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ABSTRACT – This paper presents a new excitation model
for probe-fed printed antennas on both infinite and finite

size ground planes. The model has been developed within

the general frame of the mixed potential integral equation
(MPIE) and the method of moments (MoM). The technique

is based on a delta-gap voltage model, and a special pro-
cedure is implemented inside the integral equation to ef-

fectively impose a voltage reference plane into a floating
metallic plate which is acting as a ground plane. The

present technique allows the accurate calculation of the in-

put impedance of printed antennas, and the effects of finite
size ground planes can be easily accounted for in the calcu-

lations. In addition, an efficient technique is presented for
the evaluation of the radiation patterns of printed antennas,

taking also into account the presence of finite size ground
planes. Comparisons with measured results show that the

new derived excitation method is indeed accurate, and can

be used for the prediction of the backside radiation and side
lobe levels of real life finite ground plane printed antennas.

Keywords.— Integral equation, excitation models, finite
ground plane, backside radiation, printed antennas.

1 INTRODUCTION

During the last decades, printed circuits and antennas have
played an important role in many branches of electrical
engineering and the field of application is spreading to new
technologies and to even higher frequencies. The need
for miniaturisation is increasing in many applications e.g.,
telecommunications and space missions. Obviously, these
compact geometries are not adequate for the use of models
assuming infinite ground planes.
The need to take into account for finite ground plane dimen-

sions in microstrip antennas modelling arises especially
in applications where patches are used as free standing
structures and front-to-back ratio must be maximized in
order to avoid interference problems [Bokhari et al. 1992],
or to locate a potential main beam deformation caused
by the diffraction from the ground plane edges. More-
over, the need to model the excitation on two floating
metallic patches can become inevitable in applications
like dual band stacked printed antennas where a first
patch acts as ground plane for a second radiating element
[Zürcher et al. 1999].
To solve this problem a new excitation model
and de-embedding technique for the computa-
tion of the input impedance of probe-fed printed
antennas on finite size ground planes using a
Mixed Potential Integral Equation technique (MPIE)
[Mosig and Gardiol 1988, Hall and Mosig 1996] has been
developed. This approach accounts for the effect of the
ground plane dimensions on the input impedance, the
mutual coupling, and the radiation characteristics of a
single antenna element or a finite array.
As a first step to attain this goal, a new attachment mode
for probe-fed printed antennas on infinite ground plane
has been developed. The most widely used excitation
model for probe-fed antennas is the impressed-current
model [Pozar 1982, Hall and Mosig 1989]. This model
assumes that a constant impressed current is exciting the
antenna and it use the derived distribution of currents
on metallic surfaces to compute the voltage at the probe
location. This method may lead to accurate results but
needs the computation of a surface integral over all the
metallic surfaces present in the structure to obtain the
input impedance. Contrary to the previous one, the model
presented here, as described in Sec. 3, uses a delta gap
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voltage excitation model (to the authors’ knowledge
used until now only for microstrip line fed antennas
[Davidovitz and Lo 1989, Harokopus and Katehi 1991,
Eleftheriades and Mosig 1996]). This model assumes an
impressed voltage between the antenna and the ground
plane and, once the surface currents have been computed,
only a normalisation by the excitation voltage is needed to
obtain the input admittance. Another remarkable difference
between the two models is the type of special basis func-
tions used in the attachment mode. Considering the case
of triangular meshing (the extension to rectangular cells is
straightforward), in the impressed current model one (or
more) entire basis function with opposite sign of the current
on its two halves is used to model the horizontal spreading
of the vertical current coming from the coaxial probe.
In the present model, one to three half basis functions
are introduced for the attachment mode depnding on the
location of the feed. This implies that the present excitation
model can be used for any probe location inside the patch,
including its edge and also for microstrip line fed antennas
[Tiezzi et al. 1999] without exception.
These excitation models as well as the subsequent tech-
nique for computing impedances are implicitly based on the
assumption of an infinite ground plane, which according
to image theory automatically produces a zero voltage
at ground plane level. In Sec. 4 the attachment mode is
modified in order to take into account the finiteness of the
ground plane. Here, instead of using Green’s functions
including the ground plane effect through image theory, a
specific numerical treatment is applied to the ground plane.
To the authors’ knowledge, the first approach using an
MPIE formulation for the study of finite size ground
planes can be found in [Bokhari et al. 1992]. This work,
however, only represents an approximation of the real finite
structure, since the currents induced on the antenna are
computed using an infinite ground plane model. Once the
induced currents are computed, the finite size nature of
the ground plane is taken into account, at a later stage,
during the calculation of the scattering problem asso-
ciated with the computed currents. Hence the results
presented in [Bokhari et al. 1992] are only accurate, if the
ground plane is sufficiently large: it would therefore be
desirable to develop a rigorous method, which remains
valid even for very small ground planes. The method
presented in this paper is a full wave method based on the
MPIE technique, and the only approximation introduced

is that we use the Green’s functions multilayered media
formulated in the traditional form of Sommerfeld integrals
[Mosig and Gardiol 1988, Mosig 1989]. Therefore the
currents induced in the structure are computed taking into
account since the beginning the finite size of the ground
plane but the second-order effect of dielectric truncation
is neglected. This approximation has been introduced
to maximize the numerical efficiency and its accuracy
is confirmed by our results. In addition to being more
rigorous, another advantage of this approach is that the
effects on the input impedance of the finite size ground
planes can accurately be evaluated and moreover scattering
from ground plane edges can be taken into account. Thus
full range (including backside scattering) radiation patterns
can also be predicted.

2 BACKGROUND AND STATEMENT OF THE

PROBLEM

The new excitation model presented in this paper has been
developed in the frame of the analysis of multilayered
printed circuits and antennas following the MPIE formula-
tion [Mosig and Gardiol 1988]. The generic structure under
analysis is presented in Fig. 1. As shown, it is composed
by one or more conducting patches embedded on a strati-
fied medium. Either a perfect conductor ground plane or a
free space layer extending to z = −∞ can be placed at
the bottom of the structure. Each dielectric layer, which
may be lossy, is assumed to be homogeneous, isotropic
and transversally infinite. The conducting patches are as-
sumed to have finite transverse size, arbitrary shape, negli-
gible thickness and an infinite conductivity, although finite
conductivity can easily be taken into account using Leon-
tovich boundary conditions [Mosig and Gardiol 1985].
Under these assumptions the boundary condition for the
electric field on the surface of the conducting strips is writ-
ten as

êz × ( ~Ee + ~Es) = 0 (1)

where ~Ee and ~Es are respectively the excitation and the
scattered electric field.
The scattered field is expressed in terms of the vector and
scalar potential ~A and V as

~Es = −jω ~A −∇V ~H =
1

µ
∇× ~A (2)
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Figure 1: Generic multilayered structure containing an arbitrary number of finite metallizations.

with the potentials related by the Lorentz gauge
[Mosig 1989]

jωµεV + ∇ • ~A = 0 (3)

The vector and scalar potentials ~A, V can in turn be
expressed in terms of superposition integrals of the corre-
sponding Green’s functions GA, GV weighted by the un-
known distribution of surface current and electric charge
~Js, ρs as

~A =

∫

S

GA(r|r′) • ~Js(r
′) dS′

V =

∫

S

GV (r|r′) ρs(r
′) dS′ (4)

and finally, using the continuity equation to express the
electric charge in terms of current, the boundary condition
in equation (1) becomes

êz × ~Ee = êz ×

(

jω

∫

S

GA(r|r′) • ~Js(r
′) dS′

+
1

jω
∇

∫

S

GV (r|r′) ∇ • ~Js(r
′) dS′

)

(5)

which is the basic integral equation to be solved to find the
unknown distribution of surface currents.
The multilayered media Green’s functions appearing in
equation (5) are derived, in the spectral domain,
from the equivalent transmission line circuit shown
in Fig. 1(b), as described in [Mosig and Gardiol 1988,
Michalski and Mosig 1997]. Furthermore, these Green’s

functions are calculated in the spatial domain using spe-
cial numerical methods for the evaluation of the Som-
merfeld integral, as extensively described in [Mosig 1989,
Alvarez-Melcon and Mosig 1996].
The previous integral equation (5) is solved by the Method
of Moments. The conducting patches are segmented into
triangular cells and triangular rooftops [Rao et al. 1982]
are used as basis and test functions, applying a Galerkin
method. If coaxial excitation is used, modified basis func-
tions are introduced at the coaxial pin location in order to
model the spread on the patch of the current flowing on the
vertical pin.

3 A NEW ATTACHMENT MODE

A special set of basis functions, called the attachment mode,
is used to ensure the continuity of the current between
the coaxial probe and the antenna. In the present ap-
proach the attachment mode is derived directly from the
delta-gap voltage excitation model used on microstrip lines
[Eleftheriades and Mosig 1996]. As shown in fig. 2 an ef-
ficient excitation model is obtained for the microstrip case
applying a voltage source of magnitude Vm between an in-
finitesimally small gap of length δ → 0 across the feeding
line and the ground plane. The flow of induced currents
through the edge of the microstrip line is modeled intro-
ducing one or more half subsectional basis functions (half
rooftop in the present case) as shown in Figs. 2a, 2c, and 2d
[Eleftheriades and Mosig 1996].



Figure 2: A delta-gap voltage source exciting printed circuits. a) Colinear transition between a coaxial probe and a microstrip line.

b) perpendicular transition between a coaxial probe and a microstrip line. c) Delta-Gap voltage model applyed to a coaxial

probe-fed microstrip line. d) Associated MoM description of the excitation model. e) Coaxial probe-fed patch antenna. f)

Associated MoM description of the of the excitation of a probe-fed patch antenna

It is well known that at least for electrically thin dielectrics,
no difference in the measurement can be noticed when the
microstrip line is fed by a vertical coaxial probe (Fig. 2b),
so it can be affirmed that the previous delta-gap excitation
model is still valid in this case. The next step is to apply the
same method to a point located inside the patch (see Fig.
2e) having in mind that current can spread in any direction.
This behaviour can be obtained introducing 3 (or less if the
feed is close to the edge) new half rooftops, one for each
edge of the triangle containing the feeding point, which are
superimposed to the halves of the standard rooftops already
attached to the triangle (see Fig. 2f). It must be stressed that
at this point six half rooftops (one couple for each side) are
present in the triangle, but only three of them are involved in
the attachment mode and they are attached to three virtual
vertical half rooftops, while the other three are connected to
the halves located in the adjacent triangles to form standard
“planar” basis function. It is also important to point out that
to reach a good model of the physical excitation, the area of
the triangle with the attachment mode must be reasonably
small, the lower limit being imposed by the section of the
internal conductor of the coaxial cable.
The application of the Method of Moments (MoM) to solve
the integral equation (5) leads to a system of linear equa-
tions that can be shortly expressed as
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Figure 3: Basic geometry of a probe-fed printed antenna used in

the formulation of the excitation model.

ei =

Nf
∑

k=1

αk Pi,k , i = 1, 2, · · · , Nf (6)

where Pi,k is the i, k-th term of the moments matrix, αk is
the k-th term of the unknown electric current density vector,
Nf is the total number of basis functions and ei is the i-th
term of the excitations vector. The latter is defined as

ei =

∫

S

~Ee • ~fi(~r) ds (7)

where ~Ee represents the impressed electric field, and fi(~r)

is the subsectional testing functions of the MoM. The un-



knowns electric currents can now be expanded as

~Js =

Nf
∑

k=1

αk
~fk(~r ′) (8)

where Nf is the total number of basis functions, and αk are
the unknown coefficients in the expansion.
With reference to the port geometry shown in Fig. 3, we ap-
ply the delta-gap model only to the three “half” basis func-
tions of the attachment mode, which allows us to write the
excitation field created by the voltage source as

~Ee = Vm

3
∑

p=1

δ(~r − ~rp) n̂p (9)

where ~rp, p = 1, 2, 3, denotes the position vector of the
three edge associated to the port. Substituting equation (9)
in equation (7) we obtain

7
6

.2
 m

m

7
.6

2
2

.9 3
0

.5

114.3 mm

feed points

53.3 mm

3

2

1

Figure 4: Probe-fed patch antenna on an infinite ground plane.

Substrate: REXOLITE 2200, h = 1.59 mm, εr =

2.62, tanδ ≈ 0.002.

ei = Vm

∫

S

[

3
∑

p=1

δ(~r − ~rp) n̂p • ~fi(~r)

]

ds (10)

Using the integration properties of the Dirac delta function
and defining ~f

np

i (~r) = n̂p • ~fi(~r) as the component of the
basis function perpendicular to p-th triangle’s edge, equa-
tion (10) reduces to

ei = Vm

∮

ζ

[

3
∑

p=1

f
n̂p

i (~rp)

]

dl (11)

where ζ is the perimeter of the triangle with the attachment
mode (see Fig. 3). Defining now

γi =

∮

ζ

[

3
∑

p=1

f
n̂p

i (~rp)

]

dl (12)

which is an integral with an easily obtained analytical solu-
tion, we can introduce (11) in (6) and obtain the following
system of linear equations

Vm γi =

Nf
∑

k=1

αk Pi,k , i = 1, 2, · · · , Nf (13)

The solution of this system of linear equations gives the

measured

3

2

1

computed

1.190 GHz
1.185 GHz+

Figure 5: Comparison of measured and computed results of the

input impedance of the antenna in Fig. 4. 2 measure,

+ theory. (increment 5 MHz clockwise, measurement

reproduced from [James and Hall 1989])

values of the unknown coefficients αk. These can then be
used to compute the current Im flowing through the port as
follows

Im =

∮

ζ

[

3
∑

p=1

~Js(~rp) • (n̂p)

]

dl

=

Nf
∑

k=1

αk

∮

ζ

[

3
∑

p=1

f
n̂p

k (~rp)

]

dl

=

Nf
∑

k=1

αk γk (14)

From equation (14) the input impedance of the circuit is di-
rectly obtained by dividing both the terms of the equation
by the exciting voltage Vm, and then by inverting the result-
ing input admittance, namely:

Zin =
1

Yin

Yin =
Im

Vm

=

Nf
∑

k=1

αk γi

Vm

(15)



To verify the validity of the derived model we have analysed
the basic probe-fed printed patch antenna presented in
[James and Hall 1989]. For simplicity the geometry of the
antenna is reported in Fig. 4. The input impedance of the
antenna has been measured for the fundamental (TM10)
mode and for three different placements of the feed (see
Fig. 4). The comparison between the measurement and the
computed results, presented in fig. 5, show the accuracy
achieved with the present model.

4 ANALYSIS OF PROBE-FED PATCH

ANTENNAS ON FINITE SIZE GROUND

PLANES

In this section we describe how the excitation model pre-
sented in the previous section must be modified in order
to take into account the finiteness of the ground plane.
The study is presented for a simple printed patch an-
tenna, but the extension to more complicated structure is
straightforward. An important difference between the anal-
ysis presented in the present paper and traditional analy-
sis like the one performed in the previous section (see also
[Bunger and Arndt 1997]), is that in the present case the
Green’s functions derived do not take into account infinite
ground planes, and therefore, all metallizations are consid-
ered to be finite. The main difficulty in doing this is that
the condition of null potential at the ground plane is not
automatically imposed by the Green’s functions. As a con-
sequence, now the finite ground plane must be introduced
inside the integral equation to enforce the proper boundary
conditions on it, and the currents induced on this reference
ground plane must also be computed. Also, a new excita-
tion model and de-embedding technique must be derived to
be able to extract the actual input impedance of the antenna
when such floating grounds are considered as references.
This is mainly due to the fact that the ground plane is no
longer acting as an automatic reference plane for the gen-
erator, so that the reference condition of the finite ground
plane must be introduced explicitly in the model.
The advantages of such finite ground plane models are
clear. First, the effects of a finite size ground plane on
the input impedance of antennas can be accurately taken
into account. Secondly, the diffraction of the radiated
field on the edges of finite size ground planes can also be
studied. This will give an idea of the back-radiation of

Lp Lg

Y
p

Wp

Wg

feed point

ground plane

patch

Xp

Figure 6: Probe-fed patch antenna on an finite size ground plane.

microstrip antennas, including the side-lobe levels which
might be expected in their radiation patterns. Both ele-
ments are of key importance in the design of antennas, and
up to now they could only be evaluated through measure-
ments, or with lengthy numerical calculations using tech-
niques such as the finite elements or the finite differences
[Ciampolini et al. 1996].
Let us now consider the basic microstrip antenna with finite
size ground plane represented in Fig. 6. Opposite to the case
of an infinite ground plane, where the excitation is injected
only through the patch while the ground plane is included in
the Green’s functions, the model must be modified in the fi-
nite ground case so that the finite ground plane is connected
to the generator and surface currents must be free to flow
through this connection. This is obtained by using a “mir-
ror” attachment model in the ground plane with the sign
of the currents reversed. Also, the potential of the ground
plane is set to zero by means of a numerical treatment act-
ing on the MPIE formulation. Fig. 7 presents the basic idea
of the extended attachment mode. If we take again the case
of a transition from a coaxial cable to a microstrip line, but
where the size of the microstrip’s ground plane is now fi-
nite (Fig. 7a), the equivalent excitation model can be repre-
sented with a voltage generator connected to the microstrip
line as in the previous case, but with the grounded termi-
nal now connected to the physical ground plane (Fig. 7b).
As depicted in the figure, the currents flowing through the
two terminals of the generator must be the same. There-
fore the same “spreading” behavior of the current must be
imposed in both the microstrip patch and the ground plane.
This behaviour can be obtained in the MoM implementa-
tion by introducing one half basis function on the ground
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plane for each of these present in the microstrip and link-
ing the two halves together to form an entire basis function
(see Fig. 7c), i.e. only one unknown term for each couple
is present in the MoM matrix [Tiezzi et al. 1999]. This im-
plies that the free edges of the two half basis function must
have the same length. Applying now the same scheme to
the probe-fed patch antenna represented in Fig. 7d, starting
from the attachment mode sketched in Fig. 2e, we obtain
the new attachment mode composed by three (or less) half
basis functions on the patch and the same number of half
basis functions with opposite sign on the ground plane.
To demonstrate the effectiveness of the derived model, the
antenna in Fig. 4 has been simulated with a ground plane of
width Wg = 214 mm and length Lg = 214 mm for again
three position of the coaxial excitation. The agreement
between theory and measurement (Fig. 8)is rather good.
Indeed our model can work for any size of ground plane
from the completely unbalanced antenna (infinite ground
plane) to a perfectly balanced antenna (ground plane having
the patch’s size). The latter case has been tested for an
antenna on a RT/DUROID 5870 substrate with thickness
h = 1.57 mm and relative dielectric constant εr = 2.33.
With respect to Fig. 6 the dimensions of the antenna are
Wp = Wg = 120.1 mm, Lp = Lg = 79.5 mm, Xp = 60

mm, Yp = 29 mm. The results are presented in Fig. 9. The
agreement between measured and computed results is ex-
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Figure 8: Measured versus simulated results for the patch an-

tenna shown in Fig. 4, when the new excitation model

is used: Wg = 214 mm, Lg = 214 mm. (incre-

ment 5 MHz clockwise, measurement reproduced from

[James and Hall 1989])
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Figure 9: Measured versus simulated results for a perfectly bal-

anced patch antenna: Wp = Wg = 120.1 mm, Lp =

Lg = 79.5 mm, Lp = Lg = 80 mm, Xp = 60 mm,

Yp = 29 mm. Substrate: RT/DUROID 5870, h = 1.57

mm, εr = 2.33, tanδ = 0.0012. (increment 2.5 MHz

clockwise)

cellent. As a matter of comparison, the result obtained using
the infinite ground plane model has also been included and
it show that in this extreme case the infinite ground plane
approximation is definitely too rough.

4.1 RADIATION PATTERNS

Another interesting aspect of the excitation model derived
in this paper is the prediction of the back radiation and
the side lobe levels of microstrip printed antennas. In the
present work the far field radiated by the structure has been
computed with the aid of asymptotic expressions for the
multilayered media Green’s functions, valid for large values
of source-observer distances. These asymptotic expressions
are based on the use of the saddle point method, which al-
lows the analytical evaluation of a Fourier integral by just
considering the contribution of the function at the saddle
point [Mosig and Gardiol 1982]. It is important to have in
mind that in a multilayered medium, horizontal currents can
in general produce both horizontal and longitudinal (along
z) components of the electromagnetic fields. This comes
from the fact that the dyad associated with the magnetic
vector potential is not a diagonal dyad, but it rather contains

off diagonal elements. For instance, if the so called Som-
merfeld choice is selected, then the whole magnetic vector
potential dyad can be written, for only horizontal currents,
as [Mosig and Gardiol 1985, Mosig 1989]

GA =
(

êx Gxx
A + êz Gzx

A

)

êx

+
(

êy Gyy
A + êz Gzy

A

)

êy (16)

where, as already said, the spectral domain Green’s
functions appearing in equation (16) are derived from
voltages and currents computed in the equivalent trans-
mission line network of Fig. 1(b), as described in
[Mosig and Gardiol 1988, Michalski and Mosig 1997]. For
the Green’s functions of interest in (16) one obtains
[Michalski and Mosig 1997]

G̃xx
A = G̃yy

A =
V TE

J

j ω
,

G̃zx
A = −

µ

k2
ρ

j kx

(

ITM
j − ITE

J

)

,

G̃zy
A = −

µ

k2
ρ

j ky

(

ITM
j − ITE

J

)

, (17)

where TE, TM denotes transverse electric and
transverse magnetic (with respect to the z-axis)
waves, and the transverse wavenumbers are given
by [Mosig and Gardiol 1982]: kρ = k0 sin θ,
kx = −k0 sin θ cosϕ, ky = −k0 sin θ sin ϕ.
The main difficulty is then reduced to the calculation
of these Green’s functions in the spatial domain. For
this purpose the inverse Fourier integral is evaluated
with the saddle point technique, and, as shown in
[Mosig and Gardiol 1982], one finally obtains in the
spatial domain the following simple relation

Gst
A = j k0 cos(θ) G̃st

A

exp(−j k0 R)

R
(18)

where s, t = x, y, z, and R is the source-observer distance.
It is important to remark that for the derivation of equation
(18) the spectral domain Green’s functions are assumed to
have a free space dependence of the type: exp(−j β z). The
main implication of this is that the voltages and currents in
equation (17) must be computed at the first air-dielectric in-
terface for: 0 < θ < π/2, and they must be computed at the
last air-dielectric interface for: π/2 < θ < π. Having all
these computational details in mind, an accurate evaluation
of the radiation patterns of microstrip antennas printed on
finite size ground planes has been carried out. Figs. 10,
11 and 12. present the measured and computed results
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Figure 10: Radiation patterns of the printed patch antenna shown

in Fig. 4. Ground plane size: Wg = 60 mm, Lg = 60

mm. Frequency is 5.020 GHz. (measurement repro-

duced from [Bokhari et al. 1992])

for the E and H-plane radiation patterns of the antenna
shown in Fig. 4 with ground plane size: Wg = 60 mm,
Lg = 60 mm, Wg = 90 mm Lg = 90 mm and
Wg = 180 mm Lg = 180 mm (respectively λ0 × λ0,
1.5λ0×1.5λ0 and 3λ0×3λ0 at 5.02 GHz). The results pre-
sented indicate that the agreement is good, and in particular
the predicted level of back radiation is approximately the
measured one. It is important to mention that a model using
an infinite ground plane gives no information concerning
the level of back radiation of the antenna, which is assumed
to be zero. On the contrary, with the new excitation model
derived in this paper, an accurate estimation of the back ra-
diation level can be obtained. It must be also pointed out
that the present model still uses layered Green’s functions
and doesn’t include neither the radiation of the probe itself
nor the effect of the dielectric layer finiteness.
These two aspects of the problem could also be included
in the model by means of respectively, vertical conduc-
tion and polarisation currents and work towards this goal
is in progress. However the results of figures 10-12 shows
clearly that the only noticeable improvement would be the
filling of the deep nulls at ±90◦ and that except for this
minor correction, our model in its current status follows
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Figure 11: Radiation patterns of the printed patch antenna shown

in Fig. 4. Ground plane size: Wg = 90 mm, Lg = 90

mm. Frequency is 5.020 GHz. (measurement repro-

duced from [Bokhari et al. 1992])

closely the measured values, while still retaining a reason-
able simplicity which would be lost if the aforementioned
effects are included.

5 CONCLUSION

A new excitation model for coaxially fed printed microstrip
antennas, developed in the frame of the mixed potential in-
tegral equation (MPIE) and the method of moments (MoM),
has been presented. Moreover, a modified version of this
model allows the analysis of these antennas on finite size
ground planes. This model has been successfully applied
to the prediction of input impedances for patches above
ground planes whose size ranges from the patch size to in-
finity. With this approach, scattering from ground plane
edges can be taken into account and full range (including
backside scattering) radiation patterns can also be predicted.
The paper has first presented the theoretical basis of the new
derived excitation method, including the numerical details
needed for a correct far field computation. Theoretical re-
sults have been compared with measurements, for both the
input impedance and the radiation patterns. Comparisons
have revealed that the accuracy achieved with the new ex-



citation method is very satisfactory, and in particular the
backside radiation and side lobe levels of real life printed
antennas can accurately be predicted.
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Figure 12: Radiation patterns of the printed patch antenna shown

in Fig. 4. Ground plane size: Wg = 180 mm,

Lg = 180 mm. Frequency is 5.020 GHz. (measure-

ment reproduced from [Bokhari et al. 1992])
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