched channel sounding systems and therefore any code
sequence with the desired autocorrelation property may be applied.

Various algorithms for the estimation of directions and Doppler shi�s
from data obtained from spatio-temporal arrays have been proposed, see
e.g. [2–5] and references therein. It is shown in [5] that the design of spatio-
temporal apertures is critical to the joint estimation of Doppler frequency
and bi-direction. Until recently, it was believed that the maximum absolute
Doppler frequency that can be estimated with a switched sounding system
is inversely proportional to the product of the number of elements of the
transmit and receive arrays.�is limitationwas considered amajor draw-back
of switched systems [1]. However, as shown in [4] and [5], this limitation is an
e�ect caused by the (inappropriate) choice of the spatio-temporal aperture
and is not a fundamental (Nyquist) limit. �is inappropriate choice leads
to an ambiguity in the estimation of Doppler frequency and direction [5].
An intuitive interpretation of this e�ect is that the phase changes induced
by a plane wave at the outputs of the array elements may result either due
to the fact that the wave exhibits a Doppler frequency or due to the wave’s
impinging direction, when switching sounding is used. �e ambiguity e�ect
occurs when it is not possible to distinguish which e�ect has really caused this
phase changes. In particular it was shown in [5] that by appropriately selecting
the spatio-temporal aperture it is possible to extend the above maximum
Doppler frequency to the largest value that can be estimated with a similar
single-input single-output sounding system. As illustrated by these results,
the theoretical understanding of the impact of the spatio-temporal aperture
on joint bi-direction and Doppler estimators requires a joint treatment of the
spatio-temporal aperture.
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In this paper we investigate the impact of the spatio-temporal aperture
on the accuracy of joint estimation of Doppler frequency and bi-direction.
�e contribution of this work is three-fold. Firstly, we state a spatio-temporal
model which can describe parallel as well as switched sounding systems.�e
proposed model is applicable for arbitrary layouts of the spatial arrays. How-
ever, to simplify the derivations we investigate the special case of linear spatial
arrays. Secondly, we give the necessary and su�cient conditions for a spatio-
temporal array to yield the minimum Cramér-Rao lower bound (CRLB)
in the single-path case and Bayesian Cramér-Rao Lower Bound (BCRLB)
in the multipath case. �e obtained conditions amount to an orthogonal-
ity condition on the spatio-temporal array. A similar condition for azimuth
and elevation estimation has been derived in the single-path case for planar
arrays in [6] and three dimensional arrays in [7]. �irdly, we de�ne the
Doppler-bi-direction ambiguity function for the proposed spatio-temporal
model.�e ambiguity function [8] is a standard means to asses the resolution
ability of radar waveforms and a rich literature exists on ambiguity functions
and related results for various radar systems, see e.g. [9, 10] and references
therein. In the recent work [11] the ambiguity function has been de�ned
for MIMO bi-static radar systems with parallel transmitters and receivers.
�e interested reader is referred to this contribution for an overview and
discussion of recent results in ambiguity functions for mono- and bi-static
radar. �e bi-static radar estimation problem is essentially the same as the
problem of parameter estimation of single-bounce propagation paths in the
�eld of channel sounding for MIMO wireless communications. However, in
real propagation environments single-bounce only propagation cannot be
assumed, and consequently the available radar results do not apply directly. In
the channel sounding literature however, the use of ambiguity functions has
been fairly limited so far. In [12, 13] the delay-Doppler ambiguity function is
computed. To our best knowledge, the ambiguity function has not previously
been de�ned and calculated for (bi-)spatio-temporal channel sounding. �e
ambiguity function presented in this contribution is valid for both parallel
and switched sounding systems. It is a special case of the general ambiguity
function de�ned in [9]. Based on this ambiguity function we derive the
necessary and su�cient conditions for a linear spatio-temporal array to be
ambiguous.�e obtained result generalizes the result from [5] and resembles
the results of the well-studied type-1 (or rank-1) ambiguity e�ect for spatial
arrays; see e.g. [14–16]. Based on the ambiguity function we also de�ne the
normalized side-lobe level (NSL), which we propose to use as a �gure ofmerit
in the design of spatio-temporal arrays.

�e paper is organized as follows. In Section B.2 we introduce a model
of the spatio-temporal sounding system capable of describing both parallel
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Fig. B.1: �e considered multi-path propagation environment. �e black dots in the regions R1

andR2 indicate the positions of the array elements.

and switched systems. In Section B.3 the impact of the spatio-temporal array
on the CRLB and the BCRLB is investigated. In Section B.4 we de�ne the
Doppler-bi-direction ambiguity function which is then used for the analysis
of the above-mentioned ambiguity e�ect. In Section B.5 we investigate the ef-
fect of the spatio-temporal aperture on the estimation performance by means
of Monte-Carlo simulations. Concluding remarks are stated in Section B.6.

Notation: �roughout this contribution, the following notation is used.
Vectors andmatrices have bold faced symbols. Sets are printed in calligraphic
letters (such asA).�e notations [⋅]∗, [⋅]T, and [⋅]H denote complex conjuga-
tion, transposition and Hermitian transposition, respectively. �e notations[a]p and [A]p,q mean the pth element of the vector a, and element (p, q) of
the matrix A. �e symbol ⊗ denotes the Kronecker product. �e notation
A ⪰ B means that the matrix A − B is positive semide�nite. We denote a p-
dimensional column vector with unity entries by 1p. �e notation ∣ ⋅ ∣ stands
for the Euclidean norm of a scalar or vector and the cardinal number of a set.
Expectation is denoted by E[⋅]. �e least integer larger than or equal to a is
denoted by ⌈a⌉.�e symbols Z, R and C stand for the set of integers, the real
line, and the complex plane, respectively.

B.2 System Model

Let us consider the propagation environment depicted in Fig. B.1.�e sound-
ing system consists of two antenna arrays referred to as Array 1 and Array 2,
respectively.�e index k ∈ {1, 2} is used to distinguish the transmitter (k = 1)
from the receiver (k = 2). �e number of elements in Array k is denoted by
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Mk . At Array k the coordinates are given in carrier wavelengths with respect
to the coordinate system Ok . �e displacement of Array k element mk from
the origin of the coordinate system Ok is denoted by rk,mk

∈ R
3. To simplify

the notation we write rmk
for rk,mk

.�e time variable is denoted by t ∈ R.
Referring to Fig. B.1, a certain number L of waves propagate along di�er-

ent paths fromArray 1 toArray 2. Along its path awave interacts with a certain
number of scatterers.Wemake the following assumptions on the propagation
environment:

A) Following [2], we assume that the far-�eld condition holds, such that
a plane wave approximation can be applied in a region Rk ⊂ R

3

surrounding Array k when the other array transmits.�is implies that
the set of parameters describing each path is independent of the array
element positions.

B) �e propagation paths are assumed to be specular.

C) Weassume that the geometry of the propagation paths is constant through-
out the observation window T . In other words, the parameters of the
propagation paths remain constant for the whole measurement run.

D) We consider the narrow-band case only. Hence, without loss of generality
propagation delays are assumed to be zero.

E) We assume that the elements of Array 1 and Array 2 are isotropic.

Under Assumptions A–D, the ℓth path can be described by the parameter
vector θℓ ≜ [νℓ ,ΩT

1,ℓ ,Ω
T

2,ℓ , αℓ]T, where νℓ is the Doppler frequency of Path ℓ
and Ωk,ℓ is a unit vector with the initial point anchored at the origin of Ok

pointing towards the direction of Path ℓ in Rk (see Fig. B.1). We denote the
complex gain of path ℓ as αℓ. �e 8L-dimensional vector θ ≜ [θT

1 , . . . , θ
T

L ]T
contains the parameters of all L paths.

B.2.1 Signal Model

Let pm1(t) be the (complex base-band representations of the) sounding signal
applied to the input of Array 1 element m1. We consider J non-overlapping
sounding intervals of length T . �e center time instant of the jth sounding
interval is denoted by t j. �us the jth sounding interval reads T j = [t j −
T
2 , t j +

T
2 ). �e center time instants t1, . . . tJ are selected such that T1, . . . , TJ

are disjoint. For both parallel and switched systems, the observation window
T = ⋃J

j=1 T j equals the union of the sounding intervals. Elementm1 of Array 1
is said to be active during T j if T j is a subset of the support of the signal
pm1(t), i.e. if the sounding waveform is fed to its input terminal. Similarly, an
element of Array 2 is active during T j if its output terminal is sensed during
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T j. Furthermore, we say that the antenna pair (m1,m2) is active during T j if
Array 1 element m1 and Array 2 element m2 are both active during T j.

For the sake of clarity we �rst introduce the notation for a parallel sound-
ing system. �erea�er we consider switched sounding and describe a com-
mon model for both switched and parallel systems.

Let p j,m1(t) be the sounding pulse with support T j applied to the input of
Array 1 element m1 of a parallel sounding system.�en pm1(t) is of the form

pm1(t) = J

∑
j=1

p j,m1(t). (B.1)

We consider the case where the sounding pulses have same energy E and are
mutually orthogonal, i.e.

∫
T
p j,m1(t)p∗j′ ,m′1(t)dt = E ⋅ δ j j′ ⋅ δm1m′1

, (B.2)

where δ⋅⋅ is the Kronecker delta function. �is orthogonality restriction en-
sures that the signal contributions of di�erent transmitted sounding pulses
can be extracted from the received signal without interference from the other
pulses. Furthermore, it implies that the noise contributions in the extracted
sounding pulses are uncorrelated for di�erent sounding pulses. In practice,
the sounding pulses must be chosen to ful�ll (B.2), at least approximately, e.g.
by letting the sounding pulses at di�erent transmitters be di�erently shi�ed
versions of the same pseudo-noise sequence.

�e output signal of Array 2 element m2 is given as

Ym2(t) = M1

∑
m1=1

J

∑
j=1

s j,m1 ,m2(t, θ) + Nm2(t), t ∈ T , (B.3)

where s j,m1 ,m2(t; θ) and Nm2(t) denotes respectively the signal contribution
due to the jth sounding pulse applied to the input of Array 1 element m1 and
the noise contribution to Ym2(t). �e noise contributions across the Array 2
element outputs are assumed to be spatially and temporally white circularly
symmetric complex Gaussian processes, i.e. ful�lling

E[Nm2(t)Nm′2
(t + τ)∗] = N0 ⋅ δm2 ,m′2

⋅ δ(τ), (B.4)

where N0 is a positive constant and δ(⋅) denotes the Dirac delta function.
Under the Assumptions A–E we can write the signal s j,m1 ,m2(t; θ) as
s j,m1 ,m2(t; θ) = L

∑
ℓ=1

αℓ exp( j2π(νℓt +ΩT

1,ℓrm1 +Ω
T

2,ℓrm2))p j,m1(t). (B.5)
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B.2.2 Maximum-Likelihood Estimation of Path Parameters

Firstwe introduce a notationwhich clearly distinguishes between the parame-
ter of the propagation paths, their estimates, and the free parameter in the log-
likelihood function. We adhere to the following notational convention: (̂⋅) is
an estimate of the parameter given as argument, and (̄⋅) is a free parameter in
the log-likelihood function. As an example the symbol νℓ denotes theDoppler
frequency of Path ℓ of which the estimate ν̂ℓ is obtained by jointmaximization
of the log-likelihood function Λ(θ̄)with respect to ν̄ℓ and the remaining free
parameters of θ̄.

In the sequel we consider the maximum-likelihood estimator of the pa-
rameter vector θ:

θ̂ = argmax
θ̄∈Eθ

Λ(θ̄), (B.6)

where Λ(θ̄) is the log-likelihood of θ̄ given an observation y1(t), . . . , yM2(t)
of the processes Y1(t), . . . ,YM2(t) and E⋅ denotes the estimation range of
the parameter given as index. �e maximization in (B.6) is over the 8L-
dimensional domain Eθ .1

�e log-likelihood of θ̄ given an observation y1(t), . . . , yM2(t) of Y1(t),
. . . ,YM2(t) reads [2, 17]:
Λ(θ̄) = M2

∑
m2=1

⎧⎪⎪⎨⎪⎪⎩2R[ ∫T
J

∑
j=1

ym2(t) M1

∑
m1=1

s∗j,m1 ,m2
(t; θ̄)dt]

− ∫
T
∣ J

∑
j=1

M1

∑
m1=1

s j,m1 ,m2(t; θ̄)∣2dt⎫⎪⎪⎬⎪⎪⎭. (B.7)

Due to the orthogonality (B.2) of the transmitted pulses, all “cross terms” in
the le�most integral of (B.7) vanish.�us, (B.7) simpli�es to the triple sum

Λ(θ̄) = J

∑
j=1

M1

∑
m1=1

M2

∑
m2=1

Λ j,m1 ,m2(θ̄), (B.8)

where the summands are de�ned as

Λ j,m1 ,m2(θ̄) ≜2R{H j,m1 ,m2(θ̄)} − E j,m1 ,m2(θ̄), (B.9)

with

H j,m1 ,m2(θ̄) ≜ ∫
T j
ym2(t)s∗j,m1 ,m2

(t; θ̄)dt (B.10)

1�e maximization over Eθ is computationally prohibitive. However a low-complexity
approximation of the maximum likelihood estimate can be obtained using a space-alternating
generalized expectation-maximization (SAGE) algorithm [2–5].
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and

E j,m1 ,m2(θ̄) ≜ ∫
T j
∣s j,m1 ,m2(t; θ̄)∣2dt. (B.11)

�e integral H j,m1 ,m2(θ̄) can be split into a signal term and a noise term.
Inserting (B.3) and dropping the terms that are zero due to the orthogonality
condition given in (B.2) we obtain

H j,m1 ,m2(θ̄) = ∫
T j
s j,m1 ,m2(t, θ)s∗j,m1 ,m2

(t, θ̄)dt + ∫
T j
Nm2(t)s∗j,m1 ,m2

(t, θ̄)dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≜N j ,m1 ,m2(θ̄)

.

(B.12)

Remembering that the noise contributions are temporally and spatially white,
and applying the orthogonality assumption (B.2), the complex Gaussian ran-
dom variables N j,m1 ,m2(θ̄) are uncorrelated:

E[N j,m1 ,m2(θ̄)N∗j′ ,m′1 ,m′2(θ̄)] = E j,m1 ,m2(θ̄)N0δ j, j′δm1 ,m′1
δm2 ,m′2

. (B.13)

B.2.3 Sounding Modes and�eir Spatio-Temporal Aperture Matrices

In the following we generalize the system model such that it can account for
any con�guration of switched and parallel transmitters and receivers.

Motivated by the particular form of (B.8) we use the term spatio-temporal
sample to denote the signal component which was transmitted from Array 1
element m1, received at Array 2 element m2 during T j. Each sample results
in one term of the sum in (B.8). �erefore each spatio-temporal sample can
be indexed by the triplet ( j,m1,m2). In (B.8) the spatio-temporal samples
are obtained from all combinations of one Array 1 element and one Array 2
element for every sounding interval. It follows readily from the derivation of
(B.8) that if any of the spatio-temporal samples are le� out, the corresponding
terms in (B.8) will disappear. For instance in a switched system, Λ(θ̄) have a
similar form, but the triple sum in (B.8) will only be over a subset of the set
of all triplets ( j,m1,m2).
De�nition B.2.1 (Sounding mode): A sounding mode is a subsetM of{1, . . . , J} × {1, . . . ,M1} × {1, . . . ,M2}.

�e log-likelihood function of θ̄ associated to the sounding modeM is
given by

Λ(θ̄) = ∑
( j,m1 ,m2)∈M

Λ j,m1 ,m2(θ̄). (B.14)
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We enumerate the elements of a sounding modeM by the index i, i.e. we
de�ne a bijection

{1, . . . , I}→M, i ↦ ( j(i),m1(i),m2(i)). (B.15)

�us, j(i) speci�es in which sounding interval sample i was generated. Simi-
larly, the indicesm1(i) andm2(i) specify which element of Array 1 andwhich
element of Array 2 respectively is used to generate sample i.�e total number
of spatio-temporal samples acquired in a measurement run is I = ∣M∣.
�us for a parallel sounding system, whereM = {1, . . . , J} × {1, . . . ,M1} ×{1, . . . ,M2}, the number of samples is I = JM1M2. For a switched sounding
system where one sample is acquired in each sounding interval we have I = J.

De�ning Λi(θ̄) ≜ Λ( j(i),m1(i),m2(i))(θ̄) we can now recast (B.14) as

Λ(θ̄) = I

∑
i=1

Λi(θ̄). (B.16)

�e choice of indexing in (B.15) is not unique.�e particular enumeration of
the elements of a soundingmode only determines the order of the terms in the
sum (B.16) which is irrelevant in the further development.�e indexing can
therefore be selected arbitrarily by the system designer. In switched sounding
systems it is natural to select the indices such that j(i) = i and t1 < t2 < ⋅ ⋅ ⋅ <
tI . In parallel sounding systems however, indexing purely according to the
temporal order is not possible because the sounding pulses overlap in time.

We de�ne the vector

ai ≜ [t(i), r1(i)T, r2(i)T]T ∈ R
7, (B.17)

where t(i) ≜ t j(i), r1(i) ≜ rm1(i), and r2(i) ≜ rm2(i). We say that ai is the
center point of the ith spatio-temporal sample.

De�nition B.2.2 (Spatio-temporal aperture matrix): �e 7× I spatio-temporal
aperture matrix A is determined as

A ≜ [a1, . . . , ai , . . . , aI] ∈ R
7×I (B.18)

with ai de�ned in (B.17).

Without loss of generality we select the origin of the spatio-temporal
coordinate system such that the columns of A ful�ll

I

∑
i=1

ai = 0. (B.19)
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Fig. B.2: A sounding systemwith linear arrays.�e black dots indicate the centroids of the antenna
elements.

However, as we will see in Subsection B.3.1 this condition has some optimality
property, in the sense that it ensures decoupling in the Fisher information
matrix between the linear (αℓ) and non-linear (ϑℓ) parameters of path ℓ.�e
spatio-temporal aperture is uniquely de�ned by the spatio-temporal aperture
matrix A together with the pulse length T .

B.2.4 Linear Antenna Arrays

For sounding systems with linear antenna arrays, as the one depicted in
Fig. B.2, the signal model can be simpli�ed. We say that Array k is linear
if its elements are located along a straight line Dk through the origin of
Ok , i.e. rk ∈ Dk ∩ Rk . In this case, the position of a point on the array
axis Dk is speci�ed by the signed distance dk ∈ R from the origin of Ok .
Likewise, dk(i) denotes the centroid position of the ith temporal sounding
pulse at Array k. Obviously, the full Ωk,ℓ-vector cannot be estimated in this
case but only its projection onto the array axisDk .�erefore we replace Ωk,ℓ

by this projection denoted by ωk,ℓ. It can be noticed that ωk,ℓ = cos(ψk,ℓ)
where ψk,ℓ is the angle between the array axis Dk and Ωk,ℓ. We call ωk,ℓ

the spatial frequency of Path ℓ at Array 1. In the sequel we assume one-
dimensional arrays and replace rk by dk , and Ωk,ℓ by ωk,ℓ. Consequently,
ai = [t(i), d1(i), d2(i)]T ∈ R

3, θℓ = [αℓ , νℓ ,ω1,ℓ ,ω2,ℓ]T ∈ C × R
3, and

θ = [θT

1 , . . . , θ
T

L ]T is a 4L-dimensional vector throughout the remainder of
this paper. We also de�ne ϑℓ ≜ [νℓ ,ω1,ℓ ,ω2,ℓ]T ∈ R

3 and ϑ ≜ [ϑT

1 , . . . , ϑ
T

L ]T
for the subsequent investigations.
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B.2.5 Speci�c Examples of Systems Using Linear Arrays

Innumericalexamples wewill consider two switched systems named “MIMO-
ULA” and “SIMO-ULA”, respectively. �e MIMO-ULA system is equipped
with two uniformly spaced linear arrays consisting of Mk antenna elements
with half-a-wavelength inter-element spacing.�e position of elementmk(i)
is given by dk(i) ≜ 1

2 (mk(i) − µk), where µk is selected such that (B.19) is ful-
�lled.We de�ne the antenna element index vectormk ≜ [mk(1), . . . ,mk(I)]T.
�e SIMO-ULA system is a MIMO-ULA system with M1 = 1. For both
MIMO-ULA and SIMO-ULA the uniform temporal sampling

t(i) ≜ (i − I+1
2 )Tr , Tr ≥ T (B.20)

is selected. Here, Tr denotes the time-period between consecutive samples.
With this de�nition∑I

i=1 t(i) = 0, as required from (B.19). Hence, the spatio-
temporal aperture matrixA of the MIMO-ULA system is fully de�ned by the
vectorsm1 andm2. For the SIMO-ULA system it su�ces to specifym2.

For the MIMO-ULA system the estimation range Eϑℓ
of ϑℓ is given as

Eϑℓ
= Eν × Eω1 × Eω2 (B.21)

with Eν = (− 1
2Tr

,+ 1
2Tr
] and Eωk

= (−1,+1]. For the SIMO-ULA system, where
ω1,ℓ is not estimable, we select Eω1 = {0}.
B.3 Fisher Information Matrix and Cramér-Rao Lower Bounds

In this section we investigate the e�ect of the spatio-temporal aperture matrix
A on the (conditional) Cramér-Rao lower bound (CRLB) and on the Bayesian
Cramér-Rao lower bound (BCRLB) for the estimation of the entries of the
parameter vector θ .�eCRLB is a function of θ, whereas the BCRLBdepends
on an assumed prior density function for θ [18].

In the following subsectionswe�rst derive theCRLB for the estimator and
show which criterion the aperture matrix should ful�ll in order to yield the
minimum CRLB in a scenario with one propagation path (L = 1).�erea�er
we show that the same criterion minimizes the BCRLB in the multipath case.

B.3.1 �e Conditional Cramér-Rao Lower Bound

�e CRLB on the variance of the estimation error of an unbiased estimator of[θ]p,p can be calculated as the pth diagonal of the inverted Fisher information
matrix:

CRLB([θ̂]p) ≜ [F(θ)−1]p,p . (B.22)
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In Appendix B.I the Fisher information matrix F(θ) for the estimation of θ
is shown to be of the form

F(θ) ≜
⎡⎢⎢⎢⎢⎢⎢⎣
Fθ1θ 1 ⋯ Fθ1θL
⋮ ⋱ ⋮

FθLθ1 ⋯ FθLθL

⎤⎥⎥⎥⎥⎥⎥⎦
(B.23)

where the sub-matrix Fθ ℓ ,θℓ′ is partitioned as

Fθℓθ ℓ′ = [Fαℓαℓ′ Fαℓϑℓ′

Fϑℓαℓ′
Fϑℓϑℓ′

] . (B.24)

De�ning the normalized element factor of sounding pulse i (see also Sec-
tion B.4) as

EFn(ν; i) ≜ 1

E ∫ ∣pi(t)∣2 exp( j2πνt)dt (B.25)

with pi(t) ≜ p j(i),m1(i)(t), the entries Fαℓαℓ′ , Fϑℓαℓ′
= FH

αℓ′ ϑℓ
, and Fϑℓϑℓ′

of
Fθℓθℓ′ read

Fαℓαℓ′ = E

N0
R{ I

∑
i=1

exp( j2π(ϑℓ−ϑℓ′)Tai)EFn(νℓ−νℓ′ ; i)}, (B.26)

Fϑℓαℓ′
= 2πE

N0
R{( j − 1)αℓ′ I

∑
i=1

ai ⋅ exp( j2π(ϑℓ−ϑℓ′)Tai)EFn(νℓ−νℓ′ ; i)},
(B.27)

and

Fϑℓϑℓ′
= 8π2E

N0
R{αℓα∗ℓ′ I

∑
i=I

aia
T

i ⋅ exp( j2π(ϑℓ−ϑℓ′)Tai)EFn(νℓ−νℓ′ ; i)}.
(B.28)

As can be noticed from (B.26)–(B.28), the matrix Fθ ℓθ ℓ′ in general depends
on the parameter vectors θℓ and θℓ′ . For ℓ = ℓ′, the factor EFn(ν; i) in (B.25)
and the exponential terms in (B.26)–(B.28) are all unity. �erefore, making
use of the condition (B.19) and the identity∑I

i=1 aia
T

i = AAT we obtain

Fαℓαℓ = EI

N0
, Fϑℓαℓ = 0, and Fϑℓϑℓ

= 8π2E∣αℓ∣2
N0

AAT . (B.29)

As is apparent from (B.29), the matrix Fϑℓϑℓ
depends only on ∣αℓ∣ and not

on the remaining entries of θ. Notice, that the choice of a coordinate system
satisfying (B.19) ensures that Fϑℓαℓ = 0 holds. Similar e�ects have previously
been noticed for radar systems [19], for direction estimation [6], and for
switched sounding systems [2].
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B.3.2 �e One-Path Case, Orthogonal Aperture

For the one-path case (L = 1) we have θ = θ1. For simplicity we drop the
path index ℓ = 1. It follows from (B.23), (B.24) and (B.29) that the Fisher
information matrix reads

F(θ) = [ EIN0
0T

0 Fϑϑ

] , (B.30)

with

Fϑϑ = 8π2γo 1
I
AAT = 8π2γo 1

I

⎡⎢⎢⎢⎢⎢⎢⎣
tTt tTd1 tTd2

dT

1 t dT

1 d1 dT

1 d2

dT

2 t dT

2 d1 dT

2 d2

⎤⎥⎥⎥⎥⎥⎥⎦
, (B.31)

where γo ≜ ∣α∣2 EI
N0

is the signal to noise ratio (SNR) and t ≜ [t(1), . . . , t(I)]T,
dk ≜ [dk(1), . . . , dk(I)]T, k = 1, 2, denote the rows of A.

By inspection of (B.31) we see that the pth diagonal element of Fϑϑ

depends only on the squared norm of the pth row ofA, e.g. element (1, 1) de-
pends only on ∣t∣2.�e o�-diagonal elements of Fϑϑ are cross-terms involving
scalar products of di�erent rows of A. For example the o� diagonal element[Fϑϑ]2,1 is proportional to dT

1 t.

�eorem B.3.1: �e CRLBs for the estimation of the Doppler and spatial fre-
quencies ful�ll the inequalities

CRLB(ω̂k) ≥ 1

8π2γo
1
I ∣dk ∣2 , k = 1, 2, and CRLB(ν̂) ≥ 1

8π2γo
1
I ∣t∣2 .

(B.32)

Moreover, equality in all three inequalities is achieved simultaneously in (B.32)
if, and only if, the rows of A are orthogonal, i.e.

tTd1 = 0, tTd2 = 0, and dT

1 d2 = 0. (B.33)

Proof. It is shown in [20, pp. 231] that [F]−1p,p ≤ [F−1]p,p for any p, i.e. [F]−1p,p
lower bounds the CRLB for parameter [θ]p. Using Lemma B.II.3 given in
Appendix B.II we see that the equality [Fθθ]−1p,p = [F−1θθ]p,p is obtained for
all p if, and only if, Fθθ is diagonal. By inspection of (B.30) we see that Fθθ is
diagonal if, and only if, the rows of A ful�ll (B.33). ◻

Restricting the comparison to the class of apertures with equal diagonal
elements in their associated Fisher information matrices we have the corol-
lary:
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Corollary B.3.2: Within the class of spatio-temporal apertures with identical
values of ∣t∣2, ∣d1∣2, and ∣d2∣2, the minimum CRLB is obtained if, and only if,
the rows of the aperture matrix are orthogonal.

A result analog to �eorem B.3.1 for the joint estimation of elevation
and azimuth and elevation of arrival of a single path has previously been
published. As shown in [6, 7], the minimum CRLB for joint estimation of
azimuth and elevation from data collected with a three-dimensional array is
achieved if, and only if, the non-diagonal terms of thematrix∑I

i=1 r2(i)r2(i)T
vanish.

B.3.3 Speci�c Examples (Continued)

In the following we demonstrate the impact of the spatio-temporal aperture
on the CRLB in the one-path case. We consider the CRLB of a MIMO-ULA
system with I = M1M2, and the commonly used sequential sounding mode

m1(i) = ⌈i/M2⌉ , and (B.34)

m2(i) = (i − 1 mod M2) + 1. (B.35)

Equivalently, m1 = [1, 2, . . . ,M1]T ⊗ 1M2 and m2 = 1M1 ⊗ [1, 2, . . . ,M2]T.
We chose Tr = T . �is selection of mk(i) ensures that all pairs of one
Array 1 element and one Array 2 element are active once, and, as we will
show in Section B.3.5, that dT

1 d2 = 0. �e resulting spatio-temporal aperture
matrix yields a non-diagonal Fisher information matrix because tTdk ≠ 0
and the minimum CRLB is not obtained. If in addition M1 = M2, the Fisher
information matrix is non-invertible, and hence the CRLB is in�nite. For
instance in the case where M1 = 10 and M2 = 9 the ratios between the CRLBs
obtained for the selected aperture matrix A resulting from (B.34) and (B.35)
and theminimumCRLB for ν,ω1, and ω2 are calculated as [F−1θθ]2,2 ⋅[Fθθ]2,2 ≈
15.4 dB, [F−1θθ]3,3 ⋅ [Fθθ]3,3 ≈ 15.3 dB, and [F−1θθ]4,4 ⋅ [Fθθ]4,4 ≈ 1.27 dB,
respectively.

In the above example the spatial sounding was selected such that all
antenna array elements are active the same number of times during one
measurement run. In the next example we compare this case to the case where
some antenna elements are active more frequently than others.

With Mk = 8, k = 1, 2 we see that ∣dk ∣2 = 84 if all Array k elements are
active 8 times. For comparison we select the spatial sampling schemes such
that mk(i) ∈ {1, 2, 7, 8}, i.e. we use only four of the eight elements of each
array. In this case, provided all the used antenna array elements are active
the same number of times (i.e. 16 times) during the measurement run, we
have ∣dk ∣2 = 148. If both spatio-temporal apertures ful�ll (B.33) we see that
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the CRLB in the latter case is lower than in the former case. �e di�erence
amounts to approximately 2.46 dB.

�ese two examples clearly show that the sounding mode highly a�ects
the CRLBs for the estimation of spatial and Doppler frequencies in the one-
path case.

B.3.4 Orthogonal Apertures in the Multipath Case

Motivated by the above orthogonality criterion that applies to the one-path
case, it is of interest to see if this condition holds true in the multipath case as
well. As remarked in Section B.3.1, the Fisher information matrix depends on
the parameters to be estimated. In particular the o�-diagonals of the Fisher
information matrix which enters the proof of �eorem B.3.1 depend on the
path parameters.�us it is di�cult to give a characterization of the minimum
CRLB in the multipath case. To circumvent this obstacle we investigate the
BCRLB.

�e BCRLB for the estimation of θ is [18]

BCRLB ≜ (G + P)−1, (B.36)

where G is the Fisher information matrix averaged with respect to the prior
density λ(θ)

G ≜ ∫ F(θ)λ(θ)dθ (B.37)

and the matrix P depends only on the prior (and is independent of the
aperture matrix). �e particular choice of prior does not a�ect our analysis
in the following.

By (B.23) we see that G can be written as

G =
⎡⎢⎢⎢⎢⎢⎢⎣
Gθ 1θ1 ⋯ Gθ 1θL

⋮ ⋱ ⋮
GθLθ 1 ⋯ GθLθL

⎤⎥⎥⎥⎥⎥⎥⎦
, (B.38)

with

Gθ ℓθ ℓ′
≜ ∫ Fθ ℓθ ℓ′ λ(θ)dθ . (B.39)

We remark that the diagonal blocks of G read

Gθ ℓ ,θℓ = [Gαℓαℓ 0T

0 Gϑℓϑℓ

] (B.40)
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with

Gϑℓϑℓ
= 8π2E[∣αℓ∣2] ⋅ E

N0
AAT , ℓ = 1, . . . , L, (B.41)

where E[∣αℓ∣2] denotes the expectation with respect to the prior of αℓ.
We are now able to give the following characterization of the aperture

matrices which yields the lowest BCRLB in the multipath case:

�eorem B.3.3: Let BCRLBÃ be the BCRLB resulting from the aperture matrix
Ã and similarly BCRLBA the BCRLB resulting from an arbitrary aperture

matrix A with the property that diag(AAT) = diag(ÃÃT). If the inequality
BCRLBA ⪰ BCRLBÃ (B.42)

is ful�lled for any such aperture matrix A then the rows of Ã are orthogonal.

Proof. We prove�eorem B.3.3 by proving that if the BCRLB of an aperture
matrix Ã is lower than or equal to the BCRLB of an orthogonal aperture
matrix A, then Ã is orthogonal as well. By the assumption (B.42),

(G + P)−1 ⪰ (G̃ + P)−1 (B.43)

is ful�lled for anyG such that diag(AAT) = diag(ÃÃT).Making use of (B.69)
given in Appendix B.II and eliminating the P terms we obtain from (B.43)

G̃ ⪰ G. (B.44)

�en, by invoking Lemma B.II.2 in Appendix B.II, and inserting (B.40) we
obtain a�er elimination of some irrelevant terms

[(AAT)−1]p,p ≥ [(ÃÃT)−1]p,p, for all p. (B.45)

Now, suppose that A is row-orthogonal. �en AAT is diagonal and[(AAT)−1]p,p = 1/[AAT]p,p for all p. Inserting in (B.45) yields

1[(AAT)]p,p ≥ [(ÃÃ
T)−1]p,p for all p. (B.46)

From [21,�eorem 7.7.8] we have that [(ÃÃT)−1]p,p ≥ 1/[ÃÃT]p,p for any
p. Since diag(AAT) = diag(ÃÃT) then 1/[AAT]p,p = 1/[ÃÃT]p,p for any
p. Hence [(ÃÃT)−1]p,p ≥ 1/[AAT]p,p for any p. Combining this additional
inequality with (B.46) we obtain for any p

1[AAT]p,p ≥ [(ÃÃ
T)−1]p,p ≥ 1[AAT]p,p , (B.47)

⇒ [(ÃÃT)−1]p,p = 1[AAT]p,p . (B.48)
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By Lemma B.II.3 given in Appendix B.II, the two inequalities in (B.47) are

ful�lled for all p if, and only if, ÃÃ
T
is diagonal. Hence, Ã is row-orthogonal.

◻

It is worth noticing the di�erence between �eorem B.3.1 and �eo-
rem B.3.3.�eorem B.3.1 states that (in the one-path case), the orthogonality
condition (B.33) is a necessary and su�cient condition for the minimum
CRLB to be achieved. �e result in �eorem B.3.3 states a necessary (but not
su�cient) condition for an aperture matrix to yield the minimum BCRLB
in the sense of (B.42).�e reason for this seemingly weaker result is that the
cross-termsGℓ,ℓ′ , ℓ ≠ ℓ′ in the matrices G̃ andG are removed in the step from
(B.44) to (B.45). If the o�-diagonal blocks should be taken into consideration,
more speci�c assumptionsmust bemade about the prior. Considering a prior
and a group of apertures such that Gℓ,ℓ′ = 0, ℓ ≠ ℓ′, one can prove that row-
orthogonality is a necessary and su�cient condition for an aperture matrix to
yield theminimumBCRLB.�e proof is similar to the proof of�eoremB.3.1.

B.3.5 Uniform and Parallel Spatio-Temporal Apertures

In the following, we de�ne the concept of uniformity of a spatio-temporal
aperture matrix and show that uniformity implies that this matrix is row-
orthogonal. For convenience we de�ne the row indices p, q, and r of A such
that {p, q, r} = {1, 2, 3} is ful�lled. Letb be a columnofA, i.e.b ∈ {a1, . . . , aI}.
�en the number of columns of A that coincide with b in the pth and qth
elements can be written as

φp,q(b) ≜ ∣{i ∈ {1, . . . , I} ∶ ([b]p , [b]q) = ([ai]p , [ai]q)}∣.
De�nition B.3.4: A spatio-temporal aperture matrix A is (p, q)-uniform if,
and only if, there exists a constant φp,q such that φp,q(b) = φp,q , for all
b ∈ {a1, . . . , aI}.

We can now prove a simple lemma which turns out to be helpful for the
design of row-orthogonal spatio-temporal aperture matrices.

Lemma B.3.5: Row p and row q of a (p, q)-uniform spatio-temporal aperture
matrix A are orthogonal.

Proof. Let cTr = [cr,1, . . . , cr,I] denote the rth row of A and Cr = ⋃I
i=1{cr,i}.

�en∑I
i=1 cp,i = φp,q∣Cq∣∑cp∈Cp cp.�erefore,

cTq cp =
I

∑
i=1

cq,icp,i = φp,q ∑
cq∈Cq

cq ∑
cp∈Cp

cp .

By convention∑I
i=1 cp,i = 0, which implies∑cp∈Cp cp = 0.�us cTq cp = 0 . ◻
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As an example, a (2, 3)-uniform (i.e., spatially uniform) aperture is a
spatio-temporal aperture where all pairs of antenna array elements (m1,m2)
are active φ2,3 times during one measurement run. For all spatially uniform
aperture matrices the condition dT

1 d2 = 0 is ful�lled. For instance, the spatio-
temporal aperture matrix de�ned by (B.34) and (B.35) is spatially uniform
with φ2,3 = 1 and therefore, dT

1 d2 = 0 in this case.
For a parallel sounding system with M1 transmitters and M2 receivers

where all antenna pairs are active simultaneously, we see that I = JM1M2.
In this case, A is (1, 2)-uniform with φ1,2 = M2, (1, 3)-uniform with φ1,3 =
M1, and (2, 3)-uniform with φ2,3 = J . �erefore, such a system always ful-
�lls (B.33). �is result agrees with the result in [22, 23], that [Fϑℓϑℓ

]1,3 =[Fϑℓϑℓ
]3,1 = 0 always hold for a parallel system with M1 = 1.

From the observation that parallel systems always ful�ll (B.33), it might
seem tempting to conclude that parallel systems are preferable to switched
systems. However, the comparison of the CRLBs of di�erent spatio-temporal
apertures must be done with the same SNR and thus with the same I for
all considered apertures. To illustrate the comparison problem we consider
the case where all antenna pairs are active once during the measurement
run. In a parallel system this condition implies that all samples are taken
simultaneously and therefore ∣t∣2 = 0. Hence, in this case, Doppler frequency
estimation is not possible. In a switched sounding system the same condition
implies that ∣t∣2 > 0 and thus a spatio-temporal aperture with �nite CRLB
can be constructed. In general one can always construct a spatio-temporal
aperture of a switched sounding system with a value ∣t∣2 larger than that of
a parallel sounding system with the same number of samples. An additional
major di�erence between parallel and switched systems is that parallel sys-
tems do not allow for adjustments of ∣dk ∣2 without changing the geometry of
the antenna arrays, as do switched systems.

B.4 Spatio-Temporal Ambiguity Function

In this section we de�ne a (bi-)spatio-temporal ambiguity function for chan-
nel sounding. To our best knowledge, this problem has not previously been
addressed in published work yet.

De�nition B.4.1: �e Doppler-(bi-)direction ambiguity function of a
(bi-)spatio-temporal channel sounding system is de�ned to be

χ(ϑ , ϑ̄) ≜ 1

EIα∗ᾱ

I

∑
i=1
∫
T j(i)

s∗i (t; θ)si(t; θ̄)dt, (B.49)

where si(t; θ) ≜ s j(i),m1(i),m2(i)(t; θ) with s j,m1 ,m2(t; θ) de�ned in (B.5).
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�e magnitude of the ambiguity function ranges from zero to unity. For
any ϑ ∈ Eϑ , ∣χ(ϑ , ϑ)∣ = 1. In the case where there exists a vector ϑ̄ ∈ Eϑ , ϑ̄ ≠ ϑ
such that ∣χ(ϑ , ϑ̄)∣ = 1, two signal components with parameter vectors ϑ and
ϑ̄ respectively are indistinguishable.�is e�ect we call the ambiguity e�ect.

Due to the particular form of the sounding pulses (see e.g. (B.5)), the
ambiguity function in (B.49) can be recast as

χ(ϑ , ϑ̄) = 1

I

I

∑
i=1

exp(− j2π(ϑ − ϑ̄)Tai) ⋅ EFn(ν − ν̄; i). (B.50)

�us, χ(ϑ , ϑ̄) is a function of the di�erence vector ϑ− ϑ̄, i.e. χ(ϑ , ϑ̄) = χ0(ϑ−
ϑ̄). For simplicity we refer to both χ(ϑ , ϑ̄) and χ0(ϑ) as “ambiguity function”.
It su�ces to investigate the behaviour of χ0(ϑ) de�ned as

χ0(ϑ) = χ(ϑ , 0) (B.51)

= 1

I

I

∑
i=1

exp(− j2πϑTai) ⋅ EFn(ν; i). (B.52)

Notice that while the de�nition of Woodward’s ambiguity function [8]
involves the transmitted signal only, the de�nition (B.49) includes both the
transmitted temporal-signal and the spatial aperture. A more general class of
ambiguity functions is derived in [9], whereof the de�nition given in (B.49)
is a special case. It is shown in Appendix B.III that the Doppler-direction
ambiguity function ful�lls a constant volume property as does Woodward’s
ambiguity function. Due to this property, ambiguity volume can be moved
from one region of the estimation range to another, but not canceled. �us,
if a side-lobe of the ambiguity function is suppressed, the corresponding
suppressed ambiguity volume appears elsewhere.

Inspired by the terminology used in antenna theory [24], we call EFn(ν; i)
the normalized element factor of the sounding pulse i. When all element
factors are equal, i.e. EFn(ν; i) = EFn(ν), the ambiguity function simpli�es
to

χ0(ϑ) = EFn(ν) ⋅AFn(ϑ;A), (B.53)

where

AFn(ϑ;A) ≜ 1

I

I

∑
i=1

exp(− j2πϑTai) (B.54)

is the normalized spatio-temporal array factor or array factor for short.
�e factorization of (B.53) is analogous to the well-known factorization

in the theory of antenna systems. �e radiation pattern of an antenna array
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with identical elements is the product of an element factor and an array
factor [24]. �is factorization splits the impacts on the ambiguity function
of the array elements, re�ected via the element factor, and of the aperture
con�guration, re�ected via the array factor.�e main concern of this contri-
bution is the impact of the con�guration of the spatio-temporal aperture of
a MIMO channel sounder. �us, the factor of interest in the product (B.53)
is the array factor. Two equivalent conceptual approaches can be followed to
investigate the e�ect of the aperture con�guration only. �e �rst approach
consists merely in restricting the attention to the array factor of the aperture.
�e second approach consists in considering an ambiguity function induced
by the aperturewith the impact of the element factor dropped.�is is achieved
by assuming that the element factor is constant.�is assumption is o�en valid
since the duration of a measurement run is typically large compared to the
duration of a sounding pulse. �e fact that both conceptual approaches are
equivalent follows from (B.53).

It follows from the de�nition (B.54) that the array factor achieves its
maximum value at ϑ = 0, namely ∣AFn(0;A)∣ = 1. If there exists a non-zero
ϑ ∈ Eϑ such that ∣AFn(ϑ;A)∣ = 1 is ful�lled, the ambiguity e�ect occurs,
provided that the element factor is constant. �is observation leads to the
following de�nition.

De�nition B.4.2 (Ambiguous array factor): A spatio-temporal array factor
AFn(ϑ;A) is ambiguous if there exist a ϑ ≠ 0 in Eϑ such that ∣AFn(ϑ;A)∣ = 1.

A spatio-temporal array factor that is not ambiguous is termed a non-
ambiguous array factor. If a spatio-temporal aperture yields an ambiguous
array factor we say that the aperture is ambiguous.

In the following we analyze how the spatio-temporal aperture a�ects the
array factor. In particular we state a necessary and su�cient condition for a
spatio-temporal aperture to be ambiguous.

B.4.1 Speci�c Examples (Continued)

�e following numerical examples illustrate the behavior of the array factor
for di�erent spatio-temporal apertures. We consider a SIMO-ULA system
with I = 64 and M2 = 8. Fig. B.3 reports the magnitude of the array fac-
tors corresponding to four di�erent spatio-temporal apertures for (ν,ω2) ∈(− 1

2Tr
,+ 1

2Tr
]× (−1,+1]. In Fig. B.3 (a), m2(i) is given by (B.35). It is apparent

from the �gure that the absolute value of the array factor exhibits multiple
maxima of unit magnitude and is therefore ambiguous. In Fig. B.3 (b), m2(i)
is de�ned by m2(i) = ⌈i/8⌉ , i.e., each Array 2 element is active 8 times in
succession. As shown in Fig. B.3 (b) this yields a non-ambiguous array factor
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Fig. B.3: �e spatio-temporal arrays (le� plots) and corresponding magnitude of the array factors
(right plots) in the four cases (a), (b), (c), and (d) described in the text. Each dot of the aperture
plots denotes one (t(i), d2(i)) point, i.e. the centroid of one spatio-temporal sample.
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with a unique maximum, but a wide main-lobe. Hence high variances of ν̂
and ω̂2 are to be expected in this case at large SNRs. Furthermore, since the
main-lobe is tilted, an error in theDoppler frequency estimate a�ects the error
in the direction estimate and vice-versa. �e two estimators are statistically
dependent. In Fig. B.3 (c),m2 is de�ned bym2 = 18⊗[3, 2, 7, 1, 5, 8, 6, 4]T.�is
spatial array corresponds to permuting the array element indices and then
applying the spatial sounding given in (B.35). It is apparent from Fig. B.3 (c)
that the array factor is non-ambiguous in this case and its main lobe is
narrower than the one depicted in Fig. B.3 (b). However, “stripes” of side
lobes separated by 1

8 along the νTr axis are visible. Finally, Fig. B.3 (d) depicts
the array factor when m2 results from a random permutation of the vector
18 ⊗ [1, 2, . . . , 8]T. �e depicted function has a unique maximum and the
magnitude of the highest side lobe is signi�cantly lower than in Fig. B.3 (c).

Due to the factorization (B.53), the constant volume property of the
ambiguity function is ful�lled for the array factor as well.�is e�ect is clearly
visible in Fig. B.3 (a)–(d). In Fig. B.3 (a) the ambiguity volume is concentrated
in eight lobes with unit maximummagnitude.�us, the array factor depicted
in Fig. B.3 (a) is ambiguous. In Fig. B.3 (b) the volume is mainly located in
the wide main-lobe. In Fig. B.3 (c) the volume is concentrated in the main-
lobe and in stripes of side-lobes. In Fig. B.3 (d) there is no large side-lobe
and the main-lobe remains rather narrow. Instead, the ambiguity volume is
distributed to the multiple small-magnitude side-lobes.

B.4.2 Necessary and Su�cient Condition for a Spatio-Temporal Aperture to
be Ambiguous

�e following lemma gives a necessary and su�cient condition for a spatio-
temporal aperture to be ambiguous.

Lemma B.4.3: A spatio-temporal aperture is ambiguous if, and only if, there
exists ϑ ∈ Eϑ , ϑ ≠ 0, such that

(ai − ai+1)T ϑ ≡ 0 mod 1, i = 1, . . . , I − 1. (B.55)

Proof. �e spatio-temporal array factor AFn(ϑ;A) has magnitude 1 if, and
only if, the phases of the exponential terms in (B.54) satisfy

2π aT

1 ϑ ≡ 2π a
T

2 ϑ ≡ ⋅ ⋅ ⋅ ≡ 2πa
T

I ϑ mod 2π. (B.56)

�e total number of congruences in this system is the factorial of I. Solving
(B.56) is equivalent to solving the I−1 “neighboring” congruences (B.55).�e
latter set of congruences is always ful�lled for the “trivial solution” ϑ = 0.�e
array factor AFn(ϑ;A) is ambiguous if, and only if, (B.56) has a non-trivial
solution (ϑ ≠ 0) in Eϑ . ◻
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B.4.3 Speci�c Examples (Continued)

In the following we de�ne a class of spatio-temporal apertures for a SIMO-
ULA system called modulo-type apertures and show that the elements in this
class are ambiguous.

De�nition B.4.4: A modulo-type spatio-temporal aperture of a SIMO-ULA
system is an aperture satisfying

m2(i) = (iKa + Kb mod M2) + 1, (B.57)

where Ka ,Kb ∈ Z are relatively prime.

As an example the commonly used spatio-temporal aperture given in
(B.35) is a modulo-type aperture with Ka = 1 and Kb = −1.

For a SIMO-ULA system (B.55) reads

−νTr +(d2(i)−d2(i+ 1))ω2 ≡ 0 mod 1, for all i ∈ {1, . . . , I− 1}. (B.58)

It is easy to see that for amodulo-type aperturem2(i)−m2(i+1) ∈ {−Ka ,M2−
Ka}, for all i ∈ {1, . . . , I−1}.�erefore, by inserting (B.57) in (B.58) we obtain
the congruences

νTr + ω2
2 Ka ≡ 0 mod 1, and ω2

2 M2 ≡ 0 mod 1. (B.59)

Solving for (νTr ,ω2) ∈ (− 1
2 ,

1
2] × (−1, 1] yields the system of equations

ω2 = 2na
M2

, na ∈ Z ∩ (−M2
2 , M2

2 ] , and

νTr = −Ka
na
M2
+ nb , nb ∈ {k ∈ Z ∶ νTr ∈ (− 1

2 ,
1
2]} . (B.60)

It can be seen that for each na there exists a unique nb satisfying (B.60) such
that (B.56) holds.�erefore there exist in total M2 di�erent pairs (νTr ,ω2) ∈(− 1

2 ,
1
2] × (−1, 1] such that (B.56) is ful�lled. �us, any modulo-type spatio-

temporal aperture of a SIMO-ULA system is ambiguous. As remarked in
Subsection B.4.1 this e�ect is clearly visible in Fig. B.3 (a) where the array
factor exhibit M2 = 8 di�erent lobes of unit magnitude at the positions(νTr ,ω2) = (−na/8, na/4), na = −3,−2, . . . ,+4.
B.4.4 Component Apertures and Sub-Apertures

It is in general di�cult to prove whether for a given spatio-temporal aperture
the system of congruences (B.55) is ful�lled or not. However, in the following
we give the de�nition of the two concepts of “component aperture” and “sub-
aperture” and show two corollaries of Lemma B.4.3 which are useful for
identifying ambiguous apertures.
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De�nition B.4.5 (Component aperture): Let A be a spatio-temporal aperture
matrix. �en the aperture matrix Ã of a component aperture is obtained by
replacing one or two rows of A by the all-zero row.

De�nition B.4.6 (Sub-aperture): Let A be spatio-temporal aperture matrix.
�en the aperture matrix of a sub-aperture is obtained by erasing a number
of columns in A.

Inserting De�nition B.4.5 in Lemma B.4.3 yields the corollary:

Corollary B.4.7: A spatio-temporal aperture with one ambiguous component
aperture is ambiguous.

Corollary B.4.8: Any sub-aperture of an ambiguous aperture is ambiguous.

Proof. �e proof follows from the observation that if (B.56) is ful�lled then
a subset of the congruences is ful�lled as well.�erefore, if (B.56) is ful�lled
for A, it is ful�lled for Ã too. ◻

As an example of Corollary B.4.7, a su�cient condition for an aperture
of a MIMO-ULA system to be ambiguous is that either m1 or m2 yield an
ambiguous array factor when used in a SIMO-ULA system. �erefore if a
modulo-type aperture is used at either the transmitter or the receiver in
a MIMO-ULA system, the corresponding array factor is ambiguous. It is
worth noting that the most commonly used spatio-temporal apertures are
indeed formed by a combination of a repetition scheme (as the one used in
Fig. B.3(b)) at Array 1 and a modulo-type scheme at the Array 2. Since in this
case the component aperture formed by the temporal aperture and the spatial
aperture at Array 2 is ambiguous, the whole bi-spatio-temporal aperture is
ambiguous.

We see by Corollary B.4.8 and the example given in Subsection B.4.3 that
any aperture formed by leaving out sounding pulse of amodulo-type aperture
is ambiguous. One such aperture was analyzed in [5].

B.5 �e Impact of the Spatio-Temporal Aperture on
the �reshold E�ect

In the following we investigate the e�ect of the spatio-temporal aperture
on the root mean-squared estimation error (RMSEE) of the joint Doppler
frequency and spatial frequency estimator. We consider the one-path case
(L = 1). To simplify the notation we drop the path index ℓ = 1 in the sequel.

Generally the RMSEE of a nonlinear estimator exhibits the same typical
behavior that we sketch here considering the parameter vector ϑ. Below a
certain threshold γth

o,[ϑ̂]p
in signal-to-noise ratio (SNR) the RMSEE of [ϑ̂]p
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increases rapidly as the SNR decreases [25, 26]. �is e�ect is commonly
known as the threshold e�ect. �e previous sections show that the spatio-
temporal aperture determines the behavior of the array factor AFn(ϑ;A) and
therefore of the ambiguity function χ0(ϑ). As can be seen from the examples
given in Section B.4.1, the magnitudes of the side-lobes of the array factor
depend on the spatio-temporal aperture. Consequently the spatio-temporal
aperture also a�ects the robustness of the estimators toward noise, since this
robustness directly depends on the magnitudes of the side-lobes [25]. In
the following, we use the normalized side-lobe level (NSL) associated with
a spatio-temporal aperture as a �gure of merit for noise robustness of the
parameter estimators.

De�nition B.5.1: �e NSL associated with a spatio-temporal aperture matrixA
is de�ned as

NSL(A) ≜max
ϑ∈L
∣AFn(ϑ;A)∣, (B.61)

where L ≜ {ϑ ∈ Eϑ ∶ ∂
∂ϑAFn(ϑ;A) = 0, ϑ ≠ 0} is the set of local maxima of∣AFn(ϑ;A)∣, ϑ ∈ Eϑ .

If a spatio-temporal aperture is ambiguous there exists by de�nition at
least one ϑ ≠ 0 such that ∣AFn(ϑ;A)∣ = 1 and therefore NSL = 1. On the
contrary, a spatio-temporal aperture with NSL less than one has a unique
maximum. In that case the NSL coincides with the magnitude of the highest
side-lobe of the normalized array factor. Generally, the NSL is hard to obtain
analytically but it can however be computed numerically.

To study the relation between theNSL and γtho inmore detail, amethod for
computing γtho is needed. Motivated by the observation that the estimators at
hand all converge to the CRLB at high SNR, γth

o,[ϑ̂]p
is de�ned in the following

as the maximum γo such that the inequality

RMSEE([ϑ̂]p) ≤ 2√CRLB([ϑ̂]p) (B.62)

is ful�lled. �e threshold γtho of the joint estimator ϑ̂ is de�ned as the maxi-
mum of the thresholds of the individual estimators ν̂, ω̂1, and ω̂2, i.e

γtho ≜max{γtho,ν̂ , γtho,ω̂1
, γtho,ω̂2

}. (B.63)

Hence, γtho can be determined if the RMSEE is known. In practice the RMSEE
and γ̂tho are estimated by means of Monte Carlo simulations.

B.5.1 Speci�c Examples (Continued)

Fig. B.4 reports the results of a Monte Carlo simulation comparing the RM-
SEEs of ν̂, ω̂1, and ω̂2 using two di�erent orthogonal spatio-temporal aperture
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Fig. B.4: Simulated RMSEE-curves obtained from 1000 Monte Carlo runs using the two di�erent
orthogonal spatio-temporal aperturesAa (marked with ×) andAb (marked with ◇). �e dashed
lines are the corresponding CRLBs obtained from (B.32). �e solid curves without marks show
the simulated RMSEE of the single-parameter maximum-likelihood estimator with all other
parameters known. A MIMO-ULA type system with M1 = M2 = 8, and I = 64 is used and
ϑ 1 = 0. Isotropic sounding pulses are assumed (EF(ϑ) = 1).

matricesAa withNSL(Aa) = 0.50 andAb withNSL(Ab) = 0.63 togetherwith
the corresponding CRLBs. �e parameter setting used for this simulation is
reported in the caption of the �gure. For comparison we have included the
simulated RMSEE of each single maximum likelihood estimator of ν, ω1, and
ω2 with the two other parameters known.�ese curves are lower bounds on
the RMSEEs when all parameters are estimated jointly.

In the Aa case the threshold estimates γ̂tho,ν̂, γ̂
th
o,ω̂1

, and γ̂tho,ω̂2
all take the

value 16 dB, hence

γ̂tho ≜max{γ̂tho,ν̂ , γ̂tho,ω̂1
, γ̂tho,ω̂2

} = 16 dB; (B.64)

for Ab the estimated threshold values are γ̂tho,ν̂ = γ̂tho,ω̂1
= 18 dB, γ̂tho,ω̂2

= 17 dB

and consequently γ̂tho = 18 dB. De�ning γ̂tho,single as the largest threshold

estimate for the single-parameter estimators we see that γ̂tho exceeds γ̂tho,single
by 2 dB and 4 dB in the Aa and Ab cases, respectively.�e simulation results
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Fig. B.5: Simulated RMSEE-versus SNR for a SIMO-ULA system with settings M1 = 1, M2 = 8
and I = 64. �e remaining settings are the same as those reported in the caption of Fig. B.4.
�e resulting RMSEEs of three spatio-temporal apertures with di�erent NSLs are plotted. �e
dashed lines are the corresponding CRLBs. �e solid curves without marks show the RMSEEs of
the single-parameter maximum likelihood estimators when all other parameters are known.

given in Fig. B.4 suggest that one should select an orthogonal spatio-temporal
aperture matrix that yields the lowest possible γtho .

We now consider a SIMO-ULA system and assume that ω1 is known. We
consider three spatio-temporal apertures with NSL = 0.27, 0.89, and 0.98,
respectively.�e simulated RMSEEs together with the corresponding CRLBs,
and the simulated single-parameter RMSEEs are reported in Fig. B.5. As can
be observed from the �gure γ̂tho increases with the NSL. In the NSL = 0.27
case, γ̂tho exceeds γ̂tho,single by approximately 1 dB.

In the above investigation, a very large number of Monte Carlo runs is re-
quired to estimate the threshold position accurately.�erefore this approach
is not feasible when a large number of spatio-temporal aperture matrices
should be compared. Furthermore, the Monte Carlo simulations commonly
underestimate γtho due to the low outlier probability [27]. Hence the γ̂tho values
obtained from Fig. B.4 and Fig. B.5 are too optimistic. Several methods for
estimating the threshold value of an estimator are available in the literature.
In [28, 29], Athley describes a method to approximate the RMSEE in the
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Fig. B.6: �e estimated RMSEE threshold γ̂tho as a function of the NSL. �e points marked by ●
are obtained from the Athley’s method, while the points marked with + are obtained fromMonte
Carlo simulations. �e simulation setting is described in the caption of Fig. B.5.

threshold region based on the magnitudes of the side-lobes of the ambiguity
function.

Fig. B.6 reports γ̂tho for di�erent selections of A as a function of the
corresponding NSL. �e parameter settings are the same as in Fig. B.5. �e
points marked by “●” are obtained using Athley’s method [28, eq. (20)]; the
points with mark “+” are obtained from Monte Carlo simulations with 1000
runs and varying γo in steps of 1 dB. It is apparent from the �gure that
the values of γ̂tho obtained from the Monte Carlo simulations are maximally
4 dB lower than the γ̂tho -values obtained using Athley’s method. �is is to be
expected due to the �nite number of Monte Carlo runs and the uncertainty
caused by the 1 dB quantization of γo used in the simulation. As can be seen
for both methods, the obtained estimates γ̂tho exhibit an increasing trend with
respect to the NSL. Hence, the NSL can be used as a �gure of merit to assess
the robustness of spatio-temporal aperture towards noise.

B.6 Conclusions

A novel model of wireless MIMO channel sounding systems was proposed.
�is model is based on the concept of (bi-)spatio-temporal aperture and can
describe switched as well as parallel sounding systems. �e proposed model
provides a description of the impact of spatio-temporal sounding on the
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joint estimation of Doppler frequency, direction of arrival and direction of
departure. �e Fisher information matrix and the conditional Cramér-Rao
lower bounds (CRLBs) on the estimator variances were derived. For the one-
path case it was shown analytically that a spatio-temporal aperture ful�lling
an orthogonality property yields the minimum CRLBs. It was also shown
that the aperture which yields the minimum Bayesian CRLB (BCRLB) in the
multipath case also ful�lls this orthogonality criterion.

An ambiguity function for Doppler-bi-direction estimation was de�ned.
�e ambiguity function factorizes into an “element factor” multiplied by an
“array factor”�e necessary and su�cient condition for the array factor to be
ambiguous was stated and a certain family of spatio-temporal apertures (the
so-called modulo-type apertures), which includes the most commonly used
apertures, were found to be ambiguous, i.e. to yield an ambiguous array factor.

Monte-Carlo simulations show that the normalized side-lobe level (NSL)
is a sensible �gure of merit for the identi�cation of spatio-temporal apertures
performing close to optimum in terms of root mean square estimation error
among the class of spatio-temporal apertures exhibiting the orthogonality
property.

As a general conclusion, when designing a spatio-temporal aperture for
joint estimation of Doppler frequency, direction of departure and direction
of arrival it is not advisable to optimize the temporal or spatial apertures
separately. Joint optimization of the bi-spatio-temporal aperture should be
performed instead.

B.I Derivation of the Conditional Fisher Information Matrix

�e Fisher information matrix F(θ) for joint estimation of the parameter
vector θ = [θT

1 , . . . , θ
T

L ]T from an observation of Y1(t), . . . ,YI(t) can be
written as

F(θ) ≜
⎡⎢⎢⎢⎢⎢⎢⎣
Fθ1θ 1 ⋯ Fθ 1θL
⋮ ⋱ ⋮

FθLθ1 ⋯ FθLθL

⎤⎥⎥⎥⎥⎥⎥⎦
, (B.65)

where we use the notation

Fβξ ≜ −E[ ∂

∂β
Λ(θ) ∂

∂ξH
Λ(θ)] (B.66)

with the complex gradient de�ned as in [30, Appendix B]. We remark that in
(B.66) the explicit mentioning of the dependence of θ has been dropped to
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simplify the notation. Using [2, Eq. (22)] Fθℓθ ℓ′ can be rewritten as

Fθℓθℓ′ = 2

N0
R{ ∫

T0

I

∑
i=1

∂si(t, θ)
∂θℓ

⋅
∂s∗i (t, θ)
∂θℓ′

H
dt}

= 2

N0
R{ I

∑
i=1
∫
T j(i)

∂si(t; θℓ)
∂θℓ

⋅
∂s∗i (t; θℓ′)
∂θℓ′

H
dt}, (B.67)

where si(t, θ) ≜ s j(i),m1(i),m2(i)(t; θ)with s j,m1 ,m2(t; θ) given in (B.5). Insert-
ing (B.5) and (B.25) in (B.67) yields (B.24).

B.II Technical Lemmas

Lemma B.II.1 (Modi�ed version of [21, Observation 7.1.2]): Let β ⊂ {1, . . . , n}
be an index set andU(β) andV(β) be the principal sub-matrices of the positive
de�nite n × n matrices U and V formed by deleting the rows and columns
complementary to those indexed by β.�en, we have

U ⪰ V⇒ U(β) ⪰ V(β). (B.68)

Proof. Let x be a vector with arbitrary entries in the components indicated
by β and zero entries elsewhere. Let x(β) be the sub vector of x indicated by
β.�us xHUx = x(β)HU(β)x(β) and xHVx = x(β)HV(β)x(β).�e lemma
follows from insertion into xHUx ≥ xHVx. ◻

We remark that for positive de�nite matricesQ and R

Q−1 ⪰ R−1⇔ R ⪰ Q. (B.69)

A proof of (B.69) is given in [21,�eorem 7.7.4].

Lemma B.II.2: Let Q and R be n × n positive de�nite matrices and let β ⊂{1, . . . , n} be an index set.�en the implication

R ⪰ Q⇒ [(Q(β))−1]p,p ≥ [(R(β))−1]p,p, p = 1, . . . , n (B.70)

holds.

Proof. From R ⪰ Q and Lemma B.II.1 it follows that R(β) ⪰ Q(β).�en by
(B.69) we have (Q(β))−1 ⪰ (Q(β))−1.�en Lemma B.II.2 follows by applying
Lemma B.II.1. ◻

Lemma B.II.3: A positive de�nite matrix Q ful�lls [Q−1]p,p = 1/[Q]p,p for all
p if, and only, ifQ is diagonal.
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Proof. It is easily checked that ifQ is diagonal, then [Q−1]p,p = 1/[Q−1]p,p for
all p.

We now prove the converse, i.e. if [Q−1]p,p = 1/[Q−1]p,p for all p then Q

is diagonal. LetQn = Q be an n× n positive de�nite matrix and partition it as

Qn = [Qn−1 jn
jHn ηn

] , (B.71)

where η is a scalar, jn is a vector,Qn−1 is the upper le� (n−1)×(n−1) principal
matrix ofQn. Inversion ofQn yields

[Q−1n ]n,n = 1

ηn + jHnQ
−1
n−1jn

. (B.72)

Assume that [Q−1n ]p,p = 1/[Qn]p,p for all p and therefore in particular

[Q−1n ]n,n = 1/[Qn]n,n = 1/ηn . (B.73)

�en (B.72) implies ηn + jHnQ
−1
n−1jn = ηn or jHnQ−1n−1jn = 0. Since Qn is positive

de�nite so is Q−1n−1. �us jHnQ
−1
n−1jn = 0 if, and only if, jn = 0. To complete

the proof we repeat the argument for Qn−1,Qn−2, . . . ,Q2 to show that jn−1 =
0, jn−2 = 0, . . . , j2 = 0 and thusQn is diagonal. ◻

B.III Constant Volume Property of the Ambiguity Function

In the following the ambiguity volume Vamb ≜ ∫E ∣χ0(ϑ)∣2 dϑ is derived.
Making use of (B.49) some straightforward algebraic manipulations leads to

Vamb = ∫
E
∣ 1
IE

I

∑
i=1
∫ exp( j2π(νt + d1(i)ω1 + d2(i)ω2))∣pi(t)∣2dt∣2 dϑ

= 1(IE)2 ∫E
I

∑
i=1
∫ exp( j2π(νt + d1(i)ω1 + d2(i)ω2))∣pi(t)∣2dt

×
I

∑
i′=1

∫ exp(− j2π(νt′ + d1(i′)ω1 + d2(i′)ω2))∣pi′(t′)∣2dt′ dϑ
= 1(IE)2

I

∑
i=1

I

∑
i′=1

zi ,i′ (B.74)
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and

zi ,i′ ≜ ∫∫ ∣pi(t)∣2∣pi′(t′)∣2
× ∫

E
exp( j2π((t − t′)ν+
(d1(i) − d1(i′))ω1 + (d2(i) − d2(i′))ω2))dϑ dtdt′

= ∫∫ ∣pi(t)∣2∣pi′(t′)∣2 ∫ ∞
−∞

exp( j2π(t − t′)ν)dνdtdt′
× ∫

+1

−1
exp( j2π(d1(i) − d1(i′))ω1)dω1

× ∫
+1

−1
exp( j2π(d2(i) − d2(i′))ω2)dω2

= 4 ⋅ sinc (2π(d1(i) − d1(i′))) × sinc (2π(d2(i) − d2(i′)))
× ∫ ∣pi(t)∣2∣pi′(t)∣2dt. (B.75)

�e function sinc(⋅) in (B.75) is de�ned as sinc(x) ≜ sin(x)
x , x ≠ 0 and

sinc(0) ≜ 1. We notice that the integral term ∫ ∣pi(t)∣2∣pi′(t)∣2dt in (B.75)
vanishes for index values i , i′ such that t(i) ≠ t(i′). Similarly, sinc(2π(dk(i)−
dk(i′))) is zero for i , i′ such that 2(dk(i) − dk(i′)) is an integer. �us, by
selecting spatio-temporal array such that for any i , i′ with t(i) = t(i′) at least
one of the quantities 2(d1(i)−d1(i′)) and 2(d2(i)−d2(i′)) is an integer, the
terms zi ,i′ , i ≠ i′ are zero.�is condition holds for switched sounding systems
where i ≠ i′ ⇔ t(i) ≠ t(i′). �e condition also holds for systems equipped
with uniform linear arrays with half-wavelength inter-element spacing.

For a spatio-temporal array such that zi ,i′ = 0, i ≠ i′ the ambiguity volume
reads

Vamb = 4∑I
i=1 zi ,i(IE)2 = 4∑I

i=1 ∫ ∣pi(t)∣4dt(IE)2 . (B.76)

�us, for this class of spatio-temporal arrays, the ambiguity volume depends
only on the second order moment E and fourth order moments ∫ ∣pi(t)∣4dt,
i = 1, . . . , I of the transmitted sounding pulses.
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C.1. INTRODUCTION

Abstract

Due to the signi�cantly reduced cost and e�ort for system calibra-
tion time-division multiplexing (TDM) is a commonly used technique
to switch between the transmit and receive antennas in multiple-input
multiple-output (MIMO) radio channel sounding. Nonetheless, Baum
et al. [1, 2] have shown that phase noise of the transmitter and receiver
local oscillators, when it is assumed to be a white Gaussian random
process, can cause up to around 100 % errors of the estimated channel
capacity of a low-rank MIMO channel when using the standard chan-
nel matrix estimator. Experimental evidence shows that consecutive
phase noise samples a�ectingmeasurement samples collectedwith real
TDM-MIMO channel sounders are correlated. In addition the spatio-
temporal aperture induced by the selected switching schemes has an
impact on the ordering of the phase noise samples in the estimation of
the channel matrix estimate. �is paper investigates how both e�ects
a�ect the channel capacity estimator based on the standard channel
matrix estimator. We show by means of Monte Carlo simulations that
by using an experimentally obtained ARMAmodel of phase noise the
predicted error of the ergodic capacity estimate is reduced compared
to the case where phase noise is white and Gaussian.We also show that
the estimated ergodic capacity is highly in�uenced by the choice of the
spatio-temporal aperture.

C.1 Introduction

To save hardware cost and alleviate the needed calibration procedures, most
advanced multiple-input multiple-output (MIMO) radio channel sounders
rely on a time-division multiplexing (TDM) technique. In such a system,
which is represented schematically in Fig. C.1, a single sounding waveform
generator is connected to a number of transmit antennas via a switch. Simi-
larly, the output terminals of the receive array are sensed via another switch.
�ereby channel observations are made via a spatio-temporal aperture [3].

X

h11
h21

h12
h22

hM1

hM2

h1N

h2N hMN

exp ( jφ (t))

1 1

2 2

N M

Transmitter

Receiver

Fig. C.1: Model for TDM-MIMO channel sounding with phase noise.
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It has been shown recently that the concatenated phase noise of the two
oscillators in the transmitter and the receiver a�ects the estimation of MIMO
channel capacity when using the standard channel matrix estimator to obtain
a capacity estimate [1, 4]. For short we call this concatenated noise the phase
noise of the sounding system. �e e�ect of phase noise on MIMO capacity
estimation is studied in [4] assuming that phase noise is a random walk
process.�eoretical investigations reported in [1, 2] show that, provided phase
noise is white and Gaussian, it leads to large measurement errors in terms of
estimated channel capacity of a low-rank MIMO channel. In [2] a number
of analytical results are given under the assumptions that the TDM, i.e. the
spatio-temporal array [3], ful�lls a separability condition and that the phase
noise process is white. However, experimental studies [5] show that phase
noise cannot be assumed white on the time-scale of a measurement period,
which is the observation period critical for capacity estimation. In addition,
the spatio-temporal aperture induced by the used switching schemes has
an impact on the ordering of the phase noise samples in the estimation of
the traditional channel matrix estimate. Both e�ects signi�cantly a�ect the
performance of capacity estimation based on this matrix estimator. Finally, it
is worth mentioning that non-separable spatio-temporal arrays exist that are
more e�cient than separable spatio-temporal arrays, in the sense that they
lead to better performance of bi-direction and Doppler frequency estimators
[3, 6].

In this paper we analyze the combined impact of phase noise correla-
tion and spatio-temporal aperture of a TDM-MIMO sounding system on
the capacity estimation based on the traditional channel matrix estimator
using the experimental phase noise model developed in [5]. We compare the
performance of separable and non-separable spatio-temporal arrays for the
purpose of capacity estimation.

C.2 System Model

We consider the TDM sounding system depicted schematically in Fig. C.1
with N transmit antennas and M receive antennas. As depicted in this �gure
the observed signal is modulated with a time varying phasor exp( jφ(t)).
C.2.1 Phase Noise Model

In the model proposed in [5], which we adopt here, the phase noise φ(t) is
split into a non-stationary long-term component φL(t), and a wide-sense-
stationary short-term component φS(t) such that

φ(tk) = φL(tk) + φS(tk), k = 1, 2, . . . , (C.1)
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Fig. C.2: Normalized sample autocorrelation function and autocorrelation function of the ARMA
process �tted to the short-term component of phase noise [5].

where tk is the kth sample time instant. �e short-term component is mod-
elled as an auto-regressive moving-average (ARMA) process. �e long-term
component is modelled as an auto-regressive integrated moving average
(ARIMA) process.We refer to [5] for the speci�cations of these two processes.
On the scale of one measurement cycle, i.e. the period needed to sense all
MN sub-channels of the MIMO system the long-term component of phase
noise can be considered as constant. Without loss of generality we equate it
to zero: φL(tk) = 0. Fig. 2 depicts the normalized sample autocorrelation
function of the short term component of a measured phase noise series,
together with the normalized autocorrelation function of an ARMA process
�tted to this component.�e sampling period T of the measured phase noise
is T = 2.54 µs. It corresponds to twice the duration of a 127-chip long sequence
with a chip rate of 100MHz.�e same sampling period is used in the selected
phase noise model, i.e. tk = kT in (C.1).

C.2.2 Signal Model for TDM Sounding

�e coe�cient hmn of the sub-channel consisting of the mth transmit ar-
ray element, the propagation channel, and the nth receive array element is
measured with the transmitter switch in position n and the receiver switch
in position m (see Fig. C.1). At time tk a measurement is acquired with the
transmitter and receiver switches in position n(k) and m(k) respectively.
�e sequence {(tk ,m(k), n(k))} de�nes the spatio-temporal array of the
sounding system [3, 6].�e process of acquiring one measurement of the full
M×N channel matrixH, [H]mn = hmn, is called ameasurement cycle.�e kth
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measurement belongs to the cycle with index i(k). A spatio-temporal array
is separable if it ful�lls [2]

tk = i(k)Tc + [tTx]n(k) + [tRx]m(k), (C.2)

where tTx and tRx are vectors of dimensions N and M respectively, and Tc =
MNT is the cycle duration.

Four examples of spatio-temporal arrays [3] are reported in Fig. C.3.
Array A is the traditionally used identity array [3, 6]. Array B is a cycle-
dependent spatio-temporal array optimized for joint Doppler frequency and
direction estimation [3, 6]. Array C is a modi�ed version of Array A where
the receiver switching scheme has been changed to achieve non-separability.
Array D is a modi�ed version of A, where the receiver switching sequence
has been modi�ed in such a way that for every transmit antenna, the receive
antennas are switched in a di�erent, randomly selected, order. Arrays B, C,
and D are not separable.

�e channel matrix Gi measured during cycle i is of the form [1]

Gi = H ○ exp( jΦi), i = 1, . . . , I , (C.3)

where [Φi(k)]m(k)n(k) = φ(tk), exp(⋅) is the element-wise exponential, ○
denotes the Hadamard product, and I stands for the number of cycles. To
simplify the notation we introduce the phase noise matrices

Θi = exp( jΦi), i = 1, . . . , I . (C.4)

It should be noticed that the ordering of the phase noise samples in Φi is
determined by the spatio-temporal array. �us the matrices Θi and Gi also
depend on the spatio-temporal array.

C.2.3 Estimation of Capacity

When the channel is not known at the transmitter, but fully known at the
receiver, its capacity at signal-to-noise ratio ρ reads [7]

C(HHH) = log2 det(IM + ρ
NHHH), (C.5)

whereHH denotes the Hermitian transpose ofH. A straightforward estimate

of C(HHH) is C(ĤHH), where ĤHH is an estimate ofHHH. In the sequel we
consider the standard estimate of HHH computed based on measurements
of H obtained with the considered TDM-MIMO channel sounder under the
assumption that channel noise is zero:

ĤHH = 1

I
∑
i

GiG
H
i . (C.6)

In SectionC.5we comment further on the choice of the capacity estimator.
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C.3 A Scenario When Capacity Estimation is
Una�ected by Phase Noise

We consider the case where I = 1 and give the necessary and su�cient
condition on the phase noisematrix such thatC(HHH) = C(GGH) is ful�lled
whenH has rank one.

�eorem: Let H = abT where a and b are vectors with non-zero elements
and let G = H ○Θ.�en

C(HHH) = C(GGH)⇔ Θ = Ũ1M1TNṼ, (C.7)

where Ũ and Ṽ are unitarymatrices and 1p is an all-one vector of dimension p.

Proof. For any matrixH we have the condition

C(HHH) = C(GGH)⇔ G = UHV, (C.8)

where U and V are unitary matrices. By the assumptions of the theorem the
right-hand identity in (C.8) reads

abT ○Θ = UHV (C.9)

= UabTV. (C.10)

Using the identity abT ○ Θ = diag(a)Θdiag(b) [1, Lemma 1], with diag(⋅)
denoting the diagonal matrix with diagonal elements equal to the elements of
the vector given as an argument, in (C.10) yields

diag(a)Θdiag(b) = UabTV. (C.11)

Solving for Θ we obtain

Θ = diag(a)−1UabTVdiag(b)−1. (C.12)

Noticing that for a diagonal matrix D and a unitary matrix S, there exists a
unitary matrix S̃ such that SD = DS̃ we can recast (C.12) as

Θ = Ũdiag(a)−1abT diag(b)−1Ṽ (C.13)

= Ũ1M1TNṼ, (C.14)

which is the sought identity. ◻

Example: We consider the case where the phasor exp( jϕ(t)) can be as-
sumed constant during the time needed to switch all receive antennas once.
�is is the case when the normalized autocorrelation function is assumed
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close to unity for a time lag less that MT or, expressed in standard terminol-
ogy, when the coherence time of the short-term component of the phase noise
is larger than MT .�en [Θ]mn = θn holds for all receive antenna indices m.
We see that in this case

Θ = [θ11M θ21M . . . θN1M] (C.15)

= IM1M1TN diag(θ1, . . . , θN) (C.16)

and therefore, by�eorem 1, C(HHH) = C(GGH).
C.4 Numerical Results

Fig. C.4 reports the results of aMonteCarlo simulation of the ergodic capacity
estimate using the four spatio-temporal arrays de�ned in Fig. C.3 and the
experimental phase noisemodel described in Subsection C.2.1. In eachMonte
Carlo run a rank-1 channel matrix H (i.e. a key-hole channel) with a single
non-zero eigenvalue ofHHH equal toM is generated. Phase noise is generated
according to the model given in [5]. �e estimate of the ergodic capacity
resulting from one spatio-temporal array at a speci�c signal-to-noise ratio
is obtained by averaging over the capacity estimates computed from 100
Monte Carlo runs with this setting. �e ergodic capacity estimates for the
case without phase noise and for the case with uncorrelated Gaussian phase
noise [1] are also given for comparison purpose.

As can be seen fromFig. C.4 all four simulation curves lie between the “No
phase noise” and “Uncorrelated phase noise” curves. Obviously, the lower the
curve is, the better the performance of the estimator is. We conclude that the
experimental phase noise model leads to a lower ergodic capacity estimate
compared to the uncorrelated phase noise case.�e error reduction is a result
of the correlation among consecutive phase noise samples. Furthermore, the
performance of the ergodic capacity estimator is signi�cantly a�ected by
the choice of the spatio-temporal array. Arrays A and B yield equal ergodic
capacity estimates, while the ergodic capacity estimate is slightly lower for
Array C. Among the tested arrays, Array D yields the highest ergodic capacity
estimate.

�e reason for the gross di�erence in ergodic capacity estimate for Ar-
ray D compared to Arrays A, B, and C, is that the columns (and the rows) of
the phase noise matrix Θi are whitened due to the sample ordering induced
by Array D. It should be remarked that despite the similar performance of
the ergodic capacity estimators obtained with Arrays A, B and C, Array B is
superior in terms of higher accuracy and robustness of joint Doppler and bi-
direction estimates of path parameters [3, 6].
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C.5 Discussion

�e numerical results presented in the previous section have shown that
short-term correlation of phase noise combined with appropriate choice of
the spatio-temporal array aperture enable to signi�cantly reduce the impact
of phase noise on the capacity estimation based on the traditional channel
matrix estimator. Another straightforward way to reduce this impact is to
consider more than one cycle in (C.6), provided the channel can be assumed
time-invariant over the duration of all the considered cycles [8].�e example
in Section C.3 provides with some indication on an additional alternative:
Select the bandwidth of the feedback loop in the phase-locked loop of the local
oscillators in such a way that the resulting short-term phase noise exhibits a
coherence time larger than MT . In this method, the selected bandwidth de-
pends on both the number of elements in the receive array and the duration of
the sounding sequence. Interestingly, the number of elements in the transmit
array is not critical here.

However, the above approaches do not avoid the additional problem
that, in practice, the measured matrices {Gi} are also impaired by additive
noise, an e�ect which also impairs on the accuracy of the capacity estimator

C(ĤHH). �is problem, and in fact the sensitivity to phase noise as well, is
a consequence of the fact that the traditionally used estimator in (C.6) does
not take into account these two noises. Estimators ofHHH and H can be de-
rived that exploit the statistical properties of these noises in order to mitigate
their e�ects. Estimates Ĥ constructed from estimates of the parameters of
a parametric model of H seems to o�er a promising solution. An example
is the recently published phase noise compensated SAGE estimator for the
estimation of path parameters [9]. �is work shows that the e�ect of phase
noise can be mitigated by taking its statistical property into consideration in
the signal model underlying the derivation of the path parameter estimators.
However, an open issue is how the mismatch between the physical world and
the approximation of it provided the parametric model a�ects the capacity
estimate.

C.6 Conclusions

�is paper has presented some results on the impact of TDM-MIMO channel
sounding on the estimation of MIMO channel capacity using the traditional
channel matrix estimator.�e necessary and su�cient condition on the phase
noise matrix for the capacity estimate to be una�ected by phase noise is given.
It is shown by means of Monte Carlo simulations that the choice of spatio-
temporal array heavily impacts on the accuracy of the capacity estimator in
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the presence of correlated phase noise. It was found that non-separable arrays
exist that lead to the same capacity estimation error as separable arrays. As
shown in [3, 6], the use of non-separable arrays leads to a lower mean square
error and better ambiguity resolution abilities when used for estimation of
Doppler frequency and bi-direction.
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D.1. INTRODUCTION

Abstract

Due to the signi�cantly reduced cost and e�ort for system calibra-
tion time-division multiplexing (TDM) is a commonly used technique
to switch between the transmit and receive antennas in multiple-input
multiple-output (MIMO) radio channel sounding. Nonetheless, Baum
et al. [1, 2] have shown that phase noise of the transmitter and receiver
local oscillators, when it is assumed to be awhiteGaussian randompro-
cess, can cause large errors of the estimated channel capacity of a low-
rank MIMO channel when the standard channel matrix estimator is
used. Experimental evidence shows that consecutive phase noise sam-
ples a�ecting measurement samples collected with real TDM-MIMO
channel sounders are correlated. In this contribution a capacity esti-
mator that accounts for the phase noise correlation is proposed. �e
estimator is based on a linear minimum mean square error estimate
of the MIMO channel matrix. It is shown by means of Monte Carlo
simulations assuming a measurement-based phase noise model, that
the MIMO channel capacity can be estimated accurately for signal-to-
noise ratios up to about 35 dB.

D.1 Introduction

To save hardware cost and alleviate the needed calibration procedures, most
advanced multiple-input multiple-output (MIMO) radio channel sounders
rely on a time-division multiplexing (TDM) technique. In such a system,
which is represented schematically in Fig. D.1, a single sounding waveform
generator is connected to a number of transmit antennas via a switch. Simi-
larly, the output terminals of the receive array are sensed via another switch.
�ereby channel observations are made via a spatio-temporal aperture [3].

It has been shown recently that concatenated phase noise of the two
oscillators in the transmitter and the receiver a�ects the estimation of MIMO
channel capacity when using the standard channel matrix estimator to obtain
a capacity estimate [1, 4]. For short we call this concatenated noise the phase

Fig. D.1: Model for TDM-MIMO channel sounding with phase noise.
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noise of the sounding system. �e e�ect of phase noise on MIMO capacity
estimation is studied in [4] assuming that phase noise is a random walk
process.�eoretical investigations reported in [1, 2] show that, provided phase
noise is white and Gaussian, it leads to large measurement errors in terms
of estimated channel capacity of a low-rank MIMO channel. In [2] analytical
results are givenunder the assumptions that theTDM, i.e. the spatio-temporal
array [3], ful�lls a separability condition and that the phase noise process is
white. However, experimental studies reported in [5] show that phase noise
cannot be assumed to be white or a random walk on the time-scale of a
measurement period [5, 6]. In addition, the spatio-temporal array induced by
the used switching schemes [3] determines the ordering of the phase noise
samples in the estimation of the standard channel matrix estimate. Both
e�ects signi�cantly a�ect the performance of capacity estimation based on
this matrix estimator [7].

In this paper we propose an new method for estimation of the channel
capacity from phase-noise impaired measurement data. �e estimator relies
on linear minimum mean-square-error (MMSE) estimation of the channel
transfer matrix. �e performance of the proposed estimator in terms of es-
timation accuracy is compared to standard estimators using the phase-noise
model developed in [5].

D.2 Signal Model for Phase-Noise Impaired TDM-MIMO Sounding

We consider the TDM sounding system depicted schematically in Fig. D.1
withN transmit antennas andM receive antennas. To allow formeasurements
of the full M × N channel matrix H, [H]mn = hmn, the sounder is equipped
with a switch at the transmitter and a switch at the receiver. �e channel
matrixH is assumed to be constant during one measurement run.1�e coef-
�cient hmn of the sub-channel consisting of the nth transmit array element,
the propagation channel, and themth receive array element is measured with
the transmitter switch in position n and the receiver switch in positionm (see
Fig. D.1).�e receiver acquiresK samples indexed by k = 1, . . . ,K. Sample k is
obtained at time tk with the transmitter switch in position n(k) ∈ {1, . . . ,N}
and receiver switch in position m(k) ∈ {1, . . . ,M}. �us, at time instant
tk the system performs a measurement of the channel coe�cient hm(k)n(k).
�e sequence {(tk ,m(k), n(k))} de�nes the spatio-temporal array of the
sounding system [3, 8]. We de�ne the index set Kmn to be the set of sample

1�e validity of this assumption depends on how rapidly the channel varies and on the
duration of the measurement. Assuming a stationary channel is necessary for the de�nition of
channel capacity given in Subsection D.3.1.
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indices for which sub-channel (m, n) is measured, i.e.

Kmn = {k ∶ (m(k), n(k)) = (m, n)}. (D.1)

�e cardinality of Kmn, denoted by #Kmn, is equal to the number of samples
acquired from sub-channel (m, n).

As depicted in Fig. D.1, the observed signal is modulated with a time-
varying phasor exp( jφ(tk)) due to the phase noise in the oscillators of the
sounding system.�e kth sample is modeled as

gk = hm(k)n(k) ⋅ exp( jφ(tk)) +wk , (D.2)

where {wk} is a white Gaussian noise process with sample variance σ2w . We
de�ne the measurement signal-to-noise ratio (SNR) as γ = σ2h/σ2w where σ2h
is the variance of one channel coe�cient. We consider the case where phase
noise φ(t) can bemodeled as a wide-sense stationary process withmean zero
and a known autocorrelation function Rφ(τ). �is assumption hold true if
the time-span during which measurements are acquired is su�ciently short.
With the time-span considered in the following, this condition can be met by
commercially available channel sounders [5].

We de�ne a K × MN sounding matrix S that rearranges the vectorized
channel matrix vec(H) according to the order in which the sub-channels are
measured:

S ⋅ vec(H) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm(1)n(1)
⋮

hm(k)n(k)
⋮

hm(K)n(K)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (D.3)

i.e. the entries of row k of the sounding matrix are all zeros except for the
entry corresponding to the entry hm(k)n(k) of the vectorized channel ma-
trix vec(H). As an example consider a sounding system with M1 = M2 =
2, and K = 8 using the identity sounding mode with [n(1), . . . , n(8)] =[1, 1, 2, 2, 1, 1, 2, 2], [m(1), . . . ,m(8)] = [1, 2, 1, 2, 1, 2, 2, 1]. In this case,

S ⋅ vec(H) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11
h21
h12
h22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11
h21
h12
h22
h11
h21
h12
h22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (D.4)

125



PAPER D. ESTIMATION OF MIMO CHANNEL CAPACITY FROM PHASE-NOISE IMPAIRED MEASURE-
MENTS

We can now, a�er de�ning the three vectors

g ≜

⎡⎢⎢⎢⎢⎢⎢⎣
g1
⋮
gK

⎤⎥⎥⎥⎥⎥⎥⎦
, φ ≜

⎡⎢⎢⎢⎢⎢⎢⎣
φ1

⋮
φK

⎤⎥⎥⎥⎥⎥⎥⎦
, and w ≜

⎡⎢⎢⎢⎢⎢⎢⎣
w1

⋮
wK

⎤⎥⎥⎥⎥⎥⎥⎦
, (D.5)

recast (D.2) in the compact form

g = [S ⋅ vec(H)] ○ exp( jφ) +w, (D.6)

where ○ denotes the Hadamard (or element-wise) product and the exponen-
tial function is taken element-wise. Notice that if t1 < t2 < ⋅ ⋅ ⋅ < tK then the
entries of the vectors de�ned in (D.5) are ordered according to the temporal
order.

In the case where each of the sub-channels is measured I times, the ob-
tained measurements can be arranged in matrices {Gi} such that the entries
ful�ls [Gi(k)]m(k)n(k) = gk where i(k) ∈ {1, . . . , I} is a cycle-index assigned
to sample k.�ere is a certain degree of freedom in the choice of i(k): if the
samples gk and gk′ are both acquired from the same sub-channel we are free to
choose to assign the cycle indices as i(k) = 1, i(k′) = 2 or i(k) = 2, i(k′) = 1.
D.3 Estimation of Capacity

When the channel is not known at the transmitter, but fully known at the
receiver, its capacity at SNR ρ reads [9]

C(HHH) = log2 det(IM + ρ
NHHH), (D.7)

where HH denotes the Hermitian transpose of H. �e problem considered
here is to estimate the capacity C(HHH) from the noisy observation g. It is
important to distinguish between the SNR ρ in (D.7) at whichwe compute the
capacity and the SNR γ during the measurement of g. In general we wish to
be able to compute capacities for other SNRs than the SNR prevailing during
the measurement, i.e. for ρ ≠ γ.

D.3.1 �e Standard Capacity Estimator

�e standard capacity estimator is de�ned as [1, 2, 7]

Ĉstd = C(ĤHH), with ĤHH = 1

I

I

∑
i=1

GiG
H

i , (D.8)

where (̂⋅) denotes the estimate of the random element given as an argument.
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We remark that the standard estimator can be applied only when I sam-
ples from each sub-channel are available. It is also worth mentioning that the
standard estimator depends on the choice of i(k).�erefore for the remainder
of the paper we chose i(k) according to the temporal ordering of the samples,
i.e. the �rst sample of sub-channel (m, n) is in G1 and the second sample is
in G2, etc.

D.3.2 Capacity Estimation by Averaging [6]

In [6] it is proposed to estimate the channel matrix by computing the average
ofH of the data acquired during the measurement:

Ĥavg = 1

I

I

∑
i=1

Gi . (D.9)

�is estimator can be generalized to non-cycled sounding as:

[Ĥavg]mn = 1

#Kmn
∑

k∈Kmn

gk . (D.10)

�e capacity estimate Ĉavg is thende�ned as Ĉavg ≜ C(ĤavgĤ
H
avg).�is estima-

tor leads to an estimation error lower than that of the standard estimator [6]
and is independent of the choice of i(k).
D.3.3 Capacity Estimator based on a Linear MMSE Channel Estimate

Neither of the above estimators exploit the knowledge of the phase noise
autocorrelationRφ(τ). In the followingwe develop a new estimator forH that
takes this knowledge into account.�e estimator relies on separate estimation
of the moduli (magnitudes) and the arguments (phases) of the channel coef-
�cients {hmn}. Knowing the magnitude matrix Z ≜ ∣H∣ and the phase angle
matrix Y ≜ ∠H we can recover the channel transfer matrix as

H = Z ○ exp( jY). (D.11)

Similarly, an estimate ofH can be obtained from estimates of Z and Y as

Ĥ = Ẑ ○ exp( jŶ). (D.12)

We estimate the magnitude matrix Z by averaging the magnitudes of the
acquired measurement data as

[Ẑ]mn = 1

#Kmn
∑

k∈Kmn

∣gk ∣. (D.13)
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It is straightforward to show that [Ẑ]m,n this is an asymptotically consistent
estimator of ∣hmn∣ when the SNR γ tends to in�nity.

�e estimate of Y is less obvious. Using the de�nition of the phase oper-
ator∠a provided in Appendix D.I, we de�ne the vector x ≜ [x1, . . . , xK]T of
phases

xk ≜ ∠am(k)n(k) gk , (D.14)

where ∠am(k)n(k) gk denotes the phase of gk such that ∠am(k)n(k) gk ∈ [π −
am(k)n(k), π + am(k)n(k)) with the real number am(k)n(k) de�ned in Ap-
pendix D.I. �us, x is available for the estimation of the matrix of phases Y
where element (m, n) of Y is de�ned as

ymn ≜ ∠amnhmn . (D.15)

Introducing the vector y = vec(Y) we obtain the following expression for x

x = Sy + φ + v, (D.16)

which is valid when the measurement SNR γ is high. In (D.16), the vector
v ≜ [v1, . . . , vK]T is a real-valued additive noise resulting from the additive
noisew. As shown in Appendix D.II, v can be approximated as v ∼N (0, 1

2γ I).
�e linear MMSE estimate of y from x is obtained as [10]

ŷ = xTΣ−1x Σxy , (D.17)

where Σx denotes the covariance matrix of x and Σxy is the covariance ma-
trix of x and y. We assume that the phases of the channel coe�cients are
uncorrelated random variables with mean zero. �is assumption is a “worst
case” as in this case the estimator cannot exploit any correlation between the
phases of the sub-channels. We further assume that each element of y has

variance π2

3 corresponding to the variance of a random variable uniformly
distributed on the interval [−π, π). Monte Carlo simulations of the mean
square estimation error show that this assumption is indeed appropriate.

Under these assumptions, E(y) = 0 and Σy = π2

3 I. Hence, Σxy reads

Σxy = E(xyT) = SE(yyT) = SΣy = π2

3 S. (D.18)

where we made use of the fact that φ and v have zero-mean and therefore by
(D.16), E(x) = 0. Using (D.16) and (D.18) the covariance matrix of x can be
derived as

Σx = π2

3 SS
T + Σφ + 1

2γ I, (D.19)
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Table D.1: Simulation Settings

Setting Value

M 8

N 8

I 2

K 128

tk kT

Sample time T 2.54 µs

Monte Carlo Runs 100

rank(H) 1

γ ≜ σ2h/σ2w 20 dB†

ρ 35 dB†

†When no other values are given.

where Σφ is the known covariance matrix of φ de�ned as

[Σφ]kℓ ≜ Rφ(tk − tℓ). (D.20)

Finally, we propose to use the capacity estimator:

ĈMMSE = C(ĤĤH), (D.21)

where Ĥ is given in (D.12) with Ẑ obtained from (D.13), and Ŷ obtained from
(D.17) as Ŷ = vec−1(ŷ).
D.4 Numerical Results

We now compare the proposed estimator and the estimators reported in Sub-
sections D.3.1 andD.3.2 bymeans ofMonte Carlo simulations.�e simulation
settings are reported in Table. D.1. On the time-scale used in the simulations
presented in this contribution, the phase noise process can be modeled as an
auto-regressive moving-average (ARMA) process of order (7,6) [5, 7]:

φk =
7

∑
p=1

ϕpφk−p +
6

∑
q=1

θqdk−q + dk , φk = φ(kT) (D.22)

where the driving process {dk} is a white Gaussian process with sample
variance σ2d and T denotes the sample time. �e phase noise process was
measured using a commercially available sounder as described in [5]. Fig. D.3
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depicts the sample autocorrelation function of the measured phase noise
series together with the autocorrelation function and the coe�cients of the
�tted ARMA process [5].2�e sample time T = 2.54 µs corresponds to twice
the duration of a 127-chip long sequence with a chip rate of 100MHz.

In each Monte Carlo run a rank-1 channel matrix H (i.e. a key-hole
channel) is generated.3�en phase noise is generated according to the above
model. �e average capacity estimates are obtained by averaging over the
capacity estimates computed from 100 Monte Carlo runs.

Two di�erent spatio-temporal arrays named Array A and Array B are
considered. �e two arrays de�ned by m(k) and n(k) are given in Fig. D.2.
Array A is the commonly used identity array [3, 8] and Array B is a non-
separable spatio-temporal array optimized for high accuracy and robustness
of joint Doppler frequency and direction estimation [3, 8]. Array A is separa-
ble in the sense that it ful�lls the condition [2]

tk = i(k)Tc + [tTx]n(k) + [tRx]m(k), (D.23)

where tTx and tRx are vectors of dimensions N and M respectively and Tc =
MNT .

Fig. D.4 reports the averaged estimated capacities obtained with the three
estimators when Array A and Array B given in Fig. D.2 are used.�e resulting
capacity estimates are plotted as functions of the SNR ρ as in (D.7). Fig. D.4(a)
reports the estimates obtained using Array A. As can be seen from the �gure,
all three estimators overestimate the capacity for ρ > 18 dB. It can be observed
that in this scenario, the estimators Ĉavg and ĈMMSE show the same accuracy,

while the standard estimator Ĉstd is less accurate. Fig. D.4(b) reports the
estimates using Array B. It can be observed that the estimators Ĉstd and Ĉstd

perform signi�cantly worse compared to Fig. D.4(a) as also reported in [7],
while the estimation accuracy of the proposed estimator ĈMMSE improves
drastically. In Fig. D.4(b), the capacity estimates diverge signi�cantly from
the true capacity at about 13 dB for estimators Ĉstd and Ĉavg, and at about
35 dB for the proposed estimator ĈMMSE. In practice, MIMO communication
systems seldom operate at SNRs as high as 35 dB.�us, the proposed capacity
estimator can be seen to return valid estimates at SNRs considered in practice.

In Fig.D.5 the capacity estimates and themean-square channel estimation
error obtained with Array B are reported versus the measurement SNR γ for

2�e parameter values reported in [5] di�er from the values in Fig. D.3 even-though the
same measurement data was used.�is discrepancy is due to an unfortunate misprint in [5].

3�e impact of phase noise to estimation of capacity is most signi�cant for low rank
channels [1, 2]. �us, despite the fact that a key-hole channels are rare under realistic
propagation conditions, the low rank channel is useful for assessing the robustness of a capacity
estimator towards phase noise.
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Measured phase noise
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×10−4

-0.01
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0.03

k 1 2 3 4 5 6 7

ϕk –0.239 –0.353 –1.085 0.442 0.508 0.227 –0.212
θk 1.340 1.314 0.431 0.260 0.295 0.238 —

T = 2.54 µs, σ2d = 4.44 ⋅ 10
−4 rad2

Fig. D.3: Sample autocorrelation function (solid line) and autocorrelation function of the ARMA
process �tted to the short-term component of phase noise (broken line) [5]. �e table reports the
parameters of the �tted ARMA process.

all three estimators. �e mean square error of the channel matrix estimates
is computed by averaging the Frobenius norm of the error matrices H − Ĥ
generated in the Monte Carlo runs. It is apparent that the proposed MMSE
estimator yields a capacity estimation error lower than those obtained with
the other estimators and that it approaches the exact capacity for γ higher than
about 20 dB. Furthermore, it can be seen that the proposed estimator yields
a �ve times lower mean square error than that achieved with the averaging
approach (D.9) for γ > 20dB. �is improvement results because the MMSE
estimator exploits the known autocorrelation of the phase noise.

D.5 Conclusions

�is paper has presented a new estimator for the MIMO channel capacity
for the case where the available channel measurements are impaired by both
phase noise and additive noise. �e proposed estimator relies on separate
estimation of the magnitudes and phases of the channel coe�cients and
exploits knowledge of the phases noise autocorrelation function. �is au-
tocorrelation function can be obtained by calibration measurements of the
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Fig. D.4: Averaged capacity estimates simulated using the settings listed in Fig. D.2. Panel (a)
reports the results when Array A is used; In panel (b), Array B is used.
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Ĉavg
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Fig. D.5: Averaged capacity estimates and mean square error of the channel matrix estimates
versus SNR γ. Array B is used. Upper panel: Estimated capacity with ρ = 35 dB. Lower panel:
Mean square error of the channel matrix estimates.

channel sounder.�e proposed capacity estimator was compared to conven-
tional methods using two di�erent spatio-temporal arrays. It was found by
simulation that the accuracy of the proposed capacity estimator is higher
when the measurement data is acquired using a non-separable array than
when using a separable identity array. Interestingly, the opposite e�ect applies
when the standard capacity estimator is applied: here the separable array leads
to the best performance. In conclusion, the simulation results show that the
proposed estimator leads to a signi�cant improvement in the estimation of
channel capacity from phase-noise impaired measurement data compared to
the conventional estimators.

D.I De�nition of the Angle Operator

�e angle of a complex number is a real number that takes a value on an
interval of length 2π, e.g the interval [a − π, a + π) where a is a real number.
We de�ne the mapping

∠a ∶ C → [a − π, a + π) s.t. c = ∣c∣ exp( j∠ac). (D.24)

Notice that a can be any real number. For example it is customary to select a =
0. However, this causes problems when considering angles between pairs of
complex numbers. As an example the numbers exp( j(π − π

8 )) and exp( j(π +
π
8 )), di�er in angle by π

4 , whereas∠0 exp( j(π− π
8 ))−∠0 exp( j(π+ π

8 )) = 7π
4 .

We assume that the variance of the phase noise components is su�ciently
small such that the phases of the samples taken from sub-channel (m, n) all
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hm(k)n(k)

gk

w k

wr
k

jwt
k

vk

0

Fig. D.6: �e noise projection in the complex plane used to compute an approximation of v in
(D.16).

lie in the interval [∠0hmn − π
2 ,∠0hmn + π

2 ] with high probability. In this case
we can de�ne an angle mapping ∠amn where the value of amn is de�ned as
the angle of the geometric mean of the set of samples taken from a speci�c
sub-channel (m, n):

amn =∠0

⎡⎢⎢⎢⎢⎢⎣ ∏k∈Kmn

( gk∣gk ∣)
1

#Kmn

⎤⎥⎥⎥⎥⎥⎦
. (D.25)

For phase noise processes with su�ciently small sample variance, this per-
sub-channel de�nition of the angle operator enables computation of phase
di�erences between phases of measurements acquired from the same sub-
channel by subtraction of the phases.

D.II �e Additive Noise in (D.16)

�e kth noise sample vk in (D.16) denotes the phase contribution due to
the additive complex noise sample wk . As illustrated in Fig. D.6, wk can be
decomposed into the radial component wr

k and the tangential component
jwt

k . When ∣wr
k ∣ is su�ciently small compared to ∣hm(k)n(k)∣ we can use the

approximation ∣hm(k)n(k)∣vk ≈ wt
k . Since wk is a zero-mean circular symmet-

ric complex Gaussian random variable, the tangential component is Gaussian
distributed with variance σ2w/2.�en, when the above approximation is valid,
vk ∼N (0, 1

2γ).�us the covariance matrix of v is 1
2γ I.
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E.1. INTRODUCTION

Abstract

In this contribution, we derive a probability distribution suitable
for characterizing bi-azimuth (azimuth of arrival and azimuth of de-
parture) direction dispersion of individual path components in the
response of the propagation channel. �is distribution belongs to the
family of generalized von-Mises-Fisher distributions.�e elements in
this family maximize the entropy under the constraint that the ex-
pectations and correlation matrix of the directions are known. �e
probability density function (pdf) of the proposed distribution is used
to describe the bi-azimuth power spectrum of individual path compo-
nents. An estimator of the parameters of the pdf is derived and applied
to characterize the spreads in both azimuth of departure and azimuth of
arrival, as well as the correlation between both azimuths of individual
path components. Preliminary results from an experimental investiga-
tion demonstrate the applicability of the proposed characterization in
real environments.

E.1 Introduction

Due to the heterogeneity of the propagation environment, the received signal
at the receiver (Rx) of a radio communication system is the superposition of
a number of components. Each individual component, which we call “path
component”, is contributed by an electromagnetic wave propagating along a
path from the transmitter (Tx) to the Rx. Along this path, the wave inter-
acts with a certain number of objects referred to as scatterers. Due to the
geometrical and electromagnetic properties of the scatterers, the individual
path components may be dispersive in delay, direction of departure (DoD),
direction of arrival (DoA), polarizations, as well as in Doppler frequency
when the environment is time-variant.

Path components can be observed in the response of the channel and
any characterizing function derived from this response. As an example, in
Fig. E.1 we show two estimated power spectra with respect to azimuth of
departure (AoD) and azimuth of arrival (AoA) at speci�c delays calculated
from measurement data using the Bartlett beamformer [2]. In the sequel, we
refer to these spectra as (bi-azimuth) Bartlett spectra. A certain number of
spots can be observed. Each spot corresponds to either one or more spe-
ci�c path components. It can be observed from Fig. E.1 (a) and (b) that the
path components are spread in AoA and AoD. Moreover, they appear tilted.
Both e�ects are due to the geometrical and electromagnetic properties of the
scatterers along the paths, as well as the response – in particular the limited
resolution – of the measurement equipment.
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Fig. E.1: Examples of two bi-azimuth Bartlett spectra calculated at speci�c relative delays (78 ns,
133 ns) from the correlator output of the channel sounder [1] in (a) an o�ce; (b) a big hall. In the
calculation, the responses of the Tx and Rx arrays in vertical-polarization only are considered.
�e details of the measurement campaign and measurement setup are provided in Section E.5.

Recently, estimation of the characteristics of individual path components
have gained much attention. �e conventional approach consists in estimat-
ing the channel response and any characterizing functions derived from this
response. An example of the characterizing function is the power spectrum
and a traditional estimate of it is the Bartlett spectrum. However, due to the
response of the measurement equipment, the path components are blurred
and consequently, their spreads are arti�cially increased. In recent years,
several model-based estimation techniques have been proposed to estimate
the nominal azimuth and azimuth dispersion of the path components at one
side of the link [3] [4] [5].�ese techniques are based on the assumption that
the azimuth power spectra of individual path components exhibit a shape
which is close to that of the probability density function (pdf) of a certain
distribution, like the uniform distribution [4], the (truncated) Gaussian dis-
tribution [3] [4] and the von-Mises distribution [5].

In this contribution, we propose an entropy-maximizing bi-direction (i.e.
DoD and DoA) distribution to characterize bi-direction dispersion by means
of the mean directions and correlation matrix between both directions. Such
distributions have been derived in [6] and are called generalized von-Mises-
Fisher distributions. We consider the case of horizontal-only propagation.
�e von-Mises-Fisher distribution is described by three free parameters (two
vector parameters and onematrix parameter) thatwe identify. To do so, we as-
sume that in the casewhere the path components are slightly dispersive the bi-
azimuth distribution is close to a two-dimensional (2-D) truncated Gaussian
distribution. Furthermore, we derive amaximum likelihood estimator for the
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parameters of the pdf of the von-Mises Fisher distribution. �is estimator is
applicable in time-variant environments, i.e. when fast-fading occurs [7].

�e organization of this contribution is as follows. In Section E.2, we
derive the pdf of the bi-variate von-Mises-Fisher distribution. Section E.3
presents the signal model describing bi-azimuth dispersion of path compo-
nents. �e maximum likelihood estimator of the parameters of the pdf is
derived in Section E.4. Section E.5 presents the result of the experimental
investigation. Finally concluding remarks are made in Section E.6.

E.2 Von-Mises-Fisher Distribution

Following the nomenclature in [8], we use a unit vector Ω to characterize a
direction. In the considered case of horizontal-only propagation, the vectorΩ
has its initial point anchored at the origin O of a coordinate system speci�ed
in the region surrounding the array of interest, and terminal point located
on a unit circle S1 centered at O.�e vector Ω is uniquely determined by its
azimuth ϕ.�e one-to-one relation between Ω and ϕ is

Ω = e(ϕ) ≐ [cos(ϕ), sin(ϕ)]T (E.1)

with [⋅]T denoting transposition.
Among all probability distributions on S1, the von-Mises distribution ap-

pears to be a natural candidate to describe direction dispersion by individual
path components, provided the characterization of direction dispersion is
only by means of the mean direction E[Ω] [8]. �e von-Mises distribution
shares the same virtue as the Gaussian distribution, namely it maximizes the
entropy among the family of probability distributions on the circle with the
constraint that the second central moment is �xed. Notice that the second
central moment of a circular distribution is the direction spread [8]. It is
uniquely determined by the normof themeandirection. Indeed, if σΩ denotes
the direction spread, then σΩ = √1 − ∥E[Ω]∥2 [8].�e pdf of the von-Mises
distribution reads [6, Sect. 2.1]

f (Ω) = 1

2πI0(κ) exp{κΩ̄T
Ω},

where In(⋅) is the modi�ed Bessel function of the �rst kind and order n,
κ ≥ 0 is called the concentration parameter, and Ω̄ ≐ e(ϕ̄) denotes a unit
vector with azimuth ϕ̄ equal to the azimuth of E[Ω].�e azimuth distribution
induced by the von-Mises distribution via the mapping (E.1) has the pdf [9, P.
36]

f (ϕ) = 1

2πI0(κ) exp{κ cos(ϕ − ϕ̄)}. (E.2)
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By a generalization of terminology, the azimuth probability distribution with
the pdf (E.2) is referred to the von-Mises distribution as well.

Note that throughout the paper, azimuth variables are within the range[−π, π). Addition and subtraction of azimuth variables are de�ned in such a
way that the resulting angle lies in the range [−π, π).When κ is large, typically
κ > 7,

(ϕ − ϕ̄)2 ≈ ∥Ω − Ω̄∥2 (E.3)

holds, which leads to the approximation cos(ϕ− ϕ̄) ≈ 1− 1
2(ϕ− ϕ̄)2. Inserting

this approximation in (E.2) yields the Gaussian pdf fG(ϕ) = √κ√
2π

exp{− κ
2 (ϕ−

ϕ̄)2} [9, P. 37].
In the sequel, we derive a bivariate pdf of the DoA Ω1 and the DoD Ω2

for horizontal-only propagation.�e symbols with subscript 1 and 2 are with
respect to the Tx array and the Rx array respectively. It is shown in [6] that
the maximum entropy bi-direction distribution when the expectations E[Ω1]
and E[Ω2] and the correlation matrix E[Ω1Ω

T
2 ] are speci�ed has a pdf of the

form
f (Ω1,Ω2) = C ⋅ exp{aT1 Ω1 + aT2Ω2 +ΩT

1 AΩ2}, (E.4)

where C denotes a normalization factor, a1, a2 ∈ R
2×1 and A ∈ R

2×2. Fol-
lowing [6] we refer to this distribution as the generalized von-Mises-Fisher
distribution.

�e parameters a1, a2 andA in (E.4) are free parameters, the speci�cation
of which depends on the particular problem at hand. To �nd the appropriate
expressions of a1, a2 and A for our particular application, i.e. the character-
ization of bi-azimuth dispersion, we postulate that, for slightly distributed
path components, the bi-azimuth pdf induced by (E.4) via the mapping (E.1)
should be close to the truncated pdf of a 2-D Gaussian distribution:

fG(ϕ1, ϕ2)∝ exp{− 1

2(1 − ρ2) ⋅ [(ϕ1 − ϕ̄1σ1
)2

+ (ϕ2 − ϕ̄2
σ2

)2 − 2ρ(ϕ1 − ϕ̄1)(ϕ2 − ϕ̄2)
σ1σ2

]}. (E.5)

Notice that the traditional meaning of the parameters σ1, σ2 and ρ as second-
order central moments of a bivariate Gaussian distribution does not hold any
more for the pdf (E.5) due to the fact that the azimuth ranges are bounded.

In the casewhere the path components are slightly dispersive, the approxi-
mation in (E.3) is valid for bothAoA andAoD. In addition, the approximation

(ϕ1 − ϕ̄1)(ϕ2 − ϕ̄2) ≈ (Ω1 − Ω̄1)TR(Ω2 − Ω̄2) (E.6)
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holds where

R ≐ B(ϕ̄1)B(ϕ̄2)T = [cos(ϕ̄1 − ϕ̄2) − sin(ϕ̄1 − ϕ̄2)
sin(ϕ̄1 − ϕ̄2) cos(ϕ̄1 − ϕ̄2) ] .

�e matrix B(ϕ̄) is the orthonormal matrix that rotates the vector e(ϕ̄) to[0, 1]T. Hence, B(ϕ̄) ≐ [e�(ϕ̄) e(ϕ̄)] with e�(ϕ̄) = e(ϕ̄ + π/2) denoting
the unit vector portside orthogonal to e(ϕ̄). �e right-hand-side of (E.6) is
rotational invariant, i.e. it does not change when for any speci�c index i ∈{1, 2}, Ωi , Ω̄i and e(ϕ̄i) are rotated by an identical arbitrary azimuth.

Inserting (E.3) and (E.6) into (E.5) and identifying (E.4) and (E.5), we
obtain a�er some straightforward algebraic manipulations

ai ≈
κi

1 − ρ2
(1 − ρ√κ j

κi
)Ω̄i , i , j ∈ {1, 2}, i ≠ j

A ≈
ρ
√
κ1κ2

1 − ρ2
R

with the de�nitions κi ≐ σ−2i , i = 1, 2. Inserting the right-hand-sides in (E.4)
yields the sought pdf:

f (Ω1,Ω2) = C ⋅ exp{κ1 − ρ√κ1κ2
1 − ρ2

Ω̄
T
1 Ω1+

κ2 − ρ
√
κ1κ2

1 − ρ2
Ω̄

T
2Ω2 +

ρ
√
κ1κ2

1 − ρ2
ΩT

1 RΩ2}. (E.7)

�e normalization constant C can be computed from the expression derived
in [10, P. 167] for the general form (E.7):

C = [4π2 ∞∑
m=0

m⋅Im (κ1 − ρ√κ1κ2
1 − ρ2

)⋅Im (ρ√κ1κ2
1 − ρ2

) Im (κ2 − ρ√κ1κ2
1 − ρ2

)]−1.
From (E.7) the joint pdf of ϕ1 and ϕ2 is calculated to be

f (ϕ1, ϕ2) = C ⋅ exp{(κ1 − ρ√κ1κ2
1 − ρ2

) cos(ϕ1 − ϕ̄1)
+(κ2 − ρ√κ1κ2

1 − ρ2
) cos(ϕ2 − ϕ̄2)

+
ρ
√
κ1κ2

1 − ρ2
cos[(ϕ1 − ϕ̄1) − (ϕ2 − ϕ̄2)]}. (E.8)
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Fig. E.2: Contour plots of the bi-azimuth pdf (E.8) with parameter settings ϕ̄1 = ϕ̄2 = 90
○ and (a)

(κ1 , κ2 , ρ) = (30, 40, 0.5), (b) (κ1 , κ2 , ρ) = (2, 2,−0.5).

Fig. E.2 illustrates the contour plots of (E.8) for two di�erent settings of
the parameters κ1, κ2 and ρ. It can be observed that when κ1 and κ2 are large,
the contour lines are close to tilted ellipses.�is is consistent with the fact that
the pdf (E.8) is close to a bivariate normal pdf in this case. When both κ1 and
κ2 are small, the contour lines are still close to ellipses in a range enclosing(ϕ̄1, ϕ̄2). �is observation indicates that in this region the pdf (E.8) can be
approximated by a bivariate normal pdf as well.

E.3 Signal Model for Bi-azimuth Dispersion by Path Components in
MIMO Channel Sounding

We consider horizontal-only propagation and narrow-band transmission.
�e latter condition implies that the product of the signal bandwidth times the
channel delay spread is much smaller than one. Following the nomenclature
in [8], the continuous-time output signal of the Rx array reads

Y(t) = H(t)s(t) +W(t)
= [ ∫∫ c2(ϕ2)c1(ϕ1)Th(t; ϕ1, ϕ2)dϕ1dϕ2]s(t) + W(t). (E.9)

�eM2-D complex vector Y(t) ∈ C
M2×1 contains the output signals of the Rx

array observed at time instance t.�e matrix H(t) ∈ C
M2×M1 represents the

time-variant transfer matrix of the MIMO system. �e M1-D vector s(t) ∈
C

M1×1 denotes the complex envelope of the transmitted signal. �e function
h(t; ϕ1, ϕ2) is referred to as the (time-variant) bi-azimuth spread function of
the propagation channel [8]. In a scenario where the electromagnetic energy
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propagates from the Tx to the Rx viaD paths, h(t; ϕ1, ϕ2) can be decomposed
as

h(t; ϕ1, ϕ2) = D

∑
d=1

hd(t; ϕ1, ϕ2). (E.10)

�e summand hd(t; ϕ1, ϕ2) denotes the dth path component in h(t; ϕ1, ϕ2).
�e noise component W(t) ∈ C

M2×1 in (E.9) is a vector-valued circularly
symmetric, spatially and temporally white Gaussian process with component
spectral height σ2w . Finally, the complex vectors

ci(ϕ) ≐ [ci ,1(ϕ), . . . , ci ,m i(ϕ), . . . , ci ,M i(ϕ)]T ∈ C
M i×1, i = 1, 2

are the responses of the Tx array (i = 1) and the Rx array (i = 2).
Moreover, we make the following assumptions regarding the properties

of some components in (E.9):

a. �e channel is sounded during N non-overlapping intervals of dura-
tion T .�us, the overall sounding period is of the form⋃N

n=1[tn , tn+T)
where tn denotes the beginning of the nth interval and tn+1 > tn + T ,
n = 1, . . . ,N .

b. �e sounding signal s(t) is known to the Rx. Its components are or-
thonormal1, i.e.

∫
tn+T

tn
s(t)s(t)Hdt = IM1 , n ∈ [1, . . . ,N]

. Here, I(⋅) denotes an identity matrix of dimension given as an index.

c. �e transfer matrix H(t) �uctuates over the overall sounding period,
but it is constant within individual observation intervals:

H(t) = H(tn) ≐ Hn , t ∈ [tn , tn + T).
Similarly, the bi-azimuth spread function hd(t; ϕ1, ϕ2) arising in (E.10)
is constant within individual observation intervals:

hd(t; ϕ1, ϕ2) = hd(tn; ϕ1, ϕ2) ≐ hd ,n(ϕ1, ϕ2), t ∈ [tn , tn + T).
�e processes hd ,n(ϕ1, ϕ2), n ∈ [1, . . . ,N], d ∈ [1, . . . ,D] are uncor-
related complex (zero-mean) orthogonal stochastic measures, i.e.

E[h∗d ,n(ϕ1, ϕ2)hd′ ,n′(ϕ′1, ϕ′2)] =
Pd(ϕ1, ϕ2)δnn′δdd′δ(ϕ1 − ϕ′1)δ(ϕ2 − ϕ′2), (E.11)

1�e orthogonality of the signal components can be obtained by using di�erent sounding
techniques, such as time-division [11] and frequency-division multiplexing. It can be also
nearly achieved by using di�erent pseudo-noise (PN) sequences or di�erently-shi�ed versions
of the same PN sequence as the components of the sounding signal s(t).
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where (⋅)∗ denotes the complex conjugate, δ(⋅) and δ(⋅) represent the
Kronecker delta and the Dirac delta function respectively, and Pd(ϕ1,
ϕ2) ≐ E[∣hd ,n(ϕ1, ϕ2)∣2] is the bi-azimuth power spectrum of the dth
path component.�us, identity (E.11) implies that the spread functions
of di�erent individual path components or at di�erent observation
intervals are uncorrelated.�is scenario is referred to as the incoherent-
distributed-source case in the literature (see e.g. [12]).

d. �e spectrum Pd(ϕ1, ϕ2) describes the manner the average power of
the dth path component is distributed with respect to both AoD and
AoA. We assume Pd(ϕ1, ϕ2) = Pd ⋅ fd(ϕ1, ϕ2) with Pd representing the
total average power of the dth path component and fd(ϕ1, ϕ2) being of
the form (E.8) with path-speci�c parameters

θd ≐ [ϕ̄d ,1, ϕ̄d ,2, κd ,1, κd ,2, ρd].
E.4 Maximum Likelihood Estimation

Let θ denote a vector containing the model parameters in (E.9)

θ ≐ [σ2w , P1, P2, . . . , PD , θ1, θ2, . . . , θD].
Under the assumption that the components of s(t) are orthonormal, theM2×
M1 matrices

Ĥn ≐ ∫
tn+T

tn
y(t)s(t)Hdt, n = 1, . . . ,N (E.12)

form a su�cient statistic for the estimation of θ. It can be shown that Ĥn = H+
Nn where Nn ∈ C

M2×M1 , n = 1, . . . ,N is a sequence of independent random
matrices the entries of which are independent circularly symmetric Gaussian
random variables with variance σ2w .

�e maximum likelihood estimate of θ based on the observation Y(t) =
y(t) during the sounding interval ⋃N

n=1[tn , tn + T) is a solution of [2]:

θ̂ ≐ argmax
θ
{−ln[∣Σ∣] − tr[(Σ)−1Σ̂]} (E.13)

with tr[⋅] representing the trace of the matrix given as an argument and

Σ ≐ E[vec[Ĥn] ⋅ vec[Ĥn]H]
= D

∑
d=1

Pd ∫∫ [c1(ϕ1)cH1 (ϕ1)]⊗[c2(ϕ2)cH2 (ϕ2)] fd(ϕ1, ϕ2)dϕ1dϕ2 + σ2wIM2M1 ,

(E.14)
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Fig. E.3: (a): Bi-azimuth Bartlett spectrum calculated from the received signal as is; (b): Bi-
azimuth Bartlett spectrum calculated from the matrix Σ in (E.14) parameterized with the
estimate θ̂; (c): Contour lines of the estimated bi-azimuth power spectrum using the proposed
characterization by means of the von-Mises-Fisher pdf (E.8).

where the operator vec[⋅] stacks the columns of the givenmatrix into a vector
and ⊗ denotes the Kronecker product. In (E.13) the matrix

Σ̂ = 1

N

N

∑
n=1

vec[Ĥn]vec[Ĥn]H
is an estimate of Σ computed from the observation y(t) over⋃N

n=1[tn , tn+T).
Calculation of θ̂ requires (5D+1)-Dmaximization operations.�e SAGE

algorithm described in [13] can be used to compute a low-complexity approx-
imation of the maximum likelihood estimator in (E.13).

E.5 Preliminary Experimental Investigation

In this section, we assess the applicability of the characterization by means of
the von-Mises-Fisher pdf (E.8) in a real environment.�e measurement data
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were obtained with the MIMO wideband radio channel sounder Elektrobit
Propsound CS [1].�e measurement campaign was conducted in a big hall at
a center frequency of 5.2 GHz with bandwidth 100 MHz.�e Tx and Rx were
both equippedwith two similar 9-element circular arrays.�e polarization di-
rection of the elements is 45○ slantedwith respect to the vertical.�e positions
of the Rx and Tx were kept �xed. �e hall was crowded with people moving
around during the measurement runs. �is introduced time variations of
the channel response. �e equipment collects wideband measurement data.
However, the narrowband model developed in Sect. E.3 can still be applied
by considering the correlator output of the channel sounder at some speci�c
relative delay.

We speci�cally selected a propagation scenario and for that scenario,
a relative delay at which only few path components can be observed. �e
Bartlett spectrum shown in Fig. E.1 (b) corresponds to such a situation with
two or, possibly, three path components. Portion of this Bartlett spectrum
including the path components is reproduced in Fig. E.3 (a).

�e SAGE algorithm is used to estimate the parameters of the path com-
ponents. In this preliminary study, we assume that the number of path com-
ponents is known in advance. In the considered case, this number equals 3,
which coincides with the amount of the path components that can be visually
identi�ed from the Bartlett spectrum shown in Fig. E.1 (b).We consider verti-
cal polarization only, i.e. the vectors ci(ϕ), i = 1, 2 used in the calculation of Σ
in (E.14) are the array responses for vertical polarization.�e initial estimates
of the parameters of the individual path components are computed using
a combination of the successive interference cancelation method described
in [13] and an estimator derived based on the generalized array manifold
model [14]. At each iteration of the SAGE algorithm, the parameter estimates
of one path component and the estimate of the noise spectral height σ2w are
updated. �e admissible hidden data is selected to be the sum of the path
component, of which the parameters are estimated, and anM2-D noise vector
with statistical properties identical to those of W(t) weighted by 1/√3. �e
de�nition and meaning of the weighting factor are given in [13].

�e obtained parameter estimates are reported in Table E.1. Estimates
σ̂d ,i =

√
1/κ̂d ,i , d = 1, 2, 3, i = 1, 2 of the azimuth spreads of the path

components expressed in degree are also provided. Fig. E.3 (c) depicts the
estimated bi-azimuth power spectrum

P̂(ϕ1, ϕ2) = 3

∑
d=1

P̂d f̂d(ϕ1, ϕ2), (E.15)

where f̂d(ϕ1, ϕ2) denotes the pdf f (ϕ1, ϕ2) in (E.8) parameterized with the
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Table E.1: Parameter estimates in the experimental investigation.

d ˆ̄ϕd ,1
ˆ̄ϕd ,2 κ̂d ,1 σ̂d ,1 κ̂d ,2 σ̂d ,2 ρ̂d P̂d/σ̂2w

1 48○ 8○ 6.29 22.9○ 480 2.6○ 0.02 15.5 dB

2 34○ 4○ 153.75 4.6○ 18.36 13.4○ −0.83 4.69 dB

3 154○ 24○ 233.02 3.8○ 320 3.2○ 0.70 11.1 dB

estimate θ̂d . From Fig. E.3 (c), we observe that the path components are
signi�cantly more concentrated than the corresponding components in the
Bartlett spectrum shown in Fig. E.3 (a). Moreover, the third path component
in Fig. E.3 (c) appears to be stronger than the �rst component even though
P̂3 < P̂1. �is is because the power spectrum of the third path component is
more concentrated than the spectrum of the �rst component.

Fig. E.3 (b) depicts the Bartlett spectrum calculated from the recon-
structed signal with the bi-azimuth power spectrum (E.15). Notice that the

spectral height estimate σ̂2w is also considered in the calculation.�e blurring
e�ect due to the limited resolution in azimuth of the used arrays is clearly
demonstrated. As a result, the path components in the Bartlett spectrum
exhibit signi�cantly larger spreads compared to the spreads of the estimated
components. Notice that the Bartlett spectrum shown in Fig. E.3 (b) looks
similar to the spectrum in Fig. E.3 (a). Furthermore, it is observed that the
magnitude of the path components depicted in Fig. E.3 (b) is lower than
that observed in Fig. E.3 (a). �is is consistent with an analytical result not
reported here, which shows that the power estimate of a path component is
reduced, compared to the true value, by a certain amount depending on the
residual interference.�is interference results since the path components are
not estimated exactly due to eithermodelmismatch or errors in the parameter
estimation.

Calculations show that the ratio of the maximumof the Bartlett spectrum
computed from the reconstructed signal with σ̂2w = 0 to the maximum of
the Bartlett spectrum calculated from the received signal, is equal to 68.7%.
Experimental investigations also show that this number reduces to 37.7%
when the ISIS algorithm [11] derived based on the specular-scatterer model
is applied to the same measurement data.�is observation, together with the
conclusions drawn from Fig. E.3, demonstrate that the von-Mises-Fisher pdf
(E.8) provides an appropriate characterization of bi-azimuth dispersion by
individual path components.
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E.6 Conclusions

In this contribution, we proposed a bi-variate generalized von-Mises-Fisher
probability density function (pdf) suitable for characterizing bi-azimuth (az-
imuth of arrival and azimuth of departure) dispersion of individual path
components. We also derived an estimator of the parameters of the pdf. Pre-
liminary experimental results demonstrated the applicability of the proposed
characterizing method in real situations.�ese results also made evident that
the path components are noticeably more concentrated in the bi-azimuth
plane compared to their corresponding footprints in the Bartlett spectrum.
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F.1. INTRODUCTION

Abstract

In this contribution, we derive a distribution that is suitable for
characterizing biazimuth (azimuth of arrival and azimuth of departure)
and delay dispersion of individual path components in the response of
the radio channel. �is distribution maximizes the entropy under the
constraint that its �rst and second moments are speci�ed. We propose
to use the density function of the derived distribution to characterize
the shape of the biazimuth-delay power spectrum of individual path
components. �e applicability of this characterization in real condi-
tions is assessed using measurement data.

F.1 Introduction

Due to the heterogeneity of the propagation environment, the response of
the radio channel is the superposition of a certain number of components.
Each component, whichwe call a “path component”, is contributed by an elec-
tromagnetic wave propagating along a path from the transmitter (Tx) to the
receiver (Rx). Along this path, the wave interacts with a certain number of ob-
jects called scatterers. Due to the geometrical and electromagnetic properties
of the scatterers, a propagation path may be dispersive in delay, direction of
departure, direction of arrival, polarizations, as well as in Doppler frequency
when the environment is time-variant. As a consequence, an individual path
component may be spread or dispersed in these dispersion dimensions.

Recently, estimation of dispersive characteristics of individual path com-
ponents has gainedmuch attention. Conventionalmethods rely on estimation
of the channel response and any characterizing functions derived from this
response. An example of a characterizing function is the power spectrum. A
traditional estimate of the power spectrum is the Bartlett spectrum, i.e. the
spectrum calculated using the Bartlett beamformer [1]. However, due to the
ambiguity function of the measurement equipment, the path components in
the Bartlett spectrum are blurred and consequently, their spreads are arti�-
cially increased. In recent years, several methods based on parametric models
have been proposed to estimate the nominal azimuth and azimuth spread of
path components at one side of the link [2], [3], [4]. �ese estimators make
use of the assumption that the azimuth power spectrum of individual path
components exhibits a shape close to the density function of a distribution,
like the uniform distribution within a certain interval [3], the (truncated)
Gaussian distribution [2], [3] and the von-Mises distribution [4].

Recently, the density function of a bivariate von-Mises-Fisher distribution
has been proposed to characterize the shape of the biazimuth (azimuth of
departure (AoD) and azimuth of arrival (AoA)) power spectrum of individ-
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ual path components [5]. �e von-Mises-Fisher distribution maximizes the
entropy under the constraint that its �rst and second moments are speci�ed.
In [5], the proposed characterization method is assessed in real conditions
using measurement data.

In this contribution, we derive an entropy-maximizing distribution suit-
able for characterizing biazimuth-delay dispersion of individual path compo-
nents. More speci�cally, the density function of this distribution is used to
characterize the shape of the biazimuth-delay power spectrum of individual
path components. �e density function is parameterized by some free pa-
rameters. To identify these parameters, we postulate that in the case where
a path component is slightly dispersed, the proposed density function is
close to a truncated multivariate Gaussian density function. Experimental
investigations assess the applicability of the proposed characterization in real
situations.

�e organization of this contribution is as follows. In Section F.2, we de-
rive the entropy-maximizing biazimuth-delay density function. In Section F.3,
the signal model is presented. Section F.4 shows the results and discussions
of the experimental investigations. Finally concluding remarks are stated in
Section F.5.

F.2 Entropy-Maximizing Biazimuth-Delay Density Function

Following the nomenclature in [6], we use a unit vector Ω to characterize
a direction. �is vector has its initial point anchored at the origin O of a
coordinate system speci�ed in the region surrounding the array of interest,
and terminal point located on a unit sphere S2 centered at O. In the case of
horizontal-only propagation, the terminal point ofΩ is located on a unit circle
S1.�e one-to-one relation between Ω and the azimuth ϕ is in this case

Ω = e(ϕ) ≐ [cos(ϕ), sin(ϕ)]T (F.1)

with [⋅]T denoting transposition.
Among all distributions on S1, the von-Mises distribution maximizes the

entropy provided the �rst moment

µΩ ≐ ∫ Ω f (Ω)dΩ
is speci�ed [6], [7]. Here, f (Ω) denotes the density function of any distribu-
tion on S1. Notice that ∫ f (Ω)dΩ = 1.�e density function of the von-Mises
distribution is given by [8, P. 36]

f (Ω) = 1

2πI0(κ) exp{κΩ̄T
Ω} (F.2)
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with I0(⋅) denoting the modi�ed Bessel function of the �rst kind and order
0, κ ≥ 0 being the concentration parameter, and Ω̄ ∈ S1. For κ > 0, Ω̄ is the
mode of f (Ω) and Ω̄ = ∥µΩ∥−1µΩ holds. Here, ∥ ⋅ ∥ denotes the Euclidean
norm. It is shown in [6] that the root second central moment of a distribution
on S1, i.e. the direction spread σΩ, is uniquely determined by the norm of the
�rst moment: σΩ =√1 − ∥µΩ∥2. It follows from this result that the von-Mises
distribution also maximizes the entropy under the constraint that the mode,
provided that it exists, and the direction spread are speci�ed. In [9], the von-
Mises density function has been used to characterize the shape of the azimuth
power spectrum of individual path components.

Among all distributions on S1 × S1, the generalized von-Mises-Fisher
distribution [7] maximizes the entropy under the constraints that the �rst
moments

µΩ i
≐ ∫ Ωi f (Ω1,Ω2)dΩ1dΩ2, i = 1, 2 (F.3)

and second moments in the matrix

ΣΩ1Ω2 ≐ ∫ Ω1Ω
T

2 f (Ω1,Ω2)dΩ1dΩ2 (F.4)

are speci�ed. In (F.3) and (F.4), f (Ω1 ,Ω2) is the density function of any
distribution on S1 × S1. �e density function of the generalized von-Mises-
Fisher distribution is of the form [7]

f (Ω1,Ω2) = C ⋅ exp{aT

1 Ω1 + aT

2 Ω2 +ΩT

1 AΩ2}, (F.5)

where C denotes a normalization constant, while a1, a2 ∈ R
2×1 and A ∈

R
2×2 are free parameters. �is density function has been proposed in [5] to

characterize the shape of the biazimuth power spectrum of individual path
components. In this case, Ω1,Ω2 are written to be Ωi = e(ϕi), i = 1, 2 with
ϕ1 and ϕ2 denoting the AoD and AoA respectively. �e expressions of the
free parameters a1, a2 and A are identi�ed in [5]. Experimental investigations
reported in this reference showed that this density function can be used to
characterize the shape of the biazimuth power spectrum of individual path
components.

Following the same approach as used in [5], we derive in the sequel a
distribution suitable to describe dispersion of individual path components
in Ω1, Ω2 and propagation delay τ. More speci�cally, the density function of
the sought distribution characterizes the shape of the biazimuth-delay power
spectrum of individual path components.

We de�ne the parameter vector ψ ≐ [ΩT

1 ,Ω
T

2 , τ]T.�e density function
f (ψ) of the distribution maximizing the entropy with its �rst moment

µψ ≐ ∫ ψ f (ψ)dψ
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and second moments in the matrix

Σψ ≐ ∫ ψψT f (ψ)dψ
speci�ed, is of the form [7]

f (ψ)∝ exp{bTψ + ψTBψ}, (F.6)

where b ∈ R
5×1 and B ∈ R

5×5 are free parameters.
�e biazimuth-delay distribution induced by the above entropy-maxi-

mizing distribution via the mapping [ϕ1, ϕ2, τ] ↦ [e(ϕ1)T , e(ϕ2)T, τ] has
density function

f (ϕ1, ϕ2, τ) = f (ψ)∣ψ=[e(ϕ1)T ,e(ϕ2)T ,τ]T . (F.7)

To identify the expressions of the vector b and the matrix B, we assume
that in the case where dispersion of individual path components is small,
the density function in (F.7) is close to a truncated multivariate Gaussian
density function. De�ne the parameter vector ω ≐ [ϕ1, ϕ2, τ]T.�e truncated
Gaussian density function is of the form

fG(ω)∝ 1

det(Σω)1/2 exp{−
1

2
(ω − µω)TΣ−1ω (ω − µω)}, (F.8)

with µω ≐ [ϕ̄1, ϕ̄2, τ̄]T denoting the mode of fG(ω) and
Σω ≐

⎡⎢⎢⎢⎢⎢⎢⎣
σ2ϕ1

ρϕ1ϕ2σϕ1σϕ2 ρϕ1τσϕ1στ

ρϕ1ϕ2σϕ1σϕ2 σ2ϕ2
ρϕ2τσϕ2στ

ρϕ1τσϕ1στ ρϕ2τσϕ2στ σ2τ

⎤⎥⎥⎥⎥⎥⎥⎦
. (F.9)

Notice that strictly speaking, the traditional meaning of σϕ1 , σϕ2 , ρϕ1ϕ2 , ρϕ1τ

and ρϕ2τ as second-order central moments of a 3-variate Gaussian distribu-
tion does not apply anymore to (F.8), due to the fact that the azimuth ranges
are bounded. However, these parameters provide good approximations of
these moments when σϕ1 , σϕ2 are small. For notational convenience, we use
ρ1, ρ2 and ρ12 to denote ρϕ1τ, ρϕ2τ and ρϕ1ϕ2 respectively.

In the case where dispersion of a path component is su�ciently small, the
following approximations hold:

(ϕ1 − ϕ̄1)(ϕ2 − ϕ̄2) ≈ [e(ϕ1) − e(ϕ̄1)]TR[e(ϕ2) − e(ϕ̄2)] (F.10)

(ϕi − ϕ̄i)(τ − τ̄) ≈ [e(ϕi) − e(ϕ̄i)]Te(ϕ̄i + π/2)(τ − τ̄) (F.11)

(ϕi − ϕ̄i)2 ≈ ∥e(ϕi) − e(ϕ̄i)∥2 (F.12)

with i ∈ {1, 2} and
R ≐ [cos(ϕ̄1 − ϕ̄2) − sin(ϕ̄1 − ϕ̄2)

sin(ϕ̄1 − ϕ̄2) cos(ϕ̄1 − ϕ̄2) ] .
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)/ (
=
.0, ρ

τ̄[ns] ϕ̄1[○] ϕ̄2[○] στ[ns] κ1 σϕ1 [○] κ2 σϕ2 [○] ρ12 ρ1 ρ2

(a) 5 −40 0 1 5 25.6 10 18.1 −0.4 −0.3 −0.3
(b) 8 0 −100 0.5 50 8.1 30 10.5 −0.5 0.6 −0.2

Fig. F.1: 3 dB-spread surfaces calculated using the density function (F.13) with parameter settings
given above.

�e motivation for selecting the matrix R and the meaning of this matrix are
described in [5]. Notice that subtraction of azimuth variables arising in the
right-hand side in (F.8) and the le�-hand sides in (F.10)–(F.12) is de�ned in
such a way that the resulting angle lies in the range [−π, π).

Inserting (F.10), (F.11) and (F.12) into (F.8) and identifying (F.7) and (F.8),
yields for (F.7)

f (ϕ1, ϕ2, τ) = D ⋅ exp{α1 cos(ϕ1 − ϕ̄1) + α2 cos(ϕ2 − ϕ̄2)
+ (τ − τ̄)[α3 sin(ϕ1 − ϕ̄1) + α4 sin(ϕ2 − ϕ̄2)]
+ α5(τ − τ̄)2 + α6 cos[(ϕ1 − ϕ̄1) − (ϕ2 − ϕ̄2)]}, (F.13)

where D is a normalization factor, while α1, . . . , α6 are given by

α1 = 1

a
[κ1(ρ22 − 1) +√κ1κ2(ρ12 − ρ1ρ2)],

α2 = 1

a
[κ2(ρ21 − 1) +√κ1κ2(ρ12 − ρ1ρ2)],

α3 =√κ1(ρ12ρ2 − ρ1)/(aστ),
α4 =√κ2(ρ12ρ1 − ρ2)/(aστ),
α5 = 1

2a
⋅
1 − ρ212
σ2τ

,

α6 =
√
κ1κ2(ρ1ρ2 − ρ12)

a
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with κi = 1/σ2ϕ i
, i = 1, 2 denoting the concentration parameters in AoD and

AoA respectively and a = ρ22 + ρ212 + ρ21 − 2ρ12ρ1ρ2 − 1.
Fig. F.1 depicts the 3 dB-spread surface

{(ϕ1, ϕ2, τ) ∶ f (ϕ1, ϕ2, τ) = 1

2
f (ϕ̄1, ϕ̄2, τ̄)} (F.14)

computed using the density function (F.13) for the two parameter settings also
reported in this �gure. We observe that these surfaces are close to ellipsoids
when κ1 and κ2 are large. �is is reasonable as the density function (F.13) is
close to the density function of a truncatedmultivariateGaussian distribution
(F.8) in the case of small dispersion. Notice that the 3 dB-spread surface of the
multivariate Gaussian distribution is an ellipsoid.

F.3 Signal Model

We consider the case where the path components are dispersed in biazimuth
and delay. Following the nomenclature in [6], the continuous-time (complex
baseband representation of the) output signal of the Rx array reads

Y(t) = ∫ +π
−π
∫
+π

−π
∫
+∞

−∞

c2(ϕ2)c1(ϕ1)Ts(t − τ)h(t; ϕ1, ϕ2, τ)dϕ1dϕ2dτ +W(t).
(F.15)

In (F.15), Y(t) ∈ C
M2×1 contains the output signals of the Rx array elements

observed at time instance t, s(t) ∈ C
M1×1 denotes the complex baseband

representation of the transmitted signal, and the function h(t; ϕ1, ϕ2, τ) is
referred to as the (time-variant) biazimuth-delay spread function of the prop-
agation channel. In a scenario where the electromagnetic energy propagates
from the Tx to the Rx via D paths, h(t; ϕ1, ϕ2, τ) can be decomposed as

h(t; ϕ1, ϕ2, τ) = D

∑
d=1

hd(t; ϕ1, ϕ2, τ). (F.16)

�e summand hd(t; ϕ1, ϕ2, τ) denotes the dth path component. �e noise
vector W(t) ∈ C

M2×1 in (F.15) is a circularly symmetric, spatially and tem-
porally white complex Gaussian process with component spectral height σ2w .
Finally, ci(ϕ) ≐ [ci ,1(ϕ), . . . , ci ,m i(ϕ), . . . , ci ,M i(ϕ)]T ∈ C

M i×1, i = 1, 2 are the
responses of the Tx array and the Rx array respectively.

We assume that the biazimuth-delay spread functions hd(t; ϕ1, ϕ2, τ),
d ∈ {1, . . . ,D} are uncorrelated complex (zero-mean) orthogonal stochastic
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measures, i.e.

E[hd(t; ϕ1, ϕ2, τ)∗hd′(t′; ϕ′1, ϕ′2, τ′)] =
Pd(ϕ1, ϕ2, τ)δdd′δtt′δ(ϕ1 − ϕ′1)δ(ϕ2 − ϕ′2)δ(τ − τ′), (F.17)

where (⋅)∗ denotes complex conjugate, δ⋅⋅ and δ(⋅) represent the Kronecker
delta and Dirac delta function respectively, t and t′ are discrete time instants
at which the spread function are sampled, and

Pd(ϕ1, ϕ2, τ) ≐ E[∣hd(t; ϕ1, ϕ2, τ)∣2]
is the biazimuth-delay power spectrum of the dth path component. Identity
(F.17) implies that the spread functions of di�erent individual path compo-
nents or at di�erent observation instants are uncorrelated.With the above as-
sumptions, h(t; ϕ1, ϕ2, τ) is also an uncorrelated complex zero-mean stochas-
tic measure speci�ed by

E[h(t; ϕ1, ϕ2, τ)∗h(t′; ϕ′1, ϕ′2, τ′)] =
P(ϕ1, ϕ2, τ)δtt′δ(ϕ1 − ϕ′1)δ(ϕ2 − ϕ′2)δ(τ − τ′) (F.18)

with P(ϕ1, ϕ2, τ) = ∑D
d=1 Pd(ϕ1, ϕ2, τ).

�e biazimuth-delay spectrum Pd(ϕ1, ϕ2, τ) describes the manner the
average power of the dth path component is distributed with respect to AoD,
AoA and delay. We assume that

Pd(ϕ1, ϕ2, τ) = Pd ⋅ f (ϕ1, ϕ2, τ; θd),
where Pd represents the total average power of the dth path component and
f (ϕ1, ϕ2, τ; θd) is the density function (F.13) with path-speci�c parameters

θd ≐ [ϕ̄1,d , ϕ̄2,d , τ̄d , κ1,d , κ2,d , στd , ρ1,d , ρ2,d , ρ12,d].
Clearly, the center of gravity of Pd(ϕ1, ϕ2, τ) coincides with (ϕ̄1,d , ϕ̄2,d , τ̄d),
i.e. the location at which the density function f (ϕ1, ϕ2, τ; θd) exhibits its
maximum.�e shape of Pd(ϕ1, ϕ2, τ) is determined jointly by κ1,d , κ2,d , στd ,
ρ1,d , ρ2,d , and ρ12,d .

Let θ denote a vector containing the model parameters in (F.15)

θ ≐ [σ2w , P1, P2, . . . , PD , θ1 , θ2, . . . , θD].
A stochastic maximum likelihood estimator of θ can be easily derived [10] for
the casewhere the spread functions of the path components areGaussian.Due
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Table F.1: Setting of the measurement equipment.

Carrier frequency 5.25 GHz
Bandwidth 200 MHz
Chip frequency 100 MHz
Code length 255 Chips
Tx array height 1.53 m
Rx array height 0.82 m

to the property expressed in (F.17), the spread functions of distinct path com-
ponents or at di�erent time instants are independent. �e SAGE algorithm
[11] can be easily implemented as a low-complexity approximation of the
maximum likelihood estimator. Due to the space limitation, the descriptions
of the maximum likelihood estimator and the SAGE algorithm are omitted in
this paper.

F.4 Experimental Investigations

�emeasurement data were collected using theMIMOwideband radio chan-
nel sounder Elektrobit Propsound CS [12] [13].�e setting of the equipment
is reported in Table F.1.�e Tx and Rx were both equipped with two identical
50-element dual-polarized omni-directional arrays (See Fig. F.2). �e polar-
ization direction of the elements is ±45○ slanted with respect to the vertical.

�e measurement experiment was conducted in a big hall. During the
measurement procedure, the hall was crowded with people moving around.
�ese movements introduced time variations of the channel response. �e
positions of the Rx and Tx were kept �xed during the measurement proce-
dure. Fig. F.3 (a) and Fig. F.3 (b) show a photograph of the surroundings of
the Tx and the Rx respectively. Fig. F.4 depicts the map of the premises. We
notice that the Rx position is in the hall and the Tx is located at the entrance of
a corridor.�e data of 900measurement cycles were collectedwithin a period
of 60 s. A measurement cycle refers to the interval within which all 50 × 50
subchannels are sounded once.

In order to maintain low computational complexity, the measurement
data collected using two identical subarrays of the Tx and Rx arrays are
considered. Each subarray consists of 9 dual-polarized elements uniformly
spaced on a cylinder (See Fig. F.2). Fig. F.5 depicts the estimated delay power
spectrum obtained by averaging the squared responses of the 81 subchannels
of the 9 × 9 MIMO system. Again, to limit the computational e�ort the
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Ring of 9-element
subarray used for
the estimation of
biazimuth-delay
dispersion.

Fig. F.2: Illustration of the antenna arrays used in the Tx and the Rx of the channel sounder.

(a) Surroundings of the Tx. (b) Surroundings of the Rx.

Fig. F.3: Photographs of the premises where the measurement experiment was conducted.

Fig. F.4: Map of the premises where the measurement experiment was conducted.�e Tx and Rx
locations are marked with “P1” and “Rx10” respectively.
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Fig. F.5: Estimated delay power spectrum.

observation samples collected fromdelay 160 ns to delay 270 ns are considered
in the estimation process.

In the SAGE algorithm, the dynamic range for the path power estimates
is set to be 30 dB with respect to the maximum power estimate. �e Bartlett
beamformer [1] is used to initialize the path parameter estimates.�e param-
eters that the Bartlett beamformer is incapable to estimate are set to certain
prede�ned values. So, the estimates of the concentration parameters κ1,d , κ2,d ,
d = 1, . . . ,D are set to 50 and the estimates of the coe�cients ρ1,d , ρ2,d , ρ12,d ,
d = 1, . . . ,D equal 0. With this setting it is assumed a priori that the path
components are close to being specular and that no dependency occurs across
the considered dispersion dimensions.

A�er 10 SAGE iteration cycles, the parameter estimates of 20 path compo-
nents are obtained. Table F.4 reports the values of these estimates.�e mean
of the delay spread estimates of these components is 5.0 ns.�e AoD spread
estimates range from 4.4○ to 16.2○ with a mean equal to 9.0○.�e AoA spread
estimates range from 3.2○ to 8.8○ with amean 5.0○.�e di�erence between the
AoA and AoD spread estimates can be attributed to the di�erent structures
of the environments surrounding the Tx and the Rx. From these results we
observe that in a closed environment, e.g. in a corridorwhere theTx is located,
path components exhibit larger angular spreads than in an open environment,
like the hall where the Rx is located.

Fig. F.6 depicts Bartlett(Σ̂), Bartlett(Σ(θ̂)) and the estimated power spec-
trum P̂(ϕ1, ϕ2, τ). �e notations “Bartlett(Σ̂)” and “Bartlett(Σ(θ̂))” denote
the Bartlett spectrum calculated from respectively the sample covariance
matrix and the covariance matrix computed based on the parameter estimate
θ̂.�e estimated power spectrum P̂(ϕ1, ϕ2, τ) is given by

P̂(ϕ1, ϕ2, τ) = 20

∑
d=1

P̂d ⋅ f (ϕ1, ϕ2, τ; θ̂d), (F.19)

where θ̂d denotes the estimate of the path-speci�c parameter θd . Note that

164



F.4. EXPERIMENTAL INVESTIGATIONS

d
τ̄ d

n
s

ϕ̄
1,
d
[○ ]

ϕ̄
2,
d
[○ ]

σ
τ d
n
s

κ
1,
d

σ 1
,d
[○ ]

κ
2,
d

σ 2
,d
[○ ]

ρ
1,
d

ρ
2,
d

ρ
12
,d

P d
[10−

7
]

P d
[d
B
]

1
21
0

40
14
6

4.
7

56
.3

7.
6

20
3.
8

4.
0

0.
1

0.
0

0.
1

3.
8

0
2

17
0

50
28

4.
4

22
.5

12
.1

26
5.
0

3.
5

0.
5

0.
0
−0

.3
3.
5

−0
3

21
0

12
4

14
6

4.
7

37
.5

9.
4

32
0.
0

3.
2
−0

.3
0.
0
−0

.1
3.
1

−1
4

17
0

12
6

26
4.
9

95
.0

5.
9

17
6.
3

4.
3
−0

.3
−0

.2
0.
4

1.
8

−3
5

16
5

12
0

20
9.
4

33
.8

9.
9

11
1.
3

5.
4

0.
7
−0

.4
−0

.6
1.
0

−6
6

17
0

−5
0

26
4.
3

43
.8

8.
7

32
1.
3

3.
2
−0

.3
−0

.1
0.
4

0.
7

−7
7

21
0

−1
30

14
8

4.
0

10
3.
8

5.
6

14
7.
5

4.
7

0.
4

0.
1

0.
0

0.
7

−7
8

24
5

13
6

13
8

4.
2

57
.5

7.
6

90
.0

6.
0

0.
3

0.
0
−0

.5
0.
6

−8
9

24
5

74
13
6

4.
2

36
.3

9.
5

29
0.
0

3.
4

0.
4

0.
2
−0

.7
0.
6

−8
10

17
5

17
6

26
5.
9

11
6.
3

5.
3

21
0.
0

4.
0
−0

.4
−0

.8
0.
5

0.
5

−9
11

24
5

36
6

5.
8

35
.0

9.
7

65
.0

7.
1

0.
0
−0

.8
0.
4

0.
5

−9
12

24
5

14
13
8

3.
7

17
0.
0

4.
4

26
0.
0

3.
6

0.
3
−0

.3
0.
7

0.
3

−1
1

13
20
0

56
32

4.
5

96
.3

5.
8

10
7.
5

5.
5

0.
2
−0

.4
−0

.1
0.
3

−1
1

14
25
0

16
8

30
4.
8

16
.3

14
.2

52
.5

7.
9

0.
5

0.
2

0.
9

0.
3

−1
2

15
17
5

−1
34

22
6.
4

71
.3

6.
8

16
3.
8

4.
5

0.
2
−0

.1
−0

.8
0.
2

−1
2

16
21
0

−3
8

14
6

5.
7

12
.5

16
.2

73
.8

6.
7

0.
2

0.
0

0.
3

0.
2

−1
4

17
21
0

−1
78

14
8

4.
2

13
.8

15
.5

66
.3

7.
0
−0

.1
0.
1
−0

.1
0.
1

−1
5

18
19
5

50
15
0

2.
9

56
.3

7.
6

29
8.
8

3.
3
−0

.1
−0

.1
−0

.2
0.
1

−1
6

19
17
0

50
0

3.
2

30
.0

10
.5

15
7.
5

4.
6

0.
3

0.
2

0.
4

0.
1

−1
6

20
21
0

11
0

11
0

7.
9

52
.5

7.
9

42
.5

8.
8
−0

.5
0.
6
−0

.3
0.
05

−1
9

M
ea
n

5.
0

57
.8

9.
0

17
1.
1

5.
0

0.
1

-0
.1
0

0.
0

Ta
bl
e
F.
2:
E
st
im

at
es
of
th
e
pa
ra
m
et
er
s
of
in
di
vi
du

al
pa
th

co
m
po
n
en
ts
.

165



PAPER F. PARAMETRIC CHARACTERIZATION AND ESTIMATION OF BI-AZIMUTH AND DELAY
DISPERSION OF INDIVIDUAL PATH COMPONENTS

−180 0 180
−180

0

180

1 2 3 4 5

x 10
−8

1 2 3

x 10
−9

Bar
tlet

t(Σ̂)
Bar

tlet
t(Σ(Θ̂)

)
P̂(ϕ 1, ϕ 2

, τ)
ϕ
2
[○ ]

ϕ1 [○]

155 ns

160 ns

165 ns

170 ns

175 ns

180 ns

185 ns

190 ns

195 ns

200 ns

Delay

1 2 3 4 5

x 10
−8

1 2 3

x 10
−9

Bar
tlet

t(Σ̂)
Bar

tlet
t(Σ(Θ̂)

)
P̂(ϕ 1, ϕ 2

, τ)

205 ns

210 ns

215 ns

220 ns

225 ns

230 ns

235 ns

240 ns

245 ns

250 ns

Delay

Fig. F.6: Estimated biazimuth-delay power spectrum.
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although the biazimuth power spectra are plotted versus delay in Fig. F.6, the
power spectrum of individual path components is estimated in AoA, AoD
and delay jointly.

From Fig. F.6 we observe that the estimated power spectra of individual
path components are more concentrated than the corresponding footprints
observed in Bartlett(Σ(θ̂)).�e blurring e�ect observed in Bartlett(Σ(θ̂)) is
due to the product of the ambiguity functions of theTx andRx array responses
in azimuth. Bartlett(Σ̂) and Bartlett(Σ(θ̂)) are observed to be similar. In the
following, the ratio tr[ΣS(θ̂)]/tr[Σ̂] is calculated, which can be conceived as
the fraction of the signal power extracted from the sample covariance matrix.
Here, tr[⋅] denotes the trace of the matrix given as an argument. �e signal-
only covariance matrix ΣS(θ̂) is calculated using the parameter estimate θ̂

with the noise variance estimate σ̂2w set to zero. �is ratio equals 87.6 % for
the considered case.

Although Bartlett(Σ̂) and Bartlett(Σ(θ̂)) in Fig. F.6 are observed to be
similar, their signi�cant global and local maxima slightly di�er. �is dif-
ference might be due to the fact that in the parameter estimation process,
the assumption of horizontal-only propagation is used. However, from the
photographs shown in Fig. F.3 we see that this assumption may not hold for
all propagation paths. �is inconsistency may introduce estimation errors
as shown by further simulation studies. Another reason which might lead
to this e�ect is that the derived density function (F.13) only provides an
approximation to the shape of the e�ective power spectrumof individual path
components. Estimation errors might result in the case where the di�erence
is signi�cant.

Fig. F.7 depicts the estimated 3 dB-spread surfaces (F.14) with the true
path component parameters replaced by their estimates. �e color of the
surfaces codes the path power estimates according to the included color scale.
We observe that some of the surfaces are not symmetric with respect to the
axes of the delay, the AoD and the AoA. �is e�ect indicates dependency
of dispersion of individual path components across di�erent dispersion di-
mensions. Some recent published works, e.g. [9], assume that dispersion of
individual propagation paths in di�erent dimensions (e.g. in delay and in
AoA) is independent. Clearly, this assumption does not hold for some of
the estimated path components in the investigated propagation environment.
Further investigations are necessary in order to assess whether this observa-
tion is valid for all types of environments or not.
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Fig. F.7: Estimated 3 dB-spread surfaces of individual dispersed path components.�e color of the
surfaces codes the path power estimates according to the color scale reported on the right.

F.5 Conclusions

In this contribution, we derived a distribution which is suitable for charac-
terizing biazimuth (azimuth of arrival and azimuth of departure) and delay
dispersion of individual path components in the response of the propagation
channel. �is distribution maximizes the entropy under the constraint that
its �rst and second moments are speci�ed. �e density function of the dis-
tribution characterizes the shape of the biazimuth-delay power spectrum of
individual path components.

Preliminary experimental investigations were conducted to assess the
applicability of the proposed characterization in real situations. From the
obtained results we observed that dispersion of the path components in both
azimuths and delay is much smaller than that one might infer from the
corresponding footprints in the Bartlett spectrum. Moreover, the estimated
power spectra of some path components are not symmetric with respect to
the axes of the delay, the azimuth of arrival and the azimuth of departure.�is
indicates dependency across di�erent dispersion dimensions.�e results also
show that the characterizationmethod should include dispersion in elevation.
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G.1. INTRODUCTION

Abstract

In this contribution, the Fisher-Bingham-5 (FB5) probability den-
sity function (pdf) is used to model the shape of the direction power
spectral density function (psdf) of individual path components in the
radio channel. �e FB5 distribution is selected because, among all
direction distributions, it maximizes the entropy under the constraints
that the �rst and second distribution moments are speci�ed. A SAGE
(Space-AlternatingGeneralized Expectation-maximization) algorithm
is derived based on this model for estimation of the parameters char-
acterizing the direction psdf of each path component in a multi-path
scenario. �e performance of the SAGE algorithm is evaluated using
measurement data. Preliminary results show that the estimated direc-
tion psdfs of individual path components exhibit di�erent ovalnesses
and tilt angles. �ese density functions are noticeably more concen-
trated than the corresponding footprints in the Bartlett spectrum.

G.1 Introduction

Due to the heterogeneity of the propagation environment, the response of
the radio channel can be viewed as the superposition of a certain number
of components. Each component, which we refer to as “path component”,
is contributed by an electromagnetic wave propagating along a path from
the transmitter (Tx) to the receiver (Rx). Along this path, the wave interacts
with a certain number of objects called scatterers. Due to the geometrical
extent and the nonhomogeneous electromagnetic properties of the scatterers,
a path may be dispersive in delay, direction of departure, direction of arrival,
polarizations, as well as in Doppler frequency when the environment is time-
variant. As a consequence, an individual path component may be spread in
these dispersion dimensions. Modeling of these dispersion phenomena is
required for the design and optimization of mobile communication systems
and thus, experimental knowledge of the dispersive characteristics of path
components is necessary.

In recent years, estimation of the dispersive characteristics of individ-
ual path components in multiple dimensions has attracted much attention.
Some of the techniques are derived using the assumption that the normalized
power spectral density function (psdf) of individual path components can
be described using a certain probability density function (pdf). In [1], the
product of the von-Mises pdf and the exponential pdf is used to model the
normalized delay–Azimuth-of-Arrival (AoA) psdf. In [2] and [3], the von–
Mises–Fisher and Fisher–Bingham–5 (FB5) pdfs are used to characterize the
normalized AoA–Azimuth-of-Departure (AoD) psdf and direction (azimuth
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and elevation) psdf respectively. �e normalized delay–AoA–AoD psdf is
characterized using a 3-variate pdf derived in [4].

In this contribution, we derive a SAGE algorithm to estimate the direction
(azimuth and elevation) power spectrum of individual path components.�e
normalized direction psdf is modeled using the FB5 pdf as described in [3].
�e SAGE algorithm is applied tomeasurement data to estimate the direction
power spectra of multiple dispersive path components.

�is contribution is organized as follows. In Section G.2, a signal model
for channel sounding is presented and characterization of the normalized
direction psdf using the FB5 pdf is introduced. In Section G.3, the estimators
of themodel parameters are derivedwithin the SAGE framework. SectionG.4
shows the experimental results. Finally concluding remarks are provided in
Section G.5.

G.2 Signal Model

In this contribution, we focus on the dispersive characteristics of individual
path components in direction of arrival (DoA).�e channel sounding system
considered has a SIMO (single-input multiple-ouput) con�guration with a
single Tx antenna and a M-element Rx antenna array. �e signal model,
the characterization method, and the estimation method derived here can
be easily modi�ed to handle a MISO (multiple-input single-ouput) channel
sounding con�guration where dispersion in direction of departure (DoD) is
of interest.

We consider narrow-band transmission, which implies that the product
of the signal bandwidth times the channel delay spread is much smaller than
one. Following the nomenclature in [5], the continuous-time output signal of
the Rx array of the SIMO system reads

Y(t) = H(t)u(t)+W(t) ∈ C
M

= [ ∫
S2

c(Ω)h(t;Ω)dΩ]u(t) + W(t). (G.1)

�e complex vectorY(t) contains the output signals of the Rx array observed
at time instance t. �e scalar function u(t) denotes the complex envelope
of the transmitted sounding signal at time t. �e vector H(t) represents the
time-variant response of the SIMO system. We assume that u(t) is known to

the Rx and that ∫
T
0 u(t)u(t)∗dt = 1, where [⋅]∗ denotes complex conjugate

and T represents the duration of observation interval.�e function h(t;Ω) is
the (time-variant) DoA spread function of the propagation channel [5]. Here,
Ω denotes the DoA, which is de�ned to be a unit vector with initial point
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anchored at the originO of a coordinate system located in the vicinity of the
Rx array.�e end point ofΩ lies on a unit sphereS2 centered atO.�eDoAΩ

is uniquely determined by the spherical coordinates (ϕ, θ) ∈ [−π, π)× [0, π]
of its end point according to the relation

Ω =
⎡⎢⎢⎢⎢⎢⎢⎣
cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)
⎤⎥⎥⎥⎥⎥⎥⎦
. (G.2)

�e angles ϕ and θ are referred to as the AoA and elevation of arrival (EoA)
respectively.�e noiseW(t) in (G.1) is a vector-valued, circularly symmetric,
spatially and temporally white Gaussian process with component spectral
height σ2w . We assume that σ2w can be measured and therefore is known in
advance. In (G.1) the complex vector

c(Ω) ≐ [c1(Ω), c2(Ω), . . . , cM(Ω)]T (G.3)

with [⋅]T denoting transposition is the responses of the Rx array. In a scenario
where the electromagnetic energy propagates from the Tx to the Rx via D
paths, the DoA spread function h(t;Ω) can be decomposed as

h(t;Ω) = D

∑
d=1

hd(t;Ω). (G.4)

�e summand hd(t;Ω) denotes the dth path component in h(t;Ω).
We assume that the transfer vectorH(t) �uctuates over the overall sound-

ing period, but remains constant within individual observation intervals:

H(t) ≐ Hn , t ∈ [tn , tn + T) and n ∈ [1, . . . ,N]. (G.5)

Here, tn denotes the time instance at which the nth observation interval
starts and N represents the number of observation intervals. Similarly, the
spread functions hd(t;Ω), d = 1, . . . ,D arising in (G.4) are constant within
individual observation intervals:

hd(t;Ω) = hd(tn;Ω) ≐ hd ,n(Ω), t ∈ [tn , tn + T). (G.6)

�e processes hd ,n(Ω), n ∈ [1, . . . ,N], d ∈ [1, . . . ,D] are assumed to be
uncorrelated complex (zero-mean) orthogonal stochastic measures, i.e.

E[h∗d ,n(Ω)hd′ ,n′(Ω′)] = Pd(Ω)δnn′δdd′δ(Ω −Ω′). (G.7)

Here, δ(⋅) and δ(⋅) represent the Kronecker delta and the Dirac delta func-
tion respectively, and Pd(Ω) ≐ E[∣hd ,n(Ω)∣2] denotes the direction psdf of
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the dth path component. Identity (G.7) implies that the spread functions of
distinct individual path components or at di�erent observation intervals are
uncorrelated.�is scenario is referred to as the uncorrelated scattering case in
the literature (see e.g. [5]).

�e direction psdf Pd(Ω) describes the manner the average power of the
dth path component is distributed on the unit sphere S2. It can be written as

Pd(Ω) = Pd ⋅ fd(Ω) (G.8)

with Pd representing the average power of the dth path component and fd(Ω)
being a normalized direction psdf.

In this contribution, we assume that fd(Ω) coincides with the FB5 pdf [6].
Among all distributions on the unit sphere S2, the FB5 distribution [6] maxi-
mizes the entropy under the constraints that the distribution �rst and second
moments are speci�ed.�e �rst moment of the distribution is parameterized
by the nominal direction, while the second moments are characterized by
parameters describing the concentration and the ovalness of the spreads of
fd(Ω) on S2.�e pdf fFB5(Ω) reads

fFB5(Ω) = C(κ , η)−1 exp{κγT

1 Ω + κ ⋅ η[(γT

2 Ω)2 − (γT

3 Ω)2]}, (G.9)

where κ ≥ 0 represents the concentration parameter and η ∈ [0, 1/2) is an
ovalness factor. In (G.9),C(κ , η) denotes a normalization constant depending
on κ and η, γ1, γ2, and γ3 ∈ R

3 are unit vectors.�e matrix Γ ≐ [γ1, γ2, γ3] is
uniquely determined by three angular parameters θ̄, ϕ̄ and α according to

Γ =
⎡⎢⎢⎢⎢⎢⎢⎣
sin(θ̄) cos(ϕ̄) − sin(ϕ̄) cos(θ̄) cos(ϕ̄)
sin(θ̄) sin(ϕ̄) cos(ϕ̄) cos(θ̄) sin(ϕ̄)

cos(θ̄) 0 − sin(θ̄)
⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤⎥⎥⎥⎥⎥⎥⎦
.

(G.10)
In (G.10), ϕ̄ and θ̄ coincide with respectively the azimuth and the elevation
of the nominal direction. �e angle α describes how the pdf is tilted on S2.
A detailed description of the meanings of γ1, γ2 and γ3 can be found in [6].
Note that when η equals 0, the FB5 pdf does not depend on the values of α and
the equal-value contours of fFB5(Ω) are circles. For η ∈ (0, 1/2), the equal-
density contours of the pdf exhibit the ovalness, which becomes signi�cant as
η increases. �e equal-value contours resemble ellipses when κ is small. Fig.
G.1 depicts the FB5 pdf for the parameter setting reported in the caption of
this �gure.

�e parameters of fd(Ω) are concatenated in θ̃d ≐ [ϕ̄d , θ̄d , κd , ηd , αd].
We use a vector θ to represent all unknown model parameters in (G.1), i.e.

θ ≐ [P1, P2, . . . , PD , θ̃1 , θ̃2, . . . , θ̃D]. (G.11)
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Fig. G.1: �e FB5 pdf with ϕ̄ = 135
○ , θ̄ = 18○ , α = 144○ , κ = 80 and η = 0.375. �e color bar to the

right of the plot shows the magnitude expressed in linear scale.

G.3 Estimation of the Model Parameters

In a scenario with multiple path components, as depicted by (G.1), the prob-
lem at hand is to estimate the parameter vector θ. Maximum likelihood
estimation of θ requires to solve a 6D dimensional non-linear optimization
problem. �e high computational complexity involved prohibits the imple-
mentation of themaximum likelihood estimation in practise. In the sequel, we
derive a SAGE algorithm [7] as an approximation of the maximum likelihood
estimator of θ.

G.3.1 Admissible hidden data

We choose the subsets of parameters updated at the di�erent iterations of
the SAGE algorithm to be the sets including the parameters characterizing
individual path components. Hence, in Iteration i = 1, 2, . . . , the parameter
subset θd ≐ [Pd , θ̃d] with d = [(i − 1) mod D] + 1 is updated.

We de�ne the admissible hidden data associated with θd as

Xd(t) ≐ Hd(t)u(t)+W(t)
= [ ∫

S2

c(Ω)hd(t;Ω)dΩ]u(t) +W(t). (G.12)

It follows from the properties of hd(t;Ω) thatHd(t) is constant within indi-
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vidual observation intervals, i.e.

Hd(t) ≐ Hd ,n = ∫
S2

c(Ω)hd ,n(Ω)dΩ. (G.13)

�e output of a correlator

H̃d ,n ≐ ∫
tn+T

tn
xd(t)u(t)∗dt, n = 1, . . . ,N (G.14)

when the input is the observation Xd(t) = xd(t) can be written as

H̃d ,n = Hd ,n +Nn , (G.15)

whereNn ∈ C
M , n = 1, . . . ,N is a sequence ofN independent randomvectors,

the entries of which are independent circularly symmetric Gaussian random
variables with variance σ2w . Invoking the central limit theorem, the elements
of H̃d ,n in (G.12) are assumed to be Gaussian random variables. �e vectors
H̃d ,1, . . . , H̃d ,N form a su�cient statistic for the estimation of θd .

G.3.2 Expectation Step

In the Expectation (E-) step of Iteration i, we compute the expectation of the
likelihood of θd conditioned on the observation Y(t) = y(t) and assuming

that θ = θ̂[i−1]:
Q(θd ∣θ̂[i−1]) ≐ E[Λ(Ωd ; xd)∣Y(t) = y(t), θ̂[i−1])]. (G.16)

Here, θ̂
[i−1]

denotes the parameter estimates obtained in the (i − 1)th iter-
ation and Λ(Ωd ; xd) represents the log-likelihood function of Ωd given an
observation Xd(t) = xd(t). It can be shown that (G.16) is of the form

Q(θd ∣θ̂[i−1]) = − ln∣ΣH̃d
(θd)∣ − tr[(ΣH̃d

(θd))−1 ⋅ Σ̂H̃d
(θ̂[i−1])], (G.17)

where tr[⋅] is the trace of the matrix given as an argument and ΣH̃d
(θd) is the

covariance matrix of H̃d ,n:

ΣH̃d
(θd) = Pd ∫

S2

c(Ω)c(Ω)H fd(Ω)dΩ + σ2wIM (G.18)

with [⋅]H denoting the Hermitian operator. In (G.17), Σ̂H̃d
(θ) is the condi-

tional covariance matrix of H̃d ,n given the observation y(t) for θ. It can be

shown that Σ̂H̃d
(θ̂[i]) is calculated as

Σ̂H̃d
(θ̂[i]) = ΣH̃d

(θ̂[i]d ) + ΣH̃d
(θ̂[i]d )[ΣH̃(θ̂[i])]−1(Σ̂H̃ − ΣH̃d

(θ̂[i]d ))
⋅ [ΣH̃(θ̂[i])]−1ΣH̃d

(θ̂[i]d ), (G.19)
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where

ΣH̃(θ̂[i]) = D

∑
d=1

ΣH̃d
(θ̂[i]d ) + σ2wIM , (G.20)

and

Σ̂H̃ = 1

N

N

∑
n=1

H̃nH̃
H
n (G.21)

with H̃n ≐ ∫ tn+T
tn

y(t)u(t)∗dt, n = 1, . . . ,N .

G.3.3 Maximization Step

In the M-step, the estimate θ̂
[i]
d is calculated as

θ̂
[i]

d = argmax
θd

Q(θd ∣θ̂[i−1]). (G.22)

By applying a coordinate-wise updating procedure similar to the one used
in [8], the required multiple-dimensional maximization can be reduced to
multiple one-dimensional maximization problems.�is coordinate-wise up-
dating still remains within the SAGE framework with the admissible data
given in (G.12).

G.3.4 Initialization Step

In the initialization step, the nominal AoAs and EoAs of the path components
are estimated using a SAGE algorithm derived based on the specular-path
model [8]. �e parameters which cannot be estimated using this method
are set equal certain prede�ned values. More speci�cally, the estimates of
the concentration parameters κd , d = 1, . . . ,D are set equal to 100 and the
ovalness parameters are set equal to zero. With this setting it is assumed a
priori that the path components are close to specular path components.�is
initialization procedure has proved to work well for measurement data in the
experimental scenarios in which it was tested.

G.4 Experimental Investigations

�e measurement data were collected using the Elektrobit Propsound CS
switched channel sounder [2] in an o�ce building.�e sounder was used in a
MISO (multiple-input single-output) con�guration where the Rx has a single
antenna and the Tx is equipped with a 50-element omnidirectional antenna
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(a) Surroundings of the Tx. (b) Surroundings of the Rx.

(c) Map of the premises.

Fig. G.2: Photographs and map of the premises where the measurement experiment was
conducted.

array. A detailed description of the sounder, the array and the measurement
settings can be found in [2]. During the measurement, the Rx was located
in a corridor and the Tx was placed in an o�ce room. Two photographs
and the map shown in Fig. G.2 depict the surroundings of the Rx and Tx.
�e locations of the Tx and the Rx are marked with the symbols ⊙ and ⊗
respectively on the map. During the measurement period, both Tx and Rx
were �xed. People were moving in the o�ce where the Tx was located.�ese
movements created the randomness of the radio channel. Due to this fact,
the uncorrelated scattering condition as depicted in (G.7) is considered to be
valid.

�e data obtained from 50 consecutive measurement cycles covering a
period of 3.3 seconds are considered. A measurement cycle is referred to
as the interval within which all 50 subchannels are sounded once. In this
preliminary study, we investigate dispersion of individual path components
in direction of departure and neglect dispersion in other dimensions. To this
aim, we consider the output of the Rx antenna within the relative delay bin
160-170 ns. �e narrow-band signal model (G.1) is applicable in the consid-
ered scenario for this delay bin. �e parameter estimators derived based on
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Table G.1: �e estimates of the parameters obtained using the SAGE algorithm.

d ϕ̄d [○] ˆ̄θd [○] κ̂d η̂d α̂d [○] P̂d[10−10] P̂d/P̂1 [dB]
1 −84 4 140 0.33 59.3 7.10 0

2 114 −4 160 0.49 15.8 5.72 −1
3 44 −10 923 0.00 26.5 5.19 −1
4 −24 8 923 0.17 144.0 4.10 −2

the SAGE algorithm can be easily modi�ed to estimate the parameters of the
DoD psdfs of individual path components.

�e SAGE algorithm is applied while assuming that the number of the
path components is known and equals 4 in the considered scenario. Totally
10 SAGE iteration cycles are performed. Here, an iteration cycle is referred to
as the procedure in which the estimates of all elements in θ are updated once.
In the M-step we select the quantization step to coincide with the resolution
of the calibration measurements, i.e. be 2○ in both azimuth and elevation.

Fig. G.3 depicts the estimation results returned by the SAGE algorithm.
�e parameter estimates are reported in Table G.1. �e notation Bartlett(⋅)
arising in the captions of Fig. G.3(a) and Fig. G.3(b) denotes the power spec-
trum estimate obtained with Bartlett beamformer [9] using the covariance
matrix given as an argument. Fig. G.3(c) demonstrates the azimuth-elevation
psdf corresponding to the estimate of the direction psdf P̂(Ω) of the radio
channel. It can be observed that the azimuth-elevation psdfs of individual
path components estimated using the SAGE algorithm are noticeably more
concentrated than the corresponding footprints visible in Bartlett(ΣH̃(θ̂)).
�ese psdfs di�er in concentration, ovalness and tilt angle. �e “blurring”
e�ect arising in the Bartlett spectrum is due to the response of the Rx array.

�e footprints of the path components shown in Bartlett(ΣH̃(θ̂)) and
Bartlett(Σ̂H̃) are observed to be similar. �is implies that the reconstructed
covariance matrix computed using the parameter estimates is close to the
sample covariance matrix. We also observe some di�erences in the shapes
and the (local) maxima of the corresponding footprints.�ese di�erences are
supposed to be caused by discrepancies between the “true” normalized psdfs
of individual path components and the FB5 pdf. Another possible reason
for the di�erence is that dispersion in other dimensions, e.g. in delay, is not
considered.
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(a) Bartlett(Σ̂H̃)

(b) Bartlett(ΣH̃(θ̂))

(c) Azimuth-Elevation psdfs of path components corresponding to P̂(Ω)

Fig. G.3: Estimates of the azimuth-elevation psdf within the delay bin 160-170 ns. �e estimates
of the parameters are shown in Table G.1. �e indices of the path components reported in Table
G.1 are consistent with those given in Figure G.3(c).
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G.5 Conclusions

In this contribution, we derived a SAGE algorithm for estimation of the pa-
rameters characterizing the direction power spectral density function (psdf)
of individual path components in a radio propagation channel. �e Fisher-
Bingham-5 probability density function (pdf) was used to describe the nor-
malized direction psdf of individual path components. �e performance of
the SAGE algorithmwas evaluated using measurement data. From the results
we observed that the Bartlett spectrum computed with the signal covariance
matrix calculated using the SAGE estimates is similar to the Bartlett spectrum
computed with the sample covariance matrix. �e estimated psdfs of indi-
vidual path components exhibit di�erent ovalness and tilt angle. Moreover
they are more concentrated than the corresponding footprints in the Bartlett
spectrum. �ese results indicated that dispersive path components exist in
real propagation channels. In such a case, the conventional algorithms de-
rived based on the specular-path model are inappropriate for estimation of
the parameters of these path components. As shown in [10], the mismatch
between the specular-path model and the “true” dispersive feature of path
components results in signi�cant errors of estimation of the path parameters
with large probabilities of occurrence.
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H.1. INTRODUCTION

Abstract

In this contribution, a multi-variate probability density function
(pdf) is derived and used to describe the normalized direction–(i.e.
azimuth and elevation)–delay power spectral density of individual dis-
persed components in the response of the propagation channel. �is
pdfmaximizes the entropy under the constraint that its �rst and second
moments are speci�ed.We use a SAGE algorithm, as an approximation
of the maximum-likelihood method, to estimate the parameters of the
component direction–delay power spectral densities from measure-
ment data. �e experimental results show that the proposed pdf and
the SAGE algorithm form altogether an e�ective tool to characterize
direction-delay dispersion in the propagation channel.

H.1 Introduction

Due to the heterogeneity of the propagation environment, the received signal
at the receiver (Rx) of a radio communication system can be modelled as
the superposition of a number of components originating from waves prop-
agating along speci�c propagation paths. Each component may be dispersive
in delay, direction of departure (DoD), direction of arrival (DoA), Doppler
frequency and polarization. Dispersion of individual components in these
dimensions signi�cantly in�uences the performance of communication sys-
tems using MIMO (multiple-input multiple-output) techniques [1].

In conventional parametric models for the MIMO wideband propaga-
tion channel, such as [2, Chapter 3], [3] and [4], dispersion of individual
components is modeled using a cluster of multiple specular components
estimated from measurement data.�e cluster parameters, such as the nom-
inal direction and direction spread, can be calculated for each cluster from
the parameter estimates of the specular components assigned to this cluster.
However, as shown in [5], the extracted dispersion parameters (e.g. azimuth)
of the specular components do not accurately characterize the true disper-
sive behavior of the original component when this component is dispersed.
�is phenomenon limits the reliability of channel models derived based on
specular components estimated from measurement data collected in real
environments.�erefore, in order to designmore realistic channel models we
need appropriate parametric models characterizing dispersion of individual
components, as well as e�cient estimators of the parameters entering these
models.

In recent years, various algorithms have been proposed for the estimation
of the dispersive characteristics of individual components in the channel
response [1, 6–8]. �ese algorithms estimate the parameters describing the
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power spectral density (psd) of individual components. In real environments,
a component psd can be irregular due to the heterogenous physical and
electromagnetic properties of the scatterers with which the waves generating
this component interact.�e center of gravity and spreads of a component psd
are considered as the characteristic dispersion parameters. �e algorithms
proposed in these contributions estimate these parameters by approximating
the component psd with a certain probability density function (pdf), e.g. in
azimuth–of–arrival (AoA) [6–8] and inAoA and azimuth of departure (AoD)
[1].�e values of the parameter estimates obtained by using these algorithms
depend on the underlying pdfs. However, no rationale behind the selection
of the pdfs is given in these contributions. Furthermore, the performance of
these algorithms has not been investigated using measurement data.

In order to obtain accurate estimates of the dispersion parameters, a
rationale relying on the maximum-entropy (ME) principle [9] is proposed
in [10–12] for the selection/derivation of the pdfs characterizing component
psds. �is rationale utilizes the assumptions that each component psd has
�xed center of gravity and spreads, and moreover, no information is available
for any other properties, such as the exact shape and number of localmaxima,
of the component psd.�e center of gravity and the spreads of a component
psd are described by the �rst and second moments of a pdf. �us, using the
ME principle we derive a pdf which satis�es the constraint of �xed �rst and
second moments, while maximizes the entropy of any other constraint. �e
estimates of the dispersion parameters obtained by modeling the component
psd with this entropy-maximizing pdf provide the “safest” results in the sense
that, they are more accurate than the estimates computed using a pdf subject
to any constraint that is invalid in real situations. Based on this rationale, a
bivariate von-Mises-Fisher pdf and a Fisher-Bingham-5 (FB5) pdf are derived
for modeling the component psd in AoA and AoD [10] and in elevation and
azimuth [11, 12] respectively. Experimental investigations using measurement
data demonstrate that these characterizations are applicable in real environ-
ments.

In this contribution, we consider a single-input multiple-output (SIMO)
scenariowhere the propagation channel is dispersive inDoA (i.e. azimuth and
elevation of arrival) and delay. We propose to characterize the component
DoA–delay psd by a multi-variate pdf. �e applicability of this characteri-
zation method is evaluated using measurement data. With proper modi�-
cations, the characterization method can be used to describe dispersion of
individual components in DoD (i.e. azimuth and elevation of departure) and
delay in a multiple-input single-output (MISO) scenario.

�e organization of this contribution is as follows. In Section H.2, the
signalmodel for SIMO channel sounding is presented. SectionH.3 introduces
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the derived pdf characterizing the shape of the component DoA–delay psd.
In Section H.4, the SAGE estimators of the parameters of the psd are brie�y
described. Section H.5 presents the results from experimental investigations.
Finally, concluding remarks are addressed in Section H.6.

H.2 Signal Model and Assumptions

In this section, we introduce the signal model for SIMO channel sounding
and state our assumptions on dispersion in DoA and delay in the propagation
channel.

H.2.1 Signal Model for SIMO Channel Sounding

�e channel sounder considered here has a single antenna in the Tx and M
antennas in the Rx. We focus on a scenario where the propagation channel is
dispersive in delay τ ∈ R and DoA Ω. Here, Ω is de�ned to be a unit vector
with initial point anchored at the origin O of a coordinate system located
in the vicinity of the Rx array. �e end point of Ω lies on a unit sphere S2

centered atO [13].�e DoA Ω is uniquely speci�ed by the azimuth of arrival
ϕ ∈ [−π,+π) and the elevation of arrival θ ∈ [0, π] according to

Ω = e(ϕ, θ) ≐
⎡⎢⎢⎢⎢⎢⎢⎣
cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)
⎤⎥⎥⎥⎥⎥⎥⎦
. (H.1)

Following the nomenclature in [13], in one measurement period the continu-
ous-time (complex baseband representation of the) output signal of the mth
Rx antenna reads

Ym(t) = ∫ +∞
−∞

∫
S2

cm(Ω)u(t − τ)H(Ω, τ)dΩdτ + Wm(t), (H.2)

where cm(Ω) denotes the response of the mth Rx antenna, u(t) represents
the transmitted signal, and H(Ω, τ) is referred to as the DoA-delay spread
function of the propagation channel. �e noise component Wm(t) in (H.2)
is a circularly symmetric, spatially and temporally white complex Gaussian
process with spectral height σ2w .

In a scenario with D components, H(Ω, τ) can be decomposed as

H(Ω, τ) = D

∑
d=1

Hd(Ω, τ), (H.3)
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where the summand Hd(Ω, τ) represents the DoA-delay spread function of
the dth component.

Replacing H(Ω, τ) in (H.2) with the sum in (H.3), Ym(t) can be recast as
Ym(t) = D

∑
d=1

Sd ,m(t) + Wm(t), (H.4)

where Sd ,m(t) is the dth component in the received signal, i.e.

Sd ,m(t) = ∫ +∞
−∞

∫
S2

cm(Ω)u(t − τ)Hd(Ω, τ) dΩdτ. (H.5)

H.2.2 Assumptions for the DoA-Delay Spread Functions

We assume that the component spread functionHd(Ω, τ), d ∈ {1, . . . ,D} are
uncorrelated complex (zero-mean) orthogonal stochastic measures, i.e.

E[Hd(Ω, τ)∗Hd′(Ω′ , τ′)] = Pd(Ω, τ)δdd′δ(Ω −Ω′)δ(τ − τ′), (H.6)

where (⋅)∗ denotes complex conjugation, δ⋅⋅ and δ(⋅) represent the Kronecker
delta and the Dirac delta function respectively, while

Pd(Ω, τ) = E[∣Hd(Ω, τ)∣2] (H.7)

is the DoA–delay power spectrum of the dth component. Identity (H.6)
implies that the DoA-delay spread functions of di�erent components are
uncorrelated.

Invoking (H.3), (H.6) and (H.7), we can easily show that the spread func-
tion H(Ω, τ) of the propagation channel is a complex zero-mean orthogonal
stochastic measure, i.e.

E[H(Ω, τ)∗H(Ω′, τ′)] = P(Ω, τ)δ(Ω −Ω′)δ(τ − τ′), (H.8)

where

P(Ω, τ) = D

∑
d=1

Pd(Ω, τ) (H.9)

is theDoA-delay power spectrumof the propagation channel.�e component
power spectrum Pd(Ω, τ) can be written as

Pd(Ω, τ) = Pd ⋅ fd(Ω, τ), (H.10)

with Pd and fd(Ω, τ) representing respectively, the total average power and
the (normalized) direction–delay power spectral density (psd) of the dth
component.
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H.3 �e Direction-Delay Power Spectral Density

In this subsection, we use the MaximumEntropy (ME) rationale proposed in
[10, 11] to derive a pdf for modeling the component DoA-delay psd fd(Ω, τ).
We make the assumption that each component psd has its �xed center of
gravity and spreads in DoA and in delay.�ese parameters are represented by
the �rst and the second moments of the pdf. �e sought pdf maximizes the
entropy under the constraint that its �rst and second moments are speci�ed.

An ME pdf fME(Ω, τ) of the direction variable Ω and the delay variable
τ under the constraint that its �rst and secondmoments are speci�ed, has the
form [14]

fME(Ω, τ)∝ exp
⎧⎪⎪⎨⎪⎪⎩[

Ω − Ω̄
τ − τ̄

]T [A c

cT −b
] [Ω − Ω̄

τ − τ̄
]⎫⎪⎪⎬⎪⎪⎭ , (H.11)

where Ω̄ represents the mean direction with azimuth ϕ̄ and elevation θ̄,
i.e. Ω̄ = e(ϕ̄, θ̄), τ̄ denotes the mean delay, [⋅]T represents the transpose
operation, A ∈ R

3×3 describes the spread of fME(Ω, τ) in direction, b ∈ R

determines the concentration of fME(Ω, τ) in delay, and c ∈ R
3 describes the

dependence of the spread of fME(Ω, τ) in direction and in delay.
�e parametersA, c and b arising in (H.11) are all free parameters.Wenow

determine these parameters under the assumption that the conditional pdfs
of (H.11) with respect to delay and direction coincide with the Gaussian pdf
and the FB5 pdf respectively.�ese two pdfs are selected speci�cally because
they also maximize the entropy with speci�ed �rst and second moments.

�e Gaussian pdf for the variable delay reads

f (τ)∝ exp{−b(τ − τ̄)2}. (H.12)

�e FB5 pdf reads [15]

fFB5(Ω)∝ exp{κγT

1 Ω + ζ[(γT

2 Ω)2 − (γT

3 Ω)2]}, (H.13)

where κ ≥ 0 and ζ ∈ [0, κ/2) are respectively the concentration parameter
and the ovalness parameter of the distribution on the unit sphere S2, while
γ1, γ2 and γ3 ∈ R

3 are unit vectors. �e matrix Γ ≐ [γ1, γ2, γ3] is uniquely
determined by the three angular parameters ϕ̄, θ̄ and α according to

Γ =⎡⎢⎢⎢⎢⎢⎢⎣
sin(θ̄) cos(ϕ̄) − sin(ϕ̄) cos(θ̄) cos(ϕ̄)
sin(θ̄) sin(ϕ̄) cos(ϕ̄) cos(θ̄) sin(ϕ̄)

cos(θ̄) 0 − sin(θ̄)
⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤⎥⎥⎥⎥⎥⎥⎦
,

(H.14)
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where θ̄ and ϕ̄ coincide with respectively the elevation and the azimuth of the
mean direction, i.e. the �rst moment of fFB5(Ω).�e angle α describes tilt of
the pdf on S2. An illustrative description of the meanings of γ1, γ2 and γ3 can
be found in [15].

Under the assumption that the pdf fME(Ω, τ) in (H.11) has the conditional
direction pdf (H.13) and the conditional delay pdf (H.12), the sought pdf (H.11)
is calculated to be

fME(Ω, τ)∝ exp{κΩ̄T
Ω +ΩTA(τ, ζ , α, β)Ω
− b(τ − τ̄)2 − 2ηgT(Ω − Ω̄)(τ − τ̄)}. (H.15)

In (H.15), the matrix A is a function of the delay τ, the ovalness coe�cient ζ ,
as well as the angles α and β that jointly describe how fME(Ω, τ) is tilted in
the direction–delay space, η describes the dependence between the spread in
direction and in delay, and

g =
⎡⎢⎢⎢⎢⎢⎢⎣
sin ϕ̄ cos β − sin θ̄ cos ϕ̄ sin β
− cos ϕ̄ − sin θ̄ sin ϕ̄ sin β

cos θ̄ sin β

⎤⎥⎥⎥⎥⎥⎥⎦
.

We assume that the component direction–delay psd fd(Ω, τ) in (H.10) is
well approximated by the pdf in (H.15), i.e.

fd(Ω, τ) = fME(Ω, τ; θd), (H.16)

where θd contains the component-speci�c parameters

θd ≐ [Ω̄d τ̄d κd ζd αd βd ηd bd] .
�e center of gravity of fd(Ω, τ) coincides with (Ω̄d , τ̄d), while the shape of
fd(Ω, τ) is determined jointly by the parameters κd , ζd , αd , βd , ηd and bd .

�e component azimuth-elevation-delay psd fd(ϕ, θ , τ) is induced from
fd(Ω, τ) via the mapping (ϕ, θ , τ)↦ (Ω, τ) to be

fd(ϕ, θ , τ) = sin(θ) ⋅ fd(Ω, τ)∣
Ω=e(ϕ,θ)

= sin(θ) ⋅ fME(Ω, τ; θd)∣Ω=e(ϕ,θ). (H.17)

Here, sin(θ) is the Jacobian resulting from the change of variables. Fig. H.1
depicts an example of the 3 dB-spread surface

{(ϕ, θ , τ) ∶ fd(ϕ, θ , τ) = 1

2
fd(ϕ̄, θ̄ , τ̄)} (H.18)

computed using (H.17) for the parameter setting reported in this �gure.
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Fig. H.1: 3 dB-spread surface of the azimuth–elevation–delay psd calculated using (H.15) with the
parameter setting given above.

H.4 Parameter Estimator using a SAGE Algorithm

In a scenario with D dispersed components, the unknown parameters in the
signal model (H.2) can be concatenated in the vector

θ ≐ [P1, . . . , PD , θ1 , . . . , θD] . (H.19)

�eML estimator of θ can be derived from the signal model (H.2) [16]. How-
ever, this estimator requires the solution of a 10D-dimensional maximization
problem, which is too complex for implementation in real applications. As an
alternative, we resort to a SAGE algorithm [12, 13] as an approximation of the
ML estimator. Due to the limitation of space, we will not describe the SAGE
algorithm in this contribution.

H.5 Experimental Investigations

To assess whether the proposed characterization is applicable in real situ-
ations, we use the SAGE algorithm to estimate the direction-delay power
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Fig. H.3: Estimated delay power spectrum of the received signal.

spectrum (H.9) of a propagation channel from measurement data collected
using the MIMO wideband channel sounder Propsound CS in the measure-
ment campaign described in [17, 18]. We select a measurement conducted in
an o�ce, the premises of which are shown in Fig. H.2. A description of the
measurement setting can be found in [10].�e locations of the Rx andTxwere
kept �xed during the measurement. A 50-element omni-directional antenna
array was used in the Tx.�e Rx was equipped with a single omni-directional
antenna. A detailed description of the con�guration of the Tx antenna array
can be found in [19, Fig. 2]. During the measurement, people were moving
in the room where the Tx was located. �ese movements introduced time
variations of the channel response.

�e data of 200 measurement cycles were collected within a period of 13
seconds. A measurement cycle is referred to as the interval within which all
50 subchannels are sounded once. Fig. H.3 depicts the estimated delay power
spectrum calculated from the data.

�e SAGE algorithm was used to compute an estimate P̂(Ω, τ) of the
direction–delay power spectrum P(Ω, τ) in (H.9) within the delay ranging
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Fig. H.4: 3 dB-spread surfaces of estimated component azimuth–elevation–delay power spectra.
�e color of the surfaces codes the component power estimates.

from 100 ns to 135 ns.�e estimated number of components D̂ is set according
to the number of observed dominant local maxima of the direction-delay
Bartlett spectrum computed from the measurement data within this delay
range: D̂ = 10. Fig.H.4 depicts the 3 dB-spread surfaces (H.18) of the estimated
component azimuth-elevation-delay psds.�e color of the surfaces codes the
estimated component power.

Fig. H.5 depicts the estimated azimuth–elevation–delay power spectrum
calculated using the Bartlett beamformer [20] and the azimuth–elevation–
delay power spectrum estimate

P̂(ϕ, θ , τ) = sin(θ) ⋅ P̂(Ω, τ)∣Ω=e(ϕ,θ)
obtained from the parameter estimates computed with the SAGE algorithm.
�e notation “Bartlett(Σ)” in Fig.H.5 represents the power spectrumestimate
calculated using the Bartlett beamformer applied to the covariance matrix Σ
given as an argument. For notational brevity, we call such a spectrum “Bartlett
spectrum” in the sequel. �e matrices Σ̂ and Σ(θ̂) denote respectively the
sample covariance matrix and the covariance matrix computed based on
P̂(Ω, τ).

It is apparent from Fig. H.5 that the individual components in P̂(ϕ, θ , τ)
are much more concentrated than the corresponding components in both
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Bartlett spectra. Furthermore, the symmetry axes of the individual compo-
nents of P̂(ϕ, θ , τ) are not parallel to the azimuth and elevation axes. �is
asymmetry is due to the dependence across di�erent dispersion dimensions.
Notice that the Jacobian in (H.17) can also induce an arti�cial tilting of the
components. However, in this particular example most of the components in
P̂(ϕ, θ , τ) are concentrated in an elevation range around 90○, i.e. over which
the impact of the Jacobian is insigni�cant.

It can be observed from Fig. H.5 that the spectra Bartlett(Σ̂) and Bart-
lett(Σ(θ̂)) are similar. However, some of the foot prints arising in Bartlett(Σ̂)
do not have their counterpart in Bartlett(Σ(θ̂)), which indicates that the
number of components D̂ speci�ed in the SAGEalgorithm is less than the true
number of components in the channel response. Furthermore, Bartlett(Σ̂)
and Bartlett(Σ(θ̂)) are slightly di�erent in their signi�cant global and local
maxima. A possible explanation for this e�ect is that the derived pdf (H.17)
only provides an approximation to the e�ective psd of individual components.

H.6 Conclusions

In this contribution, we characterized the normalized direction-delay power
spectral density of individual dispersed components in the response of the
propagation channel with a probability density function (pdf).�e proposed
pdf maximizes the entropy under the constraint that its �rst and second
moments are speci�ed. A SAGE algorithm was used to estimate the pa-
rameters of the component direction–delay power spectra from measure-
ment data. �e results showed that the Bartlett spectra obtained from the
reconstructed signal covariance matrix computed using the SAGE estimation
result look similar to those calculated using the sample covariance matrix.
Furthermore, the estimated component direction-delay power spectra are
muchmore concentrated than their counterpart in the Bartlett spectra.�ese
results demonstrate that the proposed pdf along with the SAGE estimator
provide an e�ective tool to characterize direction-delay dispersion in the
propagation channel.
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I.1. INTRODUCTION

Abstract

In this contribution a propagation model is derived based on the
so-called propagation graph. It is shown by means of Monte Carlo
simulations that the obtainedmodel as a result of its inherent structure
predicts an exponentially decaying power-delay-pro�le as commonly
reported from measurements. Furthermore, the power-delay-pro�le
obtained with the proposed model exhibit a transition from specular
components at small delays to di�use components at long delays.�is
feature was also observed, especially in experimental investigations for
ultra wide band systems.

I.1 Introduction

�e design and optimisation of modern radio communication systems re-
quire realistic models of the radio propagation channel, which incorporate
dispersion in delay, Doppler frequency, direction of departure, direction of
arrival, and polarisation. O�en radio communication systems are assessed
by Monte Carlo simulations in which stochastic models are used to generate
synthetic realisations of the response of the radio propagation channel.

Traditional stochastic radio channel models re�ect the statistical proper-
ties of the (time-variant or time-invariant) impulse response of the channel
between the input of any antenna element at the transmitter site and any
antenna element at the receiver site. �e probability distributions of the pa-
rameters of the channel impulse response are generally di�cult to obtain from
environment parameters such as the scatterer size and density. Instead, the
model parameters are o�en inferred from measurements. Motivated by ex-
perimental results conventionalmodels implement an exponentially decaying
power-delay-pro�le by including various ad-hoc constraints on the random
model parameters.�e two contributions [1] and [2] follow this approach. In
these models a key parameter for modelling the arrival times of individual
signal components is the “cluster arrival rate”. However this parameter is
di�cult to derive from a propagation environment. In the model given in [3]
the scattering coe�cients are corrected to obtain the e�ects observed from
measurements like the exponential decay of the power-delay-pro�le. �ese
approaches, however, do not re�ect the underlying physical mechanisms that
lead to this decaying behaviour.

A di�erent approach is followed Franceschetti in [4] where the radio
propagation mechanism is modelled as a “stream of photons” performing
a continuous random walk in a cluttered environment with constant clutter
density. �e transmitted signal is a pulse of �nite duration. When a photon
interacts with an obstacle, it is either absorbed (with a certain probability)
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or scattered and changes direction. �e Franceschetti model is mainly a de-
scriptive model for the delay power spectrum; it is not possible to obtain
realisations of the channel impulse responses from this model. Furthermore,
the model does not cover the transition from specular to di�use signal con-
tributions as observed in [5].

In this contribution we present a stochastic model of the radio-propaga-
tion environment based on a random propagation graph. �e model can
incorporate dispersion in delay, (bi)-directions, Doppler frequency, etc. �e
aim is to obtain a stochastic model that leads to realisations of the channel
response with features similar to those observed in measured responses.

�e remaining part of the paper is organised as follows. Section I.2 reviews
the needed fundamentals of directed graphs. In Section I.3 the stochastic
propagation graph is described. Using this model, we give an example of the
resulting power-delay-pro�le in Section I.4. Concluding remarks are adressed
in Section I.5.

I.2 Directed Graphs

Following [6] we de�ne a directed graph G as a pair (V , E) of disjoint sets
(of vertices and edges) together with the two mappings init ∶ E → V and
term ∶ E → V assigning every edge e ∈ E an initial vertex init(e) and
a terminal point term(e). An edge e ∈ E that ful�ls init(e) = term(e)
is called a loop. Two edges e and e′ are parallel if init(e) = init(e′) and
term(e) = term(e′). A walk (of length K) in a graph G is a non-empty
alternating sequence ⟨v1, e1, v2, e2, . . . , eK , vK+1⟩ of vertices and edges in G
such that init(ek) = vk and term(ek) = vk+1, 1 ≤ k < K. A path is a walk,
with no parallel edges and where the vertices v2, . . . , vK−1 are distinct. If a
path that ful�ls v1 = vK , is called cycle.

I.3 Propagation graphs

A propagation graph is a special case of a directed graph. An example of a
propagation graph G = (V , E) with V = {Tx, Rx, S1, . . . , S6} is shown in
Fig. I.1. �e vertices of a propagation graph model the transmitter (Tx), the
receiver (Rx) and the scatterers (S1,. . . ,S6).�e edges model the visibility be-
tween verticesmeaning that a signal emitted from the initial vertex is received
delayed and attenuated at the terminal vertex. In the depicted case, the signal
emitted from the Tx vertex is observed by the Rx, S1, S4 and S6 vertices,
whereas a signal emitted from S3 or S5 is not observable from any vertex. We
restrict the discussion to propagation graphs with no loops nor parallel edges.
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b

Tx b Rx

b
S1

bS2

b
S3

b

S4

b
S5

b
S6

Fig. I.1: One realisation of a propagation graph with six scatterers.

In this case wemay identify the edge e with (init(e), term(e)) ∈ V2 and write
e = (init(e), term(e))with a slight abuse of notation.With this identi�cation,
E ⊆ V2. If we consider two vertices v1, v2 ∈ V then e = (v1, v2) ∈ E is ful�lled
with probability Pe . As the propagation graphs contain no loops, P(v ,v) = 0.
�e Tx is a source, and hence there exists no edge with Tx as terminal point,
that is P(v ,Tx) = 0. Likewise, the Rx vertex is considered a sink and therefore
P(Rx,v) = 0.

�e spatial positions of a vertex (a scatterer) v ∈ V with respect to
some arbitrary origin is given by a spatial displacement rv ∈ R ⊆ R

3,
where R denotes the real line and R is the region in which the scatterers
that signi�cantly a�ect the propagation mechanisms between the Tx and
Rx are located. �e propagation time of the signal propagating along edge
e = (v1, v2) can be calculated as

∆τe = ∣rv1 − rv2 ∣ ⋅ c−1, (I.1)

where c ≈ 3 ⋅ 108 ms is the speed of light (in air) and ∣ ⋅ ∣ denotes the Euclidian
norm.

Wemodel a wave interaction with a scatterer v as a scatter-gain gv weight-
ing all signals arriving at v. �e gain can be complex if we work in complex
base-band notation (e.g. of narrow-band and wide-band signals) or a real
number if we describe the signals directly (e.g. for ultra-wide-band signals).
In both cases, we restrict the magnitude of gv as ∣gv ∣ < 1. In this contribution
we assume that gv = g for all v, where g is a known constant. In general
gv might be modelled as a random variable. We assume an inverse squared
distance power law.�erefore the gain of the signal being scattered by init(e)
observed at term(e) is given by

ae = g ⋅ ∆τ−2e . (I.2)
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Note that g is not dimensionless; it is given in [s2].�us, ae is dimensionless.
A propagation path G is de�ned as a walk ℓ = ⟨v1, e1, v2, e2, . . . , eKℓ , vKℓ+1⟩

in G that ful�ls v1 = Tx and vKℓ+1 = Rx.�e propagation path ⟨Tx, (Tx, Rx),
Rx⟩ is called the line-of-sight path provided it exists.�e set of all propagation
paths in G is denoted byL(G).�e signal received at the Rx is a superposition
of all signal components each propagating via a propagation path ℓ ∈ L(G).
�e number of signal components in the received signal therefore equals the
cardinality ofL(G).�is number can be �nite as in the case depicted in Fig. I.1
or in�nite if there exists at least one path connecting Tx and Rx with a cycle.

�e delay τℓ and gain αℓ of a propagation path ℓ ∈ L(G) can be calculated
by repetitively using (I.1) and (I.2) as

αℓ =
Kℓ

∏
k=1

aek and τℓ =
Kℓ

∑
k=1

∆τek (I.3)

Hence, the impulse response hG(τ) of the propagation graph can be obtained
as

hG(τ) = ∑
ℓ∈L(G)

hℓ(τ) (I.4)

with hℓ(τ) = αℓδ(τ − τℓ), where δ(⋅) is the Dirac unit impulse.

I.4 Simulation Study

In the sequel we investigate the power-delay-pro�le of the propagation graph
model bymeans of aMonte-Carlo simulation. In this simulation the following
scenario is assumed:

1. A constant number N of scatterers is assumed.

2. �e regionR is assumed to be a rectangular solid box.

3. �e positions of the N scatterers S1, . . . , SN are drawn according to a
uniform distribution de�ned onR.

4. �e Tx and Rx have �xed coordinates, i.e. rTx , rRx ∈ R and are known
vectors.

5. We de�ne Pe as

Pe =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if e = (Tx, Rx),
Pvis if e = (v1, v2), where v1 ∈ V/{Tx}, v2 ∈ V/{Rx}, and
0 otherwise.
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Table I.1: Parameter setting for the simulation

Parameters Values

R [0, 2] × [0, 3] × [0, 5]m3

rTx [1.8, 2.0, 0.5]Tm
rRx [1.0, 1.0, 4.0]Tm
N 50

g 0.1 s2

Pvis 0.08

Number of Monte Carlo runs 100

�e settings are given in Table I.1.�e regionR has a volume of 30m3 which
yield an scatter density of roughly 1.7m−3. In each Monte Carlo run, the
propagation graph is generated randomly and the resulting τℓ’s and αℓ’s are
computed.

�e (averaged) power-delay-pro�le EG[∣hG(τ)∣2] (assuming a small, but
�nite observation bandwidth) is reported togetherwith three individual chan-
nel realisations in Fig. I.2. It appears from the �gure that the proposed model
exhibits an exponentially decaying power-delay-pro�le. Since we assumed
an inverse squared distance power law, the exponential power decay stems
from the structure of the propagation model alone. �e individual channel
realisations are depicted as a scatter plot of the (τℓ , ∣αℓ∣2)’s obtained for each
channel realisation. �e reported individual channel realisations all exhibit
the same behaviour: for τ < ∆τ(Tx,Rx) = ∣rTx − rRx ∣ ⋅ c−1 ≈ 12.4 ns, the
channel impulse response is zero; for τ ≥ ∆τ(Tx,Rx) the “occurrence rate” of the
signal contribution increases with the delay. As a result the impulse response
consists of a specular short-delay part (including the line-of-sight path) and a
di�use tail part for large delay with a transitional mix of specular and di�use
components in the intermediate delay range.�is transition e�ect is observed
frommeasurements in [5].�e behaviour is expected since for a longer delay
the signal is spread through the propagation graph and an increasing number
of components exist.

I.5 Conclusions

A propagation model based on a stochastic propagation graph was proposed.
A propagation graph is de�ned by a set of vertices (scatterers) and a set of
edges (visibility between scatterers). �ese parameters can be drawn ran-
domly according to some probability density function. Based on measure-
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Delay [s]

⟨∣h(
τ)∣2 ⟩

Estimated Delay Power Spectrum

τℓ [s]

∣α ℓ∣2

Realisation #1

τℓ [s]

∣α ℓ∣2

Realisation #2

τℓ [s]

∣α ℓ∣2

Realisation #3

0 0.5 1 1.5 2 2.5 3 3.5 4
×10−8

0 0.5 1 1.5 2 2.5 3 3.5 4
×10−8

0 0.5 1 1.5 2 2.5 3 3.5 4
×10−8

0 0.5 1 1.5 2 2.5 3 3.5 4
×10−8

10−10

10−5

100

10−10

10−5

100

10−10

10−5

100

10−10

10−5

100

Fig. I.2: Estimated delay power spectrum and three individual realisations of the channel impulse
response. �e parameter setting is given in Table I.1.

208



I.5. CONCLUSIONS

ment results conventional models implement an exponentially decaying po-
wer-delay-pro�le by various assumptions. �ese approaches, however, do
not re�ect the underlying physical mechanisms that lead to this decaying
behaviour. It was shown by simulation that assuming an inverse squared
distance power decay, the proposed model yields the o�en observed expo-
nentially decaying power-delay-pro�le. �is e�ect stems from the structure
of the propagation graph and is not obtained by introducing any arti�cial
assumptions.�e channel realisations obtained from the model also exhibit a
transition from specular contributions for low delays to a di�use part at long
delays as observed in measurements. �e model can be easily extended to
include dispersion in directions of departure and arrival.
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J.1. INTRODUCTION

Abstract

In this contribution the radio channel model proposed in [1] is
extended to include multiple transmitters and receivers. �e propa-
gation environment is modelled using random graphs where vertices
of a graph represent scatterers and edges model the wave propagation
between scatterers. Furthermore, we develop a closed form analytical
expression for the transfermatrix of the propagation graph. It is shown
by simulation that impulse response and the delay-power spectrum of
the graph exhibit exponentially decaying power as a result of the recur-
sive scattering structure of the graph.�e impulse response exhibits a
transition from specular to di�use signal contributions as observed in
measurements.

J.1 Introduction

�e design and optimisation of modern radio communication systems re-
quire realistic models of the radio propagation channel, which incorporate
dispersion in delay, Doppler frequency, direction of departure, direction of
arrival, and polarisation. O�en radio communication systems are assessed
by Monte Carlo simulations in which stochastic models are used to generate
synthetic realisations of the response of the (radio) propagation channel.

Traditional stochastic radio channel models re�ect the statistical proper-
ties of the (time-variant or time-invariant) impulse response of the channel
between the input of any antenna element at the transmitter site and the
output of any antenna element at the receiver site. �e probability distri-
butions of the parameters of the channel impulse response are generally
di�cult to obtain from environment parameters such as the scatterer size and
density. Instead, themodel parameters are o�en inferred frommeasurements.
Motivated by experimental results, conventional models implement an expo-
nentially decaying delay-power spectrum and impulse response magnitude
by including various ad-hoc constraints on the random model parameters.
�e two contributions [2] and [3] follow this approach. In these models a key
parameter for modelling the arrival times of individual signal components is
the “cluster arrival rate”. However this parameter is di�cult to derive from
a propagation environment. In the model given in [4] the scattering coe�-
cients are corrected to account for the e�ects observed experimentally like the
exponential decay of the delay-power spectrum.�ese approaches, however,
do not re�ect the underlying physical mechanisms that lead to this decaying
behaviour.

A di�erent approach is followed by Franceschetti in [5] where the radio
propagation mechanism is modelled as a “stream of photons” performing a
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continuous random walk in a cluttered environment with constant clutter
density. �e transmitted signal is a pulse of �nite duration. When a photon
interacts with an obstacle, it is either absorbed (with a certain probability) or
scattered and changes direction.�e Franceschetti model is mainly a descrip-
tive model for the delay-power spectrum; it is not possible to obtain realistic
realisations of the channel impulse responses from this model. Furthermore,
themodel does not cover the transition from specular to di�use signal contri-
butions as observed in [6] for ultra wide band measurements.�is transition
e�ect is well-known within the �eld of room acoustics [7]. In a recently
published work [8] Andersen et. al model the exponentially decaying power
of the di�use tail of the impulse response by applying Sabine’s reverberation
formula commonly used in room acoustics. In the work presented in [1] the
propagation environment was modelled using random graphs where vertices
of a graph represent scatterers and edgesmodel thewave propagation between
scatterers. When a graph is generated, the corresponding realisation of the
channel impulse response can be computed by exhaustively searching for
propagation paths that connect the transmitter to the receiver. �e obtained
impulse response exhibits the specular-to-di�use transition.

In this contributionwe extend themodel described in [1] to includemulti-
ple transmitters and receivers.We develop a closed form analytical expression
for the transfermatrix.�e derivation is inspired from themethod used in the
room acoustical model proposed in [9].

�e remaining part of the paper is organised as follows. In Section J.2
the modelling concept based directed graphs is presented and a model of the
propagation environment is introduced. In Section J.3 an analytical expres-
sion for the transfer matrix of the propagation graph is derived. Numerical
examples are given in Section J.4 and concluding remarks are addressed in
Section J.5.

J.2 Modelling Propagation Using Graphs

In the following we describe the underlying principles for modelling the
propagation mechanisms using graphs. In a typical propagation scenario, the
electromagnetic signal emitted by a transmitter propagates through the envi-
ronment interacting with a number of objects called scatterers. �e receiver,
which is usually placed away from the transmitter, picks up the transmitted
signal. If a line-of-sight exists between the transmitter and receiver, direct
propagation occurs. In other cases, indirect propagation via one ore more
scatterers can occur. In the following we represent the propagation envi-
ronment as a directed graph where the vertices represent the transmitters,
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receivers, and scatterers, and the edges represent visibilities between the ver-
tices. First, the necessary notation is introduced.

J.2.1 Directed Graphs

Following [10] we de�ne a directed graph G as a pair (V , E) of disjoint sets (of
vertices and edges) together with the two mappings init ∶ E → V and term ∶
E → V assigning every edge e ∈ E an initial vertex init(e) and a terminal
vertex term(e).

Two edges e and e′ are parallel if init(e) = init(e′) and term(e) =
term(e′). When the discussion is restricted to graphs without parallel edges
we may identify the edge e with (init(e), term(e)) ∈ V2 and write e =(init(e), term(e)) with a slight abuse of notation. With this identi�cation,
E ⊆ V2.

A walk (of length K) in a graph G is a non-empty alternating sequence⟨v1, e1, v2, e2, . . . , eK , vK+1⟩ of vertices and edges in G such that init(ek) = vk
and term(ek) = vk+1, 1 ≤ k < K. An edge e ∈ E that ful�ls init(e) = term(e) is
called a loop.�us, by de�nition, a loop is a walk of length 1. A path is a walk,
without parallel edges, where the vertices v2, . . . , vK−1 are distinct. A path that
ful�ls v1 = vK is called a cycle.�e outdegree of a vertex v denoted by degi(v)
is the number of edges with initial vertex v.

J.2.2 Propagation Graphs

A propagation graph is a directed graph G = (V , E) where the vertices model
transmitters, receivers and scatterers, and the edges model the propagation
conditions between the vertices.

�e vertex set of a propagation graph is a union of three disjoint sets: V =
Vt ∪ Vs ∪ Vr, where Vt = {Tx1, . . . , TxM1} is the set of transmit vertices, Vr ={Rx1, . . . , RxM2} the set of receive vertices, and Vs = {S1, . . . , SN} is the set
of scatterer vertices. Fig. J.1 shows a propagation graph for a communication
system with M1 = 5 transmitters, M2 = 3 receivers, and N = 6 scatterers.�e
depicted graph has one cycle. Each vertex v ∈ V is assigned a coordinate in
space with respect to a coordinate system and arbitrarily selected origin.�e
vector rv ∈ R ⊆ R

3, denotes the displacement vector of v from the origin of
the coordinate system.�e setR is the region in which contains the scatterers
that signi�cantly a�ect the propagationmechanisms between the transmitters
and a receivers in the graph.

In the case depicted in Fig. J.1, all transmit vertices are located in the close
proximity of each other, away from the other vertices which is also the case
for the receive vertices. �is corresponds to the case where the transmitter
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and receiver sites are equipped with antenna arrays. �is is not the case in
multi-user systems, where the transmitters and receivers are spread evenly in
space.

�e edges of a propagation graphmodel the propagation, or the visibility,
between vertices meaning that a signal emitted from the initial vertex is
observed in a �ltered (e.g. delayed and attenuated) version at the terminal
vertex. Due to this conceptual interpretation of an edge, a propagation graph
does not have parallel edges. In this case we may identify the edge e with(init(e), term(e)) ∈ V2 and write e = (init(e), term(e)) with a slight abuse
of notation. With this identi�cation, E ⊆ V2. Notice that G may have “anti-
parallel” edges, i.e. if the edge e = (v , v′) is in the graph, the edge e′ = (v′, v)
can exist. We restrict the discussion to propagation graphs where scatterers
cannot “see” themselves. Hence we only deal with graphs without loops.
However, the propagation graphs may have cycles. �e transmit vertices are
considered as purely sources with outgoing edges. Likewise, the receivers are
considered as sinks with only incoming edges.

�e signal propagates in the graph in the following way. Each transmitter
emits a signal that propagate via the edges of the graph.�e signals observed
by a receiver vertex is the sum of the signals arriving via the incoming edges.
�e scatterers sum up the signals arriving via the incoming edges and re-emit
the sum-signals via the outgoing edges. When a signal propagates along an
edge, or interacts with a scatterer, the signal undergoes dispersion in time,
depending on the length of the edge and the particular scattering mecha-
nisms. �e joint mechanism of propagating along an edge and interaction
with a scatterer is assumed linear, thus the time dispersion of the signal can
be represented as a convolution with an impulse response or, in the Fourier
domain, as a multiplication with a transfer function.

J.2.3 Model of the Propagation Mechanisms

In the following we discuss a model where the propagation along the edges is
assumed to be non-dispersive in delay in the sense that the impulse response
of each edge ismerely a scaled anddelayedDirac impulse. Let ge and τe denote
respectively the complex gain and propagation time of edge e.�us the edge
transfer functions Ae( f ) takes the form

Ae( f ) = ge ⋅ exp( j2πτe f ), e ∈ E . (J.1)

�e complex gain ge includes the gain due to the propagation loss along edge e
and the scattering coe�cient due to the interaction at term(e).�is scatterer
model is suitable in situations where the electromagnetic properties of the
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Fig. J.1: A propagation graph with four transmit vertices (M1 = 4), three receive vertices (M2 = 3),
and six scatterer vertices (N = 6).

scatterers are constant over the bandwidth of the transmitted signal. In the
sequel amethod for determining the edge gains and attenuations is described.

�e propagation time τe of a signal propagating along edge e = (v , v′) in
E can be calculated from the coordinates of v and v′ as

τe = ∣rv − rv′ ∣
c

, (J.2)

where c ≈ 3 ⋅ 108m/s is the speed of light (in vacuum) and ∣ ⋅ ∣ is the Euclidean
norm.�e power gain ∣ge ∣2 of e ∈ E is de�ned as

∣ge ∣2 = ( g

1 + ∣rv − rv′ ∣)
2

⋅ 1
dego(v)

. (J.3)

For large edge lengths ∣rv−rv′ ∣, (J.3) behaves like the standard inverse squared
distance power law. Notice that since dego(v) = 0 if and only if e /∈ E ,
and the term 1 + ∣rv − rv′ ∣ ≥ 1, the gain ∣ge ∣2 is �nite for all e ∈ V2. �e
de�nition (J.3) ensures that the power leaving a vertex is always smaller than
the power entering the vertex. �e phase of ge can be chosen according
to some appropriate model. As an example, when a multiuser systems is
modelled, this phase can be assumed to be uniformly distributed on the
interval [0; 2π). However, if the transmitters and receivers forms arrays, then
more careful modelling of the phases is necessary.
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J.2.4 Modelling Systems With Antenna Arrays

Considering a systemwhere the transmit antennas are spatially grouped such
that they form an array, it is customary to make the so-called ‘small-scale
characterisation’. �is assumption states that the overall geometry of each
propagation path is the same for all antenna elements of one antenna array.
�is corresponds to a propagation graph where all elements of an array share
the same visibilities. We can distinguish ‘small’ and ‘large’ arrays as follows:

An array A ⊆ Vt of transmit vertices is a small array, if, and only if, for
any edge e = (v , v′) from a transmitter vertex v ∈ A to a receiver or scatterer
vertex v′ ∈ Vs ∪ Vr the set of edges {(v′′, v′) ∶ v′′ ∈ A} is a subset of E . If an
array is not small then it is a large array.�e generalisation of the de�nition
to include receive antennas is obvious.

In the situation depicted in Fig J.1, the transmit antennas Tx1, Tx2, Tx3
and Tx4 form an array A = {Tx1, Tx2, Tx3, Tx4}. As can be seen from
the �gure, edge (Tx1, Rx1) exists. Since there is not an edge (Tx4, Rx1) in
the graph, the array A is a large array. It can be checked that the sub-array{Tx1, Tx2, Tx3} form a small array.

It should be noticed that not all practical arrays are small (see [11] for an
example). However, by applying appropriate restrictions on the edge-set of
the graph, the propagation graphs can be used to model both small and large
arrays. For a small array A, it seems to be natural to assume that the edge
gains of the set of edges which connects the elements of A to a particular
vertex v /∈ A all have the same phase.

J.3 �e Transfer Matrix of a Propagation Graph

In the following we derive the input-output relation of a propagation graph.
By the de�nition of the propagation graph, there are no other signal sources
than the vertices in Vt. �us by assuming that the propagation mechanisms
are linear and time-invariant, the Fourier domain version of the input-output
relation can be written as

Y( f ) = H( f )X( f ), (J.4)

where H( f ) is M2 × M1 transfer matrix. �e M1-dimensional input signal
X( f ) is de�ned as

X( f ) = [X1( f ), . . . , XM1( f )]T, (J.5)

where Xm( f ) is the signal emitted by transmitter Txm, and [⋅]T denotes the
transposition operator.�e output signal vector Y( f ) is de�ned as

Y( f ) = [Y1( f ), . . . ,YM2( f )]T, (J.6)
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where Ym( f ) is the Fourier transform of the signal observed by receiver Rxm.
Similar, to X( f ) and Y( f ) we can de�ne a vector Z( f ) to describe the

signal observed at the scatterers as

Z( f ) = [Z1( f ), . . . , ZN( f )]T, (J.7)

where the nth entry denotes the Fourier transform of the signal observed at
scatterer vertex Sn.

We form the M1 +M2 + N dimensional complex state vector C( f ) as
C( f ) = [C1( f ), . . . ,Cn( f ), . . .CM1+M2+N( f )]T , (J.8)

where Cn( f ) is the state variable of vertex vn. By selecting the indexing of the
vertices according to

vn ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vt , n = 1, . . . ,M1

Vr , n = M1 + 1, . . . ,M1 +M2

Vs, n = M1 +M2 + 1, . . . ,M1 +M2 + N ,

(J.9)

it is seen that
C( f ) = [X( f )T,Y( f )T,Z( f )T]T. (J.10)

Let us for amoment consider the edge e = (vn , vn′) in E . A �ltered version
of the signal Cn( f ) emitted by vertex vn is observed at vertex vn′ .�e signal
observed at vertex vn′ via edge e reads Ae( f )Cn( f ) where Ae( f ) is the edge
transfer function de�ned in (J.1). In other words, the transfer function Ae( f )
describes the propagation along the edge e, i.e. the propagation delay, attenu-
ation, and the scattering coe�cient at the initial vertex of e. By collecting the
edge transfer functions to a matrix using the indexing described in (J.9) we
obtain the weighted adjacency matrix A( f ) ∈ C

(M1+M2+N)×(M1+M2+N) of the
entire propagation graph G:

[A( f )]nn′ = ⎧⎪⎪⎨⎪⎪⎩
A(vn ,vn′)( f ) if (vn , vn′) ∈ E ,
0 otherwise.

(J.11)

Element n, n′ of A( f ) is the transfer function from vertex vn to vertex vn′ of
G. Due to the selected vertex indexing the weighted adjacency matrix can be
partitioned as

A( f ) =
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

D( f ) 0 R( f )
T( f ) 0 B( f )

⎤⎥⎥⎥⎥⎥⎥⎦
, (J.12)
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where 0 denotes a zero matrix of the appropriate dimension and

D( f ) ∈ C
M2×M1 connects transmitters to receivers (J.13)

R( f ) ∈ C
M2×N connects scatterers to receivers (J.14)

T( f ) ∈ C
N×M1 connects transmitters to scatterers (J.15)

B( f ) ∈ C
N×N interconnects the scatterers. (J.16)

�e special structure of A( f ) origins from the structure of the propagation
graph. �e �rst M1 rows are zero because, we do not accept incoming edges
into the transmitters. Likewise column M1 + 1, . . . ,M1 + M2 are all zero
since the receiver vertices have no outgoing edges. Furthermore, since the
propagation graph contains no loops the entries of the main diagonal of the
adjacencymatrixA( f ) are zero.�erefore the entries of the main diagonal of
B( f ) are zero.

�e state vector C( f ) can be rewritten as the sum

C( f ) = ∞∑
k=0

Ck( f ), (J.17)

where Ck( f ) = [Xk( f )T,Yk( f )T,Zk( f )T]T denotes the signal contribution
that has propagated along k edges.�e signal emitted by the transmitters has
not propagated via any edges and therefore X0( f ) = X( f ). For k = 0 we have

C0( f ) = [X( f )T , 0T, 0T]T, (J.18)

and for k ≥ 1 we have the recursive relation:
Ck+1( f ) = A( f )Ck( f ), k ≥ 1. (J.19)

As a consequence of (J.17), the output signal vector can be decomposed
as the sum

Y( f ) = ∞∑
k=1

Yk( f ), (J.20)

whereYk( f ) is the received signal component that has propagated via k edges
from the transmitter to the receiver.�usY1( f ) is the component originating
from direct propagation from the transmitters to the receivers. By direct
computation of C1( f ) using (J.19) and (J.18) we see that

C1( f ) = A( f )C0( f ) =
⎡⎢⎢⎢⎢⎢⎢⎣

0

D( f )X( f )
T( f )X( f )

⎤⎥⎥⎥⎥⎥⎥⎦
. (J.21)
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It follows from (J.21) that

Y1( f ) = D( f )X( f ). (J.22)

By inspection of the series A2( f ),A3( f ), . . . it is readily recognised that

Ak( f ) =
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

R( f )Bk−2( f )T( f ) 0 R( f )Bk−1( f )
Bk−1( f )T( f ) 0 Bk( f )

⎤⎥⎥⎥⎥⎥⎥⎦
, k ≥ 2. (J.23)

Inserting (J.22) and (J.23) into (J.20) and using (J.19) yields

Y( f ) = Y1( f ) + ∞∑
k=2

Yk( f ) (J.24)

= D( f )X( f ) + ∞∑
k=2

R( f )Bk−2( f )T( f )X( f ) (J.25)

= [D( f ) + ∞∑
k′=0

R( f )Bk′( f )T( f )]X( f ) (J.26)

= [D( f ) +R( f )(I − B( f ))−1T( f )]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H( f )

X( f ). (J.27)

Identity (J.27) is obtained using geometric series for matrices [12, p. 427],
which holds under the condition that the maximum of the eigenvalue magni-
tudes of B( f ) is less than unity for all frequencies considered.�is constraint
is always ful�lled for a propagation graph due the de�nition of the edge gain
(J.3).

Equation (J.19) shows the structure of the propagation mechanism. �e
radio signal is re-scattered successively in the propagation environment.�is
e�ect results in the geometric series in (J.26). From (J.27) we see that the
transfer matrix H( f ) consists of the two following terms: D( f ) represent-
ing direct propagation between the transmitters and receivers and R( f )(I −
B( f ))−1T( f ) describing indirect propagation.
J.4 Numerical Examples

Using the analytical results from Section J.3 we are able to compute the
transfer matrix of a particular propagation graph. �e propagation graph is
fully de�ned by the vertex set, the vertex locations, and the edge set of the
graph.�us, a propagation graph can be generated stochastically by randomly
placing the vertices and generating the edges set.
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In the sequel we investigate the impulse response and the delay-power
spectrum of the propagation graph model by means of a Monte-Carlo exper-
iment.�e following scenario is assumed:

• �e regionR is assumed to be a rectangular solid box.

• To simplify the discussion we consider a single-input single-output
(M1 = M2 = 1) system. �e locations of the transmitter and receiver
vertices are �xed throughout the experiment.

• �e number N of scatterers is assumed constant.

• �e positions of the scatterer vertices are drawn according to a uniform
distribution de�ned onR.

• We de�ne the occurrence probability P(v ,v′) of an edge (v , v′) ∈ V2 as

P(v ,v′) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pdir if (v , v′) = (Tx, Rx)
0 if v = v′
0 if v′ = Tx or v = Rx, and
Pvis otherwise,

where Pdir denotes the probability of the direct propagation between the
transmitter and receiver. When Pdir = 0 the direct term D( f ) in (J.27)
takes the value zero corresponding to a non-line-of-sight scenario.
When Pdir = 1 direct propagation between transmitter and receiver
always occurswhich corresponds to a line-of-sight scenario. In this case
D( f ) is non-zero.

�e parameter settings are given in Table J.1. In each Monte Carlo run the
following steps are performed:

1. Generate scatterer positions rv , v ∈ Vs.

2. Generate the edge set E .

3. Compute the transfer function H( f ) for the frequencies f = fmin,
fmin + ∆ f , . . . , fmax

4. Compute the inverse Fourier transform of the transfer function apply-
ing a Hanning window to reduce side-lobes.

An example of an obtained transfer function for Pdir = 0, 1 and corre-
sponding impulse response are reported in Fig. J.2. �e magnitude of the
transfer function for the Pdir = 0 exhibits fading over the considered fre-
quency band, whereas the function obtained in the Pdir = 1 case, which
is about 10 dB higher, is more constant. �e reported impulse responses
magnitudes are roughly exponentially decaying. In the reported case, the
impulse responses exhibit a concentration of power into “clusters”. Inspection
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Table J.1: Parameter setting for the simulation

Parameters Values

R [0, 5] × [0, 10] × [0, 3.5]m3

rTx [1.8, 2.0, 0.5]Tm
rRx [1.0, 4.0, 1.0]Tm
N 20

g 0.8 s2

Pvis 0.8

Number of Monte Carlo runs 1000

Signal bandwidth [ fmin, fmax] [2, 3]GHz

∆ f 0.5MHz

IFFT window Hanning
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Fig. J.2: Examples of transfer functions (top) and the corresponding impulse responses (bottom)
for Pdir = 1 (thick line) and Pdir = 0 (thin line). �e dotted vertical line marks the propagation
delay of the direct edge between the transmitter and the receiver (line-of-sight). �e parameter
setting used in the simulations is listed in Table J.1.

223



PAPER J. RADIO CHANNEL MODELLING USING STOCHASTIC PROPAGATION GRAPHS

Delay [s]

A
ve
ra
ge

R
ec
ei
ve
d
Po

w
er

[d
B
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10−7

-120

-100

-80

-60

-40

-20

Fig. J.3: Delay-power spectrum computed from the Monte Carlo experiment for Pdir = 1 (thick
line) and Pdir = 0 (thin line). �e dotted vertical line marks the propagation delay of the direct
edge between the transmitter and the receiver. �e parameter setting is listed in Table J.1.

of the vertex positions of the particular realisation revealed that this e�ect is
not caused by geometrically clustering of the scatterers but is an e�ect of the
structure of the graph.

An estimate of the delay-power spectrum can be obtained by computing
the mean squared-magnitude of the generated impulse response realisations.
Estimates of the delay-power spectra for Pdir = 0, 1 each obtained from 1000
realisations of the impulse response are shown in Fig. J.3. Apart from the
high-magnitude of the direct component in the Pdir = 0, 1, both delay-power
spectra in Fig. J.3 show similar behaviour: the tails of the delay-power spectra
in exhibit an exponential decay in both cases. �is exponentially decaying
power, which is not obtained by ad-hoc restrictions on themodel parameters,
is a result of recursive scattering in the graph.

To investigate the �ner structure of the impulse response, it is necessary to
have a better resolution in the delay domain. �erefore, we report in Fig. J.4
the absolute value of an impulse respons obtained with Pdir = 1 using the
parameter settings given in Table J.1, but with the frequency range extended
such that fmax = 10GHz.�e impulse response in this case exhibits a specular-
to-di�use transition, i.e. the early part of the pro�le, dominated by specular
contributions, is preceded by a di�use tail. �is shows that the model is able
to jointly treat the specular and di�use components of the impulse response.

J.5 Conclusions

A propagation model based on a stochastic propagation graph was proposed.
�e propagation model proposed [1] was extended to account for multi-
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Fig. J.4: Impulse responsemagnitude obtained from themodel with Pdir = 1.�e parameter setting
is as listed in Table J.1, but fmax has been set to 10GHz.

inputmulti-output systems.Moreover, a closed form expression for the input-
output relation was obtained.

A propagation graph is de�ned by a set of vertices (transmitters, receivers,
and scatterers) and a set of edges (visibility between vertices). �ese param-
eters can be drawn randomly according to some joint probability density
function.

Based on measurement results conventional models implement an expo-
nentially decaying absolute impulse response and delay-power spectrum by
various assumptions.�ese approaches, however, do not re�ect the underly-
ing physical mechanisms that lead to this decaying behaviour. It was shown
byMonte Carlo simulations that assuming an inverse squared distance power
decay, the proposed model yields the o�en observed exponentially decaying
absolute impulse response and delay-power spectrum.�is e�ect stems from
the structure of the propagation graph and is not obtained by introducing any
arti�cial assumptions.

�e realisations of the impulse response obtained from the proposed
model also exhibit a transition from specular contributions for low delays to
a di�use part at long delays as observed in measurements.�e model can be
easily extended to include dispersion in directions of departure and arrival.
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