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A Scalable Spectrum Sharing Mechanism for Local
Area Networks Deployment

Gustavo W.O. da Costa, Student Member, IEEE, Andrea F. Cattoni, Member, IEEE, István Z. Kovács, Member,
IEEE, and Preben E. Mogensen, Member, IEEE

Abstract—The current wireless access networks are able to
provide relatively low data rates when compared to wired access.
In order to extend the access to high data rate services to
wireless users, the International Telecommunication Union (ITU)
established new requirements for future wireless communication
technologies of up to 100Mbps in high mobility conditions
and 1Gbps in low mobility. The low mobility goal can only
be achieved through the use of highly optimized local area
access networks, operating at low range and low transmission
power. The efficient sharing of radio resources among local
area cells will be very difficult to achieve with a traditional
network planning/dimensioning approach due to their intrinsic
uncoordinated deployment characteristic. Cognitive Radio (CR)
based networking methodologies are considered as the most
promising solutions for such radio resource sharing problems,
enabling also unlicensed/open spectrum operations. In this pa-
per, a Game Theory inspired scalable algorithm for Inter-Cell
Dynamic Spectrum Access (IC-DSA) is introduced in order to
enable distributed resources allocation in CR environments. The
new CR-based cell is called here Cognitive Cell (C-cell), and
it is the minimal entity which allocates a resource set. The
simulation results demonstrate the effectiveness of the proposed
spectrum sharing approach. This solution achieves a better
overall performance in several load and interference scenarios
in terms of both outage and average capacity when compared to
fixed frequency reuses cases.

I. INTRODUCTION

The market availability of powerful and lightweight mobile
devices [1] has led to a fast diffusion of mobile services for
end users, and the trend is shifting from voice based services to
multimedia content distribution. On one hand, this is a positive
tendency driving a further increase of the wireless commu-
nication market. On the other hand, this shift poses great
technology challenges due to a suboptimal support of such
enriched services from the existing wireless communication
technology side. As a matter of fact, current wireless access
networks are able to support relatively low data rates with
limited Quality of Service (QoS), when compared to wired
access. Nowadays, voice traffic is still considered by users
and operators as a high priority application for such networks,
and high data rate Internet-based multimedia services cannot
fully rely on guaranteed throughput and/or latency.
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In order to extend the access to high data rate services to wire-
less users, the International Telecommunication Union (ITU)
established new requirements for future wireless communica-
tion technologies. The global standard for International Mobile
Telecommunication – Advanced (IMT-A) specifies very high
peak data rate, up to 1Gbps in low mobility conditions and up
to 100Mbps in high mobility conditions, for the 4th Generation
of wireless systems [2].
While the high mobility target will be achieved by technolo-
gies already in deployment, such as 3GPP LTE and WiMax
802.16m, the low-mobility IMT-A goals can only be achieved
through the use of low transmit power and high efficiency
local area access networks taking the spatial frequency reuse
one step further from existing cellular technology. Under this
framework, the deployment of small picocells and femtocells
is a promising methodology for increasing network capacity,
and the standardization groups, such as 3GPP LTE-Advanced
[3] and IEEE 802.16 WIMAX [4], are already provisioning for
femto and pico base station deployment [5], which are seen as
the direct competitors for the current WiFi access points [6],
[7].
Unfortunately, the massive deployment of femtocells poses
significant challenges on efficient radio resource sharing. Us-
ing the traditional network planning/dimensioning approach
would require unacceptable costs and effort. Another access
solution could be to exploit the benefits of the unlicensed
bands or the open spectrum operations, which enable an easier
access, from a regulatory point of view [8], to the spectrum
resource. In this case, the presence of other technologies,
competing for the spectrum access [9] can raise complicated
co-existence issues.
Unlicensed wireless local area networks are usually deployed
in a completely uncoordinated way, whose basic characteristics
are a high density of Access Points (APs) in the same
geographical area, and the position of the APs, within the
area, randomly chosen by their owners. The APs can work in
complete autonomy or be part of larger networks, such as a
mobile operator network (see Figure 1). The APs dynamically
share the same pool of resources and should achieve an effi-
cient performance in terms of QoS and interference reduction
[10].

Current communication standards do not always include
such advanced QoS control mechanisms, and the service
deployment requires costly dimensioning of the involved
network and system. Hence, dynamic and scalable self-
configuration of spectrum allocation is one of the most
important, if not the most important, aspect for a successful
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Figure 1. Shared Resources Scenario: multi access nodes/operators are
sharing the same pool of resources. Maximization of QoS benefits and
simultaneous reduction of cross-interferences should be achieved.

APs deployment.
We believe that technological and engineering challenges for
this new class of local area AP devices can only be solved by
looking into advanced flexible spectrum management/sharing
algorithms based on Cognitive Radio (CR) [11] and Cognitive
Network (CN) [12] concepts. This is the main motivation
for investigating an Inter-Cell Dynamic Spectrum Allocation
(IC-DSA) based on Cognitive cells (C-cell). A C-cell is
an autonomous cell capable of configuring its spectrum
allocation. The cognitive functions can be concentrated on the
AP to limit the complexity of the served nodes, but anyway
they assist the AP in the spectrum sensing task.
The goal of the proposed IC-DSA methodology is to
provide an efficient trade-off between the performance of
the planned and the unplanned networks. The methodology,
inspired by Game Theory, is designed in order to have better
flexibility compared to the contention/collision avoidance-
based networks (e.g. WiFi [13], Bluetooth [14]) and to
achieve similar or better results in terms of average cell
throughput and guarantee of service requirements compared
to the planned femto/pico base station based networks.
The simulation results prove the efficiency of the proposed
approach.
The paper is organized as follows: a brief review of the
literature on spectrum and radio resource management
mechanisms for similar cognitive radio deployment scenarios
is presented in Section II. Section III describes the concept and
the details of the proposed Game-based Resource Allocation
in a Cognitive radio Environment (GRACE) spectrum sharing
approach. Formal definitions and game theoretic analysis are
presented in Section IV. In Section V the performance of the
GRACE is evaluated with system level simulations. Section
VI summarizes the conclusions and indicates future research
directions.

II. EXISTING SOLUTIONS

Spectrum sharing and cognitive networking can be seen
as an interference management across independent networks.
The interference management is not a new problem at all.
In cellular systems there are practical interference manage-
ment or avoidance solutions such as Inter-Cell Interference
Coordination (ICIC) [15] or Dynamic Frequency and Channel
Allocation (DFCA) [16]. These solutions can, in principle, be
extended to work across different networks using centralized
architecture. However, they have strong inter-cell signaling
requirements.
Some examples of centralized architecture for interference
reduction in a cognitive radio environment are given in [17],
[18]. Unfortunately centralized approaches are not viable,
from a business point of view, when several and independent
networks/operators have to share sensitive information among
them. Furthermore, a high signaling overhead would be re-
quired in order to share the needed information among the
networks, together with a powerful computing system to keep
track of all the localized spectrum assignment region-wide or
national-wide. On the contrary, to achieve full scalability in the
massive deployment of IMT-A access, the signaling overhead
across the networks should be minimized as much as possible.
Wireless networks already have intra-network traffic overhead
and the addition of an extra one is, therefore, not desirable. For
all these reasons, a distributed/decentralized approach would
be preferred.
The Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol can be seen as a distributed solution
which leads to time domain spectrum sharing. Unfortunately,
as CSMA/CA is currently implemented [13], it is not scalable
neither to high data rate nor to a large number of users [19].
In [20] the Authors proposed a cooperative multichannel MAC
protocol solution which supports wireless devices of vastly
different capabilities and applications with different require-
ments. A three phase asynchronous split MAC algorithm has
been used to achieve spectral efficiency and fairness goals. The
devices use a Request-To-Send/Clear-To-Send (RTS/CTS) ex-
change to make an agreement on the channel utilization. This
mechanism can, in principle, be extrapolated for a scalable
inter-cell cooperation, since the nodes (femtocell APs) do not
have to be synchronized. However, the femtocell devices are
operating under the control of the AP (resource allocation,
timing, etc.), thus the RTS/CTS exchange between the APs
becomes bandwidth demanding and potentially inefficient.
In the scenario depicted in Figure 1, each C-cell compete
with other C-cells for spectrum access. The decision is made
by each C-cell autonomously. Moreover, each C-cell can be
assumed to work in its own interest. This is fundamentally
different from the classical wireless networks, where each
network element works to optimize the network as a whole.
One of the most promising approaches to study the interaction
amongst CRs is the application of Game-Theory (GT) [21].
Game-theoretic analysis can be used to characterize decentral-
ized decision algorithms for cognitive networking.
In [22], a general framework for interference avoidance based
on potential games is introduced. In some cases, potential
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game based approaches can be implemented without com-
munication such as in [23]. In [24], potential games are
used to dynamically generate the frequency planning of a
cellular network. One limitation of potential based approaches
is the difficulty to accommodate system capacity in the utility
functions.
Cooperative game theory, based on the Nash Bargaining
Solution (NBS), is applied to the spectrum sharing problem
in [25], [26]. The NBS allows maximizing system capacity
directly, but there is a need of an underlying protocol for
exchanging information among the players. Computational
complexity and scalability can be a concern when using NBS-
based approaches.
Another track of spectrum sharing algorithms based on GT
is the auction-based secondary access to the spectrum. For
instance, in [27] the primary users lease unused channels to
the secondary users. However, the direct application of auction
mechanisms poses significant challenges in terms of signaling
and trusted entities, such as the spectrum brokers.
All the analyzed literature solutions present some weak points
in terms of signaling overhead, flexibility, scalability or in-
formation to be shared between different mobile operators.
This paper tries to overcome or, at least, minimize several of
these limitations with a fully distributed competitive solution.
No inter-AP signaling is required, thus leading to a better
scalability. Channel measurement reports between UE and AP
are required, but they are usually present in already existing
communication standards, e.g. for channel equalization pur-
poses. The efficiency and scalability of the proposed scheme
is proved by simulation results.

III. A GAME-BASED RESOURCE ALLOCATION IN
COGNITIVE RADIO ENVIRONMENT

This Section introduces the proposed IC-DSA solution,
starting with the design criteria. Then, the global behavior of
the algorithm is described through its cognitive cycle. Finally,
the adopted utility function is motivated.

A. Design Criteria

The Game-based Resource Allocation in a Cognitive ra-
dio Environment (GRACE) is a dynamic spectrum sharing
approach designed to meet the requirements summarized in
table I. The last requirement in table I can be more precisely
defined: the average capacity needs not to be optimal, since
this usually implies a low degree of fairness. However, the
average capacity should be comparable to the case where all
C-cells use the entire bandwidth (reuse one). Otherwise, it
would be questionable whether to apply dynamic spectrum
sharing at first. This also means that the peak capacity has to
be achievable when a C-cell is in total isolation. Therefore,
the scheme cannot rely on hard limits on the spectrum usage.
The aim of these requirements is to drive the development
of an efficient and fair spectrum sharing framework with
minimal complexity and signaling overhead needs. The wire-
less networks already have a lot of traffic overhead due to
control channels, pilot channels and measurement feedbacks.

Table I
DESIGN CRITERIA FOR THE PROPOSED SPECTRUM SHARING SOLUTION.

Requirement Reasoning
Each C-cell decides

its spectrum allocation Minimize complexity
autonomously
There is no Minimize overhead

inter-cell signaling and complexity
Each link has Increase user

to attain a experience
minimal quality and fairness

Large average capacity Spectral Efficiency

The spectrum awareness should be built upon these existing
signaling mechanisms, whenever possible, instead of adding
the extra complexity of inter-cell signaling or centralized
entities. As a matter of fact, the GRACE is built upon the
same mechanisms needed for an efficient frequency domain
scheduling: the characterization of the signal and of interfer-
ence over the frequency channels. Therefore, the introduction
of the GRACE into a traditional multi-carrier cellular network
can be done with a very low, or even zero, extra overhead.

B. GRACE overview

The GRACE is an Inter-Cell Dynamic Spectrum Alloca-
tion (IC-DSA) mechanism, which operates in tight coordina-
tion/cooperation with the Radio Resource Management (RRM)
and Medium Access Control (MAC), but on a coarser time
granularity. The GRACE consists of an iterative optimization
of a utility function defined in section III-C. Due to its iterative
nature, the algorithm can be described through a cognitive
cycle as depicted in Figure 2, where the interaction between
the IC-DSA cognitive cycle (GRACE) and the RRM cycle is
shown through a mirror representation [28].
In the present paper, a limited cognitivity is considered. The
learning process of the parameters is performed by a set of
rules which update the radio settings based on a random
process named Better-Reply Dynamics (BRD). This type of
cognitivity and its implications are described in [29]. The
BRD process is further discussed in section IV-C. In the
Sensing stage, the algorithm collects the power measurements
about the radio environment. Part of the measurements is
directly performed in the AP by the Physical Layer (PHY).
The remaining part is performed by the User Equipments
(UEs) and sent to the AP through proper MAC messages. The
RRM also uses this information to assign the least interfered
communication channel to the UEs. Hence RRM sends all
the aggregated measurements to the IC-DSA for the global
resource optimization. The Sensing stage also collects the QoS
requirements through the Admission Control (AC) layer.
Then, the measurement vector is passed on to the Analy-
sis stage where the specific interference metrics are com-
puted. In particular, in the current development, the Signal-
to-Interference-plus-Noise Ratio (SINR) and the Interference-
to-Noise Ratio (INR) are used. The Uplink (UL) and Downlink
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Figure 2. Cognitive Cycle Representation of GRACE

(DL) metrics are aggregated in order to have a full picture of
the interference on the entire system bandwidth.
Finally, all the physical channels comprised in the system
bandwidth are sorted according to the interference metric,
in order to facilitate the evaluation of the proposed utility
function. A channel is a sub-portion of the system bandwidth,
chosen according to the capabilities/standardized design of the
PHY. Afterwards, the sorted interference vector is sent to the
following stage of the Cognitive Cycle. In the Decision stage
each channel is evaluated according to the utility function,
and after a global evaluation of the interference on all the
channels the spectrum usage mask is generated. It is a syn-
thetic representation of which channel will be available for
the RRM, the AC and the MAC layers. The mask is passed
on to the Action stage where the RRM and the AC settings
are generated according to the specific Application Protocol
Interface formats.

C. Utility function
One key aspect, while modeling a problem as a game,

is the definition of the utility function. In game theory, the
decision makers greedily optimize their utility functions. In
this framework the decision makers are the C-cells. The major
design challenge is here to make the local greedy optimization
within a C-cell lead to an acceptably good global performance.
The global optimization of the interference avoidance process
can be achieved by using a greedy optimization, given a fixed
traffic demand [24]. A global optimization is harder to get
when the traffic demand is elastic, or when the optimization
criteria is the capacity (see e.g. the price of anarchy in [30]).
Therefore, a central question can be raised: what should be
the utility function of a C-cell?

The efficiency of the traditional cellular networks relies on
one basic principle: the spatial frequency reuse is planned to
be as tight as possible, without degrading the SINR too much.
Hence, when a dynamic spectrum allocation is introduced, the
same principle shall drive the design of the utility function.
On top of that, the spectrum which is not used in one C-cell
has to be made available to its neighbors. We advocate that
each C-cell needs to strive for:

• High bandwidth utilization.
• Avoiding transmission over heavily interfered channels.
• High spectral efficiency.

Clearly, there is a trade-off between the first two objectives,
while the third one is connected to both of them. One major
contribution of this paper is to define a utility function that
can jointly handle these different aspects. This relation is
further discussed later on in this section. First, we show
that this quantity and the corresponding weighting function
naturally arises on a simplified, but still relevant, topology.
Then, the framework is extended for generalized topologies
simply by allowing different weighting functions.

In Figure 3 a simplified two-cells scenario is depicted. No-
tice that the interference coupling is mutual, hence Iij = Iji.
It is intuitive that in the case of fierce interference and mutual
interaction the C-cells should use a solution where the chan-
nels are orthogonal, such as Frequency Division Multiplexing
(FDM). If the interference is low enough, each of the C-cell
should be able to reuse the whole spectrum.
Formalizing the concept, an m-clique interference game is a
situation where there are m C-cells with a relevant pairwise
interference coupling. C-cells not belonging to the clique do
not produce relevant interference to the C-cells on the clique.
Such a game can be considered as the basic building block of
more complex topologies. We want to determine, in a m-clique
interference game, when a FDM solution can be considered
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Figure 3. Each C-cell is a player. The interference coupling defines the
interaction amongst players.

superior to the shared channel one. In order to identify such a
situation, let us analyze under which circumstances the channel
capacity of a single interference free channel becomes greater
than the capacity of m interfered channels.
The concept is formalized by comparing the summed Shannon
capacity in both cases. Whenever the following inequality
holds, a FDM solution would surely be preferred over the
full reuse:

B log2

(
1 +

S̃

N

)
> m B log2

(
1 +

S̃

Ĩ + N

)
(1)

Where B is the bandwidth, S̃ is the average received power, Ĩ
is the average interference and N is the noise power in B. All
these quantities are relative to a single channel. Note that at
the left side of equation (1) no interference is present (FDM
solution), while at the right side the interference is present
(shared channels solution). By eliminating B, equation (1) can
be rewritten as:

log2

(
1 +

S̃

N

)
> (m− 1 + 1)log2

(
1 +

S̃

Ĩ + N

)
(2)

And the terms can be rearranged to:

log2

(
1 +

S̃

N

)
− log2

(
1 +

S̃

Ĩ + N

)
>

(m− 1)log2

(
1 +

S̃

Ĩ + N

)
(3)

By using the properties of the logarithmic function, the terms
on the left can be written as:

log2

(
1 +

S̃

N

)
− log2

(
1 +

S̃

Ĩ + N

)
=

log2

(
S̃ + N

N

)
− log2

(
S̃ + Ĩ + N

Ĩ + N

)
=

log2

(
S̃ + N

)
− log2 (N)− log2

(
S̃ + Ĩ + N

)
+ log2

(
Ĩ + N

)
=

log2

(
Ĩ + N

N

)
− log2

(
S̃ + Ĩ + N

S̃ + N

)
(4)

By substituting equation (4) back into equation (3) we obtain:

log2

(
Ĩ + N

N

)
− log2

(
S̃ + Ĩ + N

S̃ + N

)
>

(m− 1)log2

(
1 +

S̃

Ĩ + N

)
⇔

(m− 1)log2

(
1 +

S̃

Ĩ + N

)
− log2

(
1 +

Ĩ

N

)
<

−log2

(
S̃ + Ĩ + N

S̃ + N

)
(5)

Now, note that the right side of the equation is always lower
than zero:

−log2

(
S̃ + Ĩ + N

S̃ + N

)
= log2

(
S̃ + N

S̃ + Ĩ + N

)
≤ log2(1) ≡ 0 (6)

Substituting (6) in (5) and dividing by m − 1 leads to this
simple decision rule:

log2

(
1 +

S̃

Ĩ + N

)
−

1

(m− 1)
log2

(
1 +

Ĩ

N

)
≤ 0 (7)

Whenever the relaxed condition (for simplicity) shown in
equation (7) holds, a C-cell can safely determine that it prefers
an FDM allocation over a full sharing one in an m-clique
interference game. Let us assume that there are K channels in
total and, in order to implement a channel reuse m, the C-cell
allocates ni channels. Being m = K/ni:

1

m− 1
=

1

(K/ni − 1)
=

1

(K − ni)/ni
=

ni

(K − ni)
=

ni/K

(1− ni/K)
(8)

We define the weighting function as:

w(ni/K) =
ni/K

(1− ni/K)
(9)

Where ni/K is the percentage of used channels. In order to
simplify the notation we further define:

C (x) = log2 (1 + x) (10)

Substituting equations (9) and (10) in equation (7) leads to:

C

(
S̃

Ĩ + N

)
− w

(
ni

K

)
C

(
Ĩ

N

)
≤ 0 (11)

The starting point in equation (1) was the comparison of
two different situations: interfered and interference free
transmission. Therefore, equation (11) locally identifies an
undesirable situation: all the nodes transmit in all channels
even though they could achieve a better performance by
coordinating their transmissions. It would be much more
beneficial for the whole network if this condition was never
reached or, at least, a recovery from this state would be
possible. Hence, consider the situation where each of the
C-cells starts from an empty allocation and all of them are
allowed to allocate one more channel in a round robin fashion
until all K channels are allocated. If each C-cell evaluates
equation (11) before adding a new channel, the undesired
condition will never be reached. Therefore, the C-cells can
iteratively increase the percentage of used channels (ni/K)
and dynamically find a proper FDM solution to any m-clique
interference game.
This result, derived for a basic topology, motivates the
definition of a general utility function that can be used also
on more complex topologies:

Πi =
K∑
ki=1

s
(ki)
i [C(ki)

i − w
(
ki
K

)
ψ

(ki)
i ] (12)

Where:
• ki is a sorting of the channels in terms of increasing

interference.
• s

(ki)
i = 1 if the C-cell transmits at channel ki and s(ki)

i =
0 if there is no transmission.
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• C
(ki)
i is the channel capacity of channel ki, and it

represents the link level performance of the system.
• ψ

(ki)
i is a measure of spectrum congestion based on the

relation between interference and noise in channel ki.
Equation (11) suggests that the same function used to
map SINR into C

(ki)
i should be used to map I/N into

ψ
(ki)
i

• w(ki/K) is a weighting function. This function is a de-
sign parameter and it should be a non-decreasing function
of ki/K. Equation (9) gives one possible definition.

The function ψ
(ki)
i has an interesting interpretation: when

transmitting over an interfered channel, part of the transmit
power is spent to overcome interference instead of being used
to transmit useful data rate. The function ψ(ki)

i measures this
quantity as the extra capacity that could be achieved on another
(clean) channel.
The utility function defined in equation (12) can be maximized
without analyzing all possible channel allocations, thanks to
the channel sorting and the separability of the utility function
per channel. In order to develop such a result, let us define the
marginal utility as the extra utility provided by the addition of
a single channel, i.e. setting s(ki)

i = 1 instead of s(ki)
i = 0:

∆Πi

∆ki
= C

(ki)
i − w

(
ki
K

)
ψ

(ki)
i (13)

Maximizing the utility in equation (12) is equivalent to choos-
ing all the channels that provide positive marginal utility
according to equation (13). An analysis of equations (12) and
(13) shows that the following properties can be achieved by a
proper choice of w(ki/K):
• High Bandwidth Utilization: If the interference is low

enough, the utility function approximates the channel
capacity. This means that each C-cell will eagerly add
more bandwidth if the interference is sufficiently low.
Furthermore, each C-cell will opportunistically use the
channels which are not allocated by its neighbors. There-
fore, a high bandwidth utilization can be achieved.

• Avoidance of heavily interfered channels: The marginal
utility provided by a highly interfered channel is negative.
Therefore, a C-cell maximizing Πi will not allocate
highly interfered channels, otherwise this would reduce
Πi.

• High spectral efficiency: Selecting channels with a pos-
itive marginal utility, given by equation (13), is the
same as comparing the spectral efficiency to a dynamic
threshold. The higher the interference, the higher the
threshold will be. Therefore, only the channels with a
high spectral efficiency are chosen.

This utility function framework is very flexible, and a suitable
definition is essential for the efficiency of the GRACE. In order
to provide the best performance, the weighting function has
to be adjusted for the desired deployment topology. Figure
4 shows an example of a sigmoidal weighting function, as
the one used in the simulations presented in section V. The
sigmoid is an s-shaped curve, and it provides an interesting
weighting solution. The C-cells with a low number of channels
will disregard the existence of interference, and they will add

more channels anyway, because the weight for ψ(ki)
i will be

close to zero. Moreover, the C-cells with a high number of
channels will only add more if the interference is extremely
low, since the weight for ψ(ki)

i will be close to one. These two
features enhance the capability of the GRACE on attaining
both minimal outage performance and fairness. Naturally, it is
also an option that w(ki/K) can be dynamically learned for
a given topology.

0 20 40 60 80 100
0
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0.8

1

k
i
/K − Percentage of used channels (%)

w
(k

i/K
)

Starving cells
will disregard

interference and
add more channels

Each cell
will only 

add all channels
if interference

is low

Figure 4. Example of sigmoid function, used as the weighting function on
GRACE.

IV. GAME THEORETICAL MODELS AND ANALYSIS OF
GRACE

In this Section the inter-cell spectrum sharing problem is
analyzed in the light of Game Theory (GT). The game model
is introduced in IV-A while in Section IV-B the existence of
the equilibria and the general game behavior are analyzed.
The dynamics and the strategy learning process are finally
described in section IV-C.

A. Spectrum Sharing Game Model

A game is any situation where the outcome of the decision
process of each decision maker is affected by the decisions
made by other decision makers. Since the spectrum allocation
performed by each CR affects the allocation of the other CRs
in the environment through the means of interference, the
cognitive networking can be modeled using games. Several
auxiliary definitions and model assumptions are introduced
first, then the definition of a GRACE Spectrum Sharing Game
is given at the end of this section.

A game in strategic form[31] Γ is a tuple Γ =
(I , (Σi)i∈I , (Πi)i∈I ) where, I = {1, ..., |I |} is the set
of players, Σi is the pure strategy space of player i, and
it is defined for each player in I . A strategy profile P
is a particular selection of strategies for each player P ={
s1, ..., s|I |

}
, where si is a strategy of player i. The utility

function Πi : P → R is a real valued function determining the
preference of each player over the set of all possible strategy
profiles.

In our spectrum sharing game formulation a player cor-
responds to a C-cell. Hereafter, the terms C-cell and player
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will be used interchangeably depending on the context. A
particular player can have several communication links as
illustrated in Figure (3). The nodes within a C-cell coordinate
themselves to access the medium, providing the functions of
duplexing and multiple access. The IC-DSA deals only with
how the spectrum is shared amongst the C-cells, i.e. based on
Iij and Iji (see Figure 3).

Let K = {1, 2, ...,K} be the pool of dynamically shared
channels. Each player has access to all channels in the
pool. Furthermore, the channels are orthogonal, i.e. there is
no cross-interference between two different channels. The
strategy space of each player is the same and consists of
all possible spectrum usage masks. Following the notation
from equation (12), si(k) is a binary variable: si(k) = 1 if
the C-cell transmits on channel k and si(k) = 0 if there is
no transmission. Hence, the spectrum usage mask si can be
written as the binary vector:

si =

[
s
(1)
i , . . . , s

(k)
i , . . . , s

(K)
i

]
(14)

The players only interact with each other by the means of
interference. The total interference power perceived by player
i, on channel k is:

I
(k)
i =

|I |∑
j=1
j 6=i

s
(k)
j I

(k)
ji (15)

Where I
(k)
ji is the incoming interference from player j to

player i on channel k. Equation (15) tells that there is no
incoming interference from player j on channel k if that player
does not transmit on channel k. Similarly, the received signal
power of player i is represented by S(k)

i and it is only available
if that channel is allocated:

S
(k)
i =

{
S̃

(k)
i , if si(k) = 1

0, otherwise.
(16)

It is assumed that each player is capable of reducing all
relevant sensing information1 to two values per channel: I(k)

i

and S(k)
i . A simple implementation of such reduction is the

use of the sensing information about the link with the worst
SINR.

While k is the global channel index, common to all players,
the utility function is defined using a player–specific ordering
ki based on the increasing level of interference:

qi(k) > qi(k
∗)⇔ I

(k)
i > I

(k∗)
i

ki = qi(k), ki ∈ K (17)

The quantity qi is defined as a bijective function from K
to K , corresponding to a channel sorting according to the
increased level of the worst interference case. Since this
is a bijective function, the global channel indexing can be
obtained through the inverse function k = q−1

i (ki). Hereafter,
this conversion is implicitly considered where needed. For
example:

S
(ki)
i ≡ S

(q−1
i

(ki))

i (18)

Therefore, the utility function from equation (12) can be
explicitly put in terms of S(ki)

i and I(ki)
i :

Πi =

K∑
ki=1

s
(ki)
i [C

(
S

(ki)
i

I
(ki)
i + N

(ki)
i

)
− w

(
ki

K

)
C

(
I
(ki)
i

N
(ki)
i

)
] (19)

1Although it is out of scope of this paper to investigate handover procedures,
once a handover is initiated, a special treatment is needed to determine if
the corresponding UE measurements should be used or not on the spectrum
analysis. Otherwise, the spectrum allocation generated by the GRACE could
be biased to protect a UE that will soon not be served by that cell.

Where, N (ki)
i is the noise power, and C(x) is the link level

mapping from SINR to throughput.
The GRACE spectrum sharing game Γ is defined as tuple
(I ,K , (Σi)i∈I , I

(k)
ji , S

(k)
i , (Πi)i∈I ) where,

(Σi)i∈I is the set of strategy spaces corresponding to all
possible combinations of channel allocations,
I

(k)
ji is the interference coupling on channel k for the ordered

pair of players i,j,
S

(k)
i is the signal received by player i on channel k,

Πi is the utility function given by equation (19).

B. Game Statics
In GT it is common to denote the set of strategies of all the

players but i as s−i, i.e., s−i =
{
s1, ..., si−1, si+1, ..., s|I |

}
.

A Nash Equilibrium (NE) is a strategy profile where each
strategy is the best response to the strategies of the other
players. Formally, a NE is a a strategy profile where the
following condition holds for every i:

Πi(si, s−i) ≥ Πi(s̃i, s−i) for ∀s̃i (20)

In a NE, no player has incentives for taking unilateral devia-
tions. Pure Strategy Nash Equilibria (PSNE) need not to exist.
However, a mixed strategy Nash Equilibrium always exists
for the finite strategic-form games [31]. A mixed strategy is a
probability distribution over the pure strategies.

The best reply correspondence bi of player i is a mapping
from the opponents strategies to a optimal strategy for player i.
A best reply selection is a particular single valued implemen-
tation of the best reply correspondence. In the GRACE game,
the best reply selection can be implemented by selecting all the
channels with a positive marginal utility, as given by equation
(13)

From a particular player’s point of view, a GRACE spectrum
sharing game with more than two players has the same
structure of a two-player game. Player i utility depends only
on the summed incoming interference, as given by equation
(15), and not on which player is generating the interference.
Therefore, from the player i point of view, replying to a single
opponent or to several ones is exactly the same thing.

In a two player GRACE game, a best reply selection can
be determined directly by the number of allocated channels,
n1 and n2, since the two players will minimize the allocation
overlap to each other. An example, with K = 125 channels,
is illustrated in Figure 5. Note that in this example the
function b1(n2) has the independent variable n2 on the y-
axis while the dependent variable b1 on the x-axis. The NE
is explicitly marked, and it corresponds to a strategy profile
in which the joint best reply selection of both the players
reaches a fixed point. Furthermore, the best reply b2(n1) is
downward slopping. For example, if player 1 does not have
much traffic and allocates only 10 channels, the best reply
for player 2 is to allocate the remaining 115 channels. If
player 2 starts increasing the number of allocated channels,
player 1 will be motivated to reduce its own allocation. This
is a characteristic of the submodular games. The analysis,
presented later on in this section, shows that a GRACE game
is indeed a submodular game under some conditions.

Another interesting characteristic of the GRACE utility
function is that it creates a plateau on the best reply selection.
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This is an important stability result: for a large portion of
the strategy profiles one player is indifferent to the strategic
changes of the other player. The plateau level depends on
the level of the perceived interference. If the interference
coupling is very strong, several PSNE may exist. Intuitively,
the symmetric one is preferred. This is further discussed in
section IV-C.
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Figure 5. The best reply correspondence in a two player GRACE game with
fixed power per channel. Note that for b1(n2) the independent variable is on
the y-axis and the dependent variable is on the x-axis. From any initial point
the convergence to a NE can be achieved with at most three best replies.

Before formalizing the concept of a submodular game, a
few additional definitions will be useful. Let x and y be k-
dimensional vectors belonging to Rk. The meet, x ∧ y, and
the join, x ∨ y , operators are defined as:

x ∧ y ≡ {min(x1, y1), ..., min(xk, yk)} (21)
x ∨ y ≡ {max(x1, y1), ..., max(xk, yk)} (22)

Moreover, Σ is a sublattice of Rm if x ∈ Σ and y ∈ Σ imply
that x ∧ y ∈ Σ and x ∨ y ∈ Σ. A real valued multi-variable
function Π(x) is supermodular if:

Π(x ∧ y) + Π(x ∨ y) ≥ Π(x) + Π(y) (23)

The utility Πi has decreasing differences in (si, s−i) if:

Πi(si, s−i)−Πi(s̃i, s−i) ≤ Πi(si, s̃−i)−Πi(s̃i, s̃−i) (24)

when si ≥ s̃i and s−i ≥ s̃−i. Here, x ≥ y means that xk ≥
yk,∀k. If xk > yk for some index k but xl < yl for some
other index l, then the vectors x and y are not comparable.

The Equation (24) can be interpreted as follows: when the
externality s−i is increased, the marginal profit is reduced or
maintained. In other words, an increase in s−i cannot make
player i become more attracted to increase si.

A submodular game is a game where the following condi-
tions stand for each player i:
• Σi is a sublattice of Rmi . Note that the dimension mi of

Σi can be player specific.
• Πi has decreasing differences in (si, s−i).
• Πi is supermodular in si.
Proposition 1: Σi is a sublattice of RK .

Proof: A strategy is defined in equation (14) as a binary
vector si ∈ RK . The meet operation defined in equation (21)
can be implemented for a binary vector as a bitwise logical

AND. Similarly, the join operation is equivalent to a bitwise
logical OR. Therefore, it follows that if si ∈ Σi and s̃i ∈ Σi,
then (si∧ s̃i) ∈ Σi and (si∨ s̃i) ∈ Σi since (si AND s̃i) ∈ Σi
and (si OR s̃i) ∈ Σi. Consequently, Σi satisfies the definition
of sublattice of RK .

Proposition 2: Πi is supermodular in si.
Proof: From the definition in Equation (23), this condition

requires that:

Πi(si ∧ s̃i) + Πi(si ∨ s̃i) ≥ Πi(si) + Πi(s̃i) (25)

for any pair of strategies s̃i and si. As noted in proposition 1,
this is equivalent to:

Πi(si AND s̃i) + Πi(si OR s̃i) ≥ Πi(si) + Πi(s̃i) (26)

Using equations (12) and (13), the right side of equation (26)
can be written as:

Πi(si) + Πi(s̃i) =

K∑
ki=1

s
(ki)
i

∆Πi

∆ki
+

K∑
ki=1

s̃i
(ki)

∆Πi

∆ki
(27)

The terms of the first sum for which s(ki)
i = 1 but s̃i(ki) = 0

can be moved to the second sum and set s(ki)
i = 0 in the

first sum. After this change, the positive terms in the first sum
will consist of the positive terms in both s̃i and si, while the
second sum will consist of the positive terms which are s̃i, si
or both of them. Then, by definition:

Πi(si) + Πi(s̃i) = Πi(si AND s̃i) + Πi(si OR s̃i) (28)

Proposition 3: The quantity Πi, as defined in the GRACE,
has decreasing differences in (si, s−i).

Proof: Equation (24) compares the quantity Πi(si, t) −
Πi(s̃i, t) for t = s−i, s̃−i. Using equations (12) and (13), this
quantity can be written as:

Πi(si, t)−Πi(s̃i, t) =

K∑
ki=1

s
(ki)
i

∆Πi

∆ki
(si, t)−

K∑
ki=1

s̃
(ki)
i

∆Πi

∆ki
(s̃i, t) (29)

Recall that the strategies are binary vectors of size K. There-
fore, si ≥ s̃i implies that s(k)

i = 1, whenever s̃(k)
i = 1. Oth-

erwise the vectors would not be comparable. In other words,
the allocation s̃i is necessarily contained in si. Therefore, all
the terms appear in both sums in equation (29), except the
channels which are in si but not in s̃i . Let κ represent such
a set, with reference to the index ki.

Then, equation (29) can be rewritten as:

Πi(si, t)−Πi(s̃i, t) =
∑
ki∈κ

s
(ki)
i

∆Πi

∆ki
(si, t) (30)

Similarly, the condition s−i ≥ s̃−i only holds if s(k)
−i = 1,

whenever s̃(k)
−i = 1. This last condition implies I(k)

i (s(k)
−i ) =

I
(k)
i (s̃(k)

−i ) if s(k)
j = s̃

(k)
j , for all players j 6= i and I(k)

i (s(k)
−i ) >

I
(k)
i (s̃(k)

−i ) if s(k)
j 6= s̃

(k)
j , for any player j 6= i. These relations

can be seen from equation (15). Therefore, the interference
to player i can only increase or be maintained when the
opponents move from s̃−i to s−i.

Note that the indexing ki may be different in the two
situations compared in (24), since the interference affects the
ranking according to equation (17). Let us denote ki = qi(k)
as the indexing when the opponents strategy profile is s−i and
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k̃i = q̃i(k) when their strategy is given by s̃−i. Furthermore,
let κ̃ represent the set of channels si but not in s̃i , with
reference to the index k̃i. According to equation (29), κ and
κ̃ have the same number of elements in the sum. Because of
that, the n-th element of κ will have an indexing ki which
is no smaller than the index k̃i of n-th element κ̃. This
is relevant because the elements of κ and κ̃ can be paired
such that the weighting function relation can be written as
w(ki/K) ≥ w(k̃i/K) for ki ∈ κ and k̃i ∈ κ̃. Summarizing,
it is possible to pair the elements of κ and κ̃ such that the
following conditions hold for all of them:
• ki ≥ k̃i
• w(ki/K) ≥ w(k̃i/K)
• I

(ki)
i (s(ki)

−i ) ≥ I(k̃i)
i (s̃(k̃i)

−i )

• ψ
(ki)
i ≥ ψ(k̃i)

i

If we further impose, C(ki)
i ≤ C

(k̃i)
i , then the following

condition necessarily holds for the marginal utilities, given by
equation (13):

∆Πi

∆ki
(si, s−i) ≤

∆Πi

∆k̃i
(si, s̃−i) (31)

Then, substituting (31) into equation (30):

Πi(si, s−i)−Πi(s̃i, s−i) =∑
ki∈κ

s
(ki)
i

∆Πi

∆ki
(si, s−i) ≤

∑
k̃i∈κ̃

s
(k̃i)
i

∆Πi

∆k̃i
(si, s̃−i) (32)

Then, the equation (30) can be used at the right side of
equation (32) to establish the condition of equation (24) which
is the definition of decreasing differences:

Πi(si, s−i)−Πi(s̃i, s−i) ≤ Πi(si, s̃−i)−Πi(s̃i, s̃−i) (33)

Theorem 1: A GRACE spectrum sharing game is a sub-
modular game.

Proof: It follows directly from the definition of a sub-
modular game, Proposition 3 and Proposition 2.

Corollary 1: A PSNE always exists in a two-player
GRACE spectrum sharing game.

Proof: A supermodular game can be defined along the
same lines as a submodular game, by replacing decreasing
differences with increasing differences [31], i.e., if Equation
(24) is true when the inequality signal is reversed.
A two-player submodular game can be turned into a super-
modular game by reversing the action vector of one of the
players [32]. In the case of a GRACE spectrum sharing game
this modification can be done as follows: one of the players
decides which channels to allocate, and the other decides
which channels not to allocate.
Supermodular games always has at least one PSNE. Therefore,
a two-player GRACE spectrum sharing game always have a
PSNE.

In our simulated cases, the convergence to a PSNE was
always reached, independently of the number of players, as
discussed in section V-B. However, it is still an open issue in
the game theory literature what are the most general conditions
that can guarantee the PSNE existence in submodular games
with more than two players. Refer to [33] and references
therein for the latest advances in the topic.

C. Game Dynamics

The game dynamics can be seen as a learning process, in
which the players attempt to discover how to play a NE after
a few game repetitions. In the particular case of a GRACE
spectrum sharing game, the players are interested in learning,
through the past sensed information, the equilibrium for the
spectrum allocation.

Figure 5 shows one example where the convergence to
PSNE can be achieved in a two-player game with only
three steps using the best-reply dynamics, i.e. if the players
iteratively play the best responses.

Despite the nomenclature, there are several situations where
the better-reply dynamics (BRD) are preferred over best-reply
dynamics [29]. The BRD is a random process in which, at each
stage of a repeated game, one player i ∈ I is selected to revise
its current strategy (the status-quo strategy). The selected
player will sample other strategies. The sampled strategy will
be adopted if and only if it is a better-reply, i.e. if its utility
is higher than the one provided by the status-quo strategy.
Otherwise, the status-quo strategy is kept for the next stage.

Supermodular games have the weak Finite Improvement
Property (weak-FIP), which guarantees the convergence of
the game to a PSNE. Therefore, any two-player GRACE
spectrum sharing game will converge under BRD, because it
is a supermodular game (see Corollary 1) as well. Whenever
the BRD converges, the convergence point is a PSNE [29].
Therefore, the convergence to a PSNE can be empirically
verified by using the BRD.

We then propose two modifications to the BRD that, in our
view, are more adequate to the spectrum sharing problem:

1) Each player decides autonomously to revise its status-
quo strategy with probability ε, equal for all players.
Referring to the cognitive cycle in Figure 2, a C-cell
starts the analysis process only when a revision of the
status-quo strategy is decided. This modification, which
is also used in [24], avoids any coordination amongst
the players enhancing the scalability of algorithm itself.

2) A C-cell can only change its allocation by a maximum of
∆nMAX channels at a time. Referring to the cognitive
cycle in Figure 2, the Decision process is the one
affected by this modification which smooths the changes
in the spectrum allocation, and it serves a number of
purposes. First, the sensing information becomes more
stable because the spectrum allocation varies less often.
Secondly, the other cognitive processes, such as the
RRM and the Admission Control, can more easily adapt
to small changes in the spectrum allocation rather than
large ones. Furthermore, a C-cell will wait for the
adaptation of the other C-cells before making drastic
changes in its own allocation. This is very important for
the presence of multiple PSNE, where the convergence
toward a symmetric equilibrium is preferred. Last, but
not least, this modification should provide smoother
transitions in the transmission data rate provided to the
upper layers. Naturally, this modification comes at the
price of a reduced spectrum agility. Some of it can
be recovered by setting high values of the status-quo
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revision probability (ε).
This modified BRD will also converge in games with weak-
FIP property, since there is a positive probability that the
players will follow exactly the same improvement path as in
BRD.

One implementation note: from Equation (13) it is possible
to state that the better replies can be formed from the current
allocation by adding the channels which have a positive
marginal utility while removing those which have a negative
marginal utility. Therefore, the modified better-reply dynamics
can have a simple implementation, where only a few channels
have to be evaluated at a time instead of analyzing all possible
channel allocations.

V. SIMULATED SOLUTION AND RESULTS

In this section, the system–level simulation results are
presented. The Uplink (UL) results are omitted in most of
the cases, because they are very similar to the Downlink
(DL) results in terms of relative gains. All the throughput
results are normalized by dividing the throughput by the
maximum theoretical capacity of the system. Hence, a normal-
ized throughput of 100% means that the theoretical capacity
is achieved (transmission over the whole bandwidth at the
maximum spectral efficiency of the system).

A. Simulation Model and Parameters

A system level simulator was used to evaluate the perfor-
mance of the GRACE algorithm. Let us now introduce the
system level model, assuming an infra-structured OFDMA
(Orthogonal Frequency Division Multiplexing) system, using
a single contiguous bandwidth of 100 MHz. The duplexing
is provided by a TDD (Time-Divison Duplexing) operation
mode. The UL/DL switching point is fixed for simplicity: 50%
of the frame is used for the UL and the remaining 50% for
the DL.

The 100 MHz bandwidth is subdivided into K = 125
channels. There is no pre-reservation of the resources and,
therefore, all the 125 channels are dynamically shared.

The results are based on 500 randomly generated simulation
scenarios. The positions of the houses and the sidewalks are
fixed, but the position of both the APs and the UEs are
randomly chosen within each house. Therefore, the simulation
scenario models an uncoordinated deployment. In Figure 6,
one scenario example is depicted. It consists of tightly packed
houses, constructed in blocks of four houses. Each house
has its own C-Cell operating autonomously. Unless otherwise
stated, the results correspond to a 16 C-cells scenario. A
closed subscriber group approach is considered and, therefore,
each UE is connected to the corresponding AP even if the
received signal strength (RSS) from another AP is higher and
no handovers are possible.

The simulator uses a semi-static approach, where positions
are fixed during a simulation drop while the time is varied, and
correlated results of the repeated application of the GRACE
are thus available. In each run 60 iterations (game stages) are
simulated. The results that compare the GRACE to the other
approaches are taken from the last iteration. The simulations

Figure 6. Example of randomly generated scenario with 16 access points.
Note that both AP and UE positions are randomized within a house.

of GRACE algorithm are initialized with a Reuse One (R1)
spectrum use scheme as a starting point.

In order to capture the effects of varying interference
patterns, not all the APs are always active at the same time.
In the results, the activity factor is defined as the probability
of having network usage within a particular network (AP plus
UE).

Further simulation parameters are summarized in Table II.

Table II
PARAMETERS FOR SYSTEM-LEVEL SIMULATIONS

System Model
Spectrum allocation 100 MHz centered at 3.5 GHz

AP parameters
Max. TX power 24 dBm
Antenna system Omni (3dBi)

UE parameters
Max. TX power 24 dBm
Antenna system Omni (0dBi)

Access scheme OFDMA
Duplexing scheme TDD

Frequency resources 125

Link Level Model[34]

3G-LTE approximation
SINR efficiency (0.56,0.52) in (DL,UL)

Bandwidth efficiency (2,2.34) in (DL,UL)

Scenario Model

Home Scenario

Room size 5m x 5m
Sidewalk width 2.5 m

AP position 50 random layouts
UE position 10 drops per layout

Propagation Model - Winnner II A1 Indoor[35]
Minimum coupling loss 45 dB

Home Scenario
Internal walls 5 dB attenuation
External walls 10 dB attenuation
Shadow Fading 3-8 dB deviation

Traffic Model

Data generation
Full buffer (There is always data

for transmission)

GRACE parameters
Weighting function w = 1− 1

1+exp(12∗(x−0.55)) (Figure 4)

Status-quo
ε = 50% (Section IV-C)

revision probability

Maximal allocation
∆nMAX = 10 (Section IV-C)

change
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B. Convergence Study

Two key aspects of a spectrum sharing mechanism designed
for an uncoordinated deployment are scalability and conver-
gence. The target is to evaluate the scalability of the algorithm
when the size of the problem is increased, i.e. scenarios with
more C-cells. The convergence has been addressed for four
setups:

• Two C-cells, forming a 2x1 grid of houses.
• Four C-cells, forming a 2x2 grid of houses.
• 16 C-cells, forming a 4x4 grid of houses.
• 64 C-cells, forming a 8x8 grid of houses.

For each of these setups the convergence results were averaged
over 640 samples from randomly generated scenarios. They
are presented in the form of an allocation error, defined as the
difference between the number of channels currently allocated
and the number of channels allocated in the NE. Therefore, the
allocation error is a metric that measures how far a particular
C-cell is from the equilibrium allocation.

Figure 7 shows the evolution of the worst allocation error.
It is possible to observe that there is some dependency of the
worst case of the convergence behavior from the number of
C-cells, but the time required for converging does not grow as
fast as the problem size. In the worst case scenario with 64 C-
cells, the PSNE is only achieved after 58 iterations, but even
in this case, most of the convergences are achieved within 30
iterations.

Figure 7. Evolution of worst case allocation error, amongst 640 C-cells. This
is indicative of the worst-case convergence behavior of GRACE.

Figure 8 shows the evolution of the average allocation error.
The average convergence behavior is very interesting. In the
simulated scenarios, the average convergence time for the 64
C-cells scenarios is the same as for the 4 C-cells scenarios.
Therefore, the GRACE scales very well with the problem size,
and it is suitable as a spectrum sharing solution in massive
uncoordinated deployments.

We remark that the convergence behavior is here a conse-
quence of the limitation of the maximum allowed allocation
change ∆nMAX = 10 (Section IV-C). Depending on the
scenario, the convergence can be made faster if no limitations
are imposed on how fast the C-cells can adapt. Furthermore,
as discussed in section IV-C, the convergence results of this

Figure 8. Evolution of the average allocation error, amongst 640 C-cells.
This is indicative of the average convergence behavior of GRACE.

section prove that the PSNE exists for all the studied scenarios,
because the convergence point of the BRD must be a PSNE.

C. Analysis of the GRACE Performance

In this section the performance of the GRACE is presented
for an activity factor of 100%, i.e. when all the C-cells are
active. In Figure 9, the evolution of the outage throughput is
shown. It is possible to see that a steady increase in the outage
throughput is achieved. Since the full reuse is the starting
point, this is due to the interference avoidance nature of the
GRACE. In other words, the number of allocated channels is
reduced and, thus, the interference generated to other C-cells
is also reduced.
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Figure 9. Evolution of outage throughput over the iterations when GRACE
is used. Here, the activity factor is 100%.

The GRACE average throughput performance is shown in
Figure 10. During the first iterations, the average capacity
decreases, but once the interference is substantially reduced,
the average throughput stabilizes on a higher level compared
to the first iteration. The reason for this behavior can be seen
from the Shannon capacity point of view. The channel capacity
increases linearly with the bandwidth and logarithmically with
the SINR. Therefore, a rather large increase in the SINR is
needed to compensate for a reduction of the bandwidth.
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Figure 10. Evolution of average throughput over the iterations when GRACE
is used. Here, the activity factor is 100%.

It is important to highlight the fact that a greedy local
optimization of a single link capacity may not lead to a better
average system performance. This can be seen from the initial
reduction of the average capacity (see Figure 10), caused by
the reduction of the allocated bandwidth. In order to avoid a
poor performance, it is necessary to consider both the capacity
and the interference avoidance, as in the GRACE.

Figure 11 shows the following performance indicator:∑
I

N
=

sum of interference power over all links in all allocated channels
sum of noise power over all links in all allocated channels

(34)

All the links, including both the UL and the DL, are taken
into account here. Note that the reduction in the interference,
shown in Figure 11, is obtained without any sort of power
control. Instead, only the interference avoidance is applied.
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Figure 11. Evolution of total system noise rise (sum of interference power
over all links / sum of noise power on all links).

In figure 11, apart from the very first few steps, the
interference is steadily decreased. The target of the algorithm
is not to completely eliminate the interference, but simply to
reduce it to an equilibrium level. As a matter of fact, zero
interference would correspond to a FDM allocation, which
can be quite ineffective if forced on a large area. Each cell
would in that case become severely bandwidth limited. On
the contrary, the GRACE aims at providing an efficient and
tight soft frequency reuse.

D. Comparison with Fixed Frequency Reuses

In this Section the performance of the GRACE is compared
with the performance of several fixed frequency reuses which
have been traditionally used in planned networks. The optimal
frequency reuse depends on the number of the active networks,
as well as the traffic they demand. The results of this section
prove that the proposed algorithm is able to autonomously
adapt to different spectrum loads, attaining a performance
similar to the best frequency reuse for a given network usage.

Figure 12. Average and 5% outage downlink throughput achieved by the
proposed algorithm (GRACE) and fixed reuse strategies, when 20% of the
access points are active on average.

The average DL throughput and the 5% outage DL
throughput are presented in Figure 12. It should be noticed
that the Reuse 1 (R1) has the overall best average throughput
in low load scenarios, at the cost of having by far the worst
outage performance. On the other hand, GRACE follows
closely the R1 average throughput while providing the best
outage throughput for a low activity factor.

In this kind of scenario where only a few APs are activated,
the interference becomes quite asymmetric. While the GRACE
is able to adapt the spectrum usage to this condition in order to
exploit all the available resources, the fixed frequency reuses
cannot do it, simply because they are optimized for other
load situations (all the APs active). This is one of the main
reasons for justifying the IC-DSA over the traditional planned
networks.

The cumulative distribution function (CDF) of the DL
throughput is shown in Figure 13. For a large part of the
throughput distribution, the R1 has the best performance .
However, it suffers from a low outage throughput. On the
contrary, the GRACE has the best outage throughput among all
the compared schemes. On top of that, the GRACE achieves
the maximum theoretical capacity (100%) in most of the cases
where R1 also does it (isolated cells). Note that in this low load
scenario all the schemes become clearly bandwidth limited
for a large portion of the cells. This can be seen from the
range in which the CDF is almost vertical. Therefore it is
very important to exploit the whole bandwidth in low load
conditions.

The GRACE is able to achieve similar average throughput
as R1, as shown in Figure 12, even though the median is
much lower (see Figure 13). This behavior can be explained
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by two facts: first, the GRACE performs better than the R1
in outage. Secondly, the maximum throughput achievable for
isolated cells has a high impact on average while no impact on
the median. In other words, the GRACE distributes the total
throughput more evenly. This is a direct consequence of the
choice of the weighting function (Figure 4).
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Figure 13. Cumulative Distribution Function of throughput, for an activity
factor of 20%

Figure 14 shows the average and the 5% outage DL through-
put for an activity factor of 100%. The Reuse 2 (R2) becomes
the best solution for both the outage and the average capacity.
The GRACE performance follows the R2 performance very
closely.

Figure 14. Average and 5% outage downlink throughput achieved by the
proposed algorithm (GRACE) and fixed reuse strategies, when all access
points are always active.

Finally, the CDF of the DL throughput for an activity factor
of 100% is depicted in Figure 15.

The GRACE performances are close to the R2 ones, being
slightly worse on the lower part and much better on the upper
part of the distribution (when the R2 becomes bandwidth lim-
ited). This higher spread is a consequence of the competitive
nature of the algorithm. Still, the GRACE is strictly superior
in performance to the R1 and the Reuse 4 (R4), under a full
load.

The previous examples, for a low load and the maximum
load, show that the performance of a spectrum sharing algo-
rithm should be analyzed under several loads.

Summarizing results are presented in Figures 16 and 17, for
activity factors ranging from 20% to 100% .
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Figure 15. Comparison of GRACE CDF of normalized throughput with fixed
frequency reuses.

Figure 16. 5% outage downlink throughput achieved by the proposed
algorithm (GRACE) and fixed reuse strategies. For each activity factor, the
best and worst fixed reuse for that particular load is shown.

Figure 16 shows the 5% outage throughput in DL. For
low loads, the GRACE provides the best outage performance,
while for higher loads, its performance is equivalent to the
best fixed reuse.

Figure 17 shows the results for the average throughput in
DL.

Figure 17. Average downlink throughput achieved by the proposed algorithm
(GRACE) and fixed reuse strategies. For each activity factor, the best and
worst fixed reuse for that particular load is shown.
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It is important to emphasize that under low loads the best
outage performance for a fixed reuse is provided by R2, while
the best average throughput is obtained by R1. Therefore, they
cannot be achieved at the same time by fixed reuses. The
GRACE, on the other hand, is able to achieve good results
in both outage and average throughput simultaneously.

In order to highlight the importance of this result, a scatter
plot is shown in Figure 18, where the throughput values
correspond to the sum of UL and DL throughput. It is
interesting to compare the different schemes on more than
one optimization dimension, especially when the optimization
targets are conflicting or can not be combined. The Reuse 3
(R3) and a soft frequency Reuse 1.5 (R1.5) were also included
for comparison. This R1.5 was obtained by applying the global
interference minimization method described in [24], with each
cell set to allocate 75% of the resources.

4 4

Figure 18. Scatter plot showing average throughput and fairness. The y-axis
represents the total capacity on the simulated area. Fairness (x-axis) represent
how equally this total capacity is distributed amongst the cells. The values
presented here corresponds to the sum of uplink and downlink throughput.

Each point on the plot represents the average performances,
under different loads, for a specific algorithm. In general,
the algorithms which have curves on the top right have a
better performance. The fairness metric should be understood
as the fairness amongst the C-cells, and it represents how
equally the total capacity is distributed amongst the cells. For
example, the R4 has a very poor capacity performance, but this
capacity is distributed very evenly amongst the cells, because
the interference is very low.

Compared to the other schemes, the GRACE always has a
close to top capacity. Also, the GRACE has a strong balance
between the two optimization criteria. Comparing each activity
factor, the GRACE always dominates R1.5, R3 and R4 in
terms of total capacity. The GRACE also provides much more
fairness than the R1 and, in most cases, a capacity superior to
the R2 is provided. The one and only activity factor where the
GRACE is strictly dominated (in terms of outage and average
throughput) by a fixed reuse is in a full load network. And
even in this situation the performance closely follows the best
fixed reuse, the R2, as previously shown in details in Figure
15.

The results in Figures 16, 17 and especially in Figure 18
prove that the strength of GRACE is to adapt the allocation
in order to achieve a good performance in several load and
interference scenarios, always attaining high throughput in

both the outage and the average senses. We believe that these
characteristics should, in general, be present in any efficient
and fair spectrum sharing algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

The new requirements, established for future wireless com-
munication technologies by ITU (up to 1Gbps in low mo-
bility), can only be achieved through the use of low range,
low power, highly optimized Local Area access networks. Due
to their uncoordinated deployment, these networks should be
self-configurable in terms of spectrum allocation. Cognitive
Radio (CR) based networking methodologies are considered
as the most promising solutions for such radio resource sharing
problems.
A ”Game-based Resource Allocation in a Cognitive radio En-
vironment” (GRACE) algorithm has been designed to enable
a distributed and scalable resource allocation in competitive
radio spectrum environments typical for cognitive cells (C-
cells) in uncoordinated deployment scenarios. The overall
complexity of such a proposal is low since no inter-cell
signaling is required, and the needed signaling overhead in the
AP-UE control plane is already present in OFDMA systems.
One key part of the concept is the proposed utility function
framework. As a practical telecommunication solution, the
optimization of such utility function can be enforced by a
regulator policy, a telecommunication standard or simply an
operator can apply it within its network.
The proof-of-concept simulation results highlight the main
strength of the GRACE: to adapt efficiently and dynamically in
a fully distributed manner. The convergence of such procedure
shows a little dependence on the number of C-cells, a high
average throughput is achieved, and a minimum outage is
attained. We believe that these are the main characteristics of
any future cognitive radio/network which aims at an efficient
and fair spectrum sharing in fully uncoordinated deployment
scenarios.
The proposed methodology, due to its limited cognitivity, is
intended to be the first practical step into the design of a light
CR. Further research will primarily be devoted to increase
the cognitivity of the GRACE through a continuous learning
process that will enable boosting of the performances both in
terms of accuracy and time convergence.
Other aspects have also to be investigated, such as the effective
performances of the GRACE under real traffic conditions,
including bursty and low-latency data traffic, and the effects
of fast topology changes caused by handovers.
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