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Abstract

Bayesian networks with mixtures of truncated exponentials (MTEs) support
efficient inference algorithms and provide a flexible way of modeling hybrid do-
mains (domains containing both discrete and continuous variables). On the
other hand, estimating an MTE from data has turned out to be a difficult task,
and most prevalent learning methods treat parameter estimation as a regression
problem. The drawback of this approach is that by not directly attempting to
find the parameter estimates that maximize the likelihood, there is no principled
way of performing subsequent model selection using those parameter estimates.
In this paper we describe an estimation method that directly aims at learning
the parameters of an MTE potential following a maximum likelihood approach.
Empirical results demonstrate that the proposed method yields significantly bet-
ter likelihood results than existing regression-based methods. We also show how
model selection, which in the case of univariate MTEs amounts to partitioning
the domain and selecting the number of exponential terms, can be performed
using the BIC-score.

1. Introduction

Domains involving both discrete and continuous variables represent a chal-
lenge to Bayesian networks. The main difficulty is to find a representation of the
joint distribution of the continuous and discrete variables that supports an effi-
cient implementation of the usual inference operations over Bayesian networks
(like those found in junction tree-based algorithms for exact inference). Compu-
tationally, exact inference algorithms require that the joint distribution over the
variables of the domain is from a distribution-class that is closed under addi-
tion and multiplication. The simplest way of obtaining such a distribution is to
perform a discretization of the continuous variables (Friedman and Goldszmidt,
1996; Kozlov and Koller, 1997). Mathematically, this amounts to approximating
the density function of every continuous variable by a step-function. However,
discretization of variables can lead to a dramatic loss in precision, which is one
of the reasons why other approaches have received much attention recently. The
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mixtures of truncated exponentials (MTE) framework (Moral et al., 2001) has
also received increasing interest over the last few years. One of the advantages
of this representation is that MTE distributions allow discrete and continuous
variables to be treated in a uniform fashion, and since the family of MTEs is
closed under addition and multiplication, inference in an MTE network can be
performed efficiently using the Shafer-Shenoy architecture (Shafer and Shenoy,
1990).

Cobb et al. (2006) empirically showed that many distributions can be ap-
proximated accurately by means of an MTE distribution, and they argue that
this makes the MTE framework very attractive for Bayesian network models.
Nevertheless, data-driven learning methods for MTE networks have received
only little attention. In this context, focus has mainly been directed towards
parameter estimation, where the most prevalent methods look for the MTE pa-
rameters minimizing the mean squared error w.r.t. a kernel density estimate of
the data (Romero et al., 2006).

Although the least squares estimation procedure can yield a good MTE
model in terms of generalization properties, there is no guarantee that the esti-
mated parameter values will be close to the maximum likelihood (ML) parame-
ters. This has a significant impact when considering more general problems such
as model selection and structural learning, as many standard score functions for
model selection, including the Bayesian information criterion (BIC) (Schwarz,
1978), assume ML parameter estimates to be available.

In this paper we propose a new parameter estimation procedure for uni-
variate MTE potentials. The procedure directly aims at estimating the ML
parameters for an MTE density, and we show how to utilize the learned ML es-
timates for model selection using the BIC score. The proposed learning method
is empirically compared to the least squares estimation method described by
Romero et al. (2006), and it is shown that it offers a significant improvement in
terms of likelihood as well as in generalization ability.

The method described in this paper is a first step towards a general maxi-
mum likelihood-based approach for learning Bayesian networks with MTE po-
tentials. Thus, our objective is solely to demonstrate that maximum likelihood
estimators for MTE distributions can be found, and show how these estimators
can be utilised for model selection. We will therefore prefer simple and robust
methods over state-of-the-art optimisation techniques that can be harder to un-
derstand, implement, and examine. Furthermore, we shall only hint at some of
the complexity problems that are involved in learning general MTE potentials.
Learning MTE potentials using more efficient techniques is left as a topic for
future research.

2. Preliminaries

Throughout this paper, random variables will be denoted by capital letters,
and their values by lowercase letters. In the multi-dimensional case, boldfaced
characters will be used. The domain of the variables X is denoted by ΩX. The
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MTE model is defined by its corresponding potential and density as follows
(Moral et al., 2001):

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.
Let W = (W1, . . . , Wd)

T and Z = (Z1, . . . , Zc)
T be the discrete and continuous

parts of X, respectively, with c + d = n. We say that a function f : ΩX 7→ R
+
0

is a Mixture of Truncated Exponentials (MTE) potential if for each fixed value
w ∈ ΩW of the discrete variables W, the potential over the continuous variables
Z is defined as:

f(z) = a0 +

m
∑

i=1

ai exp {bT

i z} , (1)

for all z ∈ ΩZ, where ai ∈ R and bi ∈ R
c, i = 1, . . . , m. We also say that f

is an MTE potential if there is a partition D1, . . . , Dk of ΩZ into hypercubes
and in each Dℓ, f is defined as in Equation (1). An MTE potential is an MTE
density if it integrates to 1.

In the remainder of this paper we shall focus on estimating the parameters
for a univariate MTE density. Not surprisingly, the proposed methods also
immediately generalize to the special case of conditional MTEs having only
discrete conditioning variables.

3. Expressiveness of the MTE models

In this section we will explore the expressiveness of the MTE framework,
with the aim of showing that any univariate distribution function can be ap-
proximated arbitrarily well by an MTE potential. We will tie our argument to
the example in Figure 1, but the results obtained are general in nature.

Consider first the left panel of Figure 1, where the target distribution of our
example is given by the solid line. The target distribution, f(x), is a mixture
of two Gaussian distributions, one centred at − 1

2 and the other at 1
2 . Both

Gaussian distributions have standard deviation 1, and the mixture weights are
.25 and .75, respectively. The left panel of Figure 1 also shows how a standard
discretization scheme can be utilised to approximate f(x). Let f̂D(x | k) be the
approximation of f(x) obtained by dividing the range of X into k equally sized

intervals. Note that f̂D(x | k) requires k − 1 parameters to be fully specified,
namely the amount of mass allocated to each interval except the last one. It is

obvious that if we measure the error of f̂D(x | k) as
∫ b

x=a

(

f̂D(x | k)− f(x)
)2

dx,

then this error can be made arbitrarily small by increasing k. Since the class of
MTE distributions contains all distributions obtainable by discretization, we can
also approximate any f(x) arbitrarily well using MTEs. This representation may
not be optimal, though. In the left panel of Figure 1, 15 parameters were used
to obtain the approximation, but it is still rather crude and the representational
power of MTEs are not fully utilised.
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The right panel of Figure 1 explore a different strategy for approximating
f(x), as we here define an approximation by increasing the number of expo-
nential terms, without dividing the support of the distribution into intervals.
We will denote approximations generated in this way by f̂e(x |m), and for a

given set of parameters α we define f̂e(x |m, α) =
∑m

s=−m αs exp(s x). In the

reminder of this section we investigate approximations of the type f̂e(x |m, α)
and we will show that this strategy for approximating f(x) can also be made
arbitrarily accurate (wrt. our error measure) simply by increasing m. The right
panel of Figure 1 shows this visually: We are again using 15 parameters, but the
quality of the approximation is now so good that it is not possible to visually
distinguish the true distribution from the approximation.
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Figure 1: Two different strategies for approximating a distribution function. The gold stan-
dard model is in this case a mixture of two Gaussians, one centred at − 1

2
, the other at 1

2
.

We will make this argument by first restating a basic result from linear
algebra, and then show how this generalises to our setting. Let us start by
considering an n-dimensional real vector z ∈ R

n. Let {e1, . . . , ek} be a set of
orthogonal basis vectors in R

n (k < n), and consider the task of approximating z

by a vector in the span of the basis vectors. Let 〈x,y〉 denote the inner product
between two vectors x and y; when both x and y are in R

n we use 〈x,y〉 = xTy.
It is well-known that the least-squares solution to this approximation problem
is to find the projection of z onto the space spanned by the basis vectors, i.e.,
to choose

ẑ←

k
∑

j=1

〈ej , z〉
√

〈ej , ej〉
· ej. (2)

Next, we generalize this result from approximations in R
n to approximations

in a space containing functions, with the idea that we can approximate a function
f as a linear combination of basis functions. In particular, we will consider the
space of all functions that are squared integrable on an interval [a, b]. This space
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is often denoted L2[a, b], so for a real function f we have that f ∈ L2[a, b] if

and only if
∫ b

x=a
f(x) · f(x) dx <∞. To find an analogue to the projections in

Equation (2) we must define the inner product between two functions f and g,

and in L2[a, b] this is done as 〈f, g〉 =
∫ b

a
f(x) · g(x) dx. Furthermore, we say

that two functions f an g are orthogonal if and only if 〈f, g〉 = 0.
Focus on L2[0, 2π] and consider the task of finding the Fourier series ap-

proximation of a function f . This amounts to approximating f by a sum of
trigonometric functions, i.e., it is a solution to our original approximation prob-
lem, where the functions {1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), . . .} take the
role of the orthogonal1 basis-vectors {e1 . . .ek} used when making approxima-
tions in R

n. Recall that the Fourier series approximation of f can be written
as

f̂(x)←

k
∑

j=1

〈ej , f〉
√

〈ej , ej〉
· ej(x). (3)

This gives an operational description of how to approximate any f ∈ L2[0, 2π]
by a sum of trigonometric functions.

The last step in our argument is to recall that the approach of Equation (3)
is valid also when the trigonometric functions are replaced by other orthogo-
nal basis functions; in this case Equation (3) is called a Generalized Fourier
series. Since we look for MTE approximations, we are interested in the span
of the exponential functions {1, exp(x), exp(−x), exp(2x), exp(−2x), . . .}. The
exponential functions are dense in L2[a, b], loosely meaning that any function
f can be approximated arbitrarily well by a linear combination of exponential
functions. Unfortunately, the specified exponential functions are not orthogo-
nal, so an orthogonalisation process (also known as a Gram-Schmidt process)
must be conducted before the generalised Fourier coefficients can be found. The
approximation of Figure 1 is made in this way, starting from the 15 functions
{exp(−7x), . . . , exp(7x)}.

When we in the following look at ways to learn MTEs, we are trying to find
a balance between the number of split points and the number of exponential
terms: we aim for an approximation, where the support of the density may
be divided into “a few” intervals, each interval containing “a few” exponential
terms. Our goal is therefore to find a parameterization that is close to minimal,
and that at the same time offers robust techniques for learning the parameters
from data. This will be the topic of the remainder of the paper.

4. Maximum Likelihood Parameter Estimation for Univariate MTEs

The problem of estimating a univariate MTE density from data can be di-
vided into three tasks: i) Partition the domain of the variable into disjoint

1Recall that we have
R

2π

x=0
sin(nx) cos(mx) dx ≡ 0 for integer n,m, and that if we also

assume that n 6= m we get
R

2π

x=0
sin(nx) sin(mx) dx =

R

2π

x=0
cos(nx) cos(mx) dx ≡ 0.
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intervals, ii) determine the number of exponential terms for each interval, and
iii) estimate the parameters for a given interval and a fixed number of exponen-
tial terms. At this point we will concentrate on the estimation of the parameters,
assuming that the split points are known, and that the number of exponential
terms is fixed. We will return to the two remaining tasks in Section 5.

We start this section by introducing some notation. Consider a random
variable X with density function f(x) and assume that the support of f(x) is
divided into M intervals {Ωi}

M
i=1. Focus on one particular interval Ωm. As a

target density for x ∈ Ωm we will consider an MTE with 2 exponential terms:

f(x|θm) = km + amebmx + cmedmx, x ∈ Ωm. (4)

This function has 5 parameters, namely θm = (km, am, bm, cm, dm)T. For no-
tational convenience we may sometimes drop the subscript m when clear from
the context.

4.1. The Likelihood Landscape

For an MTE of the form given in Equation (4), the shape of the likelihood
landscape is not well-known. To investigate this, we sampled two datasets of 50
and 1000 samples from the distribution

f(x) =

{ 5
2(exp(5)−1) exp(5x)− 5

2(exp(−5)−1) exp(−5x) if x ∈ [−1, 1],

0 otherwise.

The profile likelihood of the two datasets are shown in Figure 2, where the value
at the point (b0, d0) is given as maxk,a,c

∏

i {k + a exp(b0 · xi) + c exp(d0 · xi)}
and the product is over all samples in the data set.

From the figure we see that the profile likelihood is symmetric around the
line b = d, i.e. that the profile likelihood of a sample at point (b0, d0) is identical
to the one at (d0, b0). The consequence is that the parameters of an MTE are
not identifiable in a strict sense. This is not surprising, as MTE models are gen-
eralized mixture models (“generalized” because we do not demand the weights
to be positive and sum to one). Furthermore, we see that for the relatively small
dataset of 50 samples, the profile likelihood is fairly flat, so finding a local max-
ima using a standard hill-climbing approach may be very slow. Furthermore,
the profile likelihood is multi-modal. On the other hand, the profile likelihood
is peaked for the large sample. To be successful in learning MTEs, an algorithm
must therefore be able to handle “flat” multi-modal likelihood landscapes as
well as very peaked likelihood landscapes.

4.2. Parameter Estimation by Maximum Likelihood

Assume that we have a sample x = (x1, . . . , xn)T and that nm of the n
observations are in Ωm. To ensure that the overall parameter-set is a maximum
likelihood estimate for Θ = ∪mθm, it is required that

∫

x∈Ωm

f(x|θm) dx = nm/n. (5)
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Figure 2: Profile likelihood of example data sampled from a known distribution. The left
panel shows the results using 50 samples, the right plot gives the result for 1000 samples.

Given this normalization, we can fit the parameters for each interval Ωm sepa-
rately, i.e., the parameters in θm are optimized independently of those in θm′ .
Based on this observation, we shall only describe the learning procedure for
a fixed interval Ωm, since the generalization to the whole support of f(x) is
immediate.

Assume now that the target density is as given in Equation (4), in which
case the likelihood function for a sample x is

L(θm|x) =
∏

i:xi∈Ωm

{

km + amebmxi + cmedmxi
}

. (6)

To find a closed-form solution for the maximum likelihood estimators, we need
to differentiate Equation (6) wrt. the different parameters and set the results
equal to zero. To exemplify, we perform this exercise for bm, and obtain

∂L(θm|x)

∂bm

=
∑

i:xi∈Ωm







∂L(θm|xi)

∂bm

∏

j:xj∈Ωm,j 6=i

L(θm|xj)







= amxi

∑

i:xi∈Ωm

ebmxi







∏

j:xj∈Ωm,j 6=i

(

km + amebmxj + cm edm xj
)







. (7)

Unfortunately, Equation (7) is non-linear in the unknown parameters θm. Fur-
thermore, both the number of terms in the sum as well as the number of terms
inside the product operator grows as O(nm); thus, the maximization of the
likelihood becomes increasingly difficult as the number of observations rise.

Alternatively, one might consider maximizing the logarithm of the likelihood,
or more specifically a lower bound for the likelihood using Jensen’s inequality.
By assuming that km > 0, am > 0 and cm > 0 we have
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log (L(θm|x)) =
∑

i:xi∈Ωm

log (km + am exp(bm xj) + cm exp(dm xj))

≥
∑

i:xi∈Ωm

log (km) +
∑

i:xi∈Ωm

log (am exp(bm xj)) +
∑

i:xi∈Ωm

log (cm exp(dm xj))

= nm [log(km) + log(am) + log(cm)] + (bm + dm)
∑

i:xi∈Ωm

xi,

(8)

and the idea would then be to maximize the lowerbound of Equation (8) to
push the likelihood upwards (following the same reasoning underlying the EM
algorithm (Dempster et al., 1977) and variational methods (Jordan et al., 1999)).
Unfortunately, though, restricting km, am and cm to be positive enforces too
strict a limitation on the expressiveness of the distributions we learn.

Another possibility would be to use a modified version of the EM algorithm
able to handle negative components. For example, Farag et al. (2004) consider
the estimation of linear combinations of Gaussians. However, in each iteration
of their procedure, the parameters are optimized by Lagrange maximization,
which in the case of our likelihood function (Equation (6)) does not provide any
simplification.

The main problem when trying to apply the EM algorithm to MTE densities
is to find a formulation of the problem, where the inclusion of latent variables
simplifies the estimation when the values of the latent variables are fixed. How-
ever, if this conditional density is also of MTE shape, the maximisation of the
conditional expectation with respect to the parameters in each iteration would
again be as difficult as the original problem. In this case, even the use of a flexi-
ble implementation like Monte Carlo EM (see, for instance Tanner (1996)) does
not provide any simplification, as approximating the integral associated with
the conditional expectation by simulation produces a sum of MTE functions,
which again is as difficult to optimize as the original likelihood.

Instead, we opt for an approximate solution obtained by solving the likeli-
hood equations by numerical means. The proposed method for maximizing the
likelihood is based on the observation that maximum likelihood estimation for
MTEs can be seen as a constrained optimization problem, where constraints
are introduced to ensure that both f(x|θm) ≥ 0, for all x ∈ Ωm, and that
Equation (5) is fulfilled. A natural framework for solving this is the Lagrange
multipliers, but since solving the Lagrange equations are inevitably at least
as difficult as solving the unconstrained problem, this cannot be done analyt-
ically. In our implementation we have settled for a numerical solution based
on Newton’s method; this is described in detail in Section 4.2.2. However, it is
well-known that Newton’s method is quite sensitive to the initialization-values,
meaning that if we initialize a search for a solution to the Lagrange equations
from a parameter-set far from the optimal values, it will not necessarily con-
verge to a useful solution. Thus, we need a simple and robust procedure for
initializing Newton’s method, and this is described next.
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4.2.1. Näıve Maximum Likelihood for MTE Distributions

The general idea of the näıve approach is to iteratively update the parameter
estimates until convergence. More precisely, this is done by iteratively tuning
pairs of parameters, while the other parameters are kept fixed. We do this in
a round-robin manner, making sure that all parameters are eventually tuned.

Denote by θ̂
t

= (kt, at, bt, ct, dt)
T

the parameter values after iteration t of this
iterative scheme. Algorithm 4.1 is a top-level description of this procedure,
where steps 4 and 5 correspond to the optimization of the shape-parameters
and steps 6 and 7 distribute the mass between the terms in the MTE potential
(the different steps are explained below).

Algorithm 4.1 The algorithm learns a “rough” estimate of the parameters of
an MTE with two exponential terms.

1: function Näıve MTE(x)

2: Initialize θ̂
0
; t← 0.

3: repeat

4: (a′, b′)← argmaxa,b L(kt, a, b, ct, dt |x)
5: (c′, d′)← arg maxc,d L(kt, a′, b′, c, d |x)
6: (k′, a′)← argmaxk,a L(k, a, b′, c′, d′ |x)
7: (k′, c′)← argmaxk,c L(k, a′, b′, c, d′ |x)
8: θ

t+1 ← (k′, a′, b′, c′, d′)T

9: t← t + 1
10: until convergence

11: return θ̂
t

For notational convenience we shall define the auxiliary function p(s, t) =
∫

x∈Ωm
s exp(tx) dx; p(s, t) is the integral of the exponential function over the

interval Ωm. Note, in particular, that p(s, t) = s · p(1, t), and that p(1, 0) =
∫

x∈Ωm
dx is the length of the interval Ωm. The first step above is initialization.

In our experiments we have chosen b0 and d0 as +1 and −1, respectively. The
parameters k0, a0, and c0 are set to ensure that each of the three terms in the
integral of Equation (5) contribute with equal probability mass, i.e.,

k0 ←
nm

3n · p(1, 0)
,

a0 ←
nm

3n · p(1, b0)
,

c0 ←
nm

3n · p(1, d0)
.

Iteratively improving the likelihood under the constraints is actually quite
simple as long as the parameters are considered in pairs. Consider Step 4 above,
where we optimize a and b under the constraint of Equation (5) while keeping
the other parameters (kt, ct, and dt) fixed. Observe that if Equation (5) is
to be satisfied after this step we need to make sure that p(a′, b′) = p(at, bt).

9



Equivalently, there is a functional constraint between the parameters that we
enforce by setting a′ ← p(at, bt)/p(1, b′). Optimizing the value for the pair (a, b)
is now simply done by line-search, where only the value for b is considered:

b′ = argmax
b

L

(

k,
p(at, bt)

p(1, b)
, b, ct, dt

∣

∣

∣

∣

x

)

.

Note that at the same time we choose a′ ← p(at, bt)/p(1, b′). A similar procedure
is used in Step 5 to find c′ and d′.

Steps 6 and 7 utilize the same idea, but with a different normalization equa-
tion. We only consider Step 6 here, since the generalization is immediate. For
this step we need to make sure that

∫

x∈Ωm
k + a exp(b′ x) dx =

∫

x∈Ωm
kt +

at exp(b′ x) dx, for any pair of parameter candidates (k, a). By rephrasing, we
find that this is obtained if we insist that k′ ← kt− p(a′− at, b′)/p(1, 0). Again,
the constrained optimization of the pair of parameters can be performed using
line-search in one dimension (and let the other parameter be adjusted to keep
the total probability mass constant).

Note that Steps 4 and 5 do not move “probability mass” between the three
terms in Equation (4), these two steps only fit the shape of the two exponential
functions. On the other hand, Steps 6 and 7 assume the shape of the exponen-
tials fixed, and proceed by moving “probability mass” between the three terms
in the sum of Equation (4).

4.2.2. Refining the Initial Estimate

The parameter estimates returned by the line-search method can be further
refined by using these estimates to initialize a nonlinear programming prob-
lem formulation of the original optimization problem. In this formulation, the
function to be maximized is again the log-likelihood of the data, subject to the
constraints that the MTE potential should be nonnegative, and that

g0(x, θ) ≡

∫

x∈Ωm

f(x |θ) dx−
nm

n
= 0.

Ideally the nonnegative constraints should be specified for all x ∈ Ωm, but since
this is not feasible we only encode that the function should be nonnegative in
the endpoints ωs and ωe of the interval (we shall return to this issue later).
Thus, we arrive at the following formulation:

Maximize log L(θ |x) =
∑

i:xi∈Ωm

log L(θ |xi)

Subject to g0(x, θ) = 0,

f(ωs |θ) ≥ 0,

f(ωe |θ) ≥ 0,

To convert the two inequalities into equalities we introduce slack variables:

f(x |θ) ≥ 0⇔ f(x |θ)− s2 = 0, for some s ∈ R;
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we shall refer to these new equalities using g1(e1, θ, s1) and g2(e2, θ, s2), respec-
tively. We now have the following equality constrained optimization problem:

Maximize log L(θ |x) =
∑

i:xi∈Ωm

log L(θ |xi)

Subject to g(x, θ) =





g0(x, θ)
g1(ωs, θ, s1)
g2(ωe, θ, s2)



 = 0.

This optimization problem can be solved using the method of Lagrange
multipliers. That is, with the Lagrangian function l(x, θ, λ, s) = log L(θ |x) +
λ0g0(x, θ) + λ1g1(ωs, θ, s1) + λ2g2(ωe, θ, s2) we look for a solution to the equal-
ities defined by

A(x, θ, λ, s) = ∇l(x, θ, λ, s) = 0.

Such a solution can be found numerically by applying Newton’s method. Specif-
ically, by letting θ

′ = (θT, s1, s2)
T, the Newton updating step is given by

[

θ
′
t+1

λt+1

]

=

[

θ
′
t

λt

]

−∇A(x, θ′
t, λt)

−1A(x, θ′
t, λt),

where θ
′
t and λt are the current estimates and

A(x, θ′
t, λt) =

[

∇
θ

′ l(x, θ′, λ)
g(x, θ′)

]

;

∇A(x, θ′
t, λt) =

[

∇2

θ
′

θ
′ l(x, θ′, λ) ∇g(x, θ′)

∇g(x, θ′)T 0

]

.

As initialization values, θ0, we use the maximum likelihood estimates re-
turned by the line-search method described in Section 4.2, and in order to con-
trol the step size during updating, we employ the Armijo rule (Bertsekas, 1996).
For the test results reported in Section 7, the Lagrange multipliers were initial-
ized (somewhat arbitrarily) to 1 and the slack variables were set to

√

f(ωs |θ0)

and
√

f(ωe |θ0), respectively.
Finally, it should be emphasized that the above search procedure may lead

to f(x |θ) being negative for some x. In the current implementation we have
addressed this problem rather crudely: simply terminate the search when nega-
tive values are encountered. Moreover, due to numerical instability, the search
is also terminated if the determinant for the system is close to zero (< 10−9) or
if the condition number is large (> 109). Note that by terminating the search
before convergence, we have no guarantees about the solution. In particular,
the solution may be worse than the initial estimate. In order to overcome this
problem, we always store the best parameter estimates found so far (including
those found by line search) and return these estimates upon termination.

11



5. Model Selection for Univariate MTE

So far we have mainly considered MTEs with two exponential terms and
with pre-specified spilt points. However, when learning an MTE potential these
model parameters (i.e., the model structure) should ideally also be deduced from
data.

In this section we pose MTE structure learning as a model selection prob-
lem. For the score function specification, one might take a Bayesian approach
and define a candidate score function based on a conjugate prior for the MTE
distribution. As a possible prior distribution, we could again look towards the
MTE distribution; recall that the class of MTE distributions is closed under
addition and multiplication. Unfortunately, the parameters defining an MTE
distribution are not independent (as we shall see below), and it is not apparent
how to specify a joint prior MTE distribution so that only admissible parameter
configurations (i.e., those specifying an MTE density) contribute with non-zero
probability mass. As an alternative, we resort to penalized log-likelihood when
scoring the model structures. Specifically, we use the Bayesian information cri-
terion (BIC) (Schwarz, 1978):

BIC (f) =

n
∑

i=1

log f(xi | θ̂)−
dim(f)

2
log(n),

where dim(f) is the number of free parameters in the model. To determine
dim(f), consider an MTE potential f(x |θ) defined by the functions

fj(x|θj) = a
(j)
0 +

mj
∑

i=1

a
(j)
i exp

(

b
(j)
i · x

)

, 1 ≤ j ≤M,

for all x ∈ Ωj = [ω
(j)
s ; ω

(j)
e ]. In order for f(x) to be a density, each sub-function

fj(x |θj) should be both non-negative and account for some probability mass cj

(i.e.,
∫

x∈Ωj
fj(x |θj)dx = cj) s.t.

∑M

j=1 cj = 1. First, we ensure that fj(x |θj)

is non-negative by adding a positive value a′
0, thus tying the parameter a0 in

θj . Next, to ensure that
∫

x∈Ωj
fj(x |θj)dx = cj we note that

∫

x∈Ωj

f(x |θj)dx = a0

(

ω(j)
e − ω(j)

s

)

+

mj
∑

i=1

a
(j)
i

b
(j)
i

(

exp
(

b
(j)
i ω(j)

e )− exp(b
(j)
i ω(j)

s

))

,

and by tying, say a
(j)
1 , such that

a
(j)
1 = b

(j)
1







cj −
∑mj

i=2
a
(j)
i

b
(j)
i

(

exp
(

b
(j)
i ω

(j)
e

)

− exp
(

b
(j)
i ω

(j)
s

))

− a0

(

ω
(j)
e − ω

(j)
s

)

exp(b
(j)
1 ω

(j)
e )− exp(b

(j)
1 ω

(j)
s )







we have that
∫

x∈Ωj
f(x)dx = cj . For the function fj(x |θj), the number of free

parameters is therefore 2 ·mj − 1, and hence the number of free parameters in
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f(x |θ) is given by dim(f) =
∑M

j=1(2 ·mj − 1) + (M − 1) =
∑M

j=1 2 ·mj − 1,
where the last M − 1 parameters encode the probability masses assigned to the
M intervals or, equivalently, the choice of split points.

Based on the score function above, we can now define a search method for
learning the structure of an MTE. The method is recursive and relies on two
other methods for learning the number of exponential terms and the location of
the split points, respectively.

When learning the number of exponential terms, for a fixed interval Ωj, we
follow a greedy approach and iteratively add exponential terms (starting with
the MTE potential having only a constant term) as long as the BIC score im-
proves or until some other termination criterion is met. The method is summa-
rized by the pseudo-code in Algorithm 5.1, where the function
Estimate MTE Parameters(x, ωs, ωe, i) implements the parameter estima-
tion procedure described in Section 4.2 for an MTE density defined over the
interval [ωs, ωe] and with i exponential terms. It should be emphasized that the
main aim of Algorithm 5.1 (as well as Algorithms 5.2 and 5.3 below) is only to
convey the general structure of a possible learning algorithm. Time complexity
is therefore given less attention at this point, but will be further addressed at
the end of the section.

Algorithm 5.1 The algorithms learns an MTE density (including the number
of exponential terms) for the interval [ωs, ωe].

1: function Candidate MTE(x, ωs, ωe)
2: i← 0 ⊲ i specifies the number of exponential terms
3: (tmpθ, tmpBIC )← Estimate MTE Parameters(x, ωs, ωe, i)
4: repeat

5: i← i + 1
6: (bestθ, bestBIC )← (tmpθ, tmpBIC )
7: (tmpθ, tmpBIC )← Estimate MTE Parameters(x, ωs, ωe, i)
8: until termination ⊲ E.g. tmpBIC ≤ bestBIC or max-iter. reached
9: return (bestθ, bestBIC )

For a given interval Ωj there is in principle an uncountable number of possible
split points; however, the BIC function will assign the same score to any two
split points that define the same partitioning of the training data. We therefore
define the candidate split points based on the number of ways in which we can
split the training data. Given these candidate split points we take a myopic
approach and select the split point with the highest BIC score, assuming that
the score cannot be improved by further refinement of the two sub-intervals
defined by the chosen split point (see Algorithm 5.2).

Based on the two methods above, we can now outline a simple procedure
for learning the structure (and the parameters) for an MTE density: recursively
select the best split point (if any) for the current (sub)-interval. The overall
algorithm is summarized in Algorithm 5.3, which takes as input an MTE model
currentθ defined over the interval [ωs, ωe], i.e., the algorithm should be invoked

13



Algorithm 5.2 The algorithm finds a candidate split point for the interval
[ωs, ωe]. We use the notation x(x > xi) to denote the data points x in x for
which x > xi; analogously for x(x ≤ xi).

1: function Candidate Split MTE(x, ωs, ωe)
2: bestBIC ← −∞
3: for i← 1 : n− 1 do ⊲ n is the number of data points
4: θ1 ← Candidate MTE(x(x ≤ xi), ωs, xi)
5: θ2 ← Candidate MTE(x(x > xi), xi, ωe)
6: if BIC(θ1, θ2,x) > bestBIC then

7: bestBIC ← BIC(θ1, θ2,x)
8: bestSplit ← (xi+1 − xi)/2
9: θ

∗
1 ← θ1

10: θ
∗
2 ← θ2

11: return (θ∗
1, θ

∗
2, bestBIC , bestSplit)

with x, ωs, ωe, and Candidate MTE(x, ωs, ωe).

Algorithm 5.3 The algorithm learns the parameters and the structure of an
MTE potential for the interval [ωs, ωe]. The algorithm is invoked with currentθ,
which is an MTE for [ωs, ωe] without split points (found using Algorithm 4.1).
Note that x(x ≤ candSplit) denotes the data points x in x for which x ≤
candSplit ; analogously for x(x > candSplit)

1: function Learn MTE(x, ωs, ωe, currentθ)
2: currentBIC ← BIC(x, ωs, ωe, currentθ)
3: [θ1, θ2, candSplit , candBIC ]← Candidate Split MTE(x, ωs, ωe)
4: if candBIC > currentBIC then

5: (splitsl, θl)← Learn MTE(x(x ≤ candSplit), ωs, candSplit , θ1)
6: (splitsr, θr)← Learn MTE(x(x > candSplit), candSplit , ωe, θ2)
7: splits← [splitsl, candSplit , splitsr]
8: Θ← (θl; θr)
9: else

10: splits = []
11: Θ = []

12: return (splits, θ)

The worst case computational complexity of the algorithm above is O(n3),
where n is the number of data points (we assume that the number of exponential
terms is significantly smaller than n). This is clearly prohibitive for all but the
smallest data sets. In order to overcome this problem, we can instead pre-
specify a collection of candidate split points found by making an equal-width
or equal frequency partitioning of the data. If there are r such split points,
then the worst case time complexity becomes O(n · r2). The results presented
in Section 7 are based on r = 5 candidate split points found by equal frequency
partitioning of the data.
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6. Parameter Estimation by Least Squares

We have now presented a maximum likelihood framework for learning uni-
variate MTE potentials from data. In order to compare the merits of this new
learning algorithm with a baseline method, we will proceed by describing the
hitherto most used method for learning MTEs from data (Rumı́ et al., 2006;
Romero et al., 2006). This technique is commonly denoted least squares (LS) es-
timation because it looks for parameter values that minimize the mean squared
error between the fitted model and the empirical density of the sample. In early
work on MTE parameter estimation (Rumı́ et al., 2006), the empirical density
was estimated using a histogram. In order to avoid the lack of smoothness,
especially when data is scarce, Romero et al. (2006) proposed to use kernels to
approximate the empirical density instead of histograms, and this is also the
approach we will follow here.

As the LS method does not directly seek to maximize the likelihood of the
model, the resulting LS parameters are not guaranteed to be close to the ML
parameters. This difference was confirmed by our preliminary experiments, and
has resulted in a few modifications to the LS method presented by Romero et al.
(2006): i) Instead of using Gaussian kernels, we used Epanechnikov kernels,
which tended to provide better ML estimates in our preliminary experiments.
ii) Since the smooth kernel density estimate assigns positive probability mass,
p∗, outside the truncated region (called the boundary bias by Simonoff (1996)),
we truncate and reweight the kernel density with 1/(1 − p∗). iii) In order to
reduce the effect of low probability areas during the least squares calculations,
the summands in the mean squared error are weighted according to the empirical
density at the corresponding points.

Assume that there are nm points in the original sample, x, that fall inside
Ωm. Without loss of generality, in order to simplify the notation, we will assume
within this section that all the elements of sample x belong to Ωm. In what
follows we denote by y = (y1, . . . , ynm

)T the values of the empirical kernel
for sample x = (x1, . . . , xnm

)T, and with reference to the target density in
Equation (4), we assume initial estimates for a0, b0 and k0 (we will later discuss
how to get these initial estimates). With this outset, c and d can be estimated
by minimizing the weighted mean squared error between the function c exp {dx}
and the points (x,w), where w = y− a0 exp {b0x} − k0. Specifically, by taking
logarithms, the problem reduces to linear regression:

ln {w} = ln {c exp {dx}} = ln {c}+ dx,

which can be written as w∗ = c∗ + dx; here c∗ = ln {c} and w∗ = ln {w}.
Note that we here assume that c > 0. In fact the data (x,w) is transformed, if
necessary, to fit this constraint, i.e., to be convex and positive. This is achieved
by changing the sign of the values w and then adding a constant to make them
positive. We then fit the parameters taking into account that afterwards the
sign of c should be changed and the constant used to make the values positive
should be subtracted.
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A solution to the regression problem is then defined by

(c∗, d) = arg min
c∗,d

(w∗ − c∗ − dx)Tdiag (y) (w∗ − c∗ − dx),

where diag(·) takes a vector as input and returns a diagonal matrix with that
vector on its diagonal.

The solution can be described analytically:

c∗ =
wTdiag (y)x− d ·

(

xTy
)2

xTy

d =
(wTy)(xTy) − (

∑

i yi) (wTdiag (y)x)

(xTy)
2
− (

∑

i yi) · xTdiag (y)x
.

Once a, b, c and d are known, we can estimate k in f∗(x) = k + aebx + cedx.
If we let s = y − aebx − cedx − k, we have that k ∈ R should be the value
minimizing the error

Error(k) =
1

nm

sTdiag (y) s.

This is achieved for

k̂ =
(y − aebx − cedx)Ty

∑

i yi

.

Here we are assuming a fixed number of exponential terms. However, as the
parameters are not optimized globally, there is no guarantee that the fitted
model minimizes the weighted mean squared error. This fact can be somewhat
corrected by determining the contribution of each term to the reduction of the
error as described by Rumı́ et al. (2006).

The initial values a0, b0 and k0 can be arbitrary, but “good” values can
speed up convergence. We consider two alternatives: i) Initialize the values
by fitting a curve aebx to the modified sample by exponential regression, and
compute k as before. ii) Force the empiric density and the initial model to have
the same derivative. In the current implementation, we try both initializations
and choose the one that minimizes the squared error.

7. Experimental Comparison

In order to evaluate the proposed learning algorithm we have sampled datasets
from six distributions: An MTE density defined by two regions, a beta distri-
bution Beta(0.5, 0.5), a standard normal distribution, a χ2 distribution with
eight degrees of freedom, and a log-normal distribution LN (0, 1). From each
distribution we sampled two different training sets having sizes 1000 and 50,
respectively. This last dataset is devoted to show the performance of the differ-
ent methods when data is scarce. In order to check the predictive ability of the
estimated models, a test set of size 1000 was also sampled.
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MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2263.37 160.14 −2695.02 −1411.79 −1380.45 −1415.06
LS −2307.21 68.26 −2739.24 −1508.62 −1403.46 −1469.21
Original LS −2338.46 39.68 −2718.99 −1570.62 −1406.23 −1467.24

MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2263.13 160.69 −2685.76 −1420.34 −1392.28 −1398.30
LS −2321.18 60.29 −2742.80 −1509.11 −1468.11 −2290.17
Original LS −2556.68 39.42 −2766.86 −1565.28 −1438.67 −1636.99

Table 1: Comparison of ML vs. LS in terms of likelihood. In the upper table the split points
were found using the method described in (Rumı́ et al., 2006), and in the lower table they
were defined by the extreme points and the inflexion points of the exact density.

MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2284.61 279.24 −2719.88 −1434.46 −1417.35 −1375.81
LS −2312.69 88.04 −2719.47 −1513.32 −1424.08 −1411.67
Original LS −2335.80 50.62 −2713.43 −1585.86 −1417.88 −1394.78

MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2283.73 253.78 −2705.98 −1433.32 −1415.26 −1362.56
LS −2327.12 78.65 −2713.23 −1514.73 −1474.88 −2256.10
Original LS −2550.00 50.44 −2744.77 −1579.82 −1445.67 −1594.44

Table 2: Comparison of ML vs. LS in terms of the test set likelihood. In the upper table the
split points were found using the method described in (Rumı́ et al., 2006), and in the lower
table they were defined by the extreme points and the inflexion points of the exact density.

Our first group of tests consider learning of MTEs assuming that the domain
has already been divided into intervals, and that the number of exponential
terms has been fixed to 2. When testing with data from the MTE, beta and
normal distributions, we have used one split point, whereas for the log-normal
and the χ2 distributions, the number of split points was set to three. We
have also run the experiment with three split points for the standard normal
distribution. We have used two methods for finding split points: i) Define the
split points to be the extreme points and inflection points of the true generating
density function, and ii) use the procedure described by Rumı́ et al. (2006).
The plots of the fitted models using the training set of size 1000 together with
the original density are displayed in Figure 3. The split points used for these
plots were selected using the second approach above; results using the former
approach for detecting split points are qualitatively similar.

Turning to the quantitative results, Table 1 shows the likelihood of the dif-
ferent samples for the models fitted with the 1000 size training set using the
direct ML approach, the modified LS method, and the original LS method de-
scribed in Rumı́ et al. (2006). The two sub-tables correspond to the split points
found using the method described in Rumı́ et al. (2006) and split points found
by identifying the extreme points and the inflexion points of the true density,
respectively. Table 2 shows the likelihood of the test set for the same models,
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(e) Gaussian, 3 splits (f) Log-Normal

Figure 3: The plots show the results of samples from different distributions. The gold-standard
distribution is drawn with a thick line, the MTE with Lagrange-parameters are given with
the dashed line, and the results of the LS approach are given with the thin, solid line.
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MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2319.24 256.27 −2265.76 −1486.58 −1530.58 −1605.60
LS −2612.27 48.82 −2858.66 −1506.39 −1491.58 −1652.98
Original LS −2337.54 −9.57 −2823.48 −1505.06 −1455.52 −1462.99

MTE Beta χ2 Normal 1 split Normal 3 splits Log-normal
ML −2318.29 228.45 −2588.22 −1470.2 −1501.53 −1491.56
LS −2649.21 68.37 −2885.46 −1585.78 −1513.75 −2277.66
Original LS −2529.87 −28.05 −2837.81 −1527.32 −1484.77 −2165.59

Table 3: Comparison of ML vs. LS estimated with a sample of size 50 in terms of the test
set likelihood. In the upper table the split points were found using the method described in
(Rumı́ et al., 2006), and in the lower table they were defined by the extreme points and the
inflexion points of the exact density.

and Table 3 shows the likelihood of the test set for the models fitted with the
50 size training set. From the results we clearly see that the ML-based method
outperforms the LS method in terms of likelihood. This is hardly a surprise, as
the ML method is actively using likelihood maximization as its target, whereas
the LS methods do not. On the other hand, the LS and Original LS seem to
be working at comparable levels. Most commonly (in 15 out of 24 runs), LS
is an improvement over its original version with large training sets, but with
small training sets it behaves much worse. The explanation is that the weights
used in the new version of LS are not so accurate, and so the estimations are
unstable. We can also see from Table 3 that the ML approach appears to overfit
the data, and therefore achieves a lower testset likelihood than the original LS
for the “Normal 3 splits” and “Log-normal” datasets. This is not surprising, as
the number of parameters used by the ML approach to fit the distributions are
far above what turns out to be “BIC-optimal” (see below).

Our last set of tests focused on the BIC-based model selection algorithm
for finding split points and determining the number of parameters inside each
interval; for these tests we allowed at most two exponential terms and five
candidate split points (found using equal-frequency binning). The results, given
in Table 4, clearly show the desired effect: The BIC-based method is less prone
to overfitting the data, and although a smaller likelihood is obtained on the
training data, the predictive ability of the data is better than when learning
with fixed split points. Plots of the learned MTEs are shown in Figure 4,
where it is interesting to note how the BIC-based learning algorithm chooses
different model structures for the different data-sizes. Look, for instance, at
the Beta distribution in Part (b) of Figure 4. When only 50 training examples
are used, we fit a function with two exponential terms to the whole support
of the density (no split points are selected); when 1000 cases are available, the
learning prefers to use two intervals. Furthermore, for the first interval of the
MTE distribution (Part (a)), the learning based on 1000 cases finds support for
using one exponential term to approximate the density. When learning from
50 cases, the algorithm did not get the same support, and therefore opted for
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MTE Beta χ2 Normal Log-normal
Training-set Log likelihood −94.90 14.80 −122.30 −62.84 −65.18
Test-set Log likelihood −2052.00 130.60 −2500.93 −1210.18 −1225.36

MTE Beta χ2 Normal Log-normal
Training-set Log likelihood −2270.76 161.21 −2727.76 −1422.58 −1432.83
Test-set Log likelihood −2285.25 249.45 −2702.67 −1430.88 −1358.38

Table 4: The results of the BIC-based learning approach. In the upper table the results
are based on learning from 50 data-points, the lower table reports the results based on 1000
training examples.

a constant in that part of the domain. Finally, it is interesting to see that
the log-normal (Part (e)) is approximated using 0 split points (when learning
from 50 cases) or 1 split point (when learning from 1000 cases). This should be
compared to the 3 split points used to generate the results in Figure 3 (f).

8. Conclusions and Future Work

In this paper we have introduced maximum likelihood learning of MTEs.
Finding maximum likelihood parameter estimates is interesting not only in its
own right, but also as a tool for doing more advanced learning, like model
selection. We have proposed algorithms that use the BIC criteria (Schwarz,
1978) to choose the number of exponential terms required to approximate the
density function properly, as well as for determining the location of the split-
points for partitioning the domain of the variables. The experiments carried out
show that the estimations obtained by ML improve the ones provided by the
least squares method both in terms of likelihood of the training data and of the
predictive ability (measured by likelihood of a separate test-set).

We are currently working on ML-based learning of conditional distributions,
starting from the ideas published in (Moral et al., 2003). However, accurately
locating the split-points for a conditional MTE is even more difficult than when
learning marginal distributions; locating the split-points for a variable will not
only influence the approximation of its distribution, but also the distributions
for all its children.
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Figure 4: The plots show the results of the BIC-based learning. The gold-standard distribution
is drawn with a thick line, the MTE with BIC-based learning from 50 examples are are given
with the dashed line, and the results of the BIC-based learning from 1000 cases are given with
the thin, solid line.
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