-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by VBN

Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

On the Inherent Segment Length in Music

Jensen, Karl Kristoffer

Published in:
Machine Audition

DOl (link to publication from Publisher):
10.4018/978-1-61520-919-4.ch013

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, K. K. (2011). On the Inherent Segment Length in Music. In W. Wang (Ed.), Machine Audition:
Principles, Algorithms and Systems (pp. 317-333). IGI global. https://doi.org/10.4018/978-1-61520-919-4.ch013

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 28, 2020


https://core.ac.uk/display/60426032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4018/978-1-61520-919-4.ch013
https://vbn.aau.dk/en/publications/72cd8540-343b-11de-8a17-000ea68e967b
https://doi.org/10.4018/978-1-61520-919-4.ch013

317

Chapter 13

On the Inherent Segment
Length in Music

Kristoffer Jensen
Aalborg University Esbjerg, Denmark

ABSTRACT

In this work, automatic segmentation is done using different original representations of music, cor-
responding to rhythm, chroma and timbre, and by calculating a shortest path through the selfsimilar-
ity calculated from each time/feature representation. By varying the cost of inserting new segments,
shorter segments, corresponding to grouping, or longer, corresponding to form, can be recognized.
Each segmentation scale quality is analyzed through the use of the mean silhouette value. This permits
automatic segmentation on different time scales and it gives indication on the inherent segment sizes in
the music analyzed. Different methods are employed to verify the quality of the inherent segment sizes,
by comparing them to the literature (grouping, chunks), by comparing them among themselves, and by
measuring the strength of the inherent segment sizes.

INTRODUCTION

of audition, memory and grouping behavior.
These terms can be compared to chunks, riffs,

Music consists of sounds organized in time. These
sounds can be understood from a rhythmic, tim-
bral, or harmonic point of view, and they can be
understood on different time scales, going from
the very short (note onsets) to the medium (group-
ing), to the large scale with musical form. Note
onsets, grouping and form are common musical
terms, which can be compared to different aspects
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and other temporal segmentation terms currently
used in music.

When identifying chunks, riffs, sections, forms,
or other structural elements, do they really exist,
or does the identification process create them?
This work presents a method, based on automatic
segmentation, thatidentifies the inherent structure
sizes in music, i.e. gives indications as to what
are the optimal segmentation sizes in the music.
This work has implications for rhythmical and
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classical music understanding, and processing.
Structure is a necessary dimension in most, if not
all music, and if this structure should be made
visible for any purpose, the methods presented
here can help identifying the optimal structure.
While this fundamental research gives a method
for finding the optimal segment size in music, and
results using this method, more work is needed
in order to assess the inherent structure with
certainty for all music. Until then, research and
development of automatic segmentation of music
should possibly ascertain the inherent structure in
the music genres that is the aim of the work, prior
to performing the segmentation.

Any feature, that can be calculated from the
acoustics of the music, can be presented in a man-
ner, for instance by taking the time-derivative, so
as to give indication of the local changes in the
music. Such an existence of a local change is not
a guarantee of an inherent structure, however. In
order to assess the quality of the segmentation,
the relative distance (or any measure of similar-
ity) within a segment should be compared to the
distance to the other segments. If the segment
is well grouped, and far, in some sense, to the
other segments, then it is a good segmentation.
A method for assessing the segmentation is the
silhouette (Kaufman & Rousseeuw 1990). Given
a segmentation, the mean of the silhouette value
for all segments is a good measure of the quality
of the segmentation. Therefore, if all possible
segmentations are calculated, the associated mean
silhouette values can be used to ascertain the best,
i.e. the inherent structure sizes.

As to the question of which feature is used for
temporal perception of music, Scheirer (1998)
determined in several analysis by synthesis ex-
periments that rhythm could not be perceived
by amplitude alone, but needed some frequency
dependent information, which he constructed
using six band-pass filters. Several other stud-
ies have investigated the influence of timbre on
structure. McAuley & Ayala (2002) found that
timbre did not affect the recognition of familiar
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melodies, butthat ithad importance enough to hurt
recognition on non-familiar melodies. McAdams
(2002) studied contemporary and tonal music, and
found that the orchestration affects the perceived
similarity of musical segments strongly in some
cases. He also found that musically trained listen-
ers find structure through surface features (linked
to the instrumentation) whereas untrained listen-
ers focused on more abstract features (melodic
contour, rthythm).

Deliegeand Mélen (1997) postulates that music
is segmented into sections of varying length using
cue abstraction mechanism, and the principle of
sameness and difference, and that the organization
of'the segmentation, reiterated at different hierar-
chical levels, permits the structure to be grasped.
The cues (essentially motifs in classical music,
and acoustic, instrumental, or temporal otherwise)
act as reference points during long time spans.
Deliége and Mélen furthermore illustrate this cue
abstraction process through several experiments,
finding, among other things, that musicians are
more sensitive to structural functions, and that the
structuring process is used for remembering, in
particular, the first and last segment. In order to
ensure thatat least part of the full dimensionality of
music is taken into account in the work presented
here, three different features are used. One feature
is believed to be related to tempo and rhythm, and
it is called the rhythmogram. Another feature is
considered related to the timbre perception, at
least the time-varying perceptive spectrum, and it
is called the timbregram. Finally, another feature
is related to the note values in the music, and it is
called chromagram. By using three features with
distinctly different content, it is the aim to further
assess the results on inherent and optimal segment
size presented here.

Segmentation of music is often done for
thumbnailing (music summary) purposes. This is
supposedly a means for presenting music, prior
to selling it, for instance in online stores. Other
uses of segmentation are artistic, for instance
for live mixing of music, for faster navigation,
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where the knowledge of structural elements can
be used for skipping similar elements, or related
to music identification. Finally, segmentation
automatic labeling of music can be beneficial for
music analysis.

Asforthe methods for automatic segmentation,
Foote (2000) introduced the use of selfsimilarity
matrices, by convolving the selfsimilarity matrix
with a checker kernel, thus calculating the novelty
measure, which gives indications of the degree
of novelty over time. Bartsch and Wakefield
(2001) used the chroma representation for audio
thumbnailing, by selecting the maximum of the
time-lag matrix, which is the selfsimilarity matrix
filtered along the diagonal in order to reveal simi-
larities along extended regions of the songs. Goto
(2003) and Chai & Vercoe (2003) also identify
repeating segments using chroma representation,
Goto (2003) using a similarity measure of the
distance between vectors together with a method
for integrating vectors into segments, and Chai &
Vercoe (2003) by identifying local minima in the
dynamic programming, which is an indicator of
repetition of segments. Paulus and Klapuri (2008)
in addition use Markov models to assign labels
(Chorus/Verse, etc) to the segments.

In this work, focus will be on determining
if there exists an inherent segment size in the
music. Indeed, most segmentation methods are
able to compute segmentation at different time
scales, while the chosen segmentation size is left
to the application development stage. Knowing
the inherent time scale in music is done in the
following manner. First, the feature estimation is
presented, then the segmentation using dynamic
programming is performed for all time scale,
then a measure of the quality of the segmentation
is calculated, and the peaks of this measure are
identified and used as an indicator of the inherent
segmentation size. Several methods for assessing
the importance of the optimum segment sizes are
employed and discussed in the conclusions.

FEATURE ESTIMATION

In order to perform a good segmentation of the
songs, a robust feature is needed. Indeed, the
feature used for segmentation can change the
segmentation result significantly. Three different
features are investigated here; the rhythmic feature
(the rhythmogram, Jensen 2005) is based on the
autocorrelation of the perceptual spectral flux
(PSF, Jensen 2005). The PSF has high energy in
the time position where perceptually important
sound components, such as notes, have been in-
troduced. The timbre feature (the timbregram) is
based on the perceptual linear prediction (PLP),
a speech front-end (Hermansky 1990), and the
harmony feature (the chromagram)is based on the
chroma (Bartsch & Wakefield 2001), calculated
on the short-time Fourier transform (STFT). The
Gaussian weighted spectrogram (GWS) is per-
formed in order to improve resilience to noise and
independence on block size for the timbregram
and chromagram. A speech front-end, such as the
PLP alters the STFT data by scaling the intensity
and frequency so that it corresponds to the way
the human auditory system perceives sounds.
The chroma maps the energy of the FFT into
twelve bands, corresponding to the twelve notes
of one octave. By using the rhythmic, timbral,
and harmonic features to identify the structure of
the music, some of the different aspects of music
perception are believed to be taken into account.
More information of the feature estimation used
here can be found in (Jensen 2007).

Rhythmogram

Any model of rhythm should have as basis some
kind of feature that reacts to the note onsets. The
note onsets mark the main characteristics of the
rhythm. In a previous work (Jensen 2005), a large
number of features were compared to an anno-
tated database of twelve songs, and the perceptual
spectral flux (PSF) was found to perform best.
The PSF is calculated with a step size of 10 mil-
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liseconds, and the block size of 46 milliseconds.
As the spectral flux in the PSF is weighted so
as to correspond roughly to the equal loudness
contour, both low frequency sounds, such as bass
drum, and high frequency sounds, such as hi-hat
are equally well taken into account.

This frequency weighting is obtained in this
work by a simple equal loudness contour model.
The power function is introduced in order to simu-
late the intensity-loudness power law and reduce
the random amplitude variations. These two steps
are inspired from the PLP front-end (Hermansky
1990) used in speech recognition. The PSF was
compared to other note onset detection features
with good results on the percussive case inarecent
study (Collins 2005). In order to obtain a more
robust rhythm feature, the autocorrelation of the
feature is now calculated on overlapping blocks
of 8 seconds, with half a second step size (2 Hz
feature samplerate). Only the information between
zero and two seconds is retained. The autocorrela-
tion is normalized so that the autocorrelation at
zero lag equals one. If visualized with lag time
on the y-axis, time position on the x-axis, and the
autocorrelation values visualized as intensities, it
gives a fast overview of the rhythmic evolution of
a song. This representation, called rhythmogram
(Jensen 2005), provides information about the
rhythm and the evolution of the rhythm in time.
The autocorrelation has been chosen instead of
the fast Fourier transform FFT, for two reasons.
First, it is believed to be more in accordance with
the human perception of rhythm (Desain 1992),
and second, it is believed to be more easily un-
derstood visually. The rhythmogram firstly gives
information about the tempo of the song, along
with the strength of the tempo, and secondly gives
information about the time signature, although this
information is not always clearly visible.

Timbregram
The timbre is understood here as the spectral

estimate and done here using the perceptual

320

On the Inherent Segment Length in Music

linear prediction, PLP (Hermansky 1990). This
involves using the bark (Sekey & Hanson 1984)
scale, together with an amplitude scaling that
gives an approximation of the human auditory
system. The PLP is calculated with a block size
of approximately 46 milliseconds and with a
step size of 10 millisecond. The timbregram is a
feature that is believed to capture orchestration of
the music, mainly. In the timbregram, information
about which instruments are participating in the
music at the current time step is given, along with
indications of what dynamic level the instruments
are played. It represents the perceptual frequency
axisin 25 steps. When an instrument is introduced
in the music, it is often visible in the timbregram.
Itcan also show the overall frequency content, i.e.
older music lacks in bass and treble, pop music
generally hasenergy onall frequencies, while some
dance music (techno) only has energy in the treble
and bass regions. The timbregram also reveals
when sections are repeated, and in particular when
sections are climaxed, with stronger instruments
throughout. This is reflected with stronger values
in the particular bark/time locations.

Chromagram

Note estimation is notoriously error-prone even if
a lot of progress is done in the domain currently.
There exists one estimate that is robust and related
to the note values, the chroma, which is used here.
In the chroma, only the relative content of energy
in the twelve notes of the octave is found. No
information of the octave of the notes is included.
The chroma is calculated from the STFT, using a
blocksize of 46 milliseconds and a stepsize of 10
milliseconds. The chroma is obtained by summing
the energy of all peaks of 12 log, of the frequen-
cies having multiples of 12. The chromagram
gives information about the note value, without
information about the octave. This is arather good
measure of which chords are played, and also of
the musical scale and tonality. If several notes are
played for a moment, then this is clearly visible
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in the chromagram. Also when a note is dropped,
and another note is instead played more, this is
also clearly reflected in the chromagram values.

Gaussian Windowed Spectrogram

If the raw features are used, it has been found that
the detailed information sometimes overshadows
the long-term changes in the music. Ifthe features
are calculated on short segments (10 to 50 mil-
liseconds), they give detailed information in time,
too varying to be used in the segmentation method
used here. Instead, the features are calculated on a
large segment, but localized in time by using the
average of many STFT blocks multiplied with a
Gaussian. This is called the Gaussian Weighted
Spectragram, GWS. Using the GWS, all segments
are used at all time steps, but the current block
values are weighted higher than the more distant
blocks. By averaging, using the Gaussian aver-
age, no specific time localization information is
obtained of the individual notes or chords, but
instead a general value of the time area is given.
In this work, the averaging is done corresponding
to a =3 dB window of approximately 1 second.
After the GWS, the timbregram and chromagram
has a stepsize of 2 second.

As an example of the features, the rhythmo-
gram, timbregram and chromagram of August
Engkilde — Beautiful Noise (Brumtone, 2008)
is shown in Figure 1. All three features seem
informative, although they do not give similar
information. While the rhythm evolution is il-
lustrated in the rhythmogram, it is the evolution
of the timbre that is shown with the timbregram
and the evolution of the note values that can be
seen in the chromagram. Beautiful Noise is not a
typical rhythmic piece of music, as can be seen
from the lack of clear rhythm information in
large part of the music. While the rhythmogram
values are normalized, but instead the low time-
lag values are set to zero. As these are also the
autocorrelation value, which is by definition set

to one, the relative strength of the higher time-lag
correlations are reflected in the rhythmogram. In
the case of Beautiful Noise, the very fast, almost
vibrating rhythms have very similar repetitions,
which are reflected as stronger values in the cor-
responding time segments in the rhythmogram.
The timbregram reveals that this song has energy
in two distinct frequency ranges, one low and one
high, until almost three minutes. Then the high
frequency component (a noise, windy sound) dis-
appears. The timbregram is not normalized, so the
crescendos are visible at a little after two minutes,
at two and a half minute, and after five minutes.
The chromagram is normalized, and reveals a
single note played at the time, through this song.
It changes from ‘G’ to ‘D#’, and back at around
one minute, and to other note values elsewhere in
the song. Both the thythmogram, the timbregram,
and the chromagram give pertinent information
about the evolution in time of the music, and it
seems judicious to investigate all three here.

SEGMENTATION

Automatic segmentation using dynamic program-
ming has been proposed previously (Foote 2000,
Bartsch & Wakefield 2001, Goto 2003, Chai 2003,
Jensen 2005, Jensenetal 2005, Jensen2007). Inan
automatic segmentation task, adjacent blocks are
grouped together, forming segments. This can for
instance correspond to the chorus/verse structure
found in most rhythmic music, or to changes in
the rhythmic pattern, in the orchestration or in
the notes played.

The dynamic programming used here is based
onthe shortest-path algorithm (Cormen efa/2001)
and done on self-similarity matrices, created from
the original features (rhythm, chroma or timbre,
Jensen 2007) by calculating the L2 norm of each
time vector compared to all other time vectors,
using a sequence of N vectors of each song that
should be divided into a number of segments.
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Figure 1. Rhythmogram (top), timbregram, and chromagram (bottom) of Beautiful Noise
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First, let the cost c(i,j) of a segment from block
i to j be the weighted sum of the self-similarity
and the cost of a new segment be a fixed cost a.
Secondly, in order to compute a best possible
segmentation, an edge-weighted directed graph
G is constructed with the set of nodes being all
the block of the song. For each possible seg-
ment an edge exists. The weight of the edge is
o+c(i, j). A path in G from node / to node N+/
corresponds to a complete segmentation, where
each edge identifies the individual segment. The
weight of the path is equal to the total cost of the
corresponding segmentation. Therefore, a shortest
path (or path with minimum total weight) from
node / to node N+/ gives a segmentation with
minimum total cost. Such a shortest path can be
computed in time O(N?).

The dynamic programming will cluster the
time vectors into segments, as long as the vectors
are similar. By varying the insertion cost a of new
segments, segment boundaries can be found at dif-
ferent time scales. A low insertion cost will create
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boundaries corresponding to micro-level chunks,
while a high insertion cost will only create few
meso-level chunks. Thus, the same segmentation
method can create segments of varying size, from
short to long, from the grouping to the form of
the music. An example of the segmentation is
shown in Figure 2 for August Engkilde—Beautiful
Noise (Brumtone 2008). As the segment cost ()
is increased, less and less segments are created,
which in turn gives longer mean segment lengths.

The comparison of the segmentation done using
the method presented here based on the three fea-
tures rhythmogram, timbregram and chromagram
reveals a F1 value of approximately 0.6 (Jensen
2007), corresponding to a matching recall and
precision value of 50-70%. The comparison to
manual segmentation gives F1 values slightly
higher, atapproximately 0.7 (Jensen2007). This is
anindication thatthe manual segmentation is done
using differentrhythmic, timbral and chroma cues,
as the features are better matched to the manual
segmentation than among themselves. Therefore,
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Figure 2. Segmentation using the timbregram feature for all segment costs for August Engkilde — Beau-
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it seems that all features should be employed in
a segmentation task. As the final segmentation
is not the target goal, this has not been deemed
important here.

While many methods for segmentation of
music exist, the problem of finding the inherent
number of segments still exists. Kuhl related this
to the notion of chunks. According to him, the
chunk is an important element of music. A chunk
is a short segment of a limited number of sound
elements; a chunk consists of a beginning, a focal
point (peak) and an ending. Kuhl (2007) extends
the chunks to include microstructure (below 1/2
sec), mesostructure (chunks, the present, appr. 3-5
secs) and macrostructure (Superchunks, Kuhl and
Jensen 2008) (at 30-40 secs).

BEST SEGMENT SIZE

The question investigated here is about whether
there exist an inherent segment size in the music,
and if'so, ifit is the same for different music, and if
itisrelated to the chunk theory sizes. This question
has been analyzed from different points-of-view

in the literature. Huron (1996) investigated the
melodic arch, and found a single arch up to 11
notes melodies, while melodies consisting of 12
or more notes present a double arch. This is, of
course, related to the short-time memory theory
of 7£2 (Miller 1956), but it does not give infor-
mation about the time, only the number of notes.
In order to investigate this further, a database
of'varied music has been collected, and segmented
using the shortest-path algorithm with the rhythm,
timbre and chroma related parameters. The free
variable, a, is varied in order to produce segment
sizes between one block to the full song, i.e. all
possible segment sizes. The classical way of in-
vestigating the clustering quality has to do with
comparing the inter distance (the size of each clus-
ter) to the extra distance (the distance between the
clusters). Unfortunately, this cannot be computed
for the one-cluster solution or the one cluster for
each block solution, and it generally produces a
‘U’-shape solution, with best values for small or
large cluster sizes. A robust estimate of the cluster
quality is the silhouette (Kaufman & Rousseeuw
1990), calculated for each observation i as
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Figure 3. Silhouette plot for Beautiful Noise. A high positive values indicate that the observation is well
clustered, while a large negative values indicate a bad clustering for the observation.

Cluster

-0 -08 04 -02

0

1
0.2 04 0.6 0.e 1

Silhoustts valus

b —a,
§=—" (1)

B max(a,,b,) 7

where a is the average dissimilarity to all other
points in its own cluster and b is the minimum
of the average dissimilarities of 7 to all objects
in another cluster. The silhouette value for each
observation is always comprised between -1 and
1. Ifthe silhouette value is large, i.e. close to 1, the
observation is centered in the cluster, while if the
value is low, the observation is also close to other
clusters. The silhouette fora clustering solution can
be calculated as the average of each observations
silhouette value. An example of the silhouette for
the segmentation using the timbregram feature of
Beautiful Noise is shown in Figure 3. There are
eight clusters with an average length 0f49 seconds.
The average silhouette value is 0.2. Some of the
clusters, the first and fifth in particular, have high
silhouette values throughout, while some of the
others have negative silhouette values for some
of the observations of the cluster.
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Segmentation Analysis

The mean silhouette value is now calculated for
each new segmentation cost in order to analyze
the quality of the different segmentations. One
silhouette value isretained for each average cluster
length, calculated as the total length divided by
the number of clusters. An example of the mean
silhouette value as a function of average cluster
size for Beautiful Noise is shown in Figure 4. The
average silhouette is plotted for the thythmogram,
timbregram and chromagram, along with indica-
tions of the peaks in each silhouette plot using
plus ‘+’ signs. This song has silhouette peaks
for different segment lengths, including for the
chunk size at approximately 5 seconds, and the
superchunk size at approximately 40 seconds.
Other optimum chunk sizes are also visible.
Nine songs of classical, pop/rap and jazz genres
have been segmented using the thythmogram, tim-
bregram and chromagram features for varying new
segment cost. Each song hasanumber of silhouette



On the Inherent Segment Length in Music

Figure 4. Mean silhouette value as a function of average segment length for Beautiful Noise. Peaks are

indicated with plus ‘+’signs.
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peaks for each feature, giving an indication of the
inherent segment size as a function of the average
segment length. Visually, the thythmogram seems
to give a better result. To compare to the chunk
theory of Kiihl (2007), the peaks of the average
silhouette values can be identifies as belonging to
the range 3-5 seconds, corresponding to the chunk
size, and between 30-40 seconds, corresponding
to the superchunk size. For the nine songs there
has been found 5 (19.23%) chunk matches for
rhythmogram, 8 (30.77%) superchunk matches, 4
(8.7%) chunk matches for timbregram, 5 (10.87%)
superchunk matches and 2 (9.52%) chunk matches
for chromagram, 4 (19.05%) superchunk matches.
The rhythmogram performs significantly better
than the other features for this particular task.
This is also visible, if the mean of the nine songs
is calculated and plotted (Figure 5). Indeed, the
rhythmogram silhouette plot presents a promi-
nent peak at the chunk level, around 5 second
average segment length, and also one peak at ap-
proximately 30 seconds average segment length.
The timbregram and chromagram has a more ‘U’
shapedsilhouette value, effectively preventing any

silhouette peak at the chunk level. Several other
possible peak positions also exist, for instance
around 60 seconds, and around 80 seconds.

Another distinction that can be made is be-
tween the short-term memory and the long-term
memory. Snyder (2000) relates the short-term
memory to melodic and rhythmic grouping and
situates it between 1/16 second to 8 second, and
the long-term memory to musical form, and
situates this above 8 seconds. If the question is;
what is more prominent, grouping or form, then
the study performed here gives indications that
form is most prominent, as there is 10 (38.46%),
10 (21.74%) and 4 (19.05%) peaks below 8 sec-
onds (corresponding to grouping) for rhythm,
timbre and chroma, respectively. Thus grouping
is seemingly more related to rhythm, and less to
timbre and chroma.

As to the question of the similarity of the peak
position of the silhouette as a function of aver-
age segment length, the normalized histogram
of the segmentation peaks are calculated, along
with a measure of the peakedness of each peak.
The normalized histogram gives values of the
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Figure 5. The mean silhouette values for nine songs and rhythmogram, timbregram and chromagram
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relative occurrences of different optimal segment
lengths. The peakedness is calculated as the rela-
tive strength of the peak, divided by the width of
the two surrounding samples

S,
p= ) (2)
4- (Si—l + 8i+1) ’ (li-H - li—l)

where s is the silhouette value at index 7, and /. is
theaverage length atindex i. Thisnormalization by
the width is necessary, as the silhouette values are
notuniformly sampled along the average segment
length axis. In addition, the peak silhouette value
is also retained. The silhouette peak distrubution,
values and peakedness for nine songs are shown
in Figure 6.

There are 26 rhythmogram silhouette peaks,
46 timbregram, and 21 chromagram peaks in all
in the nine songs. In the histogram (Figure 6, top),
the rhythmogram have an apparent peak at ap-
proximately 5, 15,25,37,and 55 seconds average
segment length, the timbregram has peaks at 10,
30, 45, and 75 seconds, and the chromagram has
peaksat5, 15,35 and 65 seconds average segment

326

length. In the peak value subplot (middle), the
rhythmogram silhouette values seem higher than
the other values. The mean silhouette peak values
are 0.45, 0.15, and -0.03, showing a significantly
better value for the rhythmogram, and a rather
unusable value for the chromagram. As for the
peakedness (Figure 6, bottom), the peakedness
values are decreasing with the average length of
the segments, except for a few peaks with high
peakedness values at very high segment lengths.
The timbregram has apparently the highest peak-
edness values, and the chromagram the lowest.
The mean of the peakedness is 0.23, 0.64, and
0.17 for rhythmogram, timbregram, and chro-
magram, respectively. However, the actual peak
values are deemed more important, and they are
showing the rhythmogram to be the best feature
for segmentation.

ACTUAL INHERENT
SEGMENT BOUNDARIES

Given the method presented here, it is now pos-
sible to identify the optimal segmentation sizes.
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Figure 6. Histogram of silhouette peak position (top), the peak silhouette values (middle), and the silhouette
peakedness (bottom) as function for average segment length for nine songs. The rhythmogram values are
depicted with a ‘+°, the timbregram a ‘x’, and the chromagram a ‘o’ in the middle and lower subplot.
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The question is now, what do these sizes represent
in the music. As an example, the song Hold On
by Jamie Walters (Atlantic 1994) is further inves-
tigated. The mean silhouette values as function
of average segmentation length for this song is
shown in Figure 7. As for the other songs, the
rhythmogram mean silhouette values have a ris-
ing peak for short average segment lengths, and
then decreasing, while both the timbregram and
the chromagram-based silhouette values have a
‘U’-shape, i.e. the silhouette values decrease to
a minimum, and then rise again, with only local
maxima. The maxima of silhouette for rhythmo-
gram are found at approximately 4, 11 and 38
seconds, while the timbregram silhouette maxima
are found at (0.5), 7, 11, 13, 24 and 66, while for
the chromagram, the maxima of the silhouette are
found at (0.5), 25 and 68. The (0.5) seconds are
the peaks at the cases where all observations have
a separate segment (all observations a grouped
into individual segments), and thus the average

segment length is equal to the sampling rate of
the features.

The musigram plots along with the automatic
segmentation boundaries for the same song are
found in Figure 8. The rhythmogram is shown in
the upper subplot, the timbregram in the middle
subplot and the chromagram in the lower subplot.
The ensemble is called musigram (Kuhl & Jen-
sen 2008). The rhythmogram reveals alternating
sections with more or less strong pulse. The tim-
bregram reveals a weak intro and first sections, a
stronger section, which is repeated (1min30, and
2min30), and possibly repeated in a crescendo at
3minl0. Similar observations can be made in the
chromagram. However, the segmentations found
using the automatic segmentation do not neces-
sarily find the same segments, which is possibly
impeding on the quality of these experiments.
However, it is not believed to be very influential
in the results of the experiments.

The average segment lengths for the automatic
segmentation boundaries in Figure 8 are 11, 13
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Figure 7. Mean silhouette value as a function of average segments length for Hold On — Jamie Walter

(1994)
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and 25 seconds. It is clear, from the analysis of
more songs, that the automatic segmentation
gives at the same time shorter and longer seg-
ments. For these average segmentation lengths,
the rhythmogram gives segment lengths between
5.5 and 27 seconds (standard deviation is 5.35),
the timbregram renders segment lengths between
1.5and41 (std=9.7 seconds), and the chromagram
segment lengths between 12.5 and 56.5 seconds
(std=15.81). Itis therefore difficult to say whether
the optimum segment lengths correspond or not to
other theories, such as the chunk theory of Kuhl
(2007). However, indications towards such a cor-
respondence is nonetheless observed. First, there
is often peaks in the silhouette values for different
segment lengths, which corresponds somewhat to
the micro, meso and super chunks of Kuhl, which
has sizes at 0.5, 3-5 and 30-40 seconds. However,
often, the segmentation based on the different
features renders different optimal segmentation
lengths using the silhouette method.

Album Study

On the question of how reproducible the results
of the study of inherent segment sizes in music,
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a second experiment has been performed. Are
the inherent segment sizes similar across the
music genres, or within a music style, or are the
inherent segment sizes changing to a degree if
there are no systematic values to be found? In
order to investigate this further, a full album, The
Beatles — Sgt Peppers Lonely Hearts Club Band
(Parlophone/Capitol, 1967) has been analyzed
in the same manner as above. The three features,
rhythmogram, timbregram and chromagram have
been calculated from the acoustics of each song
of the album, then the automatic segmentation
has been done for all possible segment sizes. Fi-
nally, the silhouette values have been calculated
as a measure of the quality of each segment size.
If these silhouette values have peaks on similar
segment sizes for the different songs, this is an
indication that the inherent segment sizes are
similar across this particular album, which can
be seen as a sample of a genre. If the silhouette
peaks are scattered around, the inherent segment
sizes are individual for each song.

Inorderto investigate this, the relative number
of'silhouette peaks for different segment sizes has
been calculated for the Beatles album, along with
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Figure 8. Musigram (rhythmogram (top), timbregram, and chromagram (bottom), along with automatic
segmentation boundaries (illustrated with vertical lines) obtained using each feature for Hold On - Jamie

Walter (1994)
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the peak values, and the peakedness values, and
are shown in Figure 9.

The timbregram and chromagram always ren-
ders a peak at the shortest possible segment size
(0.5 second). This has not been taken into account
here. When compared with the similar data for the
nine songs of varied genres (Figure 6), the dif-
ferences are seemingly minor. The rhythmogram
renders peaksat 5,25 and 72 seconds, butnotat 15
and 37 seconds. The timbregram renders peaks at
5,25 and 55 seconds, and the chromagram peaks
at 10, 25, 400 and 65 seconds. The rhythmogram
silhouette peak values are significantly higher than
the timbregram values, which are significantly
higher than the chromgram values, with average
silhouette peak strength of 0.45, 0.15, and -0.03
for rhythmgoram, timbregram and chromagram.
As for the nine songs of varying genres, only the
rhythmogram has acceptable silhouette values.
When analyzing the silhouette peakedness, the
same decreasing with average segment length
peakedness is observed for the Beatles album as

for the nine songs, along with some high peaked-
ness values for the vey high segment lengths. The
mean peakedness values are 0.53,0.79, and 0.17
for rhythmogram, timbregram, and chromagram,
respectively. The timbregram again has the best
peakedness, and the chromagram the worst. All
in all, however, the rhythmogram performs best,
with better silhouette values, and also there is a
distinctive grouping of the rhythmogram peaks in
Figure 9. This is more visible in the peak values
and peakedness subplots, than in the histogram.
There is one group consisting of 11 observations
between four and six seconds, and one group with
five observations between 11 and 13 seconds, and
another group with five observations between 23
and 27 seconds. All in all, these three groups ac-
count for 21 of the 26 peaks for the rhythmogram.

As for the chunk and superchunk identifica-
tion, there has been found 10 (38.46%) chunks
and 5 (19.23%) superchunk for the thythmogram,
8 (14.81%) chunk and 5 (9.26%) superchunk for
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Figure 9. Histogram of silhouette peaks as a function of average segment lengths for The Beatles - Sgt
Peppers Lonely Hearts Club Band (top), and silhouette peakedness values for same (bottom). The
rhythmogram values are depicted with a ‘+°, the timbregram a ‘x’, and the chromagram a ‘o’ in the

middle and lower subplot.
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timbregram, and 1 (5.56%) chunk and 6 (33.33%)
superchunk for the chromagram.

Therehasbeen found 11(42.31%), 17 (31.48%)
and 3 (16.67%) below 8 seconds (grouping) for
rhythm, timbre and chroma, respectively. These
numbers confirm that the rhythmogram corre-
sponds better to the chunk and grouping theory
for the Beatles songs, as it did for the nine songs
of varied genres above.

CONCLUSION

Researchers and developers have found an increas-
ing number of reasons for segmenting music into
smaller segments, be it for thumbnailing, re-mix-
ing (artistic), identification, playlist generation or
other music information retrieval purposes, copy-
right issues, music analysis purposes, or yet other
issues. However, while segmentation can easily be
done, a grounded theory of the obtained, or wished
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for segmentation sizes should be available. This
can be found in the music theory, for instance by
the grouping theory of Lerdahl & Jackendorff
(1973). However, their subdivision into groups
of notes (often corresponding to measures) are
based on rules, of which one states that groups at
the same level have the same duration, which is
not found in this work. While they state the rules
as preferences that can be based on melodic or
rhythmic proximity and continuity, it does not
seem consistent with the results obtained here.
Results from memory research (Snyder 2000)
can also be used as the ground reference. Snyder
refers to echoic memory (early processes) for
event fusion, where fundamental units are formed
by comparison with 0.25 seconds, the short-term
memory for melodic and rhythmic grouping (by
comparison up to 8 seconds), and long-term
memory for formal sectioning by comparison
up to one hour. Snyder (2000) relates this to the
Gestalt theory grouping mechanisms of proxim-
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ity (events close in time or pitch will be grouped
together. Proximity is the primary grouping force
at the melodic and rhythmic level (Snyder 2000,
p 40). The second factor in grouping is similarity
(events judged as similar, mainly with respect to
timbre, will be grouped together). A third factor
is continuity (events change in the same direction,
for instance pitch). These grouping mechanisms
give rise to closure, that can operate at the group-
ing level, or the phrase level, which is the largest
group the short-term memory can handle. When
several grouping mechanisms occur at the same
time, intensification occurs, which gives rise to
higher-level grouping. Other higher-level group-
ing mechanisms are parallelism (repeated smaller
groups), or recurrence of pitch. The higher-level
grouping demands long-term memory and they
operate atahigher level inthe brain, as compared to
the smaller time-scale grouping. The higher-level
grouping is learned while the shorter grouping
is not. Snyder (2000) further divides the higher
level grouping into the objective set, which is
related to a particular music, and the subjective
set, which is related to a style of music. Both sets
are learned by listening to the music repeatedly.
Snyder (2000) also related the shorter grouping
to the 7+2 theory (Miller 1956), that states that
the short-term memory can remember between
five to nine elements.

While the music theory and memory-based
research can give grounded results for the segmen-
tation tasks, they are seemingly not giving the full
truth. The music theory operated with a constant
size of segments, which is not what is observed
by automatic segmentation. Obviously, both the
music theory and the memory-based grouping are
related in many senses, which Snyder (2000) also
points out. These works find some of its basis in
traditional music theory and solfége. The main
problem with these theories is the seemingly
lack of emphasis on the actual sound, the timbre,
and the performance with respect to timing and
dynamics, in particular.

In contrast to these theories, the work presented
here only takes into account the acoustics of the
music. There is no high-level music theory, and
no prior understanding based on the mechanisms
of the brain.

Automatic segmentation is performed here by
calculating the shortest-path through the selfsimi-
larity of different audio features, which can be
related to rhythm, timbre and chroma. By varying
the cost of inserting a new segment, different time
scales are created, going from the short (seconds)
to the long (up to 100 seconds). The question that
isinvestigated here is whether music has an inher-
entsegment length. Indeed, both music theory and
brain research have theories about different time
scale, which is visible in the music scores, and
in different psycho-physical experiment regard-
ing memory. In order to investigate the inherent
time scale in the music, the silhouette values are
calculated for all observations (blocks) for each
segmentation scale. The mean of the silhouette
values is a good measure of the quality of the
segmentation. By matching the peaks of the sil-
houette values to the chunk theory of 3-5 seconds
and the superchunk theory of 30-40 seconds, a
measure of the inherent segmentation size has
been found, together with indications of which
feature that permits a better analysis of this. The
rhythmogram has the best match for the chunk
(19%) and superchunk (31%) levels, respectively
for nine songs of varying genres, while a Beatles
album gives 38%, and 19% for rhythmogram. In
this case, the chromagram has better superchunk
result (33%). Visually inspecting the mean sil-
houette values of nine songs of varying genres
further reveals that only the rhythmogram has a
peak atthe chunk level, while all three features has
peaks at the vicinity of the superchunk size of 40
seconds. Most peaks are situated above the average
length of eight seconds, which gives indication
that form is more prominent than grouping in the
songs investigated here. Indications that form is
more prominent than grouping (Snyder 2000)
is given, along with indications that grouping is
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more prominent in the rhythmic features than in
the timbral or chroma features. Further analysis
of the silhouette peaks reveals the systematic
occurrences of peaks in several average segment
length positions, including short segments around
5 seconds, medium length segments at around 20
seconds, and longer segments. These findings are
similar for a collection of nine songs of varying
genres, and the Sgt Peppers album of the Beatles.
The rhythmogram has systematically larger sil-
houette values at the peaks, with an average of
approximately 0.4, while the timbregram and
chromagram have mean silhouette peak values
of 0.1 and 0, which is an indication that all ob-
servations could just as well belong to another
segment than the one they belong to. An analysis
of the peakedness of the silhouette peaks reveals
that the timbregram produces stronger peaks, and
chromagram the weaker peaks. Seemingly, the
low length peaks have higher peakedness than
the peaks found for longer segments.

While more work is necessary in order to
confirm the findings here, several indicative con-
clusions can nonetheless be drawn; 1) The music
investigated here, which is of varying genres, has
inherent segment sizes of different length. These
inherent segment lengths are found for all songs
withrelative small variations. 2) The thythmogram
performs best when the found inherent segment
lengths are compared to theory, and it is also
the only feature that has an acceptable average
silhouette peak value.
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