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Chapter 1: 

 

General introduction 

 

 

 

 

 

1.1 Context and objectives 

1.1.1 High gain antennas 

Since the birth of satellite communications and the development of radar 

during World War II, considerable research and progress in high gain antennas 

have been conducted. Gain is an antenna property which measures its ability to 

efficiently distribute the energy input through space [Balanis 2005]. High gain 

antennas are those which have the ability to efficiently direct the injected power in 

a desired direction of free space, or equivalently, to receive energy preferentially 

from a desired direction. Thus, gain is a measure that takes into account the 

performance of an antenna in terms of directivity and efficiency [Johnson 1993], 

[Balanis 2005]. It is well known that, at a fixed frequency, the antenna gain is 

closely related to its radiating aperture size [Johnson 1993], [Balanis 2005], for 

this reason, the radiators that provide high gain are normally electrically long. 

 

 

http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/World_War_II
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Fig. 1.1.1 Horn-reflector antenna invented by Albert Beck and Harald Friis in 1941 

and developed in 1961 by D. C. Hogg at Bell Labs (courtesy: Great Images in NASA). 

 

A variety of antenna types with enhanced gain and complexity has been 

proposed, the most notable examples are reflector antennas, lens antennas, 

phased arrays, reflectarrays, and more recently Fabry-Perot leaky-wave 

antennas ([Johnson 1993], [Oliner 2007], [Jackson 2008]). The first design used for 

satellite communications is the horn-reflector antenna shown in Fig. 1.1.1, which 

was constructed in the 1960s and consists of a reflector mounted in the mouth of a 

horn antenna. The high gain antennas developed to date span a wide range of 

applications such as mobile telephony, satellite television, radio astronomy and 

other deep-space purposes, military radar, cloud/precipitation radars, microwave 

communications, terrestrial microwave relay communication systems and other 

commercial applications.  
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Fig. 1.1.2 Parabolic antenna in Canada, Institute of Astrophysics of Herzberg, radio 

astrophysical observatory (courtesy: ASTROLAB of the National park of the Mount-

Mégantic). 

 

Fig. 1.1.3 Luneburg lens antenna (courtesy: Rozendal Associates, Inc.). 
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Conventional reflector antennas are the high-gain radiators most widely 

used. They provide high gain, narrow beamwidth and wide bandwidth (since they 

have no resonant elements) while having low losses and sidelobe control [Johnson 

1993. Ch. 17]. The reflector shape is generally a paraboloid of revolution, as the 

one shown in Fig. 1.1.2. Dielectric lenses are also used as collimating elements in 

microwave antennas [Johnson 1993, Ch. 16], playing a similar role to that of 

reflectors. Both, lenses and reflectors are externally fed by an antenna which is 

usually simpler and smaller, such as a horn (see Fig. 1.1.2). Thus, these two types 

of antennas are generally bulky in size and beam steering is only mechanically 

achieved. Thus, a more flexible alternative is the phased array [Johnson 1993, Ch. 

20] which has been traditionally used for military radar applications for many 

decades. Enhanced directivity is here obtained by grouping radiators into an array. 

In particular, phased arrays consist of a planar array of radiators that are 

individually fed with a phase and amplitude that can be controlled in order to 

produce a radiated beam with a desired shape. An interesting example of a phased 

array mounted on a Galileo satellite is shown in Fig. 1.1.4. The direction of the 

radiated beam can be swept by electronically varying the phase of the array 

components, producing a moving radiation pattern without the need of mechanical 

movements and in planar technology. This electronic beam steering is orders of 

magnitude faster than the traditional reflectors based on mechanical rotation. 

However, phased arrays need many microwave phase shifters, a control signal for 

each of them and both a low noise amplifier and a power amplifier at each element 

for receive and transmit. For these reasons, high gain phased arrays composed by a 

considerable amount of elements may not be feasible as they can be quite 

expensive. 
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Fig. 1.1.4 Bottom view of a Galileo satellite showing the phased array antenna 

elements (courtesy: ESA) 

 

Fig. 1.1.5 General scheme of a printed reflectarray antenna (from [Huang 2008]). 

Reflectarrays combine the advantages of both phased arrays and parabolic 

reflectors, and thus, these high gain antennas have found numerous applications 

such in satellite communications, contoured beam space antennas or radar. Their 

operation principle is explained in detail in books such as [Huang 2008]. A 

reflectarray basically works like a conventional reflector antenna where the 

reflector is replaced by a planar printed surface (its general scheme is depicted in 

Fig. 1.1.5.). Here, the reflected radiation pattern is directed by controlling the 
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reflection phase produced by each of the elements of the planar reflector. 

Therefore, by properly synthesizing a phase distribution in the array, it is possible 

to obtain a desired reflected beam. Compared to reflectors and lenses, 

reflectarrays provide the advantages of being low profile and having low 

fabrication cost. However, the main drawback of these antennas is their narrow 

bandwidth, which is inherent to printed resonant structures (the response of the 

elements in the array is very sensitive to frequency) [Collin 2000], [Huang 2008]. 

At present, the interest in reflectarrays is mainly focused in its reconfigurability. 

The scanning of the radiated beam at a fixed frequency can be achieved by 

employing reconfigurable cells which make use of PIN or varactor diodes 

[Sievenpiper 2003], [Hum 2007], ferroelectric materials [Romanofsky 2006], liquid 

crystal [Hu 2008] or MEMS [Perruisseau-Carrier 2008]. These elements/materials 

allow the electronic control of the radiation features, at the expense of a cost 

increase. 

 

Fig. 1.1.6 Schematic diagram of a PRS LWA (from [Liu 2009]). 

Highly directive radiation patterns can also be obtained using Fabry-Perot 

Leaky-Wave Antennas (FP LWAs). Their general structure is shown in Fig. 1.1.6, 

and it basically consists of a resonant cavity created between a Partially Reflective 

Surface (PRS) and a metal-backed substrate. The height of this cavity determines 

the operation frequency of the antenna. This configuration is fed by a simple low-

directive radiator that is embedded inside the structure (see Fig. 1.1.6). The waves 

launched by this source become leaky modes [Oliner 1993] of the resonant cavity 

due to the leakage allowed by the top partially reflective superstrate. This simple 

mechanism of exciting a leaky wave allows to illuminate a large radiating area, and 

consequently, to achieve high gain. This type of structure is named as Fabry-Perot 
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resonator due to its analogy with optical interferometer cavities, where the waves 

are bounced forth and back between two partially reflective mirrors. Moreover, 

they are also commonly referred to as PRS antennas. The integrated feeding 

mechanism of this antenna involves a considerable reduction of volume, in 

comparison to reflectarrays, dielectric lenses and conventional reflectors, which 

are externally fed. In addition, FP LWAs become an attractive solution also when 

they are compared to arrays, which need much more complicated feeding 

networks. 

This dissertation is focused on the efficient and systematic synthesis of this 

last type of high gain antenna. Although detailed background knowledge and state-

of-the-art revision is provided along the following chapters, a brief overview is 

now given in order to clarify the context that has motivated this Ph. D. The main 

principles of FP LWAs were firstly explained in [Trentini 1956], where several 

types of PRS were considered: an array of metallic patches, a metallic plate 

perforated with holes, and a one-dimensional array of metallic wires. Later, the 

enhancement of the directivity was explored using other PRS superstrates, such as 

one or more high permittivity dielectric layers [Jackson 1985, 1988, 1993], [Yang 

1987], [Akalin 2002]. These structures have appeared in the literature as EBG 

antennas, since stacked dielectric layers form an Electromagnetic Bandgap (EBG) 

structure. Photonic bandgap materials have also been exploited to form FP cavities 

[Thèvenot 1999], [Temelkuaran 2000], [Biswas 2001] [Fehrembach 2001], 

[Cheype 2002]. In [Feresidis 2001], the attention was again brought back to PRS 

structures based on doubly periodic arrangement of printed-circuit scatterers. 

Other similar configurations were later proposed in [Zhao 2005-II and III], 

[Gardelli 2006], [Guérin 2006] and [Boutayeb 2006]. By that time, a general 

explanation of the working mechanism of PRS printed resonators was also given in 

[Zhao 2005-I]. That same year, it was proposed to replace the bottom metallic 

screen by a High Impedance Surface (HIS) to reduce the cavity height [Feresidis 

2005]. Later, FP LWAs based on a wire medium were presented in [Lovat 2006-I 

and II] and [Burghignoli 2008]. Recently, many other papers can be found in the 

literature which exploit other types of FP structures, or where certain properties 
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are enhanced, such as polarization purity [Burghignoli 2010], or profile reduction 

[Mateo-Segura 2012]. 

All the examples of FP LWAs previously mentioned are uniform, which 

means that their geometry is invariant along the antenna length. However, by 

modulating the shape of the LWA along its length, many interesting new features 

can be achieved [Oliner 1993]. The process of modulating the propagation of leaky 

waves is called taper and implies a change of the natural antenna aperture 

illumination [Oliner 1993]. The first example of a tapered one-dimensional FP 

LWA can be found in [Honey 1959], were sidelobe level reduction was obtained as 

a result of the variation of the antenna geometry. However, the only attempts of 

two-dimensional tapering in FP LWAs were performed much later, pursuing gain 

and bandwidth enhancement [Yeo 2009], [Wu 2010]. In these works, no accurate 

control over the propagation of the leaky waves was performed, and the designs 

relied on full-wave simulations of the whole antenna. It must be noticed that, the 

characterization of these antennas using 3D full-wave models can be extremely 

computationally costly, due to the complexity of these resonant structures and due 

to the large electrical size of high gain antennas. In contrast, employing leaky-wave 

theory and characterizing the dispersion of the constituent leaky modes, the 

analysis and design of FP LWAs is highly accurate, efficient and less time 

consuming. It is worth highlighting that a tool which allows the efficient and 

systematic design of tapered FP LWAs has not been proposed yet. 
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1.1.2 Motivation and objectives 

Despite the high amount of research carried out in the field of Fabry-Perot 

(FP) Leaky-Wave Antennas (LWAs), still, no optimal FP LWA designs have been 

proposed that take full advantage of their physical dimensions. More 

precisely, accurate solutions to optimize the illumination efficiency of the antenna 

radiating aperture have not been proposed so far. In addition, detailed analysis and 

systematic synthesis of prescribed aperture distributions on FP LWA designs have 

not been performed either. 

The illumination or aperture efficiency of an antenna is the relation between 

the effective radiating area and the total physical area [Balanis 2005]. Thus, if we 

design a FP LWA with low aperture efficiency (for instance 25%), the effective 

radiating area is only a quarter of the physical aperture. Leaky waves decay 

exponentially when they propagate along uniform structures [Oliner 1993]. As a 

result, to produce a high-directive beam, one needs to oversize the surface of the 

PRS, leading to low aperture efficiency. This efficiency can be improved by 

increasing the PRS reflectivity, at the cost of decreasing the radiation efficiency and 

increasing the quality factor of the resonator which implies a bandwidth reduction 

[Alkhatib 2007]. Multiple fed FP LWAs have also been proposed to increase the 

bandwidth and illumination efficiency at the expense of a much more complex 

array feeding network [Weily 2007], [Leger 2005], losing one of the most 

interesting features of FP LWAs which is their simple feeding scheme. The use of 

double-layer PRS with slightly different resonant frequencies can extend the 

bandwidth; however, the reported gain and aperture efficiency are still deficient 

[Vu 2007], [Moustafa 2008]. Therefore, there seems to be a trade-off between 

radiation and aperture efficiencies in uniform FP LWAs. In this dissertation it is 

aimed for the first time the efficient synthesis of tapered FP LWAs. More 

precisely, we will focus here on the double-layered FP antenna proposed in 

[Feresidis 2005]; both periodic layers (PRS and HIS) will be modulated in order to 

obtain high radiation and aperture efficiencies. The achievement of this goal 

would allow to synthesize any aperture illumination, and therefore, to design 

for the first time high gain FP LWAs which are highly efficient (providing both, 

radiation and aperture efficiency rates over 80%).  



10  Chapter 1:General introduction 

 

 
 

In order to achieve the previous main objective, several specific steps have 

been followed progressively. Firstly, the periodic layers that form the PRS and HIS 

of the FP LWA must be properly characterized. It is of high importance that these 

layers are accurately modeled by equivalent pseudo-analytical closed-form 

expressions that can be later employed for the characterization of the whole FP 

structure. Secondly, the analysis and design of uniform FP LWA will be carried out. 

A complete dispersion analysis of the uniform structure will be performed in order 

to find the way to control the propagation of the constituent leaky waves. Finally, 

modulated (tapered) FP LWAs will be synthesized. Both in the second and third 

steps, the one-dimensional scenario will be firstly considered as an approximation 

of the two-dimensional one, and the applications of tapering in 1D and 2D FP LWA 

will be exploited. 

Therefore, the previous general objective can be broken down to the 

following seven specific objectives that would together achieve the overall goal of 

the thesis: 

O1. Characterization of printed dipole-based FSS by closed-form 
equivalent impedances.  

O2. Dispersion analysis of EBG structures conceived from the insertion of 
dipole-based FSS inside rectangular waveguides.  

O3.  Development of a graphical user interface (GUI) for the easy 
insertion of data and systematic retrieval of results. 

O4. Analysis and design of double-layer uniform one-dimensional Fabry-
Perot leaky-wave antennas.  

O5. Analysis and design of double-layer uniform two-dimensional Fabry-
Perot leaky-wave antennas.   

O6. Analysis and design of double-layer tapered one-dimensional Fabry-
Perot leaky-wave antennas.  

O7. Analysis and design of double-layer tapered two-dimensional Fabry-
Perot leaky-wave antennas.   
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1.1.3 Framework of the research 

This Ph. D. research has been carried out within the Group of 

Electromagnetism Applied to Telecommunications (GEAT) in the department of 

Information and Communication Technologies (TIC) at the Universidad Politécnica 

de Cartagena (UPCT), Cartagena, Murcia, Spain. The whole work has been 

supervised by Dr. José Luis Gómez Tonero.  

Several prestigious institutions have collaborated with the development of 

this dissertation, which main contribution has been: 

- Radio Frequency and Microwave Group of the School of Engineering and 

Physical Science at Heriot-Watt University, Edinburgh (UK): characterization of 

uniform Fabry-Perot leaky-wave antennas. More precisely, this work was done in 

collaboration with Dr. George Goussetis and Dr. Carolina Mateo Segura. 

- Microwaves Group of the Faculty of Physics at the University of Seville, 

Seville (Spain): quasi-analytical modeling of frequency selective surfaces. This 

work was developed under the supervision of the professors Francisco Medina and 

Francisco Mesa. 

- The Wireless Technologies Laboratory at the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO), ICT Centre, Sydney (Australia): 

fabrication facilities and far-field measurements of versatile one-dimensional FP 

leaky-wave antennas. Professor Y. Jay Guo and Dr. Andrew Weily supervised all the 

process. 

- The Institute of Electronics, Communications and Information Technology 

(ECIT) in Queen´s University of Belfast, Northern Ireland (UK): analysis and 

design of tapered Fabry-Perot leaky-wave antennas. This collaboration was 

possible thanks to Dr. George Goussetis and Prof. Vincent Fusco. 

Moreover, the work has been developed within a UPCT program that has 

been awarded the “Mention of Excellence” by the Spanish Ministry of Education. 
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The work here presented is within the framework of the following research 

projects: TEC2007-67630-C03-02/TCM, from the Ministerio de Industria, Turismo y 

Comercio of Spain, 02972/PI/05, from the Fundación Séneca of Murcia, Spain and 

TEC2010-21520-C04-04/TCM, from the Ministerio de Educación y Ciencia. 

The work has been fully financially supported by a four-year scholarship 

awarded from UPCT (ref. R578-08). The stages at the University of Seville and 

Queen´s University of Belfast have been funded also by UPCT (refs. PMPDI-UPCT-

2010 and PMPDI-UPCT-2011, respectively). 
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1.2 Outline and original contributions 

In this section, the organization of this thesis is described and some 

comments about the original contributions are provided and linked to each 

chapter.  

 

Chapter 2: Frequency selective surfaces characterization by equivalent circuits 

Description: The main aim of this chapter is the modeling by pseudo-

analytical equivalent networks of printed periodic surfaces based on the doubly-

periodic arrangement of dipoles. A brief introduction about Frequency Selective 

Surfaces (FSS) is firstly given. Later, two different approaches have been followed 

in order to perform FSS modeling: the first one is based on a pole-zero expansion, 

and the second one is based on waveguide discontinuities. A software tool that 

implements the first approach has been programmed in order to systematize the 

analysis of more complex structures which make use of FSSs inside rectangular 

waveguides. The fulfillment of the objectives O1, O2 and O3 listed in Section 1.1.2 

is here pursued.  

Original contribution: The equivalent circuits here developed are useful, not 

only for the analysis and design of FP LWAs, but also for other microwave devices 

that employ printed dipole-based frequency selective surfaces. These periodic 



14  Chapter 1:General introduction 

 

 

surfaces are here modeled as a function of frequency and geometry with an 

original pole-zero method. The dipoles length appears as a variable in the 

analytical dispersion equation, thus allowing for the first time, to perform efficient 

dispersion analysis as a function of the dipoles length with the only restriction of 

single Floquet mode propagation. The second approach proposed in this chapter, 

which is based on the physical modal decomposition of the electromagnetic fields 

around the scatterers (printed dipoles), is also completely original. This circuit 

model reproduces, for the first time, the exact behavior of the printed FSS from a 

very few full-wave simulations. Particularly, this model not only account for FSS 

conventional resonances but also for extraordinary ones. In addition, it provides a 

theoretical frame for understanding the qualitative performance of the patterned 

surface and to design devices based on such structures. 

 

Chapter 3: Analysis and design of uniform double-layer Fabry-Perot LWA 

Description: Firstly, it is given a summary of the basic concepts about leaky-

wave antennas and a review of the different radiation mechanisms proposed so 

far. Later, it is presented an original one-dimensional (1D) double-layer Fabry-

Perot LWA in hybrid technology that allows the flexible control over the 

propagation constant of the constituent leaky waves. Here it is explained how the 

pointing angle and beamwidth of the FP LWA can be independently controlled, and 

how the frequency scanning behavior can also be successfully controlled and 

enhanced. Experimental results on fabricated prototypes are reported showing 

very good agreement with the theoretical results. Finally, two-dimensional (2D) 

double-layer FP LWAs are analyzed and designed employing the tool developed in 

Chapter 2 by making an approximation towards one-dimensional structures. The 

fulfillment of objectives O4 and O5 from the list of Section 1.1.2 is here aimed. 

Original contribution: A completely novel one-dimensional FP LWA is here 

presented, which main feature is that it provides independent control over the real 

and imaginary parts of the leaky wavenumber. This allows, for the first time, to 

control the beamwidth and pointing angle of a one-dimensional FP LWA, which is 

proven by experimental results. Also, efficient leaky-wave dispersion results for 
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the analysis and design of two-dimensional double-layer FP LWAs are obtained 

from a simple and novel transverse equivalent network. The accuracy and 

limitations of the proposed method are validated by comparing previously 2D FP 

antennas designed with full-wave analysis techniques.  

 

Chapter 4: Synthesis of tapered double-layer Fabry-Perot LWA 

Description: After a state-of-the-art review about the tapering of LWAs, in 

this chapter it is presented an efficient technique for the synthesis of tapered 

double-layer FP LWAs. This technique is employed to shape the near field patterns 

of 1D FP LWAs and reduce their sidelobes level for any desired scanning angle. 

Numerical and experimental results are shown in order to prove the efficiency of 

the synthesis approach. Later, the control of the illumination of both 1D and 2D FP 

LWAs which point at broadside is achieved. A quasi-uniform taper is here 

proposed in order to achieve high aperture efficiency, while assuring high 

radiation efficiency and to minimize diffraction and standing waves. Thus, 

objectives O6 and O7 from the list of Section 1.1.2 are here accomplished in this 

chapter. 

Original contribution: An original synthesis technique is here presented, 

which is specifically suited to the design of tapered FP LWAs and that accurately 

takes into account the coupling between the geometrical parameters of the 

antenna and the complex leaky wavenumber. This approach involves the solution 

of two simple equations, implying a drastic computational cost reduction in 

comparison to the synthesis techniques that have been proposed so far. The 

previous approach allows the optimization of the aperture illumination and 

radiation efficiencies, both in 1D and 2D FP LWAs, which is here proposed and 

achieved for the first time.  

 

Chapter 5: Final conclusions and perspectives 

In this chapter, the main conclusions and results will be summarized, 

together with the discussion about the further research that this Ph. D. suggests. 



 

 



 

 

Chapter 2: 

 

Equivalent circuits for dipole-based frequency selective 

surfaces  

 

 

 

 

 

Frequency selective surfaces play a key role in this dissertation due to the 

fact that they are employed to conceive an original and more complex type of 

structure (leaky-wave antenna) and therefore, their analysis and characterization 

is essential and will be developed in this chapter. Taking into account the general 

objectives listed in Chapter 1, the following ones will be aimed in this chapter:  

O1. Characterization of printed dipole-based FSS by closed-form 

equivalent impedances.  

O2. Dispersion analysis of EBG structures conceived from the insertion of 

dipole-based FSS inside rectangular waveguides.  

O3.  Development of a graphical user interface (GUI) for the easy 

insertion of data and systematic retrieval of results. 
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This chapter is organized as follows: 

Firstly, a state-of-the-art review on Frequency Selective Surfaces (FSS), 

their applications and characterization will be given in Section 2.1. 

Secondly, in Section 2.2 it is explained a modified pole-zero technique 

which is proposed for the modeling of dipole-based FSS printed on stratified 

dielectric media. The main advantage of this approach is that the dipole length 

appears as a variable in the analytical equivalent impedance (in addition to 

frequency and wavenumber). This technique can be very useful for the efficient 

analysis and design of Electromagnetic Bandgap Structures (EBG) conceived from 

FSSs due to the fact that it allows to obtain geometry-dispersion curves. 

The previous pole-zero method is applied in Section 2.3 in order to 

characterize the dispersion of structures where FSSs are inserted inside a 

rectangular waveguide. In order to perform frequency and geometry dispersion 

analysis, a software tool has been developed using MATLAB®. Modal dispersion 

curves as a function of the dipoles length and frequency can be easily obtained 

with the only restriction of single Floquet mode propagation. In particular, two 

practical EBG structures have been analyzed: a waveguide loaded with a high 

impedance surface and a leaky-wave antenna using a partially reflective surface. 

The results obtained are compared with full-wave 2D and 3D simulations showing 

excellent agreement, thus validating the proposed technique and illustrating its 

utility for practical designs.  

In Section 2.4 the modeling of dipole-based FSS is performed by a more 

insightful equivalent circuit. In this case, the equivalent circuit comes up after 

taking advantage of the periodicity of the structures, which allows reformulating 

the original problem as a certain equivalent waveguide scattering problem. This 

approach helps to simplify the original complex electromagnetic problem and also 

allows for a good understanding of periodic surface behavior. In this case, no 

restriction over the operation modal regime is made, and the variables in the 

equivalent circuit are the frequency and wavenumber. This fact enables the 

analysis of electromagnetic bandgap structures composed by dipole-based FSS, 

not only in the conventional single mode operation regime, but also when grating 
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lobes appear. In addition, as no assumption on the length of the scatterers is made, 

both conventional and extraordinary FSS total reflection are characterized, as well 

as other high frequency effects such as Wood´s anomalies and grating lobes. 

Finally, in Section 2.5 the main conclusions and results will be summarized, 

together with the discussion about the achievement of the aimed objectives. 

It is important to point out that the software tool explained in Section 2.3 

will be employed in next chapters for the analysis and design of FSS-based leaky-

wave antennas. Besides, as FSS are widely used, the equivalent circuits proposed 

in this chapter may significantly enhance the modeling and synthesis of many 

other practical devices, such as polarizers [Doumanis 2011 and 2012], dichroic 

mirrors [Besso 2003], reflectarrays [Huang 2007]… It is worth mentioning that, 

for the analysis of reflectarrays, an extended version of the pole-zero technique 

explained in Section 2.2 has already been recently published in [Florencio 2011]. 

 



 

 



 

 

 

 

 

 

 

 

2.1 Introduction 

Frequency Selective Surfaces (FSSs) have recently attracted much interest 

in the field of engineering and physics due to the high amount of applications that 

they have found in fields such as the synthesis of microwave and optical 

filters/resonators and antenna enhancement. A FSS is generally any surface 

construction which acts as a “filter” for plane waves. Typical FSSs, such as the 

one shown in Fig. 2.1.1(a), usually consist of a doubly periodic arrangement of 

planar metallic scatterers (or its dual structure, periodic arrays of apertures made 

in a thin metallic surface). Many different shapes of the FSS elements have been 

proposed, some of them are shown in Fig. 2.1.1(b), the election depends on the 

FSS application. The scattered fields will exhibit resonances as the excitation 

frequency is varied. Particularly, these surfaces exhibit total reflection (patches) 

or total transmission (apertures) which generally occur when the size of the 

scatterer is an integer number of half wavelength. For conventional FSS operation, 

the size and shape of the array elements is tailored in order to control the 

characteristics of the first resonance. However, as it will be later explained, for 

subwavelength scatterers, a total reflection/transmission peak is also found. This 

latter resonance has been considered “extraordinary” since it is not directly 

related to the electrical length of the scatterers, but to the periodicity of the array. 
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(a)       (b) 

Fig. 2.1.1 (a)Scheme of a patch-based free-standing FSS. (b)Some typical FSS unit 

cell geometries: (1) square patch, (2)dipole, (3)circular patch, (4)cross dipole, 

(5)Jerusalem cross, (6)square loop, (7)circular loop, (8)square aperture  

(Figs. 1 and 5 in [Mittra 1988]). 

 

 

 

 

(a)      (b) 

Fig. 2.1.2 (a)Light transmission through a pinhole (b)Transfer of an image to a 

canvas in a camera obscura. 

(1)                  (2)                (3) 

 

 (4)                 (5)               (6) 

 

   (7)                (8) 
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Fig. 2.1.3 Newton's prism experiments in 1660s, splitting light into its component 

colors. 

The scattering of propagating waves at periodic gratings has been intensely 

researched for ages. Historically, the principles underlying the physics of 

frequency selective surfaces directly evolve from the investigation of 

diffraction gratings in optics ([Mittra 1988]). The simple case shown in Fig. 

2.1.2(a) of light transmission through a hole in a screen, has aroused curiosity 

since Greek times. For example, in the form of obscure cameras, it became 

essential for the work of great painters such as Vermeer (see Fig. 2.1.2(b)). Since 

the seventeenth century, light propagation has inspired the work of brilliant 

mathematicians, astronomers, inventors, physicists, opticians and artists, such as 

Isaac Newton, James Gregory, Francesco Grimaldi, David Rittenhouse, Siméon 

Denis Poisson, Joseph von Fraunhofer, Gustav Kirchhoff, Christiaan Huygens, 

Robert Hook, Augustin Fresnel… A typical seventeenth century light experiment is 

shown in Fig. 2.1.3, where Newton proved that white light is a mixture of many 

different types of rays; each one is refracted at a slightly different angle and is 

responsible for producing a given spectral color. The principles of diffraction 

gratings were discovered by James Gregory, about a year after Newton's prism 

experiments, initially with artifacts such as bird feathers. Francesco Grimaldi 

introduced for the first time the “fourth manner” of propagation of light, which is 

“not only directly, and by refraction and reflection, but also by diffraction“, his 

book was published in 1665 ([Grimaldi 1665]). It was Rittenhouse who first 

reported that a noncontinuous surface can present different 

reflecting/transmitting properties for different operating frequencies 
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([Rittenhouse 1786]). He described how he discovered this phenomenon by 

observing the filtering of white light at a grating he had constructed from equally 

spaced hairs. The possibility of explaining diffraction effects on the basis of a wave 

theory was noticed in 1818, when Fresnel´s memoir on diffraction was published 

([Meyer 1934]). He showed that diffraction can be explained by the application of 

Huygens´ wave theory together with the principle of interference. Later, in 1882, 

Kirchhoff provided an exact mathematical basis to Fresnel´s analysis. The subject 

has since then been extensively discussed by many writers.  

 

Table 2.1.1 Operation regime of periodic surfaces, depending on the 

application frequency range (before the 20th century). 

The manipulation of light and the theoretical work done by the previous 

scientists evidenced the simplicity of controlling the propagation of 

electromagnetic waves by employing diffraction gratings. Therefore, these 

structures have been extended to many areas of Engineering and Science. It is 

important to highlight the fact that, depending on the modal regime in which they 

operate, periodic surfaces are commonly called either FSS or diffraction 

gratings, as it is schemed in Table 2.1.1. Before the twentieth century, in optical 

regime applications (associated to wavelengths on the order of a micrometer) the 

dimensions of the periodic gratings were greater than the wavelength due to 

technical limitations, and thus, they were referred as diffraction gratings 

characterized by multimode operation. This means that, when light impinges on 

the periodic surface, propagative spatial harmonics are excited in the structure 

which contribute to radiation (the hence called grating lobes). However, periodic 

surfaces are usually called FSS when applied in the microwave spectrum. Single 

mode operation is normally required in this case and the periodicity of the array is 

designed to be comparable to the wavelength (without technical limitations, since 

periodic 
surfaces 

operation 
regime 

periodicity of the 
array 

common 
frequency range 

diffraction 
grating 

Multimode 
(grating lobes) 

greater than the 
wavelength 

optics 

FSS single mode 
comparable to the 

wavelength 
microwaves 
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it is now millimetric). In this scenario, as the impinging wave reaches the periodic 

surface, no energy is transferred to any other spatial harmonic, due to the fact that 

they are now evanescent. 

 

(a)     (b) 

Fig. 2.1.4 (a)Scheme of multiple reflections between reflector an PRS, (b)PRS-

loaded designed antennas. (Figs. 1 and 7 in [Trentini 1956]). 

At the beginning of the twentieth century, G. Marconi and C. S. Franklin 

patented the first FSS structure applied to the microwave region, where the FSS 

was employed as parabolic reflector of wire sections for wireless telegraphy 

([Marconi 1919]). Later, Von Trentini showed the increase in directivity that 

resulted by placing a FSS in front of an antenna with a reflecting screen (see the 

antenna scheme in Fig. 2.1.4(a) and the designed prototypes in Fig. 2.1.4(b)). In 

this scenario, Von Trentini conceived FSSs as Partially Reflecting Sheets (PRS) 

for electromagnetic waves ([Trentini 1956]). Another early patent on FSS can be 

found in [O’Nians 1966]; again the FSS is employed to make more efficient 

reflector antennas. The great potential for military applications boosted the study 

of periodic surfaces in the middle 1960s, thus, many interesting work done by 

scientist such as B. A. Munk, was kept in secrecy for years ([Munk 1970, 1971, 

1974, 1976, 1977, 1979 and 2000], [Richmond 1974], [Burrell 1976] and [Pelton 

1976]). In this context, there was an increasing tendency to describe the 

interaction between FSSs with electromagnetic waves. Some examples of the first 

works on diffraction at planar gratings and its characterization by equivalent 
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circuits and multimode networks can be found in [Oliner 1960], [Palocz 1970], 

[Chen 1971 and 1973] and [Guglielmi 1989-I and II]. A similar work was also 

carried out in the far infrared regime, where FSSs were used as polarizers, beam 

splitters, submillimeter filters, mirrors for lasers… ([Ulrich 1967-I and II, 

Cunningham 1983, Irwin 1993]). Periodic screens were also applied to the near-

infrared and visible portions of the spectrum. An interesting example can be found 

in [Horwitz 1974], where FSSs were proposed to improve the efficiency of solar 

cells. Specifically, this solar selective surface is designed to be essentially 

transparent in the frequency band where the solar cells are most efficient, 

reflecting frequencies outside this band.  

FSS have also been included in guiding structures in order to modify the 

propagation of waves along them, achieving diffraction characteristics such as 

frequency stop-bands, pass-bands and band-gaps. These structures have been 

recently classified under the broad terminology of “Electromagnetic Band-gap 

(EBG)” materials. Good examples can be found in [Sievenpiper 1999] or 

[Shumpert 1999], where EBG substrates are proposed to enhance the bandwidth 

in low profile antennas. In particular, Sievenpiper showed for the first time that 

EBG substrates can behave as High Impedance Surfaces (HIS), which present a 

reflection coefficient with a reflection phase that can be flexibly varied as a 

function of the FSS dimensions. An interesting operation regime of a HIS is when it 

presents a reflection phase of zero degrees, behaving as an Artificial Magnetic 

Conductor (AMC). 

From 1969 until the end of 2000, hundreds of papers were published 

containing the keyword "frequency selective surface".  The application areas were 

mainly filtering (with respect to frequency, polarization, angle…), antenna 

enhancement, EBG structures, radomes (terrestrial and airborne), missiles and 

electromagnetic shielding applications.  Recent examples of the application FSSs 

can be found in [Vardaxoglou 1997], [Feresidis 2001], [Maci 2003], [Zhao 2005], 

[Kosmas 2007], [Balanis 2008], [Seman 2011]. During the last decade the interest 

on periodic structures within the microwave/millimeter wave domains has been 

focused on the analysis of artificial magnetic conductors, hard and soft 

electromagnetic surfaces, partially reflecting surfaces, and other structures 
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conceived mainly for antenna applications ([Feresidis 2001], [Luukkonen 2008]). 

Multilayer stacked periodic structures for the implementation of wideband 

canonical filters have received considerable attention during the last few years 

([Bayatpur 2008-I and II], [Al-Joumayly 2009], [Behdad 2009]). A large variety of 

geometries have been employed in the past few years to realize other EBG 

structures and Artificial Magnetic Conductors (AMC) [Goussetis 2006-I,II and 

2007-I,II], as well as Left-Handed metamaterials [Caiazzo 2004]. In this context, 

there is an increased tendency to describe the interaction between FSSs and 

electromagnetic waves by equivalent homogenized parameters, such as 

generalized sheet transition conditions [Vardaxoglou 1997], averaged boundary 

conditions [Munk 2000] or equivalent impedance/ admittance [Tretyakov 2003], 

[Maci 2005], [Luukkonen 2008].  

 

(a)        (b) 

Fig. 2.1.5 FSS reflection squeme (a) Plane-wave incidence on printed dipole-based 

FSS (b)Reflection coefficient vs. frequency. 

 

It is worth mentioning that, depending on the application, the analysis of a 

FSS can consist either on a “study of reflection” or a “study of dispersion” (a 

detailed explanation on this issue can be found in [Maci 2005]). When the 

emphasis is made on the reflection properties of the FSS (outlined in Fig. 

2.1.5(a)), the aim is to obtain its reflection coefficient (    ) as a function of 

frequency, for various plane-wave incidence angles (   ) and for both TE and TM 
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polarizations.  This scenario is well described in books such as [Vardaxoglou 

1997] or [Munk 2000]. The analysis of      is based on the expansion of the field 

in terms of Floquet waves with known wavenumbers (since kx and ky are directly 

related to the FSS orientation, frequency and incidence angles). Reflection vs. 

frequency curves such as the ones in Fig. 2.1.5(b) can be directly derived using 

numerical techniques. Among those, the integral equation and its subsequent 

solution using the method of moments (MoM) is a popular due to its fast and 

efficient features.   

        

(a)      (b)    (c) 

Fig. 2.1.6 FSS dispersion squeme (a) Wave propagation inside FSS-loaded 

waveguide (b) Transverse Equivalent Network (c) Dispersion with frequency. 

 

On the other hand, when the FSS is part of an EBG structure (as shown in the 

example of Fig. 2.1.6(a)), the analysis consists in obtaining its dispersion diagram. 

This situation is completely different from the previous one; the wavenumber (ky ) 

is now the unknown of the problem and it is commonly found by solving a 

Transverse Resonance Equation (TRE). The FSS is modeled by an equivalent 

impedance (YFSS), which when employed in equivalent circuits, can be used to 

obtain dispersion diagrams such as the one in Fig. 2.1.6(c). It is worth appreciating 

that YFSS must be function of ky so that the modal solutions of the structure can 

be found by solving the previous TRE at a specific frequency and for a given 

geometry. Analytical expressions have been derived to produce the equivalent far-

field surface impedance for specific element geometries; an excellent summary of 

the state-of-the-art can be found in [Tretyakov 2003], and a more recent 
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contribution in [Luukkonen 2008]. However their application is limited to those 

geometries for which analytical solutions have been obtained. Recently a pole-

zero method was proposed by Maci et al [Maci 2005], which employing full-wave 

results and Foster’s theorem, can derive the equivalent impedance of periodic 

surfaces.  

In the frame of this thesis, the first goal is the synthesis of printed dipole-

based FSSs which can be used to conceive more complex EBG structures, as 

Leaky-Wave Antennas (LWA). In particular, the FSSs will perturb the leaky-modes 

propagating through the structure, providing the control over its radiation 

properties. In order to characterize the dispersion of such LWAs, a TEN must be 

constructed, in which the FSSs are modeled by equivalent admittances. Despite the 

extensive literature available for the analysis of periodic structure, there is 

relatively limited published material on the inverse problem of synthesis. 

Assuming that the value of the equivalent impedance required by a periodic 

surface is known, the synthesis problem aims to derive the geometrical 

characteristics of the array unit cell.  Analytical techniques, such as those reported 

in [Tretyakov 2003] and [Luukkonen 2008], can be employed for this purpose. 

However, for the case of a dipole arrays, the dependence of the equivalent 

impedance on the dipole length has not been accurately derived. Brute force 

simulations have been recently reported [Goussetis 2007-I], but this is 

computationally expensive. Yet, this synthesis procedure is essential for the 

efficient design of components employing such periodic surfaces.  A modified 

pole-zero technique has been developed for the characterization of doubly 

periodic arrays of dipoles. This approach (which is explained in detail in Section 

2.2), provides an equivalent sheet impedance which analytically depends on the 

dipole length, hence allowing to perform synthesis. This approach is employed in 

Section 2.3, in order to obtain the modal dispersion curves of practical EBG 

structures. The analysis technique is divided in several steps, which have been 

implemented in a software tool using MATLAB®. 
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At the beginning of the twentieth century, parallel to the application of FSSs 

explained above, the whole complexity of the electromagnetic nature of light 

was again studied in depth. The interaction between light, gratings and metal 

attracted the attention of researchers such as R. W. Wood and Lord Rayleigh. In 

1902, R. W. Wood experimentally reported the unexpected narrow bright and dark 

bands in the spectrum of an optical reflection grating illuminated by a light source 

([Wood 1902 and 1912]). This phenomenon, known as “Wood´s anomaly”, was 

later theoretically treated by Rayleigh in [Rayleigh 1907-I and II]. Almost 30 years 

later, the phenomenon was reinterpreted by Fano ([Fano 1941]), who 

distinguished between two types of anomalies. Afterwards, Hessel and Oliner 

provided a clear answer to the phenomenon, considering the two types of Wood´s 

anomaly resonances: one due to branch point singularities that correspond 

physically to the onset of a new propagating spectral order (the so called “Wood-

Rayleigh anomalies”, first indicated by Lord Rayleigh), and the other due to pole 

singularities that correspond to the condition of resonance for leaky surface waves 

guided by the structure (also called “resonance anomalies”). These authors 

proposed for the first time a simple closed form solution in [Hessel 1965], based 

on analysis of electromagnetic scattering. More experimentation was also done, 

relating the anomalies to the excitation of surface plasmons, which are essentially 

electromagnetic waves trapped at a metallic surface through their interaction with 

the free electrons of the metal [Ritchie 1957]. This effect was soon after described 

in terms of excitation of electromagnetic evanescent waves at the surface of the 

metal [Burstein 1974].  

In the 1940s, microwave technology advanced rapidly, due to the huge 

research and development demands of World War II. Regarding periodic 

structures, interest shifted to subwavelength scatterers. Bethe studied the 

diffractive properties of an idealized subwavelength hole. In coherence with the 

principles of diffraction ([Born 1999]), he reported that the optical transmission 

would be very weak when the optical elements were miniaturized. Decades later, 

Ebbessen showed that orders of magnitude more light than Bethe´s prediction 

could be transmitted through an opaque metal screen milled with subwavelength 

holes [Ebbessen 1998]. This unexpected phenomenon was therefore called 
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“extraordinary optical transmission” (EOT), and generated a renewed interest 

on the modeling of this class of electromagnetic structures, see the comprehensive 

reviews in [Genet 2007], [García de Abajo 2007], [Bliokh 2008], [García-Vidal 

2010], [Gordon 2010] and references therein. However, this phenomenon is not 

exclusively associated with optical frequencies but has also been reported at 

millimeter wave [Beruete 2004, 2005 and 2007-I] as well as THz frequencies [Azad 

2005], [Kuznetsov 2009], [Carbonell 2010]. In spite of some relevant differences 

among the various frequency regimes owing to the different behavior of metals at 

different frequency regions, all the above problems share a similar physical 

background. Therefore, two different natures of the resonance of a frequency 

selective surface can be distinguished. On the one hand, the previously explained 

conventional resonance is presented by FSS with scatterers comparable to the 

wavelength [Trentini 1956]. In this case, the size and shape of the scatterer 

controls the first resonance of the periodic sheet [Lee 2000], [Feresidis 2001]. On 

the other hand, FSS with subwavelength scatterers also present an extraordinary 

total reflection/transmission peak before the onset of the first grating lobe. This 

resonance is not directly related to the electrical length of the scatterers, but to the 

periodicity of the array. In this context, a new row should be added to Table 2.1.1, 

as shown in Table 2.1.2. 

periodic 
surfaces 

operation 
regime 

periodicity of 
the array 

size of the 
scatterer 

common 
frequency range 

diffraction 
grating 

Multimode 
(grating lobes) 

greater than the 
wavelength 

any optics 

conventional 
FSS 

single mode 
comparable to 
the wavelength 

comparable to the 
wavelength 

microwaves 

extraordinary 
FSS 

subwavelength 
microwaves/ 

optics 
 

Table 2.1.2 Operation regime of periodic surfaces, depending on the application 

frequency range. 

The most widely accepted paradigm explains EOT in terms of the 

interaction of the impinging electromagnetic wave with Surface Plasmon 

Polaritons (SPP) supported by the periodic structure [Pendry 2004]. However, a 

point of view on EOT alternative to SPP theory was reported in [Medina 
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2008], where an electrically small aperture was modeled as a reactive 

discontinuity in the path of an electromagnetic mode propagating along a 

waveguide. This waveguide can be a real one (i.e., the circular-section guide 

considered in [Medina 2009 and 2010-II]), or an equivalent one which 

characterizes a unit cell of a periodic sheet (this case is considered in [Medina 

2008], [Schuchinsky 2005] and [Beruete 2007-II]).  Therefore, Medina´s fruitful 

point of view consists in the reduction of the original problem to an equivalent one 

which consists in the scattering of a guided wave incident on a transverse 

discontinuity.  Its main advantages are, on the one hand, that it can benefit of the 

great deal of work carried out previously on waveguide discontinuities [Oliner 

1960], [Palocz 1970], [Miles 1946], [Marcuvitz 1986], [Wexler 1967] and, on the 

other hand, that it allows for a rephrasing of the original complex electromagnetic 

problem in terms of an equivalent circuit network. This last feature means that the 

potentially complicated wideband frequency response of the system can be 

accounted for by a small number of parameters.  These parameters can eventually 

be known in closed form for some limited cases ([Marqués 2009]) but, in general, 

they should be obtained from just a few full-wave computations. Medina´s 

contribution was centered in the characterization of extraordinary 

transmission; however, due to the physical insight of his approach, it can be 

used to model the general scenario of dispersion at a periodic surface. In 

particular, it has been adapted to various structures, such as simple and 

compound slit gratings [Medina 2010-I].  

Therefore, in the frame of this thesis, the same approach presented in 

[Medina 2008] is extended in order to model more complex and practical 

scenarios. In particular, an equivalent circuit is proposed to model oblique 

plane-wave incidence over dipole-based periodic surfaces sandwiched 

between dielectric slabs (no assumption on the electric length of the scatterers 

is made and the dependence with the angle of incidence is explicitly considered). 

It should be understood that the equivalent-circuit methodology here proposed is 

not a complete substitute of the full-wave methods but a very convenient 

complement that helps to reduce drastically the computational effort. In fact, due 

to the currently disposal of full-wave electromagnetic simulators, the numerical 
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benefit given by the equivalent circuit may not be so crucial. However, another key 

feature of the equivalent-circuit approach is that it provides a simple and accurate 

comprehension of the problem, which makes possible many important predictions 

on the behavior and role of the different elements of the structure under study. 

This predictive nature can be fundamental for many analysis and/or design 

applications. This contribution is explained in detail in Section 2.4. 
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2.2 Modified pole-zero technique  

The proposed approach is an extension of the pole zero technique proposed 

by Stefano Maci in [Maci 2005 and 2003], which consists in an efficient method to 

extract the equivalent sheet impedance of doubly periodic arrays and its variation 

with frequency from a limited number of full wave simulations. In its contribution, 

Maci states that it is possible to characterize the FSS’ equivalent admittance 

through an analytical and polynomial expression (           , Eq. 2.2.1).      is a 

function of frequency and also of the unknown propagating constant in the 

longitudinal y axis               , which is the goal of a dispersion analysis. It is 

proven in [Maci 2005] that, for every real   ,            satisfies Foster´s 

theorem and therefore, has the same analytic properties as an LC network in 

frequency. These properties are: the poles and zeros are in the real   axis, they 

are simple and alternate; and there must be a pole or zero in    . After a full-

wave analysis of the FSS’ reflection coefficient,            can be approximated 

by this rational function:  

     
       

           
 
              

 
  

             
 
              

 
  

                                

where        <       <       <       … are the frequencies where the poles 

and zeros of      are located. In order to find these values, a full-wave analysis of 
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the two scenarios shown in Fig.2.2.1 is needed. In the first scenario, it is computed 

the reflection phase of the FSS printed on its dielectric substrate over a ground 

plane (Fig. 2.2.1(a)). In the second scenario, the same cavity–backed dielectric slab 

is analyzed in the absence of the FSS (Fig. 2.2.1(b)). The reflection coefficient 

         is obtained in both cases using a full-wave method (for example, using 

the technique described in [Goussetis 2006-I). Particularly, the phase of this 

coefficient (    ) will centre our attention, because its module will always be 

equal to one (all the incident energy is reflected, either by the FSS or the ground 

plane under the dielectric).  

 

(a)        (b) 

Fig. 2.2.1 Analyzed scenarios to obtain the poles and zeros of the FSS  

(Fig.1 in [Maci2005]). 

 

Fig. 2.2.2 Phase of the reflection coefficient under normal incidence       . 

For every   , and therefore, for every angle of incidence   (due to the 

relation          , as we can seen in Fig. 2.2.1), the poles         are located at 
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those frequencies at which      is equal to 180º. In these situations, the FSS 

behaves as a shortcircuit, and      will be infinite, leading to a pole of the 

polynomial expression of (2.2.1). On the other hand, to identify the zeros, we must 

compare      of the FSS (Fig. 2.2.1(a)) with the phase of the reflection coefficient 

associated to the same structure but without FSS (Fig. 2.2.1(b)). When both phases 

coincide, the FSS will be invisible to the incident wave. At this frequency, the FSS 

behaves as an open circuit (     will be equal to zero), leading to a zero         in 

(2.2.1). In Fig. 2.2.2 it is illustrated an example of the identification of two poles 

and two zeros under normal incidence, following the described method.  

This same concept is now employed to extract the impedance of doubly 

periodic dipole arrays and its variation with the dipole length. The schematic of 

the structure under consideration is shown in Fig. 2.2.3.  

 

Fig. 2.2.3 Doubly periodic dipole array over a dielectric substrate under arbitrary 

plane wave incidence. 

This structure can be analyzed under an arbitrary direction of incidence at 

an elevation angle θ and azimuth ϕ (see Fig. 2.2.3). Assuming thin metallic dipoles 

(Q << L in Fig. 2.2.1), at low frequencies they will only interact with the x-

component of the incident electric field. When the plane of incidence is yz (ϕ =0  in 

Fig. 2.2.3) TE polarized waves will be affected by the dipoles, while the TM will 

only experience a metal-backed dielectric substrate. In this case, the transverse 

propagation constant is ky=k0sinθ (Fig. 2.2.3). The analogous situation is presented 

when the incidence is in the xz plane, the TM polarization will interact with the 
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dipoles, and the waves in the structure will propagate through the x axis with a 

constant kx= k0sinθ.  

Many numerical fittings can be employed to model the admittance of the 

FSS, for example: splines, rational or polynomic fittings. Specifically, and in 

analogy with [Maci 2005], we propose an analytical expression of the equivalent 

admittance as a function of the dipoles length L, given by:  
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(2.2.2) 

Depending on the incidence, ky/kx are used in (2.2.1) for the TE /TM 

respectively. If ϕ is such that TE and TM polarization are coupled, the admittance 

can be described as a matrix changing the problem into calculating a TE 

admittance and a TM one, following [Maci 2005]. In this way, not only dipole-

based FSS can be analyzed but also rectangular strips or square patches. 

A simple comparison between the above expression with Eqs. (4) and (5) in 

[Maci 2005] reveals that the dependence of YFSS on L in (2.2.2) is assumed to be 

similar to that with frequency. This similarity between the dependence with 

frequency and L comes from the fact that the dipoles are resonant in the direction 

of their length, and therefore both variables are expected to have a similar 

influence on the behaviour of YFSS. Thus, the task of obtaining an expression for the 

equivalent admittance as a function of L can then be reduced to extracting a set of 

poles and zeros (which are assumed to vary slowly with the wavenumber [Maci 

2005]). This rational fitting can be carried out by any of the standard procedures 

available in the literature; in our case we have used a least squares scheme. Using 

a full-wave analysis tool (for instance the MoM employed in [Goussetis 2006-I]), 

we compute the reflection phase experienced by an incident plane wave on the 

FSS printed on a conductor-backed dielectric substrate. In particular, we obtain 

the variation of the reflection phase (θFSS) with the dipole length, L, for different 

angles of incidence θ (the admittance can be readily obtained from these values).  

Next, this proposal is illustrated by means of an example involving an FSS 

with dimensions P = 1.5 mm, Q = 0.5 mm, a = 11 mm, D = 1.13 mm, and εr = 2.2 
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(Fig. 2.2.3). This structure is characterized under TE incidence in the yz plane (the 

index TE will be omitted in the following expressions for convenience). In this 

case, the propagation of the waves in the structure will be in the y axis with 

wavenumber ky. The same approach can be used for the TM case without losing 

validity. Figure 2.2.4 shows the full-wave values of the reflection phase for the FSS 

under consideration varying the length L, at different elevation angles of incidence 

θ=0o, 27 o, 54 o, 81o, and for the frequency of 20 GHz. For comparison purposes, the 

values of the proposed rational fitting approach are also shown in this figure. 

 

Fig. 2.2.4 Phase of the reflection coefficient of the FSS (θFSS) of Fig. 2.2.3 varying L 

at 20GHz, and for different incidence elevation angles. Incidence is in the plane yz 

(    ) under TE polarization. Dimensions: P=1.5mm, Q=0.5mm, a=11mm, 

D=1.13mm, εr=2.2. 

The lengths L for which the FSS appears as a short circuit, and the reflection 

phase takes the value of 180o, should appear as real poles in the admittance. On 

the other hand, the values of L where the reflection phase is equal to that obtained 

by the same structure in the absence of the periodic array should correspond to 

real zeros in (2.2.2). In this latter case, the FSS appears transparent to incident 

plane waves. The full-wave results in Fig. 2.2.4 show the presence of a zero at L = 

zero 
zero 

pole 

pole 

pole 

zero zero 

pole 
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0, which is explicitly accounted for by the factor L in the numerator of (2.2.2). The 

location of these poles and zeros are marked in Fig. 2.2.4. Other zeros and poles 

should also appear in the rational fitting of (2.2.2) in order to have a good 

numerical matching. Specifically, the rational fitting shown in the figure has been 

computed with just two poles and two zeros, which has provided a maximum 

relative error of 10-4 with the use of 10 full-wave simulations (per angle of 

incidence). A similar good numerical performance has been obtained for other 

cases.  

In analogy to what happens with the frequency dependence discussed in 

[Maci 2005], although YFSS can vary rapidly with L, the values of the poles and 

zeros, Lpm(ky) and Lzn(ky), vary slowly with respect to the incidence angle. It allows 

these poles/zeros can be interpolated and/or extrapolated via a low order 

polynomial (in our case we have performed a spline interpolation). This aspect is 

well illustrated in Fig. 2.2.5, where it is shown the poles and zeros obtained for the 

example under study. This figure shows that the two zeros, Lz1 and Lz2, are 

complex conjugate, as expected (for other cases the poles can be both real). It can 

also be observed that the pole Lp1, placed around 6 mm, corresponds to the 

physically meaningful pole expected from the discussions on Fig. 2.2.4.  

 

Fig. 2.2.5 Zeros and poles found in the rational fitting and its spline interpolation 

with the angle of incidence. 
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Fig. 2.2.6 Dipole FSS under consideration for TE incidence. The metallic walls are 

shown to demonstrate the equivalence between a 2D FSS structure and a 1D FSS 

inside a parallel plate waveguide. 

 

This modified pole-zero method will be employed in next sections in order 

to model a periodic FSS located inside a parallel-plate waveguide. In order to 

study propagation of TE modes, these structures will be excited by TE-polarized 

plane waves assuming the setup shown in Fig. 2.2.6 (plane-wave incidence in the 

yz plane). Due to symmetry, the proposed FSS-loaded waveguide in Fig. 2.2.6 is 

equivalent to the two dimensional free-standing FSS in Fig. 2.2.3, with the period 

in the x-dimension being equal to the width “a” of the parallel-plate guide. 

 



 

 
 

 



 

 
 

 

 

 

 

 

 

2.3 Software tool for the analysis of waveguides loaded 

with dipole-based FSS 

A software tool has been developed in MATLAB® which analyzes the 

dispersion of EBGs consisting on a FSS introduced inside a waveguide (such as the 

ones shown in Fig. 2.3.1). Both the pole-zero presented by Maci, and the extended 

version explained in the previous section, are implemented in the tool in order to 

obtain frequency and geometry dispersion curves of the structures.  

 

1.1.4 Tool description 

The inclusion of FSS inside waveguides has attracted much interest in the 

last decade. Interesting properties can be achieved, such as quasi TEM propagation 

[Seager 1999], [Yang 1999], generation of bandgaps [Sievenpiper 1999], 

[Goussetis 2006-I and II], size reduction [Goussetis 2007-II], [Caiazzo 2004], 

dispersion compensation [Goussetis 2007-I] or low profile and high gain leaky-

wave antennas [Feresidis 2001]. In particular, this tool will be employed in next 

Chapter of this thesis for the analysis of EBG structures such as the ones shown in 

Fig. 2.3.1.  
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(a)                                                                   (b) 

                 

(c)                                                                   (d) 

Fig. 2.3.1 Rectangular waveguides loaded with metallodielectric FSSs 

 

 

Fig. 2.3.2 Graphical user interface of the tool implemented in MATLAB®. 
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As it was explained in the introduction of this chapter, the analysis of FSS 

can be approached from different perspectives. On the one hand, they are 

analyzed by the illumination of a plane wave with a certain polarization and angle 

of incidence. This FSS analysis aims at obtaining the reflection and transmission 

coefficients as a function of frequency, angle of incidence and polarization [Munk 

2000]. On the other hand, it is also common to load waveguides with periodic 

circuits in order to obtain frequency responses with bandgaps, resulting in EBG 

waveguides. The analysis of these EBG structures involves modal dispersion 

diagrams, which represent the dependence of the propagation constant of the 

mode under study on frequency,     . It is possible to combine both analyses 

when dealing with EBGs consisting on a FSS introduced inside a waveguide. In this 

situation, the dispersion diagrams can be obtained from the analysis of the FSS’ 

reflection coefficient, and then applying a transverse equivalent network (TEN), as 

described in [Maci 2005]. The analysis technique here implemented follows the 

previous pole-zero matching methods to find a closed-form expression of the FSS 

equivalent admittance     . With this     , a TEN can be build, which will be used 

to formulate the associated TRE (Transverse Resonance Equation), whose 

solutions will provide the dispersion diagrams that characterize the EBG. The 

tool´s graphical interface (implemented in MATLAB®) is shown in Fig. 2.3.2. The 

analysis method is based on three consecutive steps (as it can be noticed in Fig. 

2.3.2). The developed tool helps the user so that he can supervise and verify the 

results at each step and then take the next one.  

 

STEP 1: Closed-form expression of the FSS Equivalent Admittance. 

In the first step of the analysis method, the FSSs in the structure are 

characterized by an equivalent circuit. The part of the GUI in which this step is 

developed is shown in Fig. 2.3.3. 

Firstly, the user chooses if the structure has an FSS, a HIS, or both, and 

introduces the dimensions of their unit cells (see Fig. 2.3.3(a)). The user can also 

choose in this step the polarization and the plane in which the exciting plane wave 
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impinges on the FSS. As it has been marked in Fig. 2.3.3(a), the user can choose 

between two cases, TE incidence in H-plane and TM on E-plane.  

Slotted FSS can be also modeled when they are free standing (not printed 

over a dielectric substrate or a metal), as the one considered in the structure of 

Fig. 2.3.1(b). In this case, the slotted FSS can be considered the complementary 

structure of a dipole-based one, and Babinet’s principle can be applied [Balanis 

2005]. Therefore, when the option “Holes” is selected, the complimentary dipole 

structure is analyzed and later, the equivalent admittance is calculated by: 

             
 

           

  

  
                                                        

 

(a)     

 

(b)     

Fig. 2.3.3 Part of the graphical interface that implements the STEP 1  

(a) Introducing the dimensions of the FSSs unit cell (b)Pole-zero matching method. 

Figure 2.3.3 shows the part of the GUI which performs the pole-zero 

analysis. The user can choose either to characterize the periodic surface as a 

function of frequency for a fixed geometry, or as a function of the length of the 

dipoles for a fixed frequency. In the first case, Maci´s pole-zero technique is 

applied and, following equation (2.2.1), an equivalent admittance is obtained 

which analytically depends on the frequency and the wavenumber (          ). 

Frequency/geometry interpolation  

Slot/dipole-based FSS           FSS and/or HIS 

Plane of incidence and polarization 
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On the other hand, when the second option is chosen, the modified pole-zero 

method presented in Section 2.2 is employed. Following equation (2.2.2), an 

equivalent admittance is obtained which is only valid for a fixed frequency and 

depends on the wavenumber and the length of the dipoles (          ).  

As it can also be seen in Fig. 2.3.3(b), the number of poles and zeros in the 

previous admittances can be specified by the user, together with the grade of the 

polynomials that interpolate the poles and zeros with   . 

 

STEP 2: TEN analysis. 

In this step, it is developed the transverse equivalent network that 

characterizes the structure under analysis. The software tool allows the analysis of 

an open or closed rectangular waveguide, loaded with a FSS and/or a HIS. For the 

sake of simplicity, the simple cases of Fig. 2.3.4 will be firstly considered, where a 

rectangular waveguide is loaded with a printed dipole-based FSS, and excited by a 

TE0 mode. Two cases are taken into consideration: when the guide is completely 

closed (Fig. 2.3.4(a)) and when the guide is open-top (Fig. 2.3.4(b)). As we can see 

in Fig. 2.3.4, the TEN is made up of the equivalent admittance of the FSS (YFSS, 

found in the previous step), and segments of transmission lines which 

characteristic impedance is the one associated to a TE0 mode (  
    ó   

   , in case 

the guide is empty or filled with dielectric). In the case of a closed waveguide (Fig. 

2.3.4(a)), the upper transmission line is ended by a shortcircuit. When dealing 

with top-open waveguides (Fig. 2.3.4(b)), the opening is characterized by the 

equivalent radiation impedance of Marcuvitz (ZRAD), which models the radiating 

discontinuity under TE incidence [Marcuvitz 1951], [Gómez 2006-I and II]. The 

expressions of the impedances which appear in Fig. 2.3.4 are the following ones:  

  
       

    
                                                 (2.3.2) 

  
       

      
                                               (2.3.3) 



48 Chapter 2: Equivalent circuits for dipole-based FSS 

 

 

  
        

   

    
                                                   (2.3. ) 

     
       

                                                       (2.3.5) 

  
   

=j          )                                                (2.3.6) 

  
   

=  
                  

                  
                                           (2.3.7) 

   
       

=
  

       

      
       

  
                                               (2.3. ) 

   
       

=  
   

       
            

     

        
       

       
     

                                   (2.3.9) 

(a)   

(b)   

Fig. 2.3.4 Rectangular waveguide loaded with a printed dipole-based FSS and its 

transverse equivalent circuit.  



2.3 Software tool for the analysis of waveguides loaded with FSS 49 

 

 

 

 
Fig. 2.3.5 Part of the graphical interface that analyzes the transverse equivalent 

network. 

 

It is worth appreciating that every element included in the TEN is a function 

of ky (Eq. 2.3.2-Eq.2.3.9), which is the unknown propagating constant in the 

longitudinal axis of the waveguide (y axis, Fig. 2.3.4). The part of the graphical 

interface which is associated to this step is shown in Fig. 2.3.5. When pushing the 

button “Show TRE”, our tool also represents the Transverse Resonant Equation 

(TRE, [Maci 2005],[Zhao 2004 and 2005-I]) at a certain frequency. This equation 

can be expressed as (2.3.10), where    and       are the admittances shown in 

Fig. 2.3.4. The TRE is a function the unknown wavenumber ky, and frequency or 

geometry (depending on the pole-zero expansion employed for the 

characterization of the FSS). To study the dispersion of the structure, we should 

find the values of ky that make the TRE equal to zero for a fixed frequency and 

geometry (LFSS).  

                                                                (2.3.10) 

In Fig. 2.3.5 is also displayed an example of a TRE (module of its real and 

imaginary part) which corresponds to a design with closed waveguide at 7GHz. As 

it can be seen, there is a certain value of ky which makes the TRE equal to zero.  
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STEP 3: Solving the TRE. 

In the third step, our tool obtains the modal solutions of the structure at a 

specific frequency and for a given geometry. For that purpose it is necessary to 

find the values of    that satisfy the TRE                             , obtained 

in the previous step. In order to find these values, the tool solves the TRE by the 

Newton-Raphson method when pushing the button “Find ky” (Fig. 2.3.6). The 

application then plots the found solution in the graph of the TRE (green circle in 

Fig. 2.3.5). In general, this solutions will be of complex nature,       
   

 
  

    
   

 
 . In case we are dealing with a lossless and closed structure (Fig. 

2.3.4(a)), real    solutions will correspond to its propagating modes, since they 

suffer no attenuation [Gomez 2006-II] (              

On the contrary, if our structure is open at the top (Fig. 2.3.4(b)), if we 

introduce losses, or if the mode is at cutoff or at a bandgap, the TRE’s solution 

won´t be real, and the values of    will be found in the complex plane. For the case 

of an open structure, the tool will perform an iterative search which is based on 

the one proposed in [Gomez 2006-II]. Specifically, it starts from the real solution 

of the closed waveguide and searches the complex solution opening the top of the 

structure gradually (in a number of steps fixed by the user). At each iteration, the 

opening of the top will have influence in the value of      in the TEN (Fig. 

2.3.4(b)). This impedance will now be called     
 , which expression is the one in 

(2.3.11). The parameter   is defined in (2.3.12); its value will start being zero and 

will end being one. In the first iteration     
   , which means that the waveguide 

is closed (Fig. 2.3.4(a)), while in the last iteration     
              , which means 

that the waveguide is totally top-open (the scenario we are interested on, Fig. 

2.3.4(b)). In each step, the solution of the TRE associated to each TEN will be 

found following the opposite direction of the function´s gradient. 

    
                    (2.3.11) 

  =
 

       
     (2.3.12) 
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An example of the evolution of the solution value through the iterations is 

illustrated in Fig. 2.3.6 (the complex solution is found in 6 steps in this case). This 

search starts at the real solution of the closed waveguide (  =0, Eq. 2.3.11). It is 

worth appreciating that, as the top of the waveguide opens, a negative imaginary 

component appears in the propagating constant (the radiation constant of the 

structure,   ). In the last iteration, when the structure is completely open (  =1), 

the wavenumber (    of the complex mode is found. 

 

Fig.2.3.6 Evolution of TRE´s solution (through 6 steps). 

Once the propagating constant (at a specific frequency and geometry) of a 

mode in the structure has been found, it is possible to obtain different interesting 

results, such as the dispersion curves or the near electric field inside the structure. 

It is also possible to have a physical insight into the structure based on the 

resonance of the mode in the transverse axis of the structure. 

 

 

Fig. 2.3.7 Part of the graphical interface that finds the solutions of the TRE. 
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The restrictions of this tool should be now clarified: 

-  The structure must work under the condition of single mode 

propagation. This is due to the fact that both the pole-zero technique 

and the transmission lines employed in the TEN are only valid under the 

previous assumption. 

- In order to employ the pole-zero technique, it must be assured that we 

are working in the non grating lobes regime of the periodic layers. This 

way, it is assured that the equivalent admittance is accurate. 

- In the case of characterizing a radiating structure, as the open 

discontinuity is modeled by Marcuvitz´s expressions, it should be 

assured that a<λ0 (as it is stated in [Marcuvitz 1951]). 

- In the case of considering more than one periodic layer, the accuracy of 

the approach may be reduced as they are put closer. This effect is due to 

the fact that the interaction between the evanescent harmonic of the two 

layers is not considered in this approach. 

Different structures based on rectangular waveguides loaded with FSS will 

be next analyzed in order to prove the efficiency of the proposed pole-zero 

technique and the implemented tool. The button “Dispersion analysis” in Fig. 2.3.7 

will provide the dispersion curves, and pushing on “Fields” the graph of the 

transverse electric field will appear. 

 

2.3.2 Analysis of HIS-loaded waveguide 

The efficiency of the proposed pole-zero technique is proven by being 

applied in the analysis of a HIS-loaded rectangular waveguide. The 

miniaturization effect provided by the FSS that was reported in [Caiazzo 2004] 

and [Goussetis 2007-II] will also be proven in this section. In this section, the 

structure shown in Fig. 2.3.8(a) will be analyzed using the TEN illustrated in Fig. 

2.3.8(b). As Fig. 2.3.8(a) shows, an empty rectangular waveguide (width a and 

height H) is loaded with a HIS, which consists of a periodic dipole-based FSS 
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(dipoles length LHIS, width Q and periodicity P) over a cavity backed dielectric 

substrate of thickness D and relative permittivity r. 

                   

 (a)     (b) 

Fig. 2.3.8 (a) Rectangular waveguide loaded with a dipole-based HIS (H = a = 

11mm, D = 1.13 mm, єr = 2.2, LHIS = 9 mm, P = 1.5 mm, Q = 0.5 mm).  

(b) Transverse equivalent network of the structure. 

 

Fig. 2.3.9. Frequency dispersion curves for different lengths of the HIS dipoles. 

To analyze this structure, the following TRE associated to the TEN shown in Fig. 

2.3.8(b) must be solved: 

    0),,(),(),(  HISyHISyDOWNyUP LkYkYkY                             (2.3.13) 

where YHIS represents the equivalent admittance of the dipole-based FSS, while YUP 

and YDOWN are the input admittances of the two sections of short-circuited 

transmission lines (the first of length H and the second of length D and dielectric 
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constant r, see Fig. 2.3.8(b)). The two main variables involved in the TRE (2.3.13) 

are the analysis frequency (  2 f) and the unknown longitudinal propagation 

constant ky (see axes in Fig. 2.3.8(a)), which must be numerically solved to obtain 

the dispersion curves with frequency. However, we have explicitly added the 

length of the HIS dipoles (LHIS) as a variable in YHIS, since we are also interested in 

obtaining dispersion curves as a function of this design variable for a given fixed 

frequency of design. 

The frequency dispersion analysis of the structure will be first performed. 

Using the pole-zero technique presented by Maci in [Maci 2005], the HIS with a 

fixed geometry can be analytically modeled with frequency by the admittance 

YHIS(,ky). Introducing this expression in the TEN (Fig. 2.3.8(b)) and solving the 

associated TRE (2.3.13), the frequency dispersion curves shown in Fig. 2.3.9 are 

obtained. In particular, Fig. 2.3.9 shows the normalized propagation constant 

(y/k0) curves derived from the TEN (continuous lines), which are compared to 

those obtained with a full-wave EBG modal analysis technique based on the 

Method of Moments [Gómez 2006-II] (MoM, dashed line), and with full-wave 

modal results obtained from commercial Finite Element Method [HFSS 2011] 

(FEM, circles). Different frequency-dispersion curves have been obtained for four 

different values of the HIS dipoles length (LHIS = 4, 6, 7 and 8 mm).  Good agreement 

is observed between the three techniques for all values of LHIS in all the fast-wave 

frequency range (y/k0 < 1, where the values for the angles of incidence  given by 

sin=ky/k0 are real). Good agreement is observed even in the surface-wave region 

(y/k0 > 1), validating the effectiveness of the frequency-pole-zero approach 

presented in [Maci 2005]. However, this technique does not allow for a direct 

derivation of the dispersion with the length of the FSS dipoles. As a result, if we 

want to study how LHIS affects the performance of the HIS loaded waveguide, the 

pole-zero technique must be repeated for every single value of LHIS, as it has been 

done to obtain the curves shown in Fig. 2.3.9. This is not as efficient as the 

modified pole-zero technique described in the previous section.  

Following the modified pole-zero method proposed in Section 2.2 we can 

directly obtain dispersion curves varying the length of the dipoles in the HIS for a 

fixed frequency. In particular, the equivalent admittance YHIS(ky,LHIS) is derived 
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following (2.2.2), and is then introduced in the TEN of Fig. 2.3.8(b) in order to solve 

(2.3.13) for any value of LHIS. Figure 2.3.10(a) shows the normalized phase 

constant (y/k0) for the perturbed TE01 mode of the HIS-loaded waveguide of Fig. 

2.3.8(a), varying LHIS from 2 mm to 6 mm at the design frequency of 15 GHz. As 

expected, the longitudinal phase constant of the perturbed TE01 mode is enlarged 

as LHIS increases from 2 mm to 6 mm, producing the aforementioned 

miniaturization effect [Caiazzo 2004], [Goussetis 2007-II]]. The results obtained 

with the proposed approach are very accurate, since they match those derived 

from different full-wave techniques such as MoM [Gómez 2006-II] and FEM [HFSS 

2011], while being much more efficient in terms of computational cost, as will be 

described later (table 2.3.1).  

Moreover, physical insight can be easily extracted from the TEN. For 

instance, Fig. 2.3.10(b) shows the reflection phase of the HIS (HIS, Fig .2.3.8) seen 

by the perturbed TE01 mode when varying LHIS at 15 GHz. As it can be seen in Fig. 

2.3.10(b), the FSS is almost transparent for dipoles lengths below 4 mm, 

presenting a value of HIS  around 120  due to the dielectric slab of thickness D = 

1.13 mm and  єr = 2.2. When the dipoles length increases, the resonance of the HIS 

appears, obtaining magnetic-wall boundaries (HIS = 0 ) for LHIS = 5.9 mm, which 

creates an effective waveguide of double height. Beyond this value, HIS becomes 

negative, allowing for higher miniaturization, until the modes gets into the surface-

wave regime.  

                  

(a)                                              (b) 

Fig. 2.3.10 Dispersion curve for the structure of Fig. 2.3.8 varying LHIS at 15 GHz. 
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Fig. 2.3.11 Dispersion curve showing the effective waveguide height λz/2 as a 

function of LHIS, at 15GHz. 

This profile reduction process can be equivalently appreciated by studying 

the wavelength of the propagating mode in the transverse plane (λz, Fig. 2.3.11). In 

a waveguide with no FSS, this wavelength is approximately twice the height of the 

cavity (λz/2=H). This occurs when the FSS in our structure is almost transparent 

(LHIS < 4 mm, see Fig. 2.3.11). As LHIS increases, the FSS perturbs the propagating 

mode, increasing its λz, which is equivalent to dealing with an unperturbed TE01 

mode in a bigger waveguide. Particularly, when LHIS = 5.9 mm we can see that 

λz/2=2H, which means we are working with an effective waveguide of double 

height due to the magnetic boundary condition presented by the HIS. In this 

situation, it is achieved a reduction of the resonant cavity to a half. Increasing LHIS 

more, we can obtain further effective cavity heights, as it is shown in Fig. 2.3.11. 

This process can be illustrated by plotting the transverse electric field lines 

of the perturbed TE01 mode in the structure, as shown in Fig. 2.3.12. Again, very 

good agreement is observed between the fields obtained with the simple TEN 

model (Fig. 2.3.12(a)), and the full-wave fields obtained using a full-wave MoM 

technique [Gómez 2006-II] (shown in Fig. 2.3.12(b)). However, it must be noticed 

that the TEN is very simple and it only represents a single Floquet-mode, losing all 

the visual information given by evanescent higher-order Floquet-modes in the 

proximity of the printed dipoles. Nevertheless, the boundary condition of the HIS is 

perfectly depicted from the simple TEN model, showing transparency at LHIS = 4 
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mm, AMC (Artificial Magnetic Conductor) boundaries at LHIS = 5.9 mm, and surface-

wave regime at LHIS = 6.3 mm. 

 

Fig. 2.3.12 Transverse electric field inside the HIS-loaded waveguide, obtained 

 (a) from TEN (b) from MoM [Gómez 2006-II] 

2.3.3 Analysis of open waveguide loaded with PRS (1D LWA) 

In this section, a one dimensional (1D) leaky-wave antenna (LWA) is 

analyzed with the developed tool. Although a brief explanation on the behavior of 

this kind of antennas is now provided, they are presented in detail in Section 3. 

As it was explained in Section 2.1, FSS can also be used to synthesize 

partially reflective surfaces (PRS) in resonant antennas [Trentini 1956]. As it is 

well-known, the radiation from a punctual source can be enhanced by placing it 

between a metallic screen and a Partially-Reflective Sheet (PRS) [Trentini 1956], 

[Jackson 1988], [James 1989], [Feresidis2001]. The electromagnetic waves that 

arise from the feeding point are bounced back and forth between the two sheets, 

becoming leaky-modes of the guiding structure. This type of LWAs has been 

referred as Fabry-Perot (FP) antennas due to their analogy with optical resonant 

cavities. Here, it is analyzed a 1D configuration of FP LWA created with an open 

rectangular waveguide loaded with a dipole-based FSS that acts as a PRS. The 

scheme of the structure and the main dimensions are shown in Fig. 2.3.13, together 

with its TEN. 

      LHIS = 4mm             LHIS = 5.9mm              LHIS = 6.3mm 

 

(a) 

(b) 



58 Chapter 2: Equivalent circuits for dipole-based FSS 

 

 

 

(a)     (b) 

Fig. 2.3.13 (a) 1D Fabry-Perot leaky-wave antenna formed by a parallel-plate 

waveguide loaded with a dipole-based FSS acting as a PRS (b) Transverse 

equivalent network of the structure. (a = H = 11 mm, S = 5 mm, D = 1.13 mm, єr=2.2, 

LFSS = 10 mm, P = 1.5 mm, Q = 0.5 mm).  

Leaky-modes are characterized by a complex propagation constant along 

the longitudinal direction of the waveguide (y axis in Fig. 2.3.13(a)) 

yyy jk                  (2.3.14) 

where y stands for the propagation or phase constant, and y is the attenuation 

rate, due to the radiation or leakage induced by the leaky-wave [Oliner 1993]. To 

analyze and design a LWA, the dispersion curves of the constituent leaky-mode are 

of much help ([Guglielmi 1991], [Oliner 1993], [Gómez 2006-III], [Kosmas 2007] 

and [Goussetis 2007-I]). Particularly, y determines the pointing or radiating angle 

of the LWA in the elevation plane (zy plane in Fig. 2.3.13(a)), RAD, which is 

approximately expressed as [Oliner 1993]: 

 
0

sin
k

y
RAD


         (2.3.15) 

and the leakage rate y is related to the radiation efficiency of the LWA of length LA, 

RAD, which in the lossless case is [Oliner 1993]: 
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The main beamwidth is determined by the length of the antenna and the aperture 

illumination, which for a uniform LWA (exponential illumination) can be expressed 

as [Oliner 1993]: 

RAD
AL






cos

1

0

           (2.3.17) 

In many cases, 90% radiation efficiency LWAs are desired, in these cases, 

Eqs.(2.3.16-17) provide the following approximate expression for the antenna 

beamwidth: 

RAD

y
k






cos183.0

0


         (2.3.18) 

The admittance of the dipole-PRS-FSS can be analytically expressed as a 

function of frequency and the unknown leaky-propagation constant, ky, following 

Eq.( ) of Maci’s pole-zero procedure [Maci 2005]. This function YPRS(,ky) can then 

be introduced in the TEN (Fig. 2.3.12(b)), and the associated TRE can be 

numerically solved to obtain the unknown complex ky (2.3.14) in the desired 

frequency band. The pole-zero matching procedure [Maci 2005] should be 

performed for every single desired value of the PRS-FSS dipoles length (LFSS). 

Figure 2.3.14 shows the family of frequency dispersion curves obtained in this 

way. The results obtained with the TEN are plotted together with those given by a 

full-wave analysis tool for leaky-modes based on MoM [Gómez 2006-II]. Curves 

from 3D full-wave simulations using FEM commercial software [HFSS 2011] are 

also plotted. Good agreement is observed between these three techniques for all 

frequencies and different values of LFSS, for both the pointing angle curves (RAD, 

Fig. 2.3.14(a)), and the normalized leakage rate curves (y/k0, 2.3.14(b)). 
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Fig. 2.3.14 Frequency dispersion curves for the 1D-PRS-LWA in Fig. 2.3.13 for 

different lengths of the FSS dipoles (LFSS) (a) Pointing angle  

(b) Normalized leakage rate. 

The PRS-FSS must be properly engineered to design the LWA [Feresidis 

2001], [Maci 2003], [Zhao 2005-I], [Kosmas 2007]. Particularly, for a fixed pointing 

angle RAD (2.3.15), we can synthesize a certain leakage rate y which will 

determine the radiation efficiency (2.3.16) and directivity (2.3.17) of the LWA 

[Oliner 1993]. In our case, we choose a pointing angle of 30  for a design frequency 

of 15 GHz. As shown in Fig. 2.3.14(b), LFSS strongly affects the radiation rate of the 

leaky-mode due to the fact that LFSS controls the transparency of the FSS 

[Vardaxoglou 1997], [Munk 2000], [Feresidis 2001], [Kosmas 2007]. However, the 

pointing angle is also affected by the FSS, and this must be taken into account for 

an accurate design. For this purpose geometry-dispersion curves at the frequency 

of design should be obtained. This will be next efficiently achieved. 

Following the process described in Section 2.2, an analytical expression for 

the admittance of the FSS as a function of LFSS and ky, YPRS(LFSS,ky), can be derived 

(b) 

(a) 



2.3 Software tool for the analysis of waveguides loaded with FSS 61 

 

 

using (2.2.2). In this way the TRE can be solved for the unknown leaky-mode 

complex ky, as a function of LFSS, for a fixed design frequency. Figure 2.3.15 shows 

the results obtained at 15 GHz for the PRS-LWA of Fig. 2.3.13, sweeping LFSS from 4 

mm to 10 mm. Again, the results obtained by this procedure are compared to full-

wave results obtained with 2D-MoM [Gómez 2006-II] and 3D-FEM [HFSS 2011], 

showing very good agreement. This analysis is very efficient, since it allows direct 

derivation of dispersion curves with the geometrical variable of interest, LFSS. As it 

can be seen in Fig. 2.3.15(b), the leakage rate increases as LFSS is lowered. This is a 

simple procedure to control the radiation efficiency (2.3.16) and directivity 

(2.3.17) of the LWA [Feresidis 2001], [Kosmas 2007], [Gómez 2005-I], [Gómez 

2006-III]. 

 

Fig. 2.3.15 Dispersion curves for the 1D-PRS-LWA in Fig. 2.3.13 with the length of 

the FSS dipoles (LFSS), at 15bGHz (a) Pointing angle (b) Normalized leakage rate. 

The TEN of Fig. 2.3.13(b) allows to obtain physical insight in this 

phenomenon, analyzing the reflection coefficient (modulus and phase) seen by the 

TE-leaky-wave incident on the PRS (FSS in Fig. 2.3.13(b)). This reflection 

(b) 

(a) 
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coefficient can be analytically derived from the expression of YPRS(LFSS,ky), once the 

dispersion curves are obtained using simple microwave relations. These results 

are shown in Fig. 2.3.16, where it can be observed that the PRS-FSS becomes more 

transparent as LFSS decreases, which explains the increase of y/k0 for lower values 

of LFSS in Fig. 2.3.15(b). This can also be easily checked by inspecting the fields of 

the TE-leaky-mode inside the PRS-loaded cavity. The plots of the fields are shown 

in Fig. 2.3.17, and they are compared to those obtained with full-wave MoM 

[Gómez 2006-II]. Excellent agreement is observed, showing how the transparency 

of the PRS increases for lower values of LFSS. Also, the field plots along the zy plane 

of the LWA (see reference axis in Fig. 2.3.13(a)), obtained with 3D-FEM [HFSS 

2011] are shown in Fig. 2.3.18 for different values of LFSS, confirming this 

phenomenon (see how more energy is radiated as LFSS is decreased). 

However, this control of the leakage rate with LFSS has also some effects in 

the radiating angle of the LWA. The variation of RAD with LFSS observed in Fig. 

2.3.15(a) is due to the dependence of the reflection phase of the PRS-FSS (FSS) 

with LFSS, shown in Fig. 2.3.16. Particularly, FSS increases as LFSS decreases, making 

RAD decrease for lower values of LFSS. This effect must be taken into account for an 

accurate design of the LWA. 

 

Fig. 2.3.16 Magnitude and phase of the reflection coefficient of the FSS-PRS (ρFSS), 

at 15 GHz, as a function of the length of the dipoles (LFSS). 
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Fig. 2.3.17 Transverse electric field of the leaky-mode inside the PRS cavity 

obtained (a) from TEN (b) from MoM [22] 

 

Fig. 2.3.18 Leaky-wave near field patterns obtained with 3D-FEM [HFSS 2011] for 

different values of LFSS. 

Finally, Fig. 2.3.19 shows the radiation pattern of the designed PRS-LWA at 

15 GHz, with LFSS = 8 mm and with an antenna length of LA = 3.5 λ0 = 61.2 mm. 

Acceptable agreement is observed between the far-field pattern calculated by 

Fourier transforming the leaky-wave aperture field obtained from the simple TEN, 

and the results given by 3D-FEM analysis of the LWA [HFSS 2011]. 

 

   LFSS = 10 mm                    LFSS = 8 mm                        LFSS = 6 mm 

 

 LFSS = 10 mm                LFSS = 8 mm                LFSS = 6 mm 

 

(a) 

(b) 
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Fig. 2.3.19 Radiation pattern of the designed PRS-LWA (LFSS = 8 mm, f = 15 GHz). 

Table 2.3.1 compares computation times to analyse each point of the 

dispersion curves obtained in this paper. Computation times with the proposed 

technique based on TEN analysis are much lower than those needed with full-wave 

tools. A distinction has been made when dealing with complex leaky-modes, since 

the observed efficiency is even better in this case, due to the fact that the search of 

complex modes is more cumbersome. These computation times are obtained using 

an Intel Centrino Duo T2400 processor, working at 1.83 GHz with 2GB RAM. 

 

Table 2.3.1. Comparison of computation time per dispersion point. 

Regarding the comparison of our results with full-wave simulations, a 

better agreement with MoM has generally been observed. This was expected, since 

MoM full-wave data were used for the rational fitting of the FSS. 

 

Real modes Complex modes 

FEM 2D [16] 1800 s. FEM 3D [16] 3600 s. 

MoM EBG [15] 2 s. MoM EBG[25] 6 s. 

TEN .005 s. TEN .01 s. 

 



 

 
 

 

 

 

 

 

 

2.4 Waveguide-discontinuity based approach 

In this section, a quasi-analytical approach is presented to study the 

transmission/reflection of electromagnetic waves through 2-D periodic arrays of 

metallic dipoles. The approach is based on standard waveguide discontinuity 

theory, adopting the point of view proposed in [Medina 2008]. The equivalent 

circuit comes up after taking advantage of the periodicity of the structure, which 

allows the reformulation of the original problem as a certain equivalent waveguide 

scattering problem. Equivalent transmission lines are used to simulate the wave 

propagation whereas equivalent lumped circuit elements account for the effect of 

the evanescent fields excited in the discontinuity. However, the accuracy and 

reliability of the approach critically depends on the circuit topology employed in 

the model. The judicious choice of the equivalent circuit model simplifies 

considerably the original complex electromagnetic problem and gives a good 

physical insight into the parameters that are relevant in the phenomenon. It also 

provides a robust strategy that gives rise to surprisingly accurate results even for 

rather complex situations.  

In comparison to the scenery of a metallic screen perforated with holes 

studied in [Medina 2008], the complementary structure of periodic arrangement of 

metallic dipoles is here characterized (shown in Fig. 2.4.1). However, the main 

novelty of the proposed approach resides in the fact that oblique incidence and the 
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presence of dielectric slabs are now considered. These aspects are essential for the 

application of the equivalent circuit to practical situations, since FSSs are normally 

printed over a dielectric substrate and work under arbitrary plane-wave incidence.  

For the sake of simplicity, the case of oblique incidence of a TE polarized 

wave in H-plane will be firstly explained in Section 2.4.1, considering a free-

standing FSS. Secondly, the presence of dielectric slabs will be studied in Section 

2.4.2. This study commences from the case when the FSS is sandwiched between 

identical dielectric substrates, and extends to the case of arbitrary slabs. Later, 

oblique incidence of a TM polarized wave in E-plane is characterized in Section 

2.4.3. Finally, the possibility of characterizing other shapes of the scatterers is 

discussed in Section 2.4.4. 

 

 

Fig. 2.4.1. Scheme of the free-standing array of metallic dipoles of zero thickness 

under oblique incidence in H-plane (Px = Py = 5 mm, ax = 0.5 mm). 
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2.4.1 Circuit model for arbitrary TE incidence 

In order to present the basic rationale underlying the proposed equivalent-

circuit model, in this section it will be firstly considered the free-standing periodic 

surface shown in Figure 2.4.1, which is built from the periodic arrangement of 

conducting zero-thickness metallic patches (dipoles) of dimension ax × ay . The 

array extends along the x and y axes, with periodicities Px and Py, respectively. The 

periodic surface is located at z = 0 and a plane wave impinges on this surface from 

the direction defined by θ. As can be seen in Fig. 2.4.1, the plane of incidence is xz 

(with azimuthal angle   = 0o), and the wave is TE polarized (i.e., directed along the 

y axis). Therefore, in the scanned H-plane the impinging field is always parallel to 

the metallic dipoles, having a strong interaction with them. Due to periodicity, 

Floquet (space) harmonics are excited by the incident plane wave as it reaches the 

array [Guglielmi 1989-I], [Maci 2005], [Varela 2012]. These scattered waves can be 

either TE or TM polarized. The wavenumbers in the x and y axes associated with 

the space harmonics are given by 

            
   

  
     (2.4.1) 

     
   

  
      (2.4.2) 

where m, n   0, ±1, ±2 … and          is the free-space wavenumber, with f 

being the frequency and c the speed of light in vacuum. Each excited space 

harmonic is defined by a pair of integers, mn, with the following associated 

complex wavenumber along the z direction: 
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where      
    

 is the cutoff frequency of the mn-th harmonic; namely, the frequency 

that satisfies 
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and that can be expressed as 

     
    

 
 

        
 

  

  
          

  

  
   

  

  
    

  

  
     

 

 .               (2.4.5) 

The above cutoff frequency is determined by the array periodicities (Px and Py), 

the angle of incidence ( ) and the medium dielectric constant ( r), but it is 

independent on the dipole dimensions. For convenience, the cutoff frequency is 

here formulated in the presence of a homogeneous dielectric medium with 

permittivity  r. This fact is represented by the superscript ( r), although free space 

is assumed in the present subsection ( r = 1), which will be denoted by the 

superscript (1). Note that, for the case of normal incidence (  = 0o), Eq. (2.4.5) 

reduces to the well-known expression of the modal cutoff frequencies in a 

rectangular waveguide of dimensions Px x Py. 

At a given frequency, as (2.4.3) reveals,      
   

can be purely imaginary or 

real, defining evanescent (slow) or grating (fast) waves, respectively [Munk 2000]. 

Specifically, each harmonic is an evanescent wave that decays along the z direction 

below its cutoff frequency      
   

. Above this frequency,      
   

 is no longer imaginary 

and the associated harmonic becomes a (grating) plane wave that propagates 

along a direction parallel to the vector                        
   

   . In our 

analysis, the incident plane wave in Fig. 2.4.1 corresponds to the dominant mn = 00 

Floquet harmonic. This wave propagates at any given frequency along the 

direction defined by   (note that      
   

is always real). In most of microwave, 

engineering and antenna applications, the working frequency regime is set within 

the so-called no grating lobes regime [Munk 2000]; i.e., only the dominant Floquet 

harmonic is propagating while the remaining harmonics are evanescent. Certainly, 

for practical purposes, only a finite number of these evanescent space harmonics 

are significant. Therefore, only the fast waves and the lowest few harmonics below 

cutoff are the relevant contributions to the field at the transverse plane. 
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In general, each Floquet harmonic can be either TE or TM polarized and has 

the following associated characteristic impedance [Munk 2000], [Pozar 2005]: 

      
    

                              (2.4.6) 

      
    

                 .                 (2.4.7) 

 

 

(a) 

 

(b) 

Fig. 2.4.2. Proposed transverse equivalent network for Fig. 2.4.1. 

Depending on the nature of the harmonic, its associated impedance is real 

or purely imaginary. In particular, inductive/ capacitive impedances correspond to 

TE/TM evanescent waves. Due to the assumed impinging TE wave polarization and 

plane of incidence, the problem under consideration can be reduced to a single 

unit cell with electric walls in the xz plane and Floquet walls (periodic boundary 

conditions) in the yz plane (see Fig. 2.4.1). This is equivalent to a parallel-plate 

transmission line formed by two paralell-to-xz-plane electric walls separated by a 

distance Py and two paralell-to-yz-plane Floquet walls separated by a distance Px. It 

should be noted that the family of excited Floquet harmonics corresponds to the 

modal solutions of this transmission line. In addition, TMm0 harmonics do not 
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satisfy the specified boundary conditions and are not excited in the structure 

under consideration. 

According to the above discussion, the structure in Fig. 2.4.1 can be modeled 

by the Transverse Equivalent Network (TEN) shown in Fig. 2.4.2(a). The 

propagation of the incident, reflected, and transmitted TE plane wave is modeled 

by the infinite transmission lines placed at both sides of the discontinuity. The 

characteristic impedance associated to these lines is real and corresponds to 

      
    

             
    

  .                  (2.4.8) 

The lumped elements in the series configuration shown in Fig. 2.4.2(a) 

model the excitation of all other mn harmonics excited in the discontinuity [Munk 

2000, Ch. 5]. Specifically, the inductive elements (L0 and ZL) account for the 

excitation of TE harmonics, whereas the capacitive components (C0 and ZC) account 

for the TM contribution. The impedances 

         
       

     
                       (2.4.9) 

         
       

     
      .                 (2.4.10) 

characterize the excitation of a certain number of TE and TM harmonics with 

lowest cutoff frequencies (which are represented by NTE and NTM, respectively). In 

these expressions each considered harmonic h is associated with certain mn pair, 

and   
     

 is a complex constant that accounts for the degree of excitation of each 

TE/TM h-th harmonic. The contribution of each TE/TM wave in (2.4.9)-(2.4.10) is 

proportional to the input impedance of its corresponding equivalent transmission 

line, which here corresponds to an infinite transmission line of impedance 

         
   

 as shown in Fig. 2.4.2(b). The higher-order TE and TM harmonics that 

were not considered in (2.4.9)-(2.4.10) are highly evanescent waves whose 

dependence with frequency is almost insignificant. For this reason, their effect in 

the discontinuity can be accounted for by a frequency independent inductance, L0, 

and capacitance, C0, in Fig. 2.4.2(a). 
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(a) 

 

(b) 

Fig. 2.4.3. (a) Magnitude of the reflection coefficient for the structure in Fig. 2.4.1 

under 20o incidence and dipoles with ay = 2 mm. (b) Cutoff frequencies associated 

with the higher-order mn-th harmonics excited in the structure as a function of the 

exciting wave angle of incidence. 

Taking into account the circuit of Fig. 2.4.2(a), in order to calculate the 

quasistatic parameters of the structure [Tretyakov 2003], it is just necessary to 

compute the next expressions 

               
 

    
                 (2.4.11) 

                   .                                 (2.4.12) 
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As a general rule, in order to achieve an efficient characterization of the 

dipole array until a certain frequency, the values of NTE and NTM should be set to 

one plus the number of TE and TM harmonics above cutoff (which depends on the 

angle of incidence, as can be deduced from (2.4.5)).). The values of the lumped 

components (L0 and C0) and the excitation coefficients (  
     

) can be computed 

from a few full-wave simulations of the reflection coefficient S11. For this purpose it 

should be considered that the S11 parameter in Fig. 2.4.2(a) can be related to the 

lumped-element parameters in this circuit in the following way: 

     
 

    
                    

      
        

       
.      (2.4.13) 

If the above equation is written for a set of frequency values, we can write a linear 

system of equations whose solution is the set of unknown parameters of our 

equivalent circuit model. The minimum number of full-wave computations of the 

S11 parameter should be equal to the number of unknowns: NTE + NTM + 2 (typically 

no more than four or five for freestanding periodic surfaces). In order to assure 

that the system of equations is well-conditioned, our experience suggests that two 

of the evaluated frequency values should be low (in order to characterize the two 

quasi-static parameters) and the rest must be near the onset of the NTE and NTM 

modeled harmonics (in order to characterize each excitation coefficient). 

Following the Fabry-Pérot condition, every zero-thickness metallic dipole in the 

array resonates at a frequency where its length is approximately half a wavelength 

[Trentini 1956] (the fringing fields make the Fabry-Pérot condition only 

approximate). If this condition occurs at a frequency below the grating lobe 

regime, the array only presents total reflection at this frequency. However, if the 

Fabry-Pérot dipole resonance does take place in the grating lobe regime, an 

extraordinary total reflection is still expected to occur before the onset of the first 

grating lobe; as it was reported in [Ebbesen 1998] for total transmission in a dual 

structure. Moreover, the extraordinary reflection can be related to the appearance 

of Fano resonances [Fano 1961], i.e., a peak of total reflection (transmission) which 

precedes a very close null of reflection (transmission). Therefore, depending on 

the length of the dipoles, the periodic surface can present either conventional or 

extraordinary reflection; or, in other words, either Fabry-Pérot or Fano type 
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resonance. Thus, in order to check the validity of our proposed equivalent circuit, 

the particular dipole array described in Fig. 2.4.1 with ay = 2mm is studied in Fig. 

2.4.3(a). This figure shows the reflectivity under plane wave oblique incidence (  = 

20o) computed with a full-wave Method of Moments approach [Goussetis 2006-I] 

and with the proposed TEN of Fig. 2.4.2. Figure 2.4.3(a) shows an extraordinary 

resonance (total reflection, |S11| = 1) at approximately 44.5 GHz (the expected 

dipole Fabry-Pérot resonance should be around 75 GHz). Three nulls can also be 

observed in the reflection coefficient at approximately 44.7 GHz, 63.9 GHz, and 70 

GHz. These nulls can be associated with Wood’s anomalies that appear at the onset 

of higher-order harmonics [Medina 2008]. Specifically, at the cutoff frequency of 

TE harmonics, their associated TE impedance diverges to infinite (see Eq. (2.4.6)), 

which makes ZL behave as an open circuit in Fig. 2.4.2. Therefore, perfect 

impedance matching is experienced by the incident wave (|S11| = 0) at these TE 

cutoff frequencies [Medina 2008], [Munk 2000]. 

The above fact is illustrated in Fig. 2.4.3(b), where the higher order 

harmonic cutoff frequencies for the considered array are plotted as a function of 

the angle of incidence. These frequencies have been analytically computed using 

(2.4.5), and are identical for both TE and TM polarization. As mentioned above, no 

TMm0 harmonic can be excited. The squares in Fig. 2.4.3(b) point out the onset of 

the first harmonics when   = 20o, which occur at 44.7 GHz, 63.9 GHz, and 70 GHz 

(harmonics mn =  10; 0 1, and -1 1, respectively) and correspond to the 

reflectivity nulls in Fig. 2.4.3(a). If only the elements L0 and C0 are considered in the 

circuit model (curve NTE = 0, NTM = 0 in Fig. 2.4.3(a)), the array response is only 

accurately predicted for low frequencies and the aforementioned reflectivity nulls 

are not obtained. In this case, the lumped elements are expected to account 

accurately for the quasistatic behavior of the metallic dipoles (considering that Zc 

and ZL are zero in (3.4.11) and (3.4.12)), and thus, they predict the aforementioned 

conventional total reflection (Fabry-Pérot type resonance) at 71 GHz. When the 

impedance of the first higher-order TE harmonic is considered in the TEN (curve 

NTE = 1, NTM = 0 in Fig. 2.4.3(a)), the total reflection peak at 44.5 GHz and the first 

null at 44.7 GHz are accurately obtained. It can then be concluded that the peak at 

44.5 GHz is mainly caused by the inductive impedance associated with the first TE 
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higher harmonic in the circuit model,        
   

. This impedance strongly diverges to 

infinity close to the onset of the mode, causing that, at certain frequency below and 

near the cutoff frequency, ZL provides the needed inductance to resonate with the 

lumped capacitance C0 (ZC = 0 since NTM = 0). This makes the branch of series 

impedances in the equivalent circuit behave as a shortcircuit, thus causing total 

reflection (|S11|   1). The Wood’s anomaly associated to the onset of this harmonic 

(null at 44.7GHz) is also accurately predicted. Successive incorporation of the 

second and third TE higher-order harmonics impedances (with respective 

resonances at 63.9 GHz and 70 GHz in Fig. 2.4.3(b)), provides accurate description 

of the second and third nulls, which exactly appear at the cutoff frequency of each 

TE harmonic.  

(a)  

(b)  

Fig. 2.4.4. (a) Magnitude of the reflection coefficient for the structure in Fig. 2.4.1 

under 20o incidence and dipoles with ay = 2 mm. (b) Cutoff frequencies associated 

with the higher-order mn-th harmonics excited in the structure as a function of the 

exciting wave angle of incidence. 
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It should be noted that the higher-order impedances become real after the 

onset of their corresponding harmonics, resulting in radiation losses in the TEN of 

Fig. 2.4.2(a). The onset of the first higher-order harmonic sets the beginning of the 

grating lobe regime. Therefore, above the frequency of the first reflectivity null 

(44.7 GHz), total reflectivity peaks (|S11| = 1), i.e., perfect mirror reflectance, cannot 

occur anymore. Nevertheless, local maxima in the reflection coefficient are 

observed between every two consecutive nulls, as it can be seen in Fig. 2.4.3(a). 

The capacitive impedances associated with TM higher-order harmonics are also 

needed to accurately predict the array response, although they do not produce 

nulls in the reflection coefficient since their characteristic impedance does not 

diverge at their cutoff frequency (see Eq. (2.4.7)). In the case treated in Fig. 

2.4.3(a), the number of higher-order harmonics needed by the circuit-model 

approach to accurately obtain the array response until 70 GHz is NTE = 3 and NTM = 

2. The above results makes evident that the reflectivity response provided by the 

simple circuit model perfectly matches the full-wave results, and gives a good 

physical insight of this complicated response, even in the grating lobe region 

(diffraction regime). These results also prove the important reduction of 

computational effort that our approach provides. In the case of Fig. 3(a), around 

500 full-wave points were needed to obtain the complete spectrum (red curve), 

whereas only 7 simulations were performed when applying our equivalent circuit 

approach (blue curve). 

The effect of the angle of incidence can also be modeled and interpreted by 

the proposed circuit model. The reflectivity of the dipole array previously 

considered is shown in Fig. 2.4.4 for three different angles of incidence ( = 0o; 40o; 

80o). Following the proposed procedure, for each angle of incidence and in order to 

characterize our structure up to 60 GHz, it is necessary to select the appropriate 

values of NTE and NTM by looking at Fig. 2.4.3(b). Specifically, NTE = NTM = 1 was 

employed to obtain the   = 0o curve in Fig. 2.4.4, whereas NTE = 2 and NTM = 1 were 

needed to obtain the curves   = 40o and   = 80o. Figure 2.4.4(a) shows the 

extraordinary reflection produced by dipoles of less-than-half length compared to 

the array periodicity (ay = 2 mm, with Fabry-Perot resonance around 75 GHz) 

whereas conventional resonances are shown in Fig. 2.4.4(b) for the case of longer 
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dipoles (ay = 3.5 mm, with Fabry-Perot resonance around 40 GHz). Again, excellent 

agreement is obtained between full-wave results and the circuit model. As a 

general comment, it can be seen in Fig. 2.4.4 that the reflectivity is strongly affected 

by the angle of incidence of the impinging wave. As this angle increases, the 

frequency of the reflectivity null reduces from 60 GHz for    = 0o to 36.52 GHz for   

= 40o, and to 30 GHz for   = 80o. These values exactly coincide with the first TE 

higher-order harmonic cutoff frequency at each angle of incidence (see the mn = -

10 curve in Fig. 2.4.3(b)). This effect appears both in Fig. 2.4.4(a) and Fig. 2.4.4(b) 

since the cutoff frequency does not depend on the dipole length. The frequency of 

the total reflection peaks also decreases as   increases. In particular, Fig. 2.4.4(a) 

shows that the Fano (extraordinary reflection) resonances are displaced to lower 

frequencies with extremely sharp responses. This fact can be explained 

considering that the open-circuit and shortcircuit conditions in the branch of series 

impedances occurs in a very narrow frequency band; increasingly narrow with 

increasing incidence angle. The total reflection peaks in Fig. 2.4.4(b) (associated 

with Fabry-Pérot type resonances) also decrease with increasing  , basically for 

the same reasons as in Fig. 2.4.4(a). 

 

2.4.2 Dipole array in stratified medium 

In this section it is considered the presence of dielectric substrates, which is 

commonly needed for mechanical purposes (to support the patterned metallic 

surface). Due to this reason, some authors have already paid attention to the 

analysis of metallic perforated screens printed over a dielectric slab ([Lomakin 

2005 and 2007], [Moreno 2006] and [Ortuo 2010]). The presence of the dielectric 

substrate makes the transmission spectrum much richer than that of the free 

standing structures, as it will be seen in along this section. The scheme of the 

dipole array under study, sandwiched between dielectric slabs, is shown Fig. 2.4.5. 

The incident waves impinge obliquely on the array in the plane xz (H-plane) from 

an angle  . The scenery described in Sec. 2.4.1 is a particular case of the present 

one. Since the generation of higher-order harmonics due to the presence of the 

dielectric slabs increases the complexity of the situation [Munk 2000], for the sake 
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of simplicity, the study commences from the case of identical slabs and extends to 

arbitrary dielectric slabs. 

 

Fig. 2.4.5 Scheme of the TE-polarized incidence in H-plane in the dipole array of 

Fig. 2.4.1 when sandwiched between dielectric slabs. 

 

A. Dipole Array Sandwiched by Identical Dielectric Slabs 

This subsection deals with the case of a periodic dipole array sandwiched 

between two identical slabs, which corresponds to d1 = d2 = d and εr1 = εr2 = εr in 

Fig. 2.4.5. The proposed TEN that models this structure is shown in Fig. 2.4.6 

following the guidelines reported in Sec. 2.4.1, although with some important 

changes.  

(a)  

 

(b) 

Fig. 2.4.6 Equivalent circuit for the scattering of an obliquely incident plane wave 

which impinges on a dipole array sandwiched by identical dielectric slabs. 
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First, the propagation of the incident, reflected, and transmitted TE plane wave 

should take into account the presence of the dielectric slabs, which is modeled by 

the transmission lines of length d and characteristic impedance       
    

 (which can 

be obtained from (2.4.8)). Also, the impedances associated with the excitation of 

higher-order harmonics, ZL and ZC (2.4.9), are now computed from the following 

equivalent input impedances seen by each TE/TM harmonic (as depicted in Fig. 

2.4.6(b)):  

      
            

    
    

      
   

            
    

             
    

  

      
    

            
   

             
    

  
 .           (2.4.14) 

Looking at the equation (2.4.14) it can be observed that the cutoff of higher-

order harmonics in the dielectric medium (onset of the so-called “trapped” surface 

waves [Munk 2000, Ch.5]) plays an important and intricate role in the appearance 

of singularities in ZL and ZC as well as in the subsequent generation of reflectivity 

resonances and nulls. From the proposed TEN, the following equation can be 

written and solved for the unknown values of L0, C0, and   
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   (2.4.15) 

where    
     is the reflection coefficient at the reference plane z = 0, as shown 

in Fig. 2.4.6(a), and ZL, ZC are given by (2.4.9). This reflection coefficient can readily 

be expressed in terms of the reflection coefficient S11 at z = -d [Fano 1961]. This 

latter coefficient is obtained from full-wave simulations [Goussetis 2006-I]. Thus, 

the parameters L0, C0, and   
     

: can be obtained after solving the system of 

equations resulting of particularizing (2.4.15) at a few values of frequency. As for 

the case of freestanding dipoles, it is needed as many full-wave data points as the 

number of unknowns. The choice of the evaluated frequency values basically 

follows the same general rule suggested in the previous section. However, in the 

present case, it has been found to be very convenient to take the high frequency 

points near and below the onset of the higher order harmonics in the denser 

dielectric medium. 
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Fig. 2.4.7 Higher order harmonic cutoff frequency when    = 3. 

(a)  

(b)  

Fig. 2.4.8 (a) Magnitude of the full-wave reflection coefficient at normal incidence 

for the structure in Fig. 5 with     =    =   , d1 = d2 = 0:5 mm, Px = Py = 5mm and ax 

= 0.5 mm. (b) For the case of the red dotted line in Fig. 2.4.8(a), comparison 

between full-wave and circuit model results (configurations: NTE = NTM = 1, 2, and 

3, respectively).  

Since the cutoff frequency of higher-order harmonics is lower inside a 

dielectric medium, the frequency range satisfying      
    

< f <      
   

 corresponds to 
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the existence of harmonics that are propagative in the dielectric slab but 

evanescent in free space. Thus, in this range there are trapped surface waves 

below the grating lobe regime [Munk 2000]. (The grating lobe regime is still 

determined by the frequency at which the first higher-order harmonic in free 

space becomes propagative; 60 GHz in the present case for normal incidence, as 

shown Fig. 2.4.3(b)). As a consequence, the total amount of higher-order 

harmonics that should be considered in the TEN (NTE and NTM) increases with 

respect to the free-standing case. Figure 2.4.7 shows the cutoff frequency chart vs. 

the angle of incidence in a dielectric medium with    = 3, and the same array 

periodicity as in previous examples (Px = Py = 5 mm). For normal incidence it can 

be seen that the onset of the trapped surface waves occur at 35 GHz and 49 GHz, 

well below the starting frequency of the grating lobe regime (60 GHz). As a result, 

two singularities appear for       
      at approximately 47.3 GHz and 62.5 GHz, 

where the denominator of Eq. (2.4.14) is zero (more specifically, at 47.3 GHz for 

the TE10 harmonic and at 62.5 GHz for the TE11 harmonic). At these frequencies, ZL 

diverges causing an open circuit in the branch of series elements that account for 

the effect of the dipoles in Fig. 2.4.6(a). Since this open circuit makes irrelevant this 

branch, at the aforementioned frequencies, the complete structure should behave 

as if the dipoles were not present. This fact is corroborated in Fig. 2.4.8(a) at 47.3 

GHz and 62.5 GHz where the dashed blue curve (which shows the behavior of the 

structure without dipoles) crosses with the dotted red curve (with dipoles). Figure 

2.4.8(a) shows two reflectivity resonances below the grating lobe regime for the 

dielectric sandwiched array with dipole length ay = 2mm. These two resonances 

are of the Fano type (characterized by a total reflection followed by a reflection 

null), in similarity with the free-standing case. However, in this latter case, only 

one Fano resonance can occur below the grating lobe regime, as it is plotted in Fig. 

2.4.8(a) in solid black line. Once within the grating lobe regime, radiation losses 

prevent the appearance of additional total reflection peaks (see Fig. 2.4.8(a) above 

60 GHz). Also, it is interesting to note that the array follows the frequency 

response profile of the bare dielectric slab (blue dashed line in the figure) out from 

the Fano resonances. The reflection nulls in Fig. 2.4.8(a) do not appear at the cutoff 

frequencies f the trapped surface waves (35 GHz and 49 GHz), as happened in the 

free-standing case (where the reflection nulls exactly coincide with the cutoff 
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frequencies of higher-order harmonics in free space; i.e., with the divergence of ZL). 

In the presence of dielectric, the impedance matching condition [Medina 2008] 

responsible for the reflection nulls requires that the input impedance at z = -d 

equals that of the incident transmission line. Certainly this condition is not easily 

expressible in closed form, but it can be observed that it does not only depend on 

the unit-cell size but also on the characteristics of the dielectric slab as well as on 

the dipole geometry (this latter dependence comes through the excitation 

parameters   
     

appearing in ZL and ZC, which are certainly influenced by such 

characteristics). In order to investigate the role played by the higher-order 

harmonics in the dielectric slab on the behavior of the array reflectivity, Fig. 

2.4.8(b) shows the profile of this magnitude when it is computed using different 

number of harmonics. If only the first TE and TM higher-order harmonics (TE10 

and TM01) are considered, the subplot NTE = NTM = 1 in Fig. 2.4.8(b) shows that the 

reflectivity response is accurately modeled up to the frequency of the first 

resonance and subsequent null (f   39 GHz). The addition of extra harmonics is 

needed to retrieve the following nulls and associated maxima. The addition of a 

second TE and TM harmonics (TE11 and TM11) implies that a second trapped 

surface wave inside the dielectric is now considered. The effect of these additional 

harmonics is depicted in the subplot NTE = NTM = 2, which shows now a good 

agreement for the two Fano resonances. Finally, the subplot NTE = NTM = 3 in Fig. 

2.4.8(b) shows the effect of the addition of a third TE and TM harmonics (TE20 and 

TM02). It can be seen that this addition helps to accurately reproduce the 

reflectivity local maximum at 66 GHz, which does not reach total reflection by 

being within the grating lobe regime. As the dielectric permittivity is increased, 

more surface waves are launched below the grating lobe regime, resulting in an 

increased number of higher-order resonances in the reflectivity response, as 

shown in Fig. 2.4.9. As in previous examples, the agreement between our circuit-

model data and full wave data is excellent. 
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Fig. 2.4.9 Magnitude of the reflection coefficient at normal incidence for different 

values of the relative permittivity (    =     =   ) for the structure in Fig. 2.4.5 with 

d1 = d2 = 0.5mm (unit cell: Px = Py = 5mm and ax = 0.5mm and ay = 2 mm.)  

In Fig. 2.4.10(a) it is shown the effect of increasing the angle of incidence. At 

normal incidence we can observe two extraordinary total reflection peaks but only 

one of these peaks remains for the other incidence angles here considered, which 

do show several non-total reflection peaks. As it can be seen in the cutoff chart for 

the dielectric medium with    = 3 (Fig. 2.4.7), the cutoff of the first higher-order TE 

harmonic decreases from 35 GHz to 25 GHz as _ increases from 0o to 40o. Related 

to this fact, the lowest reflectivity resonance frequency also decreases in Fig. 

2.4.10(a) from   38 GHz at normal incidence to   32 GHz at   = 40o. However, it 

should also be observed that the grating lobe frequency (shown in the free-space 

cutoff chart in Fig. 2.4.3(b)) also decreases from 60 GHz at   = 0o to 36:52 GHz at   

= 40o. Consequently, no additional total-reflection peaks are observed in Fig. 

2.4.10(a) for   = 40o since the grating lobe regime appears at 36.52 GHz before any 

extra higher-order harmonic has emerged from cutoff. At the onset of the grating 

lobes it is observed an inflection in the reflectivity response. This detail is 

amplified in the subplot   = 40o of Fig. 2.4.10(b). It is also interesting to note in Fig. 

2.4.10(a) the appearance of several minima of reflectivity that are not null. They 

happen at those frequencies where the input impedance at z = -d reach a value 

close but not identical to       
   

. The reflectivity response for   = 80o bears some 

similarities to that observed for   = 40o. Thus Fig. 2.4.10(a) shows a unique 

extraordinary reflection peak that is shifted to lower frequencies (  27.5 GHz), 
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followed by a closer grating lobe onset now located at 30GHz (see Fig. 2.4.3(b)). A 

similar inflection point is also observed at 30GHz in the subplot   = 80o of Fig. 

2.4.10(b). It should be highlighted that the circuit-model approach perfectly 

matches the complicate spectrum given by the full-wave method, including all the 

fine details of very sharp resonances, inflection points, partial maxima and minima, 

etc. 

 

(a) 

 

(b) 

Fig. 2.4.10 Magnitude of the reflection coefficient for the structure in Fig. 2.4.5 with 

d1 = d2 = 0.5 mm,     =     =    = 3 and ay = 2mm (unit cell: Px = Py = 5mm and  

ax = 0.5 mm). (a) Different angles of incidence.  

(b) Detail of the appearance of grating lobes. 

Finally, Fig. 2.4.11 illustrates the reflectivity response for the sandwiched 

array with dipoles of length ay = 3.5 mm. At normal incidence, and in contrast to 

the curve   = 0o in Fig. 2.4.4(b), a first conventional dipole resonance is observed at 

25 GHz followed by a higher-order resonance at 53 GHz, which is related to the 

appearance of a trapped surface wave in the dielectric below the grating lobe 



84 Chapter 2: Equivalent circuits for dipole-based FSS 

 

 

frequency of 60 GHz. The conventional resonance can be identified as of Fabry- 

Pérot type whereas the sharp higher-order resonance is of Fano type. As the angle 

of incidence increases from   = 0o to   = 80o, the onset of the grating lobe 

decreases from 60 GHz to 30 GHz (as in Fig. 2.4.10(a)), which is reflected by a 

corresponding small inflection point. Once more, the proposed equivalent circuit 

accurately describes the complex behavior of this dipole array in the presence of a 

symmetrical dielectric slab, giving physical insight on the appearance of higher-

order extraordinary resonances.  

 

Fig. 2.4.11 Magnitude of the reflection coefficient for the structure in Fig. 2.4.5 with 

d1 = d2 = 0.5 mm,     =     =    = 3, Px = Py = 5 mm, ax = 0.5mm and ay = 3.5 mm. 

 

B. Dipole Array Sandwiched by Arbitrary Dielectric Slabs 

The general scenario shown in Fig. 2.4.5 is characterized in this section. The 

proposed circuit model for this situation is shown in Fig. 2.4.12. Note that the cases 

studied in previous sections are particularizations of the general scenario now 

considered. Thus, in analogy with Fig. 2.4.6, the propagation of the incident plane 

wave through the dielectric slabs is modeled in Fig. 2.4.12(a) by the finite 

transmission lines placed at both sides of the discontinuity with characteristic 

impedances       
     

 and       
     

 (obtained using (2.4.8)). However, in order to 

account for different dielectric slabs, it is necessary to introduce the following 

impedances defined in Fig. 2.4.12(b): 
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Note that for the case of identical slabs the above expressions reduce to just 

half the input impedance       
   used in Fig. 2.4.6. In similarity with the rationale 

followed in [Munk 2000, Ch. 5], the contribution of each TE/TM mn-th harmonic to 

the total impedance ZL    or ZC    is accounted for by the parallel connection of 

      
        and       

       , which can be written as 
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(a) 

 

(b) 

Fig. 2.4.12 Equivalent circuit for the scattering of an obliquely incident plane wave 

in the periodic array shown in Fig. 2.4.5. 
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The expressions (2.4.18) and (2.4.19) clearly show the combined influence of both 

dielectrics in the response of the array. Here it should be emphasized the capital 

relevance of setting up the appropriate connections between the different 

elements in order to make the equivalent network actually useful. Certainly, unless 

the equivalent network reflects accurately the underlying physics of the problem, 

the TEN would be no more than a smart fitting numerical procedure valid in 

certain frequency region. 

As in the previous section, the cutoff of higher-order harmonics in both 

dielectric slabs is again related to the appearance of singularities in ZL and ZC. 

Therefore, the same discussion about the launch of trapped surfaces waves can 

now be applied. However, since in the present case of electric dipole arrays 

(2.4.18) and (2.4.19) show that the dielectric slabs contribute as a whole [Munk 

2000], the number of higher-order harmonics to be considered (NTE and NTM) 

should correspond, at least, to the number of launched trapped surface waves in 

the denser slab. The influence of the slab thickness in the response of the array is 

expected to be similar to the permittivity effect, due to the fact that it also controls 

the amount of energy coupled into surface wave modes excited in the substrates 

[Munk 2000], [Katehi 1983]. In this regard our numerical experience suggests that 

we should increase the aforementioned number of higher-order harmonics to be 

explicitly accounted for if the thickness of the slab is similar to or larger than the 

slab wavelength. In order to calculate the unknown parameters L0, C0, and   
     

, 

we proceed as in the previous section, solving (2.4.15) for a set of frequency values 

after expressing    
  in terms of the reflection coefficient     at z = -d1 (as shown in 

Fig. 2.4.12(a)). 
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Fig. 2.4.13 Magnitude of the reflection coefficient under 40o incidence for the 

structure of Fig. 2.4.5 with     = 1,     = 3, d1 = 0 mm, d2 = 0.5 mm, Px = Py = 5 mm 

and ax = 0.5 mm. 

In many practical situations, metallic arrays of dipoles are not embedded in 

the dielectric slab but printed on it ([Vardaxoglou 1997], [Beruete 2011], [Caiazzo 

2004], [Goussetis 2006-I], [Lee 2000], [Feresidis 2001], [Tretyakov 2003], [Maci 

2005]…). In this case, the dielectric is not only necessary to support the metallic 

dipoles but, as it has been discussed in the previous section, it also plays a key role 

in the shaping of the reflectivity response. Therefore, in order to validate our TEN 

in the present situation, the same unit cell previously studied and described in the 

caption of Fig. 2.4.1 is now modeled it is assumed that the upper dielectric in Fig. 

2.4.5 is free space (d1 = 0 mm and     = 1) whereas the lower supporting substrate 

has d2 = 0.5 mm,     = 3. The study of this structure is shown in Fig. 2.4.13, which 

shows the reflectivity under plane wave oblique incidence ( = 40o) for both 

electrically small and long dipoles (ay = 2 mm and ay = 3.5 mm, respectively). Apart 

from the excellent agreement again observed between our equivalent circuit 

approach and the full-wave simulations, the physics underlying these results can 

once more be explained by the circuit model. Most of the discussions in previous 

sections can readily be extended to the present situation although some new 

effects should now be highlighted. Thus, the ay = 2 mm curve in Fig. 2.4.13 is 

similar to the   = 40o curve in Fig. 2.4.10(a). Only one total reflection peak (|S11| = 

1) is found in both curves below the grating lobe regime, with this regime being 

reached at 36.53 GHz in both cases and clearly manifested as an inflection in the 
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|S11| curves. However, instead of the reflectivity nulls below the grating lobe 

regime in Fig. 2.4.10(a), only local minima are found in Fig. 2.4.13. In fact, total 

transmission (|S11| = 0) are not expected to occur easily when the dielectric slabs 

are not identical (the conditions to have impedance matching at z = - d1 are now 

much harder to obtain owing to the parallel connection of the “left” and “right” 

impedances). The same cutoff frequency chart of Fig. 2.4.7 is now employed to set 

the values of the significant TE and TM harmonics (NTE and NTM in (2.4.18) and 

(2.4.19)). In particular, the results plotted in Fig. 2.4.13 have been obtained with 

NTE = 7 and NTM = 4, which are equal to one plus the number of TE and TM 

harmonics under cutoff below 60 GHz, respectively.  

 

2.4.3 Dipole array under TM incidence 

 

(a) 

 

(b) 

Fig. 2.4.14 (a) TM-polarized wave excitation in E-plane of a dipole array 

sandwiched between dielectric slabs. (b) Proposed circuit model. 

The methodology previously used in the study of the TE incidence case can 

equally be applied when the exciting plane wave is TM polarized or it impinges in 
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other planes. In practice, partially reflecting sheet arrays are normally illuminated 

by a single central feed with the feeding element oriented so that the excited 

polarized electric field has a strong interaction with the dipoles ([Trentini 1956], 

[Vardaxoglou 1997], [Beruete 2011], [Caiazzo 2004], [Goussetis 2006-I], [Lee 

2000], [Feresidis 2001], [Tretyakov 2003], [Maci 2005]…). Therefore, the 

characterization of the periodic array under TM polarization becomes relevant 

when the scan plane of incidence is yz (E- plane). An equivalent network can also 

be proposed for TE polarization in E-plane or TM in H-plane, although these cases 

are less relevant from a practical point of view since the dipoles are almost 

invisible for the impinging wave. Thus, in this section, the incidence of a TM-

polarized plane wave in the E-plane of a dipole array (illustrated in Fig. 2.4.14(a)) 

is modeled by the circuit model shown in Fig. 2.4.14(b). The only difference 

between this TEN and the one in Fig. 2.4.12(a) is found in the transmission lines at 

both sides of the discontinuity; the transmission lines now model the propagation 

of the incident, reflected and transmitted TM00 harmonic instead of the TE00. As a 

consequence, the same procedure explained in the previous section can be 

employed. The impedances ZL and ZC in Fig. 2.4.14(b) are again defined by (2.4.18) 

and (2.4.19), while (2.4.15) can also be solved for the unknown values of L0, C0, and 

  
     

considering that    
  is the reflection coefficient plotted in Fig. 2.4.14(b). Due 

to the change in the plane of incidence, the excited harmonics now propagate along 

the x and y axis with the following wavenumbers (m and n are integers): 

     
   

  
      (2.4.20) 
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The cutoff frequencies associated with higher order harmonics can now be 

computed as 
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Fig. 2.4.15 Higher order harmonic cutoff frequency in free-space (unit cell with 

periodicities Px = Py = 5 mm). 

 

(a) 

 

(b) 

Fig. 2.4.16 Magnitude of the reflection coefficient of the structure described in Fig. 

2.4.1 under oblique E-plane TM incidence. (a) Dipole length ay = 2 mm. 

 (b) ay = 3.5 mm. 



2.4 Waveguide-discontinuity based approach 91 

 

 

The problem under consideration can be reduced to a single unit cell with 

magnetic walls in the yz plane and Floquet walls (periodic boundary conditions) in 

the xz plane. Therefore, TE0n harmonics do not satisfy the boundary conditions, 

and are not excited by the TM polarized impinging wave. This fact is illustrated in 

Fig. 2.4.15, which shows the higher-order cutoff frequencies computed for free 

space in a unit cell with periodicities Px = Py = 5 mm. In contrast to Fig. 2.4.3(b), the 

first grating lobe is now produced by the harmonic TM0-1, instead of TE-10. Our first 

study case for TM incidence is the free-standing case shown in Fig. 2.4.16(a), 

where the reflectivity of a dipole array with dimensions Px = Py = 5 mm, ax = 0.5 

mm and ay = 2 mm is shown. Normal TE incidence in H-plane and TM incidence in 

E-plane are equal and, therefore, the   = 0o curves in Fig. 2.4.4(a) and Fig. 2.4.16(a) 

are identical. As it was explained in Sec. II, for normal incidence, an extraordinary 

transmission peak appears at 56.7 GHz, before the onset of the first TE harmonic. 

For each angle of incidence, the Wood’s’ anomalies (reflection nulls) found in  

Fig. 2.4.16(a) exactly appear at the onset of TE harmonics, analytically predicted in 

Fig. 2.4.15. Specifically, the reflectivity null associated to the onset of the harmonic 

TE10 increases from 60 GHz at 0o to 63.9 GHz at 20o and 78.4 GHz at 40o (as 

marked with black circles in Fig. 2.4.15). In contrast, the onset of the harmonic  

TE1-1 decreases from 85 GHz at 0o to 70 GHz at 20o, and 63.1 GHz at 40o (marked 

with black squares in Fig. 2.4.15). It must be highlighted that, for oblique TM 

incidence, the cutoff of the first TM harmonic is produced before any TE harmonic 

appears. Thus, the beginning of the grating lobes regime is now set by a TM 

harmonic (see TM0-1 curve in Fig. 2.4.15), which does not diverge at its cutoff, and 

therefore, it does not produce a singularity in the reflection coefficient. The 

consequence of this is the suppression of the extraordinary total reflection for 

oblique incidence, as shown in Fig. 2.4.16(a). The divergence of the first TE 

harmonic occurs in the grating lobes regime, where (as it was explained in 

previous sections), no total reflection can be produced. Yet, a peak of maximum 

reflectivity can still be found before the onset of the first TE harmonic, whose level 

decreases as   increases. Figure 2.4.16(b) also shows the reflectivity response of 

the previous unit cell when ay = 3.5 mm. The   = 0o curve again coincides with the 

one in Fig. 2.4.4(b), and as it was explained in Sec. 2.4.1, conventional total 

reflection appears at 40 GHz. This resonance may also be suppressed when the 
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onset of the TM0-1 harmonic is lower that the quasistatic resonance of the dipole, as 

it is illustrated by curve   = 40o in Fig. 2.4.16(b) (TM0-1 cutoff frequency is 36.53 

GHz, lower than 40 GHz). The onset of the first TE harmonic is not directly 

responsible for the appearance of the conventional reflection peak, and therefore, 

the resonance does not disappear for every incidence greater than zero. For 

example, Fig. 2.4.16(b) shows that total reflection still occurs when   = 20o, due to 

the fact that the onset of the TM0-1 harmonic is greater than 40 GHz (45 GHz as 

shown in Fig. 2.4.15). In Fig. 2.4.16(b), an inflection in the reflectivity response can 

be observed at the onset of the grating lobes. 

 

 

Fig. 2.4.17 Magnitude of the reflection coefficient under θ = 40o TM incidence on  

H-plane for the structure of Fig. 2.4.14 with Px = Py = 5 mm, ax = 0:5 mm,     = 1, 

     = 3, d1 = 0 mm and d2 = 0.5 mm. (a) Dipole length ay = 2 mm. (b) ay = 3.5 mm. 

The practical design studied in the previous section of a dipole array 

printed on a thin dielectric substrate (which corresponds to a unit cell with 

dimensions Px = Py = 5 mm, ax = 0.5 mm,    = 1,    = 3, d1 = 0 mm, and d2 = 0.5 mm) 

can again be modeled under TM incidence in H-plane using the TEN proposed in 
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Fig. 2.4.14(b). Figure 2.4.17 shows the reflection coefficient presented by this 

printed structure under oblique incidence (  = 40o) for electrically small (Fig. 

2.4.17(a)) and long dipoles (Fig. 2.4.17(b)), which is analogous to the TE response 

plotted in Fig. 2.4.13. The onset of the first higher order harmonic causes again an 

inflection at 36.53 GHz, which has been zoomed in on each figure. The shaping 

effect of the supporting substrate in the reflectivity response is clear when 

comparing Fig. 2.4.17 with the   = 40o curves in Fig. 2.4.16. Particularly, the 

dielectric slab makes ZC diverge close to the onset of the grating harmonic TM0-1, 

and therefore, an extraordinary (Fano) resonance is produced before 36.53 GHz in 

Fig. 2.4.17. In addition, the conventional resonance peak has not been suppressed 

in Fig. 2.4.17(b), and appears at a lower frequency than in Fig. 2.4.16(b). The 

circuit-model results shown in Fig. 2.4.17 have been obtained using NTE = 3 and 

NTM = 4 in (2.4.18) and (2.4.19), which correspond to one plus the number of TE 

and TM harmonics that are respectively above cutoff inside the dielectric slab at  

50 GHz. Once more, excellent agreement with full-wave simulations is obtained, 

and what it is even more important, all the needed physical insight to explain 

dipole array TM excitation is given by the proposed circuit model, even in the 

grating lobes regime. 
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2.4.4 Modeling other scatterers 

Before finishing this study, it should be highlighted that the proposed 

equivalent-circuit model can also be used to characterize other FSS unit cells, with 

different geometries of the scatterers and useful for practical applications. As 

representative examples, three arrays of different printed elements (i.e., a cross-

dipole, a squared patch and a symmetric ring) are analyzed under normal 

incidence in Fig. 2.4.18. In the cross-dipole case, it has been studied the reflectivity 

response when the electric field of the exciting plane is polarized along the x or y 

axis. The cross-dipole scatterers are sensitive to both polarizations since they have 

long metallization along both the x and y directions, and therefore, they are used as 

dual polarized elements in frequency selective surfaces [Parker 2001]. As it can be 

inferred from the previous analysis with simple metallic dipoles, the total 

reflection peaks found at 48.5 GHz in the H-plane and 34 GHz in the E-plane in Fig. 

2.4.18(a) are mainly related to the dimensions ax and ay, respectively. When 

dealing with a squared patch or a symmetric ring structure, the same results are 

obtained in both planes for normal incidence. The first total reflection peak in Fig. 

2.4.18(b) is related to the length of one side of the square (ax). However, as we are 

not dealing with a thin dipole, the width of the squared patch (ay) makes the 

resonance frequency occur at a frequency higher than       (as happened in the 

previous sections with thin dipoles). In the case of Fig. 2.4.14(c), the total reflection 

peak at 28.6 GHz appears when the wavelength is approximately the perimeter of 

the ring [Parker 1981]. The good agreement with full-wave simulations proves the 

versatility of the developed approach. 

These types of scatterers haves attracted much interest in recent years for 

practical applications. A recent and interesting example can be found in [Kiani 

2011], where a bandpass aperture type cross-dipole FSS is proposed for the 

improvement of the transmission of useful signals through energy-saving glass. 

This type of glass attenuates infrared waves, and therefore, it is employed in 

building design for the shielding of its interior against heat entering (keeping it 

cooler in summer and warmer in winter). However, this resistive coating has an 

important drawback; it also attenuates useful microwave signals required for 
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communication systems. The FSS combined with this glass allows the transmission 

of useful signals while preserving IR attenuation as much as possible. 

 

 (a)  

(b)  

(c)  

Fig. 2.4.18 Magnitude of the reflection coefficient normal incidence for periodic 

arrangements (Px = Py = 5 mm) of (a) cross-dipoles (ax = 2 mm, ay = 3.5mm and  

wx = wy = 0.5 mm), (b) patches and (c) circular rings (r = 3 mm, t = 0.5 mm).  

The arrays are printed on a substrate of    = 2, d = 1 mm. 
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Here it should be highlighted an important limitation of the validity of the 

proposed equivalent circuit which is related to the shape of the scatterers.  After 

this study and a detailed revision of the related literature, it has been found that 

there is no systematic methodology to build “simple” equivalent networks for 

arbitrary elements. In some specific 2D situations, we can find in the literature 

some simple ad hoc networks that seem to “match” the response of the FSS with 

complex elements (i.e., [Capolino 2010]). These attempts are generally restricted 

to some limited range below the no-grating lobe regime and, furthermore, they 

require some a priori knowledge of the qualitative response of the FSS (since this 

information is key to choose the convenient lumped elements and connections 

required to build the corresponding equivalent network). The here developed 

approach is somewhat limited in its scope. The proposed topology comes directly 

from basic electromagnetic considerations under the assumption that the 

qualitative shape of the current profile on the scatterers does not change very 

much in the considered frequency range. In other words, the topology is not 

imposed by any a priori knowledge of the response of the structure. This limitation 

is the prize to pay for having a systematic way to build the network topology. In 

particular, multiresonant elements (i.e., double concentric rings) cannot be 

systematically characterized with the proposed topology. 



 

 
 

 

 

 

 

 

 

2.5 Conclusions 

In this chapter it has been aimed the modelling of frequency selective 

surfaces (FSS) by equivalent circuit models. Due to the fact that FSS are employed 

in the next chapters in the conception of leaky-wave antennas, it is needed to find a 

pseudo-analytical equivalent expression of the FSS that can be later inserted in the 

transverse equivalent network which models the whole antenna structure. In 

addition, to perform the dispersion analysis of the whole complex structure, the 

elements in the TEN must analytically depend on the unknown mode wavenumber. 

Two different approaches have been proposed in order to model dipole-

based FSS by closed-form equivalent circuits, fulfilling the first objective of this 

chapter (O1). The first technique is presented in Section 2.2; it is based on a pole-

zero method which provides an equivalent quasi-analytical admittance for the FSS. 

This expression is a function of the wavenumber and the length of the dipoles, and 

therefore, it allows the performance of dispersion analysis both with frequency 

and geometry of the FSS. The second approach, presented in Section 2.4, is based 

on the impedance matching concept proposed in [Medina 2008]. The FSS is now 

represented in terms of transmission lines and lumped-elements circuits, leading 

to a simple and computationally efficient approach that, in addition, allows for easy 

but accurate predictions on the transmission spectra. 
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The pole-zero technique presented in Section 2.2 is employed in Section 2.3 

for the dispersion analysis of EBG structures conceived from the insertion of 

dipole-based FSS inside rectangular waveguides, fulfilling the second objective 

of this chapter (O2). As illustrative examples, the analysis of a rectangular 

waveguide loaded with a high impedance surfaces and an open waveguide loaded 

with a partially reflective surface, is performed in Section 2.3. 

The last objective of this chapter (03) is achieved in Section 2.3, where it 

is presented the developed graphical user interface that has been implemented for 

the easy and systematic analysis of FSS-based EBG structures. 

 

The work developed in this chapter has given rise to the publication of 3 
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Chapter 3: 

 

Analysis and design of uniform double-layer Fabry-Perot 

LWA 

 

 

 

 

 

In this chapter it is performed the analysis and design of uniform double-

layer Fabry-Perot (FP) Leaky-Wave Antennas (LWAs). These antennas are 

conceived in a hybrid technology which results from the combination of metallic 

waveguides and periodic surfaces. The characterization of these surfaces is 

carried out taking advantage of the work developed in the previous chapter. The 

case of uniform antennas is here considered, both in one and two dimensional 

topologies (Chapter 4 will focus on the synthesis of non-uniform tapered 

antennas). Several one-dimensional LWA prototypes have been fabricated 

obtaining very good agreement between measurements and theory. From the 

general objectives enlisted in Chapter 1, these are the ones which are now 

pursued: 

O4. Analysis and design of double-layer uniform one-dimensional Fabry-

Perot leaky-wave antennas.  

O5. Analysis and design of double-layer uniform two-dimensional Fabry-

Perot leaky-wave antennas.   
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The first Section 3.1 of this chapter mainly consists in summarizing basic 

concepts about leaky-wave antennas and reviewing the different proposed 

radiation mechanisms.  

Next, in Section 3.2, it is described an original one-dimensional Fabry-Perot 

LWA in hybrid technology. The tool developed in Chapter 2 is here employed to 

analyze this structure and identify the role played by each of its components. 

Feeding and matching devices are also proposed and designed. 

The possibility to control the pointing angle and beamwidth in this antenna 

is subsequently explained in Section 3.3. Next, Section 3.4 shows how the 

frequency scanning behavior can also be successfully controlled and enhanced. 

Experimental results on fabricated prototypes operating at 15GHz are reported, 

demonstrating the versatile control of the LWA performance by changing the PRS 

and HIS parameters. 

The analysis and design of two-dimensional FP LWAs is developed in 

Section 3.5. Here it is explained that it is possible to characterize these antennas 

in the H and E planes employing the tool developed in Chapter 2 by making an 

approximation towards one-dimensional structures. 

Finally, in Section 2.5 the main conclusions and results will be summarized, 

together with the discussion about the achievement of the aimed objectives. 



 

 
 

 

 

 

 

 

 

3.1 Introduction 

A leaky-wave antenna is basically a guiding structure that possesses a 

mechanism that allows a traveling wave [Walter 1965] leak its power all along the 

structure length. The basis on leaky-wave antennas can be found in excellent book 

chapters such as [Hessel 1969], [Tamir 1969], [Oliner 1993], [Jackson 2008]. A 

recent summary on the latest advances can be found in [Caloz 2010]. One of their 

biggest advantages is that they provide a simple mechanism to obtain highly-

directive frequency scanned radiation patterns from a simple feed. The first leaky-

wave antenna (shown in Fig. 3.1.1(a)) consists of a rectangular waveguide with a 

continuous longitudinal slot in its side; it was first proposed by Hansen [Hansen 

1940] and later studied by Goldstone and Oliner [Goldstone 1959]. The hole in the 

waveguide allows the progressive leakage of energy out to free space, turning the 

waveguiding structure into a Leaky-Wave Antenna (LWA). Many other topologies 

of LWA have been proposed since Hansen´s proposal, an early example is shown in 

Fig. 3.1.1(b), where the waveguide is filled with a dielectric material and loaded 

with a periodic array of holes [Hines 1957]. These antennas are named as one-

dimensional (1D) [Oliner 1993], due to the fact that the structure supports a wave 

traveling in a fixed direction, for example, along the y axis in the LWAs of Fig. 3.1.1.  
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(a)                                                                           (b) 

Fig. 3.1.1 1D Leaky-wave antennas based on rectangular waveguides, with infinite 

ground plane surrounding the radiating aperture. (a)Empty rectangular waveguide 

with longitudinal slit in the narrow wall of the waveguide (b)Rectangular 

waveguide filled with dielectric material and loaded with a periodic array of holes. 

(Figs 7.1 and 7.2 in [Jackson 2008]). 

   

Fig. 3.1.2 2D Leaky-wave antenna (Figs 4 and 7 in [Trentini 1956]). 

The concept of two-dimensional (2D) leaky-wave antenna was first 

introduced by Trentini in 1956, proposing a high directive antenna constituted by 

a periodic partially reflective screen over a ground plane (see [Trentini 1956]). The 

scheme of this antenna and a picture of it are shown in Fig. 3.1.2. Later, several 

other types of 2D LWAs were proposed (see [James 1989], [Alexopoulos 1984], 

[Jackson 1985-I, 1988, 1993], [Ip 1990], [Feresidis 2001], [Zhao 2005]…). The 

main advantage of these antennas is that they can provide pencil beams at 

broadside, as it will be later explained in detail. In contrast to 1D LWAs, 2D LWAs 

are fed by a source that, placed in the centre of the antenna, launches cylindrical 

leaky waves [Ip 1990]. 
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3.1.1 Physics of leaky waves 

Due to radiation, leaky-waves are characterized by a complex longitudinal 

propagation wavenumber [Oliner 1993] 

                                                                                 

Any field component of the leaky-wave propagating along the structure can be 

expressed as 

                                         .                 (3.1.2) 

Therefore,    and    stand for the phase (propagation) constant and the leakage 

(attenuation) constant, respectively. The phase constant represents the variation 

in the wave phase per meter (rad/m), whereas the attenuation constant is related 

to the decrease of the wave amplitude per meter (nep/m). The attenuation 

constant represents the loss of power along the structure as the wave propagates, 

and thus, it is also called radiation rate. If the guiding structure that supports the 

leaky wave has conductor and/or dielectric losses, then    accounts for these 

losses as well [Jackson 2008]. As it is explained in [Gomez 2006-III], the 

attenuation constant can be qualitatively split into three different contributions: 

reactive rate, losses rate, and leakage (radiation) rate: 

       
       

         
                                               

This equation is just an approximation as it will be explained in detail along this 

section, together with the nature of these three contributions.  

It would be quite complicated to give a general explanation of the leaky-

wave dispersion which is valid for every possible case of LWA. Therefore, in this 

introduction we will focus on the case schemed in Fig. 3.1.3(a), which consists of a 

leaky wave propagating along a generic guiding one-dimensional uniform (or 

quasi-uniform) structure. It is worth noting that, for the sake of simplicity, this 

structure is considered to be short in the x axis, so that no surface waves are 

supported in the substrate along the x axis, and therefore, no energy is leaked into 

that direction. It is also assumed that the energy that reaches the end of the 

structure is absorbed by a matched load. 
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(a)                                                                    (b) 

Fig. 3.1.3 Scheme of a generic guiding one-dimensional uniform or quasi-uniform 

structure which supports a propagating (a) leaky-wave (b) surface-wave (Fig. 2.1.3 

in [Gómez 2005-II]). 

The distribution of the leaky-wave in the near field establishes the radiation 

pattern (far field). It is well known that the far fields can be obtained from the 

Fourier transform of the near fields in the radiating aperture of an antenna 

[Balanis 2005], [Tamir 1963-II]. In particular, the phase constant    of the leaky-

wave will determine the direction in which the energy is mainly radiated 

(    , the angle of the main beam in the radiation pattern, measured from 

broadside). As it can be seen in Fig. 3.1.3(a), the angle      can be approximately 

obtained by ray optics from the longitudinal wavenumber (  ) and the 

propagation constant in free space (  ) 

        
  

  
                                                                     

where 

          
   

  
      

  

  
                                        (3.1.5) 

with f being the frequency and c0 the speed of light in vacuum. In theory, th 

approximated equation (3.1.4) is valid when        , although in practice it is 

even valid when     is comparable to   . From (3.1.4) it can be easily deduced that 

radiation is produced when  
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which is therefore called radiation condition. If this condition is not satisfied, the 

wave propagates along the structure with a wavenumber    greater than the 

wavenumber of light in free space   . The radiation angle (      is positive in the 

case of forward leaky waves (    ), whereas it is negative when the wave is 

backward (    . Note that, by applying (3.1.3), radiation at forward end fire 

(        ) occurs when         , backward end fire radiation (         ) 

when          , and a broadside beam (       ) will be produced when 

        . Thus, although the wave phase constant      may be either positive or 

negative, it must be noticed that the leaky-wave group velocity is always greater 

than zero, which means that the energy propagates away from the source. The 

waves that satisfy the condition (3.1.6) are also called fast waves due to the fact 

that their longitudinal phase velocity is greater than the one of light in vacuum 

[Gómez 2005-II]: 

   
 

  
 

   

  
 

       

  
 

  

     
            

  

  
                             

In contrast, when the phase constant is greater than   , the wave becomes a 

surface wave which is slow (case depicted in Fig. 3.1.3(b)); it is purely bound and 

does not radiate along the length of the structure (as it does not satisfy (3.1.6)). 

The energy associated to this surface wave ([Oliner 1993], [Tamir 1963-I], [Oliner 

1979]) is confined within the guiding structure and it is only radiated at 

discontinuities (such as the very end of the waveguiding structure). In principle, 

surface waves do not appear in air-filled LWAs, but in partly dielectric-loaded 

configurations [Oliner 1993]. 

On the other hand, the attenuation constant of the leaky wave (  ) 

determines the illuminated area of the antenna radiating aperture LA, and 

therefore, the width of the radiation pattern main beam (beamwidth,   ). The 

LWA beamwidth can be obtained by applying [Oliner 1993] 
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The length of the antenna radiating aperture is usually selected for a given value of 

  , so that 90% of the power is radiated, with the remaining 10% absorbed by a 

matched load. In this case it is found the following relation ([Oliner 1993]) 

  

  
 

     

     
                                                                  

The radiation efficiency of the leaky-wave antenna (    ) is defined as the 

power radiated into space divided by total power injected into the antenna, and it 

is related to the attenuation constant as ([Oliner 1993]) 

                                                                       

This equation is coherent with the fact that the energy that reaches the end of the 

antenna (which is supposed not to be radiated) corresponds to:        . Thus, the 

radiation efficiency is normally less than 100%, due to the power absorbed at the 

matched load placed at the end of the antenna. The LWA beamwidth associated to 

an antenna with 90% efficiency is  

   
     

            
                                                       

As it can be observed in the expression of the near fields in the aperture (3.1.2) and 

in Fig. 3.1.3(a), the amplitude of a leaky wave is attenuated by the factor      , 

which means that the aperture illuminated area increases as    is decreased. Thus, 

high directivity (low   ) can be achieved in a long LWA with a low value of   , in 

coherence with (3.1.8) and (3.1.11). 

Generally,    and    vary with frequency, and the functions   ( ) and 

      are called the dispersion and attenuation relations. This dependence 

with frequency results in different propagation regimes. The definition of cutoff, 

radiation and bounded regimes of a leaky-wave antenna can be found in books 

such as [Oliner 1993], or other interesting papers such as [Tamir 1963-I], [Oliner 
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1979, 1986-I and II, 1987], [Song-Tsuen 1981], [Bagby 1993], [Lin 1997] or 

[Gomez 2006-III]. This literature leads to the following background knowledge 

necessary to work with leaky waves. As an illustrative example, Fig. 3.1.4 shows 

the evolution with frequency of the normalized phase and leakage constants 

(      and      , respectively) which correspond to the first mode in a uniform 

one-dimensional dielectric-loaded LWA. For the characterization of the different 

propagation regimes we will first consider the lossless case. 

 

Fig. 3.1.4 Dispersion and attenuation relations in uniform 1D dielectric-filled LWA. 

Leaky mode propagation regimes. 

In the particular case under study (one-dimensional LWA fed at one end), 

the frequency at which   =   is satisfied is named as the cutoff frequency of the 

leaky mode (LM). At this point, the active and reactive power densities associated 

with the leaky mode in the structure are equal. This fact is proven in Eq. (3.1.12), 

where the poynting vector of the LM is obtained (  
     

). In this expression, the 

LM is considered to be either a TE or a TM modal solution of the 1D waveguiding 

structure (depending on its polarization), characterized by a complex propagation 

constant ky. In (3.1.12), the characteristic impedance associated to the TE/TM-
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polarized guided LM (  
     

) is obtained applying respectively (2.4.6) or (2.4.7) 

[Munk 2000], [Pozar 2005]. 

  
     

 
    

   
     

  

 
 
 

 
       

    

    
   

    

    
                                       

    
    

   
      

    

    
    

  
                 

            

In this expression, the real and imaginary parts of the poynting vector correspond 

respectively to the active and reactive power densities associated with the TE/TM-

polarized LM. It can be deduced that the active power is predominant at 

frequencies which satisfy       (the region which is above the cuttof frequency). 

The cutoff regime covers the frequencies which satisfy        At this frequency 

range, the 1D guiding structure acts similarly to a waveguide at cuttof: the reactive 

part of the power is the most significant, and the LM begins to be attenuated or 

reflected rather than propagative [Oliner 1993, Lin 1997, Gomez 2004-II and 

2006-III]. Although still some radiation can be produced at the cutoff regime (due 

to the fact that the active power density is greater than zero), for convenience, and 

in analogy with the propagation of waves in closed 1D waveguides, it is considered 

that the leaky mode starts propagating through the structure at the cutoff 

frequency [Oliner 1993].  

Above the cutoff regime, and when the radiation condition (3.1.6) is 

satisfied, the modal solution of the structure corresponds to a leaky wave whose 

energy is leaked from the angle θRAD (which in principle can be scanned between 0º 

and 90º); this regime is also called space wave region. The minimum value of θRAD 

is produced at the cutoff frequency, which is normally near broadside. The modal 

solution of the structure corresponds to a surface wave when        , this 

regime is named as bounded. As previously explained, the bounded regime is 

characterized by zero leakage (αy/k0 = 0), in coherence with the solid red line in 

Fig. 3.1.4 (considering a lossless case). However, the cutoff regime (also named 

reactive region) is characterized by values of αy greater than   . The sudden rise 

of αy below the cutoff frequency does not represent an increase of the radiation 

rate, but the reactive attenuation of the fields previously explained [Oliner 1993, 
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Lin 1997, Gomez 2004-II and 2006-III]. In other words, below the cutoff frequency, 

the waves highly suffer from reflection losses and barely propagate along the 

structure. As a result, considering the definition of αy in (3.1.3), it can be deduced 

that in the absence of losses, the main contribution to αy below the cutoff 

frequency is   
    , whereas it is   

   in the radiation regime (as summarized in 

Table 3.1.3). The red dotted line in Fig. 3.1.4 corresponds to the radiation 

contribution (  
   ) to the attenuation constant; in coherence with the previous 

conclusions, it can be seen that in the absence of losses,    
    decreases below the 

cutoff frequency while it is equal to αy in the radiation regime. If losses are 

considered (pink dashed line in Fig. 3.1.4), they can be approximately regarded as 

a linear contribution to αy (as it is expressed in (3.1.3)) [Gómez 2004-I, II and 

2007]. Therefore, in the bounded regime, αy corresponds to   
      . However, it 

should be noticed that equation (3.1.3) is a convenient approximation; in fact, the 

three considered contributions to αy are in general coupled. 

As it is marked with an elipse in Fig. 3.1.4, the transition between the 

radiation regime and the bounded regime is not continuous. At this transition 

between the leaky and bound regions there exists a small range in frequency 

within which the modal solution of the structure is non-physical. This transition 

range is called a spectral gap, its nature is now understood rather well and it was 

firstly described in [Shigesawa 1993 and 1995] and [Majumder 1997]. In this 

dissertation, this interesting phenomenon is not studied due to the fact that 

radiation at forward endfire is discarded in the particular case of our Fabry-Perot 

LWAs. 

 

Table 3.1.1 Contributions to the attenuation rate αy in the absence of losses. 

Propagation 
regime 

   
        

    

Cutoff Main contribution Low 

Radiation zero Main contribution 

Bounded zero zero 
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Leaky waves are characterized by a complex transverse wavenumber (i.e., 

the vetical z axis in Fig. 3.1.3(a)), that can be obtained by ray optics from Fig. 

3.1.3(a)  

      
    

                                                                  

The sign of this square root must be chosen carefully so as to obtain the solution 

that gives the correct wave physical behavior. This issue is very clearly explained 

in [Jackson 2008] and [Caloz 2011] and is next summarized. When considering a 

forward radiating leaky-wave (with      and     ), the transverse 

wavenumber is of the form           (being    and    positive real numbers). 

This field is termed as “improper” [Jackson 200 ], due to the fact that the wave 

increases exponentially in the near transverse air region. This behavior can be 

clearly understood by looking at the power flow of the leaky-wave in the scheme of 

Fig. 3.1.4(a).  

 

Fig. 3.1.5 Scheme of the near field created by a forward radiating leaky wave in a 

quasi-uniform 1D LWA (Fig. 7.8 in [Jackson 2008]). 
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3.1.2 Radiation properties of uniform 1D and 2D LWAs 

The scheme of a 1D rectangular radiating aperture, which dimensions are 

      , is shown in Fig. 3.1.6. It is assumed that this aperture supports a leaky wave 

which propagates along the y axis, starting from one end, and its electric field is x-

polarized. As the aperture is considered to be uniform or quasi-uniform (but non-

modulated), the near fields that illuminate it can be expressed as 

   
                                                                        

where E(x) is the illumination along x and will assumed to be a constant E(x) = 1 

(although in certain cases it can be a cosine function, depending on the type of 

resonance in x). The illumination in the y axis depends on the leaky-wave 

propagation constant          , and it corresponds to                , 

where 

                
 
                                                    

            
 

 

                                                      

Following the theory explained in [Balanis 2005], the fields radiated by the 

aperture can be written as 

                                                                      

       
   

     

   
    

    

 
             

  

 

                                

        
   

     

   
        

    

 
             

  

 

                         

where    is the wave amplitude,     and   denote the usual spherical coordinates 

with respect to the (x, y ,z) axes,  
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and   
 

 
           . These far fields define fan-beam radiation patterns, 

which main beam is directive and frequency scanned in the H-plane, and wide in 

the E-plane. An example of this kind of radiation pattern is shown in Fig. 3.1.7, 

which corresponds to a 1D aperture which supports a fast leaky wave with ky/k0 = 

0.6 + j0.01. 

 

Fig. 3.1.6 Scheme of 1D radiating uniform or quasi-uniform (but non-modulated) 

aperture fed at one end. 

 

(a)                                                            (b) 

Fig. 3.1.7 Normalized radiation pattern in dB of 1D LWA with dimensions: 

         , LA = 6   , , fed at one end (ky/k0=0.6+j0.01). (a) H-plane (yz), (b) E-

plane (xz). 

Now it is considered that the 1D aperture supports a leaky wave which 

dispersion diagram is the one of Fig. 3.1.8(a). This figure corresponds to the typical 

behavior of the fundamental mode in a uniform or quasi-uniform (but non-

modulated) LWA. It should be noted that broadside radiation (      ) will not 

be obtained from this antenna, due to the fact that the cutoff frequency is located at 
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a point where    is always greater than zero. Figure 3.1.9 shows how the radiation 

pattern associated to this aperture varies with frequency. In particular, Fig. 

3.1.9(a) is obtained at the cutoff frequency (approximately located at 13 GHz), 

where ky/k0 = 0.1 + j0.1 (see Fig. 3.1.7), providing the lowest      radiated from 

this LWA. Figure 3.1.9(b) corresponds to the radiation pattern at 14GHz, where 

ky/k0 = 0.39+j0.015. 

 

Fig. 3.1.8 Frequency dispersion diagram of fundamental leaky mode. 

 

(a)                                                               (b) 

Fig. 3.1.9 Normalized radiation pattern in dB of 1D LWA with dimensions: 

         , LA = 6   , fed at one end. (a) ky/k0  0.1   0.1, (b) ky/k0 = 0.39   0.015. 

The scheme of a 2D circular aperture, which radio is   , is shown in Fig. 

3.1.10. Cylindrical coordinates are now employed to describe magnitudes on the 

antenna aperture (z = 0). This scenario was studied in [Ip 1990], where it is 

explained that, when the aperture is fed by a horizontal electric dipole, a pair of 

leaky waves are launched, one TMz and one TEz. The vector potentials associated to 

this pair of waves are 
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where   
     

   
     

    
     

 is the complex propagation wavenumber 

associated to the TMz or TEz leaky wave, and  
   

 is the second kind Hankel 

function. As derived in [Ip 1990], the previous waves generate the following far 

fields: 

                                                          

                                                         

where 

      
    

   
                                                            

 

           
    

     

   
     

 
 
   

   
     

    
   

   
     

          

    
   

   
     

           
    

     
                                                   

 

          
  

 
   

   
   

     
           

    

     

                                

A and B are the amplitudes of the TMz and TEz waves respectively and Jn is the nth 

order Bessel function. As shown in [Ip 1990], when dealing with long apertures, 

the function           of (3.1.27) is almost constant, and the function           

exhibits a sharp peak at an angle given by: 
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Therefore, considering the far field expressions in (3.1.23) and (3.1.24), it can be 

deduced that the TMz leaky wave mainly determines the E-plane pattern of the 2D 

FP LWA, while it is the TEz leaky wave which mainly sets the H-plane pattern. 

 

Fig. 3.1.10 Scheme of 2D radiating uniform or quasi-uniform (but non-modulated) 

aperture fed by a x-oriented electric dipole. 

In the present case of 2D LWAs excited by a horizontal dipole, either a 

scanned beam (      ) or a broadside beam (      ) may be obtained. In 

particular, a broadside pencil beam is achieved when two beams, each one 

pointing slightly above broadside, combine to form one broadside beam. This 

effect occurs at frequencies which satisfy      ; particularly, maximum 

directivity at broadside is achieved at the so called splitting condition 

                                                                          

Good explanation, discussion and applications of this condition can be found in [Ip 

1990], [Chien-Jen 1999], [Yamamoto 1999], [Lovat 2006], [Sutinjo 2008] and 

[Jackson 2008]. For greater frequencies, the previous two beams split, and the 

radiation pattern takes the shape of a conical beam. Recalling the dispersion 

diagram of Fig. 3.1.8, a 2D LWA which supports this leaky wave presents the pencil 

beam radiation patterns shown in Fig. 3.1.11 at 13 GHz (where the splitting 

condition is satisfied), and the conical beam patterns of Fig. 3.1.12 at 14 GHz. 
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(a)                                                                 (b) 

Fig. 3.1.11 Normalized radiation pattern in dB of 2D LWA (LA = 6   ) 

(ky/k0=0.1+j0.1). (a) H-plane (yz), (b) E-plane (xz). 

 

(c)                                                                 (d) 

Fig. 3.1.12 Normalized radiation pattern in dB of 2D LWA (LA = 6   )  

(ky/k0 = 0.39   0.015). (a) H-plane (yz), (b) E-plane (xz). 
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3.1.3 Dispersion of modes in complex transmission lines 

In order to explain the different radiation mechanisms of leaky-wave 

antennas, it will be first briefly reviewed the dispersion of modes in general 

complex transmission lines. This study will start with the case of a uniform 

microstrip line. Periodic and metamaterials transmission lines will be 

subsequently considered, and finally, the specific case of empty waveguides is 

presented. 

 

Fig. 3.1.13 Scheme of a microstrip line and the transverse field profile of the first 

two modes (EH0 and EH1). 

A typical dispersion diagram of the modes existing in a microstrip line is 

shown in Fig. 3.1.14. It is worth noting here that, although the dispersion curves in 

Fig. 3.1.14 have been drawn with continuous lines, the transitions between leaky, 

surface or bounded waves may not be mathematically continuous, as it was firstly 

studied in [Mesa 2002-I and II]. The first mode (EH0) in this inhomogeneous 

medium propagates with a velocity somewhere between the speed of light in air 

and inside the substrate with permittivity   . The near fields associated to this 

mode are schemed in Fig. 3.1.13. The effective relative permittivity of the 

microstrip (    ) is then defined as the dielectric constant of an equivalent 

homogeneous medium which presents the same propagation velocity as the 

inhomogeneous line. This mode propagates through the microstrip line at any 

frequency. The normalized phase constant of the EH0 mode corresponds to: 
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which is always greater than one, tends to     as the frequency is increased and is 

real in the absence of losses (as it can be seen in Fig. 3.1.14). Therefore, this mode 

propagates in the form of a bounded surface wave along the y axis, and all the 

energy associated to it is completely guided, and it is not leaked or radiated to free 

space. 

 

Fig. 3.1.14 Dispersion in a microstrip line (substrate with εr = 9.8). The solid lines 

represent real wavenumbers, whereas the dashed lines correspond to the real part 

of the leaky mode (complex) wavenumber in the leakage regime (Fig. 1 in [Oliner 

1986-I]). 

The dispersion properties of microstrip line higher modes have been the 

object of study over the past decades. In particular, the radiation of the first higher 

order mode has attracted much attention, the first attempts to achieve a microstrip 

LWA were proposed in [Ermert 1979] and [Menzel 1979]. However, it was not 

until 1986 that Oliner and Lee explained in detail their radiation mechanism 

[Oliner 1986-I and II, 1987] and [Lee 1986]. The first higher order mode, named 

EH1, has an associated cutoff frequency from which it starts propagating along the 

y axis of the structure. In contrast to the fundamental EH0 mode, the EH1 mode has 

a cutoff frequency and enters the fast-wave regime. Thus, there is a frequency 

regime in which the phase constant associated to EH1 is lower than k0 (see Fig. 

3.1.6), and therefore, as the condition (3.1.6) is satisfied, some power may be 

leaked at some angle which changes with frequency in the form of a space wave 

[Oliner 1986-I]. The transverse near field profile associated to this mode is shown 
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in Fig. 3.1.13. In contrast to the previous studied guiding structure of Fig. 3.1.2, the 

dielectric substrate now considered is long in the x axis (see Fig. 3.1.5), and 

therefore, some energy may be leaked away from the strip in the form of a surface 

wave on the dielectric layer outside of the strip region [Oliner 1986-I]. Although 

the modal field propagates along the y axis, there may be leakage into the surface 

wave, which propagates away on both sides of the printed dielectric substrate, 

which phase constant is ks and satisfies 

      
    

                                                                   

This equation makes clear that the condition for actual leakage to the surface wave 

is     , or equivalently: 

                                                                               

The radiation region highlighted in Fig. 3.1.14 considers the above two 

forms of leakage: the one produced in the form of a space-wave when      , and 

the one produced in the form of a surface wave when      . Therefore, the 

dashed lines which appear in this region in Fig. 3.1.14 correspond to complex 

solutions, and only the real part is plotted. Outside the radiation region, the mode 

is purely bound, and it decays both in the x and z axis. 

By means of this example, it can be now concluded that the fundamental 

mode of a uniform microstrip line is a slow-wave that does not radiate. Antennas 

conceived from this media are normally based in the radiation of the first higher 

order mode. However, as it was proposed in [Grbic 2002], the fundamental mode 

of a coplanar waveguide can be turned into a fast-wave by periodically loading it 

with series capacitances.  
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Fig. 3.1.16 Dispersion in periodic microstrip LWA (substrate with permittivity εr). 

The previous antenna serves as well as an example of periodic LWA where, 

due to periodicity, an infinite number of space harmonics are excited [Walter 

1965], [Oliner 1993]. This is also the case of the LWA shown in Fig.3.1.1(b), were 

the rectangular waveguide is periodically perforated by holes. When dealing with a 

periodic LWA, the leaky modes consist of an infinite number of Floquet harmonics, 

which wavenumber is              . The relation between the harmonics 

phase constants is  

    

  
 

    

  
  

  

 
                                                          

where n is an integer number,      is the phase constant associated to the n=0 

fundamental harmonic and P is the LWA periodicity. An example of the dispersion 

in periodic LWAs is shown in Fig. 3.1.15, where it has been plotted the phase 

constant associated to the n=0, n=-1 and n=-2 harmonics versus frequency. In this 

figure it is marked the frequencies at which each harmonic starts radiating (where 

          , points A, B and D), and the frequencies at which they become 

surface waves (         , points C and E). The first aspect that should be now 
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highlighted is that, in contrast to the previous examples of non-periodic LWAs, 

backward radiation can be now produced by the harmonics with n<0, due to the 

fact that they present a negative phase constant during a certain frequency range 

(as it has been marked in Fig. 3.1.16 in the case of the n=-1 harmonic). Thus, LWAs 

based in the radiation of the negative higher order harmonics can scan from 

backward to forward angles. Another relevant aspect is that radiation from more 

than one harmonic can be produced at certain frequencies (for example, n=0 and 

n=-1 radiate at different angles in the range [B,C]); appearing the so called grating 

lobes regimes (which were observed from another perspective in Section 2.4). 

Single radiation from the fundamental harmonic can be assured if the radiation of 

the n=-1 harmonic starts at a frequency higher than the one at which the n=0 

harmonic becomes a surface wave (i.e., if B occurs at higher frequency than C). The 

proximity between the dispersion curves may be controlled by changing the value 

of P. Therefore, single radiation from the fundamental harmonic can be obtained if 

it is satisfied that  

     

  
 

  

  
 

  

 
   

  

 
        

  

 
                                   

In the case of periodic LWAs, it is highly important to properly design the structure 

considering conditions such as the previous one. In this way, the overlap between 

the radiating space harmonic and the rest of them is avoided, and it is assured that 

no energy will be leaked to undesired angles.  

 

Fig. 3.1.17 CRLH microstrip line. 

The fundamental harmonic of a LWA may also present a negative phase 

constant if it propagates along a media with simultaneously negative permittivity 
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and permeability (ε < 0 and μ < 0, first described in [Veselago 1986]). This type of 

material is denoted as “Left-Handed” (LH), due to the fact that the electric field, 

magnetic field, and phase vectors build a left-handed triad, instead of the regular 

right-handed ("RH") one which materials in nature present. This LH materials are 

not readily available in nature, but effectively homogenous structures composed of 

a combination of discrete unit cells (whose size is much smaller than the guided 

wavelength at the frequencies of interest) were firstly proposed in [Caloz 2005] 

and [Eleftheriades 2005], been named Composite Right Left Handed (CRLH) 

materials or “metamaterials”. In contrast to the previous periodic structures 

which used the -1 space harmonic to radiate from backfire towards the endfire 

directions as a function of frequency, LWAs which employ CRLH media allow their 

fundamental guided mode to perform that scanning, including radiation at 

broadside [Liu 2002] from a single leaky-wave propagation. CRLH LWAs are based 

on the periodic loading of a host transmission line with series capacitances (Cs) 

and parallel inductances (Lp). Figure 3.1.16 shows the case of a CRLH microstrip 

LWA. Typical CRLH leaky guides are microstrip lines [Liu 2002], [Lim 2004], 

coplanar waveguides [Grbic 2002], coplanar striplines [Antoniades 2008]... These 

concept may easily be extended in order to achieve a 2D CRLH LWAs [Oliner 

2007], [Caloz 2011], one interesting example is the metallo-dielectric surface of the 

mushroom-type [Sievenpiper 1999], [Sievenpiper 2002]. An example of the 

dispersion of the first mode in a CRLH microstrip LWA is shown in Fig. 3.1.18. In 

coherence with the previous explanation, the fundamental harmonic presents both 

a LH and RH regimes, in which it radiates to backward and forward directions, 

respectively (see Fig. 3.1.18). 
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Fig. 3.1.18 Dispersion in a microstrip CRLH LWA (substrate with permittivity εr). 

 

Fig. 3.1.19 Dispersion in a rectangular waveguide LWA (Fig. 11.3 in [Oliner 1993]). 

Finally, the particular case of the dispersion in empty guides is studied by 

means of the example of rectangular waveguides. The case of the LWA shown in 

Fig. 3.1.1(a) is now considered. In contrast to the previously considered quasi-TEM 

lines, the fundamental mode in this waveguides is already dynamic. Figure 3.1.18 

shows the dispersion diagrams of the fundamental mode in generic empty and 

dielectric-filled rectangular LWAs. As Fig. 3.1.19 shows, when the waveguide is air-

filled, as the frequency is increased the normalized phase constant tends to one, 

but never reaching this value. Therefore, it can be concluded that in LWAs based in 

a conventional empty waveguide, the leaky wave never reaches the surface wave 

regime.   
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3.1.4 LWA radiation mechanisms 

Depending on the application, the technology and the source polarization, 

LWAs are based on different radiation mechanisms. The main ones are now 

described, considering the case of 1D LWAs based on one-dimensional cavities 

perturbed on one side. Four types can be distinguished: radiation by asymmetry, 

proximity, periodicity and transparency. Some of them can also be found in 2D 

LWAs. 

(a)  

(b)  

Fig. 3.1.20 Groove waveguide and printed-circuit stub-loaded waveguide fed by a 

vertical electric field. (a) Symmetric ,(b) asymmetric structure. (Fig. 3.16 in [Gómez 

2005-II]). 

As it is explained in [Schwering 1988] and [Oliner 1993], open waveguides 

fed by a source which electric field is aligned with the long Parallel Plate 

Waveguide (PPW) that connects the cavity with the radiating aperture (such as the 

ones shown in Fig. 3.1.20(a)) are normally non radiative. This is due to the fact that 

the modes generated are confined inside the cavity and do not propagate along the 

PPW towards the radiating aperture. However, by adding any asymmetric 

perturbation, radiation can be produced thanks to the horizontal electric field 

induced between the parallel plates (as Fig. 3.1.20(b) shows). Thus, in this case, 

leakage is controlled by the degree of asymmetry of the structure. Many examples 

of LWAs which radiate by asymmetry can be found in the literature. Hollow 
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waveguides designs were proposed in the form of groove guides [Lampariello 

1985, 1987], [Ma 1987], slitted asymmetric ridge waveguides [Frezza 1994], stub 

loaded rectangular waveguides [Lampariello 1998] and stepped rectangular 

waveguides [Di Nallo 1995]. Examples of LWAs which use non-radiative dielectric 

guide (NRD) technology can also be found in [Oliner 1985], [Malherbe 1988], [Ma 

1993], [Xu 1998], [Lee 2000]. More recently, radiation by asymmetry in hybrid 

technology was proposed in [Gómez 2005-II], where waveguides were combined 

with printed circuits. 

In the previous cases, radiation by proximity can be produced (in the 

absence of asymmetry) if the parallel plates that connect the antenna cavity with 

the radiating aperture are short enough. The structure of Fig. 3.1.21 is an example 

of how a NRD guide can produce radiation without asymmetry, showing that 

leakage can be controlled by distance d. When d is small, the fields have not 

decayed to negligible values at the upper radiating end, and, therefore, some 

power is induced in the radiating aperture and it is leaked away. Some interesting 

examples of this mechanism can be found in [Yoneyama 1981], [Sánchez 1987], 

[Gómez 2005-II and 2008]. 

 

            

Fig. 3.1.21 Scheme of NRD waveguide where the leakage is controlled by distance 

d. (Fig. 4 in [Yoneyama 1981] and Fig. 2(a) in [Sánchez 1987]). 

If the waveguide is fed by a horizontal electric field (perpendicular to the 

PPW) no asymmetry or proximity is needed for radiation to be produced. In this 

case, if the antenna is periodic (the value of the period is greater or comparable to 
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the wavelength) and the radiation is originated by the n=-1 Floquet harmonic, it is 

said that radiation is produced by periodicity. Two examples are depicted in Fig. 

3.1.22, a dielectric grating LWA proposed in [Schwering 1983] and metal-strip-

loaded inset LWA proposed in [Guglielmi 1991]. In these antennas, the leakage is 

not controlled by the value of the periodicity, but by the length of the perturbation 

inside a period (variable Q/P in Fig. 3.1.22). An early and interesting example 

where the radiation is produced by a sinusoidal periodicity can be found in [Oliner 

1959]. 

 

(a)                                                              (b) 

Fig. 3.1.22 (a)Dielectric grating LWA (Fig. 12 in [Schwering 1983]. (b)Metal-strip-

loaded dielectric inset LWA (Fig. 1 in [Guglielmi 1991]). 

 

A different scenario is found when the electric field is perpendicular to the 

PPW but the perturbation in the waveguide is uniform or quasi-uniform (value of 

the periodicity much smaller than the wavelength). In this case, the fundamental 

mode is responsible for radiation and it is produced due to the transparency of 

the radiating aperture. The perturbed face of the waveguide that allows leakage 

can also be named as Partially Reflective Surface (PRS) due to its capability to 

control, with its reflectivity, the amount of energy which is leaked to free space. A 

clear example of these antennas is the slitted LWA proposed in [Hansen 1940], 

which was depicted in Fig. 3.1.1(a). The LWAs studied in this dissertation base 

their radiation in the transparency of a PRS, as it will be explained in the next 

section. 



 

 
 

 

 

 

 

 

 

3.2 Description and analysis of novel 1D FP LWA 

In this section it is proposed an original one-dimensional (1D) LWA which 

configuration is shown in Fig. 3.2.1(a), together with its main geometrical 

parameters. As it can be seen, the structure consists of a cavity backed parallel-

plate waveguide (PPW) which is loaded with two printed circuit boards (PCBs) 

separated by distance H. Each PCB is formed from a periodic array of metallic 

dipoles. The cavity height H determines the operating frequency of the antenna; as 

in this case H = 11 mm, the antenna will operate around 15 GHz, which satisfies the 

resonance condition of the cavity:               [Trentini 1956]. The top 

PCB acts as a Partially Reflective Surface (PRS, [Trentini 1956]); with its 

transparency it controls de amount of energy which is leaked from the cavity to 

free space. Therefore, the PRS allows the modes of the cavity become leaky-waves, 

and determines the amount of energy that reaches the top aperture of the LWA. A 

metal-backed dipole-based FSS has been placed at the bottom of the antenna, 

acting as a High Impedance Surface (HIS). In this 1D LWA, the HIS strongly 

affects the dispersion of the leaky modes that propagate through the cavity. 

This type of antennas is often referred to as Fabry-Perot (FP) cavity LWA 

due to its analogy with optical resonant cavities. The electromagnetic waves that 

arise from the feeding point are bounced back and forth between the two sheets, 

becoming leaky-modes of the guiding structure. Thus, highly directive radiation 

patterns are provided from a single low-directive source embedded inside the FP 
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cavity. This makes FP LWAs become a very attractive solution when compared to 

externally fed antenna systems (such as reflector, lenses or reflectarrays), and also 

when compared to arrays, which need much more complicated feeding networks. 

Two-dimensional PRS cavities were firstly introduced by von Trentini [Trentini 

1956], and more recently, it was proposed to replace the bottom metallic screen by 

a High Impedance Surface (HIS) to reduce the cavity height [Feresidis 2001 and 

2005]. An excellent review on these antennas can be found in [Jackson 2011]. 

 

(a)                                                              (b) 

Fig. 3.2.1 (a) Configuration of the proposed 1D FP LWA (b) Transverse Equivalent 

Network of the structure (a = H = 11 mm, S = 5 mm, D = 1.13 mm, єr = 2.2, LPRS = 9 

mm, LHIS = 9 mm, P = 1.5 mm, Q = 0.5 mm). 

A careful study of the natural modes in the LWA has been performed using a 

specific full-wave Method of Moments technique [Gómez 2006-II]. The leaky-mode 

dispersion results for the case LPRS = LHIS = 10 mm are plotted in Fig. 3.2.2. From 

this study, it can be concluded that three different modes are present in the 

present structure: the horizontally polarized channel-guide mode supported by the 

PPW (mode 1 in Fig. 3.2.2), and the perturbed horizontal TE01 and vertical TE10 

modes of the cavity (modes 2 and 3 in Fig. 3.2.2). In the operating band (15 GHz), 

only modes 2 and 3 are in the fast-wave regime, while mode 1 is a nonradiative 

slow-wave [Oliner 1993]. Due to the symmetry of the structure, the vertically 

polarized mode 3 does not leak power to free space [Gómez 2006-II]. Also, single 

mode operation is assured by using a horizontally polarized feeding, as it is 
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explained at the end of this section. As a result, the proposed LWA operates with 

the perturbed TE10 leaky-mode (directed along the x axis in Fig. 3.2.1) in the 

operating frequency band. The elevation radiation angle θRAD is defined in the H-

plane (zy plane in Fig. 3.2.1) and it is measured with respect to the z-axis. Thus, the 

dispersion characteristics are calculated considering TE polarization in the zy 

plane. 

(a)  

(b)  

Fig. 3.2.2. (a) Dispersion of natural modes in the LWA (LPRS = LHIS = 10 mm)   (b) 

Transverse electric fields in the cross-section of the LWA for each mode. 

The dispersion of the TE01 leaky-mode in this 1D LWA can be analyzed with 

the software tool developed in the frame of this dissertation, and explained in 

Section 2.3. The proposed tool is based on the LWA Transverse Equivalent 

Network (TEN) shown in Fig. 1(b). As it is explained in Section 2.3, the complex 

propagation constant ky (3.1.1) is obtained by solving the following Transverse 

Resonance Equation (TRE) associated to the TEN: 
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In the TEN, the PRS and HIS printed circuits are modeled by equivalent 

admittances, YPRS(f, ky, LPRS) and YHIS(f, ky, LHIS), which can be obtained employing 

pole-zero expansions, as described in Section 2.3. This enables one to efficiently 

obtain the dispersion curves of the TE leaky-mode as a function of frequency and 

the length of the PRS and HIS dipoles [LPRS and LHIS, see Fig. 1(a)]. In the next 

subsections, the effect of LPRS and LHIS on the pointing angle θRAD and normalized 

radiation rate αy/k0 is studied. All the leaky-wave dispersion results are obtained 

from this simple TEN, and they are validated with a Finite Element Method (FEM) 

full-wave simulator [HFSS 2011].  
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3.2.1 Effect of the top PRS dipole length (LPRS) 

The transparency of the PRS determines the amount of energy that reaches 

the top aperture of the LWA, thus controlling the leakage rate. Figure 3.2.3 shows 

the leaky-mode frequency dispersion curves for different lengths of the PRS 

dipoles (the other dimensions of the LWA are summarized in the caption of Fig. 

3.2.1). From Fig. 3.2.3, it is observed that LPRS has a minimal effect on the pointing 

angle dispersion curves (θRAD), but it has a strong influence on the leay-mode 

normalized leakage curves (αy/k0). It is also shown that the analytical results agree 

well with the simulated ones using FEM shown in circles in the figure.  

 
Fig. 3.2.3. Leaky-mode frequency dispersion curves for the LWA in Fig. 3.2.1 for 

different values of LPRS (LHIS = 9 mm) 

At this point, it is worth noting that the frequency dispersion curves 

associated to this structure, which are of the form of the ones shown in Fig. 3.2.3, 

might seem unconventional at first sight. Figure 3.2.4(a) shows the well-known 

dispersion diagram of a conventional LWA, which can be compared to Fig. 3.2.4(b) 

which shows one particular case of our 1D PRS-HIS-LWA (LPRS = 10 mm and LHIS = 

9 mm). As Fig. 3.2.4(b) shows, the cutoff frequency is located at 13.1GHz (βy=αy); as 

the frequency increases, the phase constant (βy) increases and the leakage rate (αy) 

decreases (this is equal to the conventional behavior due to the inherent 

dispersion nature of leaky-waves [Oliner 1993]).  



134 Chapter 3: Analysis and design of uniform double-layer FP LWA 

 

 

 

    (a)                                                                      (b) 

Fig. 3.2.4. Dispersion curves of (a) conventional LWA (b) 1D PRS HIS LWA 

(LPRS = 10 mm and LHIS =9 mm). 

The peculiar behavior of this LWA is found near 20 GHz, where the 

radiation rate becomes zero (αy = 0), although the bounded regime hasn’t been 

reached yet (it can be seen that βy/k0 < 1 and the pointing angle θRAD = asin(βy/k0) < 

90o). For higher frequencies, the radiation rate increases for a while up to 30GHz. 

From 30 GHz αy starts decreasing again until it becomes zero when βy/k0 = 1 (as it 

happens in the conventional case of Fig. 3.2.4(a), due to the approaching of the 

bounded region). It is important to highlight that the “same” leaky wave (same βy 

and same αy) is never found at two different frequencies. However, several leaky-

mode solutions with the same radiation rate αy but different phase constant βy can 

exist, for example at 13.5 GHz, 27 GHz and 36GHz in Fig. 3.2.4(b).  

The physics underlying this non conventional behavior of the radiation rate 

is related to the resonant nature of the top partially reflective surface (PRS). In 

particular, the null radiation frequency is found when the dipoles at the PRS 

resonate. This feature is illustrated in Fig. 3.2.5, where four different 

configurations of the proposed LWA (LPRS = 4, 6, 8 and 10 mm, with LHIS = 9 mm) 

have been analyzed. In addition, the 1D LWA has also been analyzed replacing the 

dipoles in the top PRS by a metallic plate (PEC) (with LHIS = 9 mm). Figure 3.2.5(a) 

shows the reflection coefficient under the PRS (ρPRS, see Fig. 3.2.1(a)) associated to 

cutoff 

cutoff 

βy/k0 

αy/k0 
βy/k0 

αy/k0 
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each of the studied configurations, while Fig. 3.2.5(b) shows the frequency 

dispersion diagram. When the dipoles in the PRS resonate, this surface behaves as 

a PEC and |ρPRS| = 1. Therefore, for each of the studied cases the resonant 

frequency is located at the point in which their curves of ρPRS match the red curve 

in Fig. 3.2.5 (and thus, |ρPRS| =1 is satisfied). Consequently, at these exact 

frequencies, the βy/k0 curves associated to each case match the red curve in Fig. 

3.2.5, and αy = 0.  

 

 (a)                                                                 (b) 

Fig. 3.2.5. Dispersion curves of (a) conventional LWA (b) 1D PRS HIS LWA  

(LPRS = 10 mm and LHIS  = 9 mm). 

Therefore, it can be concluded that the PRS dipoles strongly affect the 

leakage rate of the modes in the proposed LWA. Thus, this feature can be applied 

to the control of the radiation rate of the LWA for a given design frequency. At a 

fixed frequency and according to the bouncing ray model for waveguide 

propagation [Pozar 2005], the PRS reflectivity experienced by the incident wave 

[ρPRS in Fig. 3.2.1(b)] is a function of the length of its resonant dipoles (LPRS) 

[Feresidis 2001], as shown in Fig. 3.2.6(a) where the frequency is chosen as 15 

GHz. The leaky-mode dispersion curves with LPRS at 15 GHz are shown in Fig. 

3.2.6(b). As can be seen in Fig. 3.2.6, the PRS dipoles resonate when LPRS = 11 mm, 

being approximately half a wavelength at 15 GHz. At this length, the PRS behaves 

as a totally reflective sheet (|ρPRS = 1|), a FSS resonance occurs [Goussetis 2006-I] 

βy/k0 

αy/k0 
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and the leakage rate vanishes (αy/k0 = 0). When LPRS is decreased from 11 mm, the 

PRS becomes more transparent to the incident wave, thus leading to a progressive 

increase of the radiation rate. 

(a)  

(b)  

Fig. 3.2.6. Leaky-mode frequency dispersion curves for the LWA in Fig. 3.2.1 for 

different values of LPRS (LHIS = 9 mm). 

 

This phenomenon is also illustrated in Fig. 3.2.7, where the leaky-mode 

electric field inside the LWA is plotted for different values of LPRS. It is seen that as 

LPRS is reduced from 11 mm, more energy illuminates the top aperture of the 

antenna, thus increasing the leakage level. Consequently, the possibility of 

controlling the radiation rate by varying the PRS dipoles length is verified. Yet, 

when LPRS is varied, a second order effect occurs: the pointing angle θRAD is also 

FSS resonance  
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altered to some extent as shown in Fig. 3.2.6(b). This deviation is due to the 

dependence of θRAD on the phase of ρPRS, which also varies with LPRS as illustrated in 

Fig. 3.2.6(a). This issue is addressed in the next sub-section. 

(a)  

(b)  

Fig. 3.2.7. Near electric field in the LWA of Fig. 3.2.1 at 15GHz (a) in the transverse 

plane (xz), obtained from the TEN (b) in the longitudinal plane (yz) obtained from 

a FEM-based tool [HFSS 2011]. 
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3.2.2 Effect of the bottom HIS dipoles length (LHIS) 

As previously mentioned, the bottom of the antenna is loaded with a HIS, 

which consists of a metal-backed dipole-based FSS. One of the first studies about 

these electromagnetic surfaces can be found in [Sievenpiper 1999], where it is 

explained that a HIS presents the interesting feature of exhibiting a variable input 

impedance. This is equivalent to say that the waves that impinge on a HIS can 

experience a variable reflection phase. In particular, this impedance varies with 

frequency, the angle of incidence and also with the geometry of the scatterers. In 

particular, it is said that the HIS is resonating when it presents a reflection phase of 

zero degrees, behaving as an Artificial Magnetic Conductor (AMC). This artificial 

surfaces are often employed for miniaturizing waveguides, due to the fact that they 

can modify the effective height of the cavity [Feresidis 2005], [Goussetis 2006-I]. In 

particular, in the 1D LWA under study, the HIS modifies the effective height of the 

resonant Fabry-Perot cavity formed by the two PCBs and therefore, it strongly 

affects the frequency dispersion curves of the TE01 leaky-mode, thus providing the 

control over the pointing angle at a fixed frequency. In a bouncing ray model for 

waveguide propagation, the length of the HIS dipoles (LHIS), determines the 

reflection phase experienced by the waves propagating inside the waveguide 

[Feresidis 2005]. Figure 3.2.8(a) and (b) show respectively how LHIS affects the 

LWA pointing angle and radiation rate, shifting the cutoff frequency from 11 GHz 

to 15 GHz. For a fixed frequency, the pointing angle is increased and the leakage 

rate is reduced when the cutoff frequency is decreased (higher effective cavities) 

[Oliner 1993]. Figure 3.2.8(c) shows the modes dispersion curves with LHIS at the 

operation frequency of 15 GHz. In this figure it is clear that by changing LHIS it is 

possible to scan the pointing angle in a wide range. 

At this point it worth noting an interest effect that the HIS causes in the 

dispersion of the leaky modes that propagate along the cavity. As it was explained 

in Section 3.1.3, leaky modes in empty rectangular waveguides do not reach the 

surface wave regime (βy/k0). However, waveguides can be loaded with engineered 

surfaces to produce unusual dispersion characteristics [Collin 2000]. For example, 

in [Yang 1999] a photonic bandgap structure created a quasi-TEM waveguide 

when inserted inside a metallic rectangular waveguide. Another interesting 
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example can be found in [Marqués 2002], where left handed propagation inside a 

waveguide at cutoff was allowed by loading it with split rings. In the case of the 1D 

LWA under study, the HIS allows the leaky modes reach the surface wave regime 

inside the empty waveguide, as it can be seen in Fig. 3.2.8(a). 

(a)         

(b)       

(c)  

Fig. 3.2.8. Leaky-mode dispersion curves of the LWA in Fig. 3.2.1(a) for different 

values of LHIS (LPRS = 9 mm) (a),(b) Dispersion with frequency (c) Dispersion with 

LHIS at 15 GHz. 
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In order to understand this effect, Fig. 3.2.9(a) shows the variation of the 

reflection phase seen by an incoming plane-wave at the HIS interface [θHIS in Fig. 

3.2.1(b)] with LHIS at 15 GHz, while Fig. 3.2.9(b) illustrates the near field patterns 

inside the LWA. When LHIS = 11 mm (approximately half a wavelength at 15 GHz), a 

FSS resonance occurs and the HIS behaves as a Perfect Electric Conductor (PEC) 

[19] [θHIS = -180º in Fig. 3.2.9(a)], providing a given pointing angle of θRAD = 30º 

[see Fig. 3.2.8(b)]. As LHIS is reduced, θHIS increases, producing a smaller effective 

resonant cavity [see LHIS = 7 mm in Fig. 3.2.9 (b)], and reducing θRAD close to 

broadside [θRAD  0  for LHIS = 7 mm in Fig. 3.2.8(b)]. Maximum pointing angle at 

endfire (θRAD  90 ) is reached for LHIS = 6.1 mm in Fig. 3.2.8(b). When LHIS = 6mm, 

the HIS provides a Perfect Magnetic Conductor (PMC) resonance [19] [θHIS = 0º in 

Fig. 3.2.9(a)]. In this case, the electric field is maximum at the HIS interface [see LHIS 

= 6 mm in Fig. 3.2.9(b)], producing an effective cavity of double height and pointing 

angle of θRAD  70 . Further decrease of LHIS continues increasing θHIS and reduces 

both the effective cavity height and the correspondent pointing angle θRAD [see LHIS 

= 5.5 mm and 4 mm in Fig. 3.2.8(b) and Fig. 3.2.9].  

The effect of LHIS in βy can be equivalently observed in Fig. 3.2.10, where it is 

plotted the near field in the longitudinal plane of the LWA. The distance between 

two consecutive field nulls in the y axis corresponds to λy/2, which is related to the 

longitudinal wavenumber of the leaky wave: βy= 2π/λy . Therefore, taking into 

account the relation between θRAD and βy (3.1.4), the evolution of βy with LHIS 

observed in Fig. 3.2.10 is coherent with the previous discussion. Therefore, one 

concludes that the pointing angle of the proposed LWA can be tuned by changing 

the length of the dipoles in the HIS.  
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(a)  

(b)  

Fig. 3.2.9. Effect of LHIS at 15 GHz (LPRS = 9 mm). (a) Reflection phase seen by the 

incident leaky-wave at the HIS. (b) Near electric field in the transverse plane of the 

LWA in Fig. 3.2.1 obtained from the TEN at 15 GHz 

 

Fig. 3.2.10. Near electric field in the longitudinal plane of the LWA in Fig. 3.2.1 

obtained from FEM-based tool [HFSS 2011] at 15 GHz (LPRS = 9 mm). 

The modification of the pointing angle also involves the inherent inverse 

variation in the leaky-mode radiation rate shown in Fig. 3.2.8. It is well known 

[Oliner 1993] that, as the pointing angle of a leaky-wave is increased, the 

associated leakage rate decreases. This fact is illustrated in the ray picture of Fig. 
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3.2.11, where it can be easily understood that higher radiation rates are naturally 

associated to lower radiation angles because the leaky wave reaches the top 

radiating surface more times per unit length. 

 

Fig. 3.2.11. General relation between the pointing angle and radiation rate of a 

leaky-wave. 
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3.2.3 Feeding and matching of the antenna 

The previous results have been obtained considering an ideal feeding of the 

TE01 mode of the cavity created between the PRS and the HIS (see Fig. 3.2.1), and 

perfect matching at the input and output ports of the LWA. With the perspective of 

manufacturing the proposed 1D PRS-HIS LWAs, the goal in this section is to design 

a real feeding device which is capable of exciting the TE01 mode of the antenna 

cavity at the input port. This same device will be connected to the output port 

serving as a matched load which will absorb the remaining not-radiated energy 

which reaches the end of the LWA, thus, avoiding reflected radiated lobes [Oliner 

1993]. Fig. 3.2.12(a) shows the scheme of this feeding/terminating circuit, which 

consists of a conventional metallic rectangular cavity with a coaxial probe. A tuning 

screw is also added to the feeding network in order to improve and readjust the 

matching. A couple of pictures of the fabricated device are shown in Fig. 3.2.12(b). 

 

(a)  

(b)  

Fig. 3.2.12. Designed coaxial-to-waveguide transition. (a) Scheme. (b) 

manufactured. 
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The design of this coaxial-to-waveguide transition has been performed with 

a FEM-based commercial software tool [HFSS 2011], pursuing a value of the S11 

parameter below -15 dB at the operation frequency (15 GHz, λ0 = 20 mm), and 

below -10 dB at the frequency band [14 GHz – 16 GHz]. With this purpose, a 

parametric study of the size and the position of the probe and the screw is 

performed (named as PRx, PRy, SCx and SCy in Fig. 3.2.12(a)). The first study was 

performed without the screw, varying the position of the coaxial probe in the y axis 

(PRy) across the range λ0/4 ± λ0/8; the S11 parameter obtained is shown in Fig. 

3.2.13(a). As this figure shows, the best results are obtained when the probe is 

positioned at 6.5 mm, providing a value of -4.3 dB for S11 at 15 GHz. Once PRy is 

fixed to 6.5 mm, the study is next focused on the length of the probe which is 

inserted into the cavity (PRx); Fig. 3.2.13(b) shows the values of S11 parameter 

obtained when this parameter is varied between λ0/  and λ0/2. A notable matching 

improvement is observed when PRx = 3.75 mm, obtaining the pursued value of S11 

< -15 dB in the frequency band [14 GHz – 16 GHz]. 

 

(a)                                                                 (b) 

Fig. 3.2.13 S11 parameter of the coaxial-to-waveguide transition without screw (a) 

Varying the position of the probe in the y axis, PRy. (b) Varying the length of the 

probe, PRx. 

Although the requirements of the device are already met without the screw 

(as it can be seen in Fig. 3.2.13(b)), this latter element is added in order to improve 

the matching at 15GHz. The length of the screw, SCx is fixed to λ0/4, and its position 
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in the y axis, SCy, is swept between λ0/4 y λ0/2 with respect to the probe; the 

obtained S11 parameter is shown in Fig. 3.2.14(a). Once more, it is chosen the value 

which provides the lower value of S11, in this case SCy = 7.5 mm. The resulting S 

parameters of the final designed device are shown in Fig. 3.2.14(b); at the 

operation frequency (15 GHz) the obtained matching is fairly good (S11 = -32.37 dB 

and S21 = -0.04 dB). A summary of the resulting dimensions of the transition is 

shown in Table 3.2.1.  

 

(a)                                                                 (b) 

Fig. 3.2.14. S11 parameter of the coaxial-to-waveguide transition with screw (a) 

varying the position of the screw in the y axis (PRy), (b) final  

 

 

Table. 3.2.1. Dimensions of the designed coaxial-to-waveguide transition. 

 Dimensions of the transition in Fig. 3.2.12 
(f=15GHz, λ0=20mm) 

a (waveguide width, see Fig. 3.2.1) 11mm 
H (waveguide height, see Fig. 3.2.1) 11mm 
Probe position x axis (PRx) 3.75 mm 
Probe position y axis (PRy) 6.5mm(λ0/4) 
Probe position z axis 5.5mm(H/2) 
Screw position x axis (SCx) 2.5mm(λ0/4) 
Screw position y axis (SCy) 14mm 
Screw position z axis 5.5mm(H/2) 
Coaxial, inner conductor radio 0.51mm 
Coaxial, outer conductor radio 2.18mm 
Coaxial, dielectric radio 1.68mm 
Screw diameter 0.3mm 
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The electric field generated inside the transition is shown in Fig. 3.2.15(a), 

where it can be clearly seen that it is efficiently excited the TE01 mode of a cavity of 

dimensions H x a (which are the dimensions of the cavity created between the PRS 

and the HIS, see Fig. 3.2.1). The electric field at the end of the transition is linearly 

polarized along the x axis, as desired. The scheme of the complete structure (the 

LWA with one transition at the input and another one at the output port) is shown 

in Fig. 3.2.15(b). 

(a)  

(b)  

Fig. 3.2.15. (a) Simulated feeding device, generating the TE01 mode of the cavity. 

(b) Scheme of the complete structure.  

As it was explained along this section, because of the boundary conditions 

presented by the PRS and the HIS, the leaky mode that propagates along the 

antenna is not exactly the TE01 mode of the physical H x a cavity. In particular, as it 

was shown in Fig. 3.2.9(b), the HIS strongly perturbs the cavity mode, and it can be 

equivalently appreciated by studying the wavelength of the propagating mode in 

the transverse plane (λz, Fig. 3.2.16). The metallic cavity of the feeding/matching 
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device provides a TE01 mode with λz = 2H, marked with a red line in Fig. 3.2.16. 

However, the value of λz inside the antenna radiating cavity may strongly differ 

from the previous value, depending on the value of LHIS, as Fig. 3.2.16 shows.  

 

Fig. 3.2.16. Transverse wavenumber λz as a function of LHIS at 15 GHz (LPRS = 9mm).  

Therefore, there may appear an undesired discontinuity in the connection 

between the feeding device and the antenna cavity. In order to improve this 

matching, a tapered transition [Gómez 2005-I] has been added at the bottom 

printed circuit, before and after the HIS, as depicted in Fig. 3.2.17. With this taper, 

the transition between the wavenumber of the feeding cavity and the one in the 

antenna will be smoother. It should be highlighted that, in order to prevent 

radiation from these tapered transitions, they are covered by metallic plates which 

are printed over the top PCB (located before and after the PRS), as it has been 

marked in Fig. 3.2.17. In order to efficiently change the value of λz, two types of 

matching can be applied, depending on the LWA associated value of LHIS. In 

particular, if LHIS corresponds to the green/black curve of Fig. 3.2.16, the taper 

applied will be of “increasing”/”decreasing” type. The tapered transition is named 

as “decreasing” (Fig. 3.2.17(a)), when the length of its dipoles starts being equal to 

a (11 mm), and then decreases linearly until it reaches the designed value of LHIS. If, 

as shown in Fig. 3.2.17(b), the length of the dipoles in the transition starts being 

equal to 1 mm, and then increases until it reaches the value of LHIS, the transition is 

named as “increasing”. For example, considering a LWA design with LHIS =7 mm, 

the applied transition will be of decreasing type. Thus, as depicted in Fig. 3.2.18(a), 
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the length of the dipoles in the HIS transition will decrease from 11 mm to 7mm, 

modulating the value of λz following the black curve in Fig. 3.2.16. This transition 

will smoothly decrease the transverse wavenumber provided by the feeding (λz ≈ 

2H) into the one that is propagating inside the radiating cavity (λz ≈ 3H/2, see Fig. 

3.2.16). This scenario is depicted in Fig. 3.2.18, where it can also be seen a picture 

of the manufactured PCBs. The decreasing taper transition would be applied, for 

example, in the case of a LWA design with LHIS = 6 mm. The printed dipoles in the 

matching transition would increase from 1 mm to 6 mm, modifying λz accordingly 

following the green curve in Fig. 3.2.16. In particular, λz would be increased from 

approximately λz ≈ 2H (provided by the feeding) to λz ≈ 3H (propagating inside the 

radiating cavity, see Fig. 3.2.16). A picture of the manufactured PCBs which 

corresponds to this LWA is shown in Fig. 3.2.19. 

(a)  

(b)  
Fig. 3.2.17. Scheme of the whole structure with the matching transitions in the HIS.  
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(a)  

 

(b)  

Fig. 3.2.1 . PCBs for a designed LWA with “decreasing” transition (LPRS = 9 mm and 

LHIS = 7 mm) (a) Scheme (b) Manufactured. 
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Fig. 3.2.19. Manufactured PCBs for a designed LWA with “increasing” transition 

(LPRS = 4 mm and LHIS = 6 mm). 



 

 
 

 

 

 

 

 

 

3.3 Control of the pointing angle and beamwidth in 1D 

FP LWA 

In the previous sections it has been demonstrated that changing the lengths 

of the printed dipoles of the PRS and the HIS allows the flexible variation of the 

leakage rate (αy) and the phase constant (βy) of the leaky-mode which propagates 

in the proposed 1D LWA. The independent control of these two parameters is of 

key importance for the synthesis and the flexible adjustment of the radiation 

pattern of a practical LWA. In this section we demonstrate that it is possible to 

independently and simultaneously vary βy and αy in the proposed 1D-PRS-HIS 

LWA. Experimental results of fabricated prototypes operating at 15 GHz are also 

reported to demonstrate this result. 

The synthesis of a LWA consists in the selection of the antenna geometry (in 

our case, LPRS and LHIS) which provides the desired radiation pattern specifications: 

pointing angle θRAD, 3dB beamwidth Δθ, and radiation efficiency ηRAD. All these 

parameters can be related to the LWA length LA and the leaky-mode complex 

wavenumber (ky=βy-jαy) considering the following well known equations: 
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As an example, seven LWAs with independent values of the pointing angle 

θRAD and beamwidth Δθ, all of them presenting radiation efficiency ηRAD = 90%, are 

designed in this section as shown in Table 3.3.1. Four of these antennas point at a 

fixed angle θRAD = 20  while having different beamwidths Δθ from 25  to 5  (LWA1, 

LWA2, LWA3 and LWA4 in Table 3.3.1). Another set of four antennas have fixed 3 

dB beamwidth Δθ = 10  and scan at different angles θRAD from 5  to 60  (LWA5, 

LWA3, LWA6 and LWA7 in Table 3.3.1). From each set of values of θRAD, Δθ and ηRAD, 

the corresponding values of αy/k0 and LA can be extracted using (3.3.1)-(3.3.3), as 

summarized in Table 3.3.1. 

 

Table 3.3.1. Electrical and geometrical parameters of the LWAs designed at 15 GHz. 

The last step in the synthesis procedure involves the extraction of the pair 

of values LPRS and LHIS which provide the desired values of θRAD and αy/k0. For this 

purpose, a two-dimensional dispersion map similar to those used in [Gómez 2005-

III and 2006-III] is obtained and shown in Fig. 3.3.1. LPRS and LHIS are 

simultaneously varied so that the functions θRAD(LPRS, LHIS) and αy/k0(LPRS, LHIS) are 

numerically obtained from the TEN. The required LPRS and LHIS for any pair of θRAD 

and αy/k0 can then be extracted from this dispersion map, where the contour 

curves of constant θRAD and constant αy/k0 are plotted as continuous lines and 

dashed lines in Fig. 3.3.1, respectively. Figure 3.3.1 also shows that θRAD and αy are 

correlated in this antenna, so that in order to maintain θRAD constant and vary αy/k0 

ηRAD=90% θRAD Δθ αy/k0 LA (mm) LPRS (mm) LHIS (mm) 

LWA 1 20º 25º 0.08 47 7.58 8.06 

LWA 2 20º 15º 0.05 75.5 8.3 7.64 

LWA 3 20º 10º 0.034 111.5 8.75 7.42 

LWA 4 20º 5º 0.017 221 9.64 7.19 

LWA 5 5º 10º 0.0198 108.5 10.9 6.63 

LWA 6 40º 10º 0.028 132.5 7.48 4.5 

LWA 7 60º 10º 0.0215 180.5 5.79 5.84 
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(or vice versa), it is necessary to simultaneous vary LPRS and LHIS. It must be noticed 

that the use of an efficient leaky-mode analysis technique is of essential 

importance to efficiently compute the 2D dispersion data shown in Fig. 3.3.1. As 

demonstrated in [Gómez 2005-III], the computational cost is dramatically reduced 

when the proposed TEN is employed, compared to the use of generic commercial 

full-wave simulators.  

 

 

Fig. 3.3.1. 2D contour curve plots of θRAD and αy/k0 obtained at 15 GHz. 

The dipole lengths LPRS and LHIS for each of the seven LWA designs were 

extracted using the described design procedure, resulting in the values 

summarized in Table 3.3.1. The rest of dimensions of the LWA are kept fixed to the 

values given in the caption of Fig. 3.2.1. In this way, no modification of the host 

waveguide structure is required, and standard photolithographic processes can be 

used to fabricate different PCB geometries that determine the LWA radiation 

features, as it is common in hybrid LWAs [Gómez 2005-I and 2006-III]. 
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The seven designed LWAs were fabricated from Taconic TLY-5-0450 

substrates. As can be seen in the photographs of Fig. 3.3.2, a single aluminum 

waveguide structure can be used to host all the PCB designs. The host waveguide is 

a cavity backed parallel-plate, which contains two pairs of slots to position the PRS 

and the HIS PCBs at the appropriate location. Two coaxial-to-waveguide 

transitions are used at the input and output of the LWA, to excite the TE01 mode of 

the resonant cavity and to match the antenna output, as can be seen in the 

photographs in Fig. 3.3.2 and Fig. 3.3.3(b). As described in Section 3.2, the feeding 

has been carefully designed to discard any direct radiation from the source, and 

discontinuities have been minimized to avoid diffraction. These facts ensure that 

the leaky mode is the main source of radiation from the antenna. The radiation 

pattern of the constructed prototype was measured in an anechoic chamber [see 

Fig. 3.3.3(a)] and also the S-parameters were measured using a vector network 

analyzer [see Fig. 3.3.3(b)]. 

 

 

Fig. 3.3.2. Photographs of the manufactured LWA prototype. 
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Transition 
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(a)  

(b)  

Fig. 3.3.3. Photographs of (a) Radiation pattern measurements (b) S-parameter 

measurements. 

 

The normalized radiation patterns of the four LWAs presenting a constant 

pointing angle at θRAD = 20  and different beamwidths Δθ at the design frequency of 

15 GHz, are plotted in Fig. 3.3.3. The theoretical radiation diagrams obtained from 

the corresponding leaky-mode propagation constant are compared to the 

measured results. Good agreement is observed between theory and 

measurements, showing the ability to control the beamwidth while keeping a 

constant pointing angle. 
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Fig. 3.3.3. Theoretical and measured normalized radiation patterns for the LWAs in 

Table I showing the control of the beamwidth Δθ. 

Figure 3.3.4 presents the theoretical and experimental radiation diagrams 

at 15GHz for the four LWAs with constant beamwidth Δθ = 10  and different scan 

angles θRAD. Again, good agreement is observed between leaky-mode theory and 

measurements, confirming the ability of the proposed LWA to control the pointing 

direction without affecting the directivity. It should be pointed out, however, that 

special care must be taken when radiation angles close to broadside θRAD = 0  or 

endfire θRAD = 90  are required. In the first case, the leaky-mode approaches the 

cut-off regime, decreasing both the efficiency and directivity of the antenna [Oliner 

1993]. This can be observed in Fig. 3.3.5 for the case of LWA5, where the 

beamwidth has increased for scan angle θRAD = 5 . The maximum scanning angle of 

Fabry-Perot antennas is limited by the appearance of higher-order modes [Zhao 

2005-I], which increase both the ripple and sidelobe levels of the radiation pattern, 

as can be seen in Fig. 3.3.5 for LWA7 (which points at θRAD = 60 ). This is a well-

known disadvantage of hollow LWAs compared to dielectric filled LWAs, which 
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can scan to higher angles [Oliner 1993]. Finally, Fig. 3.3.6 compares the theoretical 

and measured scan angle and beamwidth obtained for the seven LWAs designed in 

Table 3.3.1. As shown in Figs. 3.3.4 - 3.3.6, the agreement between the 

specifications and the obtained measurement results is very good. 

 

Fig. 3.3.5. Theoretical and measured normalized radiation patterns for the LWAs in 

Table I showing the control of the scan angle θRAD. 

The measured S-parameters of one of the fabricated LWAs (all the LWAs 

present similar S parameters) are shown in Fig. 3.3.7. As can be seen, good input 

matching (S11 < -15 dB) and a transmission level of S21  -11.5 dB is observed at the 

frequency of design (15 GHz). The ohmic losses were evaluated by measuring the 

waveguide under no radiation conditions (closing its top aperture), obtaining a 

transmission value of -1.5 dB. These S-parameter values approximately 

correspond to a radiation efficiency  = 90%, as was requested for all the designs. 

The advantage of working with a hollow waveguide is clear when comparing these 
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losses with the ones associated with the dielectric-filled LWA proposed in [Gómez 

2005-III and 2006-III]. In this case, the Teflon dielectric waveguide (єr = 2.2, tan = 

0.005 [2006-III]) working at 15 GHz and the same length would introduce 6 dB 

losses. From the experimental results shown in Figs. 3.3.4 - 3.3.6, it is seen that the 

proposed PRS-HIS 1D LWA technology allows synthesis of high-gain radiation 

patterns with flexible control of scanning angle and directivity, whilst keeping high 

radiation efficiency in all the designs. 

 

Fig. 3.3.6. Theoretical and measured scan angle and beamwidth for the LWAs 

designed in Table I. 

 
Fig. 3.3.7. Measured S-parameters of the LWAs.



 

 
 

 

 

 

 

 

 

3.4 Frequency scanning control in 1D FP LWA 

Whereas the previous sections were centered in characterizing the 

dispersion of the proposed 1D PRS-HIS-LWA at a certain frequency, here it is 

aimed the detailed analysis of its frequency behavior. In particular, this section 

illustrates how the HIS placed at the bottom of the proposed structure can enhance 

its frequency sensitivity. Experimental results on manufactured prototypes are 

reported at the end of this section, validating the proposed mechanism to improve 

the LWA frequency-scanning response. 

As it was explained in the introduction of this chapter, due to the dispersive 

nature of leaky waves, its complex propagation constant is frequency dependent 

and can be expressed in the following way: 

                                                                       

thus, the associated highly-directive main-beam elevation angle RAD can be 

frequency scanned according to the next relation: 

              
     

     
       

       

   
                                   

Frequency-beam scanning is a well-known property of leaky-wave antennas 

(LWAs) [Oliner 1993] with applications such as radar [Oliner 1993] or electrical 

prisms [Gupta 2009]. LWAs offer an attractive mechanism to frequency scan the 
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radiated beam of electrically large apertures by simply feeding a leaky-mode, thus 

avoiding more expensive feeding networks associated with array antennas. 

Frequency-scanned LWAs are also much simpler compared to electronically-

scanned phased-arrays, which scan the radiated beam at a fixed frequency [Hansen 

1998]. However, frequency scanned antennas may lead to higher front-end 

complexity due to the broader bandwidth needed to perform the scanning. 

Therefore, it is desirable to increase the antenna frequency sensitivity (i.e, how 

quickly the beam angle scans as the frequency is varied) in order to reduce the 

bandwidth of the circuitry associated with frequency-scanned LWAs. 

The frequency-scan behavior of LWAs depends on the dispersive response 

of the associated leaky-mode phase constant y(f), as stated by (3.4.2). Particularly, 

LWAs based on dielectric-filled waveguides [Gómez 2006-III] present higher 

frequency sensitivity and higher range of scanned angles [Oliner 1993] than LWAs 

based on hollow air-filled waveguides [Lampariello 1998] ,[Tsuji 2003]. For a 

rectangular waveguide of height H with relative permittivity r operating in the 

perturbed TE01 leaky-mode, and assuming small perturbation conditions, the 

lower and upper frequencies of operation for broadside (RAD = 0 ) and endfire 

(RAD = 90 ) scanning can be approximated by: 

           
  

  

 

   

                                                         

         
  

  

 

     
                                                      

As can be seen in (3.4.4), the bandwidth needed to scan from broadside to 

endfire is reduced as r is increased, while hollow waveguides (r = 1) would 

require very large bandwidths to approach angles close to endfire, thus limiting 

the scanning range in practice. On the other hand, dielectric-filled LWAs have 

higher losses associated with the dielectric medium and they suffer from higher 

changes in the beamwidth as frequency is varied [Oliner 1993]. For these reasons, 

it would be desirable to create a LWA based on a hollow waveguide to minimize 

the dielectric losses and beamwidth dispersion, but with increased frequency 

sensitivity to perform the scanning in the minimum bandwidth. With this main 
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objective in mind, the 1D PRS-HIS LWA is proposed, which is based on a hollow 

rectangular waveguide with its top narrow wall replaced by a Partially Reflective 

Surface (PRS) and a High Impedance Surface (HIS) in the bottom narrow wall, as 

illustrated in Fig. 3.4.1(b) and described in Section 3.2.  

 

(a)                                               (b)         . 

Fig. 3.4.1 (a) Hollow 1D PRS-LWA (b) 1D PRS-LWA loaded with HIS (a = H = 11 

mm, S = 5 mm, D = 1.13 mm, єr = 2.2, LPRS = 10 mm, LHIS = 9 mm, P = 1.5 mm, 

 Q = 0.5 mm). 

Figure 3.4.1(a) shows the scheme of a PRS-loaded LWA, which is based on a 

hollow rectangular waveguide with a metallodielectric PRS formed by printed 

dipoles. The highly-reflective PRS allows the propagation of a TE01-type leaky-

mode with a weak leakage rate, providing a large radiating length and therefore 

high directivity. The dispersion with frequency of this leaky-mode can be analyzed 

by using the TEN and software tool presented in Chapter 2. The dimensions of the 

structure to operate in the 15 GHz frequency band are also shown in Fig. 3.4.1. 

Figure 3.4.2 shows how the pointing angle of this LWA is scanned from RAD = 5  at 

13GHz to RAD = 65  at 26 GHz. If the waveguide is filled with a dielectric medium 

(for instance Teflon, with r = 2.2), and the cavity height H is decreased from 11 

mm to 9.5 mm in order to operate in a similar frequency band, a more sensitive 

scanning response is obtained, which is from RAD = 5  at 11 GHz to RAD = 90  at 15 

GHz, thus increasing the range of scanned angles up to endfire and reducing the 

bandwidth, in accordance with (3.4.3) and (3.4.4).  
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Fig. 3.4.2. Leaky-mode frequency dispersion of the LWA in Fig. 3.4.1(a), with and 

without dielectric filling.  

(a)  

(b)      . 

Fig. 3.4.3. (a) Leaky-mode frequency dispersion for the hollow LWA of Fig. 3.4.1(b) 

with different HIS dipoles length (b) Reflection phase presented by the HIS. 
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To avoid the use of dielectric and its associated losses, a metallodielectric 

HIS formed by a grounded array of printed dipoles is added at the bottom wall of 

the hollow leaky waveguide as shown in Fig. 3.4.1(b). The HIS strongly modifies 

the boundary conditions seen by the incident TE01-type mode (as described in the 

previous section). Particularly, the length of the HIS dipoles (LHIS in Fig. 3.4.1(b)) 

can be designed to create an Artificial Magnetic Conductor (AMC) condition which 

ultimately causes the leaky-mode to enter a surface-wave regime (y/k0>1), thus 

increasing the LWA frequency scanning sensitivity up to endfire. This fact is shown 

in Fig. 3.4.3(a), where theoretical leaky-mode frequency dispersion results 

obtained using the TEN are given for different illustrative scenarios (without HIS 

and with LHIS = 5 mm and LHIS = 5.5 mm). As shown in Fig. 3.4.3(a), the beam-

scanning curve becomes more sensitive to frequency change when the HIS is 

present. Moreover, by properly tuning the length of the HIS dipoles LHIS, one can 

increase this sensitivity further. To understand this effect, we adopt the bouncing 

plane wave interpretation for waveguide propagation [Goussetis 2006-I] and plot 

the reflection phase (HIS) experienced by the wave travelling along the leaky 

waveguide at the HIS plane. Figure 3.4.3(b) plots HIS versus frequency for the 

different scenarios of Fig. 3.4.3(a). In the absence of the HIS, the boundary 

condition at this plane corresponds to a metallic wall and the reflection phase has a 

constant value of +180  for all frequencies and associated scanned angles RAD. 

When the HIS is introduced, the reflection phase experienced at this boundary 

(HIS), rapidly changes with frequency from HIS = +140  to HIS = -180 , as shown in 

Fig. 3.4.3(b). Particularly, the AMC condition (HIS = 0 ) can be tuned to lower or 

higher frequencies by modifying the HIS dipoles length LHIS [Goussetis 2006-I]. As 

presented in Fig. 3.4.3(b), the AMC condition is set to 17.5 GHz for LHIS = 5 mm and 

to 15.8 GHz for LHIS = 5.5 mm. For clarity we note that the angle of incidence of the 

bouncing wave at the HIS plane, which is equal to the pointing angle of the radiated 

beam (θRAD), at these points is 68.5  and 67 , respectively. This AMC resonance 

condition establishes the frequency in which the leaky-mode pointing angle RAD is 

pushed to high values (around RAD = 70  in Fig. 3.4.3(a)), eventually obtaining the 

endfire direction (RAD = 90 ) when frequency is increased, and finally entering the 

surface-wave regime (y/k0>1 with an imaginary value of RAD [Oliner 1993]). In 

this way, by tuning the AMC resonance one can make the endfire radiation 
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frequency to be located close to the broadside radiation frequency (which is 

around 11 GHz for the HIS-loaded LWAs, as can be seen in Fig. 3.4.3(a)), hence 

reducing the bandwidth needed to scan the beam. This is the reason why the 

broadside to endfire frequency range is reduced to [11 GHz - 18 GHz] when LHIS = 

5mm, and to [11 GHz – 16 GHz] when LHIS = 5.5 mm (see Fig. 3.4.3(b)). A HIS was 

also introduced inside a closed hollow rectangular waveguide in [Goussetis 2010], 

with the aim to reduce the dispersion suffered by short pulses propagating along 

the waveguide. In any case, it is shown that, by conveniently engineering the HIS 

dimensions, one can strongly modify the propagation and/or radiation properties 

of the host waveguide for improved performance.  

 

Fig. 3.4.4 Leaky-mode electric field distribution inside the 1D PRS-HIS LWA for 

different frequencies (LHIS = 5.5 mm). 

For the case LHIS = 5.5 mm, Fig. 3.4.4 presents the leaky-mode electric field 

inside the LWA cavity at four frequencies of the scanning range, obtained with the 

software tool described in Chapter 2. The related values of HIS are highlighted with 

circles in Fig. 3.4.3(b). At 11 GHz, the HIS behaves approximately as a grounded 

dielectric slab (HIS = +140  in Fig. 3.4.3(b)) and a perturbation of the usual 

waveguide TE10 mode occurs in the LWA cavity (the cavity height H corresponds to 

half-wavelength of the resonant fields in the transverse direction, see Fig. 3.4.4). 

The hollow cavity height H is designed using (3.4.3) to provide near broadside 

radiation (waveguide close to cutoff) at this frequency (RAD  0  in Fig. 3.4.3(a)). 

The effect of the HIS starts to appear as frequency is increased, rapidly decreasing 
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HIS and increasing RAD due to the AMC resonance as shown in Fig. 3.4.3. At 15 

GHz, RAD has been increased to +48 . At 15.8 GHz, the HIS presents AMC resonance 

condition (HIS=0  in Fig. 3.4.3(b)) which manifests in maximum average tangential 

electric fields intensity at the HIS interface (Fig. 3.4.4). As a result of the AMC 

condition the effective cavity height is increased, making the scanned angle rise 

suddenly (RAD  70  at 15.8 GHz in Fig. 3.4.3(a)) with respect to the case without 

HIS (RAD  40  in Fig. 3.4.3(a)). When frequency is augmented from this point, the 

leaky-mode passes by the endfire condition (RAD  90  at 16 GHz in Fig. 3.4.3(a)) 

and eventually transforms into a surface-wave (which does not radiate). As 

illustrated in Fig. 3.4.4, the field is confined in the AMC dielectric slab at 16 GHz 

with exponentially decreasing amplitude in the air-filled cavity region, as it 

corresponds to a surface-wave [Oliner 1993].  

(a)          (b)  

Fig. 3.4.5. Photograph of manufactured LWA prototype, (a) Metallic waveguide 

hosting the printed-circuit dipole-based PRS (ready to be inserted at the top) and 

HIS (at the bottom) (b) Whole LWA structure at the anechoic chamber. 

To experimentally confirm the effect of the HIS in the improvement of the 

leaky frequency-scanning response, three hollow LWAs were fabricated according 

to the dimensions of Fig. 3.4.5. The first of them does not use any HIS, while the 

other two LWAs were loaded with metallodielectric HIS with LHIS =5 mm and LHIS = 

5.5 mm, respectively. A picture of the manufactured prototype is shown in Fig. 

3.4.5. Figure 3.4.6 shows the frequency-scanning curves of the three manufactured 

LWAs, measured in the 10 GHz – 20 GHz frequency range. The leaky-mode results 

   LA 
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   PRS 

HIS 
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from 10 GHz to 26 GHz obtained from the TEN are superimposed for comparison, 

showing good agreement between theory and experiments, and thus confirming 

the mechanism to enhance the scanning sensitivity and the range of scanned 

angles. 

 

Fig. 3.4.6. Theoretical and measured frequency-scanning response of hollow LWAs 

showing the effect of the HIS. 

Figure 3.4.6 shows that the HIS-loaded PRS LWA with LHIS = 5.5 mm 

provides beam scanning from RAD = 4  to RAD = 67  in the frequency range 11 GHz-

16 GHz, while the LWA without HIS has a poorer frequency sensitivity (from near 

broadside to RAD = 65  in the frequency range 13 GHz - 26 GHz). The theoretical 

and measured normalized radiation patterns for the HIS-loaded LWA with LHIS = 

5.5mm and a radiating length LA = 200 mm (9.2 λ0 at 14 GHz) are plotted in Fig. 

3.4.7(a) and Fig. 3.4.7(b), respectively. This radiating length provides a measured 

radiation efficiency of ηRAD = 90% at 14GHz. However, ηRAD is strongly dependent 

on frequency, decreasing to 80% and 20% at 15 GHz and 16 GHz respectively. The 

same behaviour is observed when measuring the LWA gain, which presents values 

from 12.2 dB at 14 GHz, to 11.1 dB at 15 GHz and 1.8 dB at 16 GHz. Good 

agreement between the theoretical and measured radiation patterns is observed, 

showing the scanning of the main beam elevation angle RAD. The beamwidth 

broadens close to broadside (11 GHz in Fig. 3.4.7) due to the increase of the 

leakage rate (see y/k0 curve in Fig. 3.4.3(a) for LHIS = 5.5mm at 11 GHz). From 
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12GHz to 15GHz, the expected frequency-beam steering is obtained. At 16GHz, a 

secondary lobe appears in the angle    -67  as a result of the decrease in the 

leakage rate (see  y /k0 curve in Fig. 3.4.3(a) for LHIS = 5.5 mm at 16 GHz), which 

reduces the LWA radiation efficiency and creates a reflected leaky-wave pointing 

at a mirrored angle with respect to the main beam [Oliner 1993]. Radiation to 

pointing angles higher than +70  is limited by the appearance of grating lobes due 

to higher-order modes [Oliner 1993], [Zhao 2005-I]. The measured ohmic losses of 

the fabricated hollow PRS LWA loaded with HIS are in the range of 1.5 dB for the 

entire frequency band, while for the case of a similar LWA based on a waveguide 

filled with Teflon (r = 2.2, tan = 0.005) the losses are in the order of 6 dB, as 

demonstrated in [Gómez 2006-III]. 

(a)    

(b)  

Fig. 3.4.7. (a) Theoretical and (b) measured radiation diagrams showing the 

frequency beam-scanning of the designed PRS-HIS LWA (LHIS = 5.5mm). 
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3.5 Analysis and design of 2D FP LWA 

Whereas the previous sections have employed the simple and efficient TEN-

based technique presented in Section 2.3 in order to analyse double-layer one-

dimensional Fabry-Perot (1D FP) LWAs, here it is shown how it also enables the 

analysis and design of double-layer two-dimensional (2D) FP LWAs. In this section, 

the TEN technique is firstly applied to the analysis of a 2D FP LWA with half-

wavelength profile and subsequently extended to antennas with lower profile. The 

obtained dispersion diagrams are in good agreement with those derived by the 

technique proposed in [Mateo-Segura 2012], which is based on Method of 

Moments together with reciprocity as well as an array factor approach. One of the 

limitations of the TEN approach is shown at the end of this section, which appears 

when the FP cavity is very thin. 

Figure 3.5.1 shows the scheme of a 2D FP LWA with generic printed top and 

bottom periodic layers and an ideal horizontal electric dipole source located in the 

centre of the cavity. As depicted in Fig. 3.5.1, the feeding element excites a two-

dimensional cylindrical wave with its electric field oriented along the x axis, which 

propagates outward radially. As it is explained in [Ip 1990] and [Jackson 2008], a 

horizontal electric dipole source launches a pair of leaky waves, one TMz and one 

TEz. The TMz leaky wave mainly determines the E-plane pattern of the 2D FP LWA 

while it is the TEz leaky wave which mainly controls the H-plane pattern. 
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Fig. 3.5.1 Two-dimensional Fabry-Perot LWA with generic printed PRS and HIS. 

 

               (a)                                                                    (b) 

Fig. 3.5.2 (a) 1D equivalent model of 2D FP LWA in H-plane (b) Equivalent TEN. 

Applying the method of images, the H-plane dispersion of the structure in 

Fig. 3.5.1 can be equivalently analyzed considering the 1D structure of Fig. 3.5.2(a). 

As this figure shows, a pair of infinite electric walls have been placed parallel to the 

yz plane and separated by a distance equal to the periodicity of the array in x axis. 

In this scenario, the feeding is a TE plane wave (with its electric field polarized 

along the x axis) which propagates along the y axis (as it can be seen in Fig. 

3.5.2(a)). Considering this excitation, the metallic walls can be regarded as mirrors 

that effectively reproduce the behavior of the structure with infinite PRS and HIS 
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arrays of Fig. 3.5.1. This simplification allows us to characterize the structure of 

Fig. 3.5.1 in the H plane employing the Transverse Equivalent Network (TEN) of 

Fig. 3.5.2(b). As it was explained in Chapter II, the propagation of the leaky wave 

inside the empty cavity (  =1) is modeled in the TEN of Fig. 3.5.2(b) by a 

transmission line with characteristic impedance 

   
    

   

    
        (3.6.1) 

whereas the propagation inside the PCB´s dielectric slabs, with permittivity   , is 

modeled by transmission lines with characteristic impedance 

   
    

   

    
         (3.6.2) 

In these expressions,     
    

 is the transverse wavenumber of the leaky wave 

  
    

    
    

       (3.6.3) 

where (  ) denotes the dielectric constant of the medium. The periodic surfaces 

are modelled by the impedances     
   and     

  , which are obtained following the 

pole-zero method described in Section 2.2, considering TE plane wave incidence in 

the H plane. 

 

                                 (a)                                                                 (b) 

Fig. 3.5.3 (a) 1D equivalent model of 2D FP LWA in H plane (b) Equivalent TEN. 
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Analogously, when studying the dispersion of the 2D FP LWA of Fig. 3.5.1 in 

the E plane, the simpler scenario of Fig. 3.5.3(a) can be equivalently analyzed. As 

depicted in this figure, the feeding now is a TM plane wave (with its electric field 

polarized along the x axis) which propagates along the x axis. Two infinite 

magnetic walls have been placed parallel to the xz plane and separated by a 

distance equal to the periodicity of the arrays in the y axis. Considering the TM 

plane wave excitation, these magnetic walls allow the 1D structure of Fig. 3.5.3(a) 

to behave in the E-plane exactly the same way as the original one of Fig. 3.5.1. 

Thus, the structure of Fig. 3.5.1 can be characterized in the E-plane employing the 

Transverse Equivalent Network (TEN) of Fig. 3.5.3(b). In this case, the propagation 

of the leaky wave inside the empty cavity is modeled in the TEN of Fig. 3.5.3(b) by 

a transmission line with characteristic impedance 

   
    

    
   

     
     (3.6.4) 

and the propagation inside the PCB´s dielectric slabs is modeled by transmission 

lines with characteristic impedance 

   
    

 
    

    

     
     (3.6.5) 

The periodic surfaces are modelled by the impedances     
   and     

  , which are 

obtained following the pole-zero method described in Section 2.2, considering TM 

plane wave incidence. 

Thus, it is now clear that considering these transformations, it is possible to 

characterize a two-dimensional structure by analyzing two one-dimensional 

scenarios. Then, the software tool described in Section 2.3 (which is highly efficient 

for the analysis of 1D FP LWA) can be now employed to obtain the dispersion 

characteristics of 2D FP LWAs in the E and H planes. In addition, it is worth noting 

that the TEN-base tool can also be employed in the design of these 2D antennas. 

Once the frequency of operation is fixed, the TEN enables the design of the two 

printed circuits together with the height of the cavity, in order to obtain broadside 

radiation. This will be proven in the next subsections, where three cases of 2D 

LWAs have been designed to point at broadside with different cavity heights. 
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Initially, it is considered a cavity antenna with a single periodic array and half-

wavelength profile. Subsequently, the case of antennas with two periodic arrays 

and sub-wavelength profile is analyzed. 
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3.5.1 Half-wavelength antennas 

The TEN approach is now applied to design a resonant cavity antenna with 

one periodic array that points at broadside at 14GHz, the layout of the structure is 

shown in Fig. 3.5.4. The LWA comprises a PRS consisting of square patches with 

edge LPRS = 8.0 mm arranged in a square lattice with periodicity P = 9.0 mm and 

printed on a dielectric slab of thickness d1 = 1.5 mm and relative permittivity 2.55. 

Using the TEN-based tool, it is designed that the PRS must be located at a distance 

    9. 2    above a ground plane in order to satisfy the splitting condition 

(   , as explained in Section 3.1.2) at 14GHz and therefore, point at 

broadside. This value corresponds to approximately half-wavelength at 14 GHz, 

which is the value at which an unperturbed TE01 mode starts propagating through 

a closed metallic cavity.  

 

                                (a)                                                (b) 

Fig. 3.5.4 (a) Layout of the 2D FP LWA formed by a metallodielectric PRS placed 

over a ground plane (b) PRS unit cell. 

Following the approach described at the beginning of this section, the H and 

E planes dispersion diagrams are obtained by analyzing respectively the two 1D 

scenarios of Fig. 3.5.5. The TEN-based technique presented in Section 2.3 is now 

employed in order to solve the associated transverse resonance equations, and the 

dispersion diagrams of Fig. 3.5.6 and Fig. 3.5.7 are obtained. In particular, when 

considering the H-plane scenario of Fig. 3.5.5(a), it is obtained the propagation 

constant    
 
     of the 2D structure, which is plotted in Fig. 3.5.6. When the 

E plane is considered, the scenario of Fig. 3.5.5(b) is analyzed and the propagation 

constant    
 
     of the 2D structure is obtained, which is plotted in Fig. 3.5.7. 
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Fig. 3.5.5 One-dimensional TEN employed to analyse the two-dimensional 

structure of Fig. 3.5.4 in the (a) H plane, (b) E plane. 

(a)  

(b)  

Fig. 3.5.6. Normalized propagation constant associated to the LWA of Fig. 3.5.4 in H 

plane. (a) Phase constant, (b) leakage rate. 
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(a)   

(b)  

Fig. 3.5.7. Normalized propagation constant associated to the LWA of Fig. 3.5.4 in E 

plane. (a) Phase constant, (b) leakage rate. 

The dispersion diagrams of Fig. 3.56 and Fig. 3.5.7 show the common LWA 

behaviour, the phase constant β increases with frequency and the leakage rate  

decreases towards endfire direction. These figures also show superimposed the 

results obtained when using the technique presented in [Mateo-Segura 2012]. This 

full-wave approach makes use of method of moments and reciprocity to 

characterize the dispersion of 2D FP LWAs, thus being highly accurate but also 

computationally costly. Every space harmonic is considered by the previous 

technique, while the here employed TEN-based tool only accounts for the 

fundamental one. Therefore, the TEN-based tool can be accurately employed when 

the interaction produced by higher order harmonics is not relevant, taking 

advantage of its lower computational cost. The comparison of the values in Fig. 

3.56 and Fig. 3.5.7 indicates very good agreement between the two techniques. 

Both of them differ when reaching the leaky-mode cutoff. In particular, [Mateo-

Segura 2012] predicts null phase constant at approximately 13.91 GHz (see Fig. 

3.5.6(a) and Fig. 3.5.7(a)), whereas the TEN approach predicts a value greater than 
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zero at this same frequency. This discrepancy is due to the fact that the technique 

presented in [Mateo-Segura 2012] estimates the phase constant from the pointing 

angle of the antenna, employing (3.1.4). As it was explained in the Section 3.1.2, at 

the leaky-mode cutoff frequency the splitting condition is satisfied, and due to the 

coalescence of the main radiated beams, the LWA points at broadside (       ), 

although the phase constant is greater than zero. Thus, it must be highlighted that 

the TEN approach provides the most accurate result in this case. 
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3.5.2 Quarter wavelength antennas 

As it was shown in Section 2.3.2, High Impedance Surfaces (HIS) may be 

used for miniaturizing purposes. In particular, FP LWAs with sub-wavelength 

profile can be produced loading the resonant cavity with a HIS [Goussetis 2007-II], 

[Feresidis 2005]. To a ray optics approximation, this can be attributed to the 

reduced reflection phase of the HIS-loaded ground plane. Here, it is analyzed a 

working example of an antenna such as the one shown in Fig. 3.5.8. The PRS 

employed in the previous example is now located above a HIS, which consists of 

patches with edge LHIS = 4.1 mm, which is printed on a dielectric slab of thickness, 

d2 = 1.15 mm and relative permittivity 2.2. The height of the cavity is    

 5. 6     which has been designed with the TEN-based tool for the antenna to 

produce a broadside pattern at 14GHz.  

 

(a)                                                        (b)                                            (c) 

Fig. 3.5.8 (a) Layout of the resonant cavity leaky-wave antenna formed by 

metallodielectric PRS and HIS. (b) Unit cell of a square patch PRS array and (c) HIS 

array. 

A similar study as the one performed for the half-wavelength antenna is 

now carried out. The 1D scenarios analyzed with the TEN are the ones in Fig. 

3.5.2(b) and Fig. 3.5.3(b). The dispersion diagrams obtained are shown in Fig. 3.5.9 

for a range of frequencies between 14 GHz and 15.6 GHz for the H plane and 

between 14 GHz and 16.5 GHz for the E plane. The results obtained employing the 

technique of [Mateo-Segura 2012] are also depicted in Fig. 3.5.9. 

PRS AMC 

H 
y 

x 

z 

d1 d2 
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As the cavity is made thinner, the interaction between the two printed 

circuits starts becoming more and more relevant. This interaction is not accounted 

for by the simple TEN-approach, as it was explained in Section 2.2; whereas the 

full-wave method proposed in [Mateo-Segura] does. Consequently, as it is evident 

in Fig. 3.5.9, the agreement between the two methods for this antenna is reduced 

compared to the half-wavelength antenna, particularly in the H plane (y-direction). 

(a)  

(b)  

Fig. 3.5.9. Normalized (a) phase constant and (b) leakage rate versus frequency for 

the sub-wavelength antenna of Fig. 3.5.8, with dimensions (in mm) P = 9.0, H = 

5.46, for the PRS: LPRS = 8, d1=1.5 and εr = 2.55 and for the HIS: LHIS = 4.1, d2 = 1.15 

and εr=2.2. 

This structure has been simulated with a commercial tool [HFSS 2011], 

using as source a Hertzian dipole polarized along x and placed in the middle of the 
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cavity (i.e., z=H/2). The obtained radiation patterns are shown in Fig. 3.5.10, were 

it can be checked that broadside radiation is obtained at 14GHz, whereas for 

greater frequencies the beam becomes conical, as the splitting condition is no 

longer satisfied. The three-dimensional pattern at 14GHz is plotted in Fig. 3.5.11. 

 

 

 

Fig. 3.5.10 (a) H- plane and (b) E-plane cuts of the antenna radiation pattern at 

different frequencies. 

 

 
Fig. 3.5.11 3D radiation pattern at 14GHz.   
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3.5.3 Thin antennas 

Very thin antennas with sub-wavelength profile can be produced employing 

a HIS with reflection phase lower than 0o in the configuration of Fig. 3.5.8 

[Feresidis 2005], [Kelly 2008], [Mateo-Segura 2011]. Due to the low profile, the 

interaction of higher order evanescent modes between the two arrays significantly 

increases. Here it is found one of the limitations of the TEN-based approach, and its 

accuracy gradually reduces compared to the half-wavelength profile LWA. In 

contrast, the technique proposed in [Mateo-Segura 2012] can be directly applied 

for thin antennas without loss of accuracy. This is next demonstrated by means of 

an example involving an antenna with profile λ0/7 working at 14 GHz. The PRS is 

the same as in the previous studies and it is located at a distance H= 3.25mm 

(~λ0/7) above a HIS array, which consists of patches with LHIS = 4.3 mm printed on 

a dielectric slab of thickness, d2 = 1.15mm and relative permittivity 2.2.  

The obtained dispersion diagrams for the H- and E-plane are shown in Fig. 

3.5.11 for frequencies between 14 - 14.6 GHz and 14 - 16.5 GHz, respectively. The 

interference of the side-lobes with the main lobe impedes the application of the 

employed techniques, in this case beyond 14.6 GHz for the H plane and beyond 

16.5 GHz for the E-plane. This figure clearly shows how the accuracy of the TEN-

based method has reduced even more for the λ0/7 antenna, particularly at the H-

plane. However, it must be highlighted that the proposed TEN-based approach is 

accurate for double-layer Fabry-Perot antennas with thickness over λ0/4, and in 

this cases, it is much more efficient than full-wave based design tools such as 

[Carolina 2012]. Therefore, it can be used for the efficient design of novel double-

layer 2D FP LWA, as it will be demonstrated in the next chapter. 
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(a)  

(b)  

Fig. 3.5.12 Normalized (a) phase constant and (b) leakage rate versus frequency 

for the sub-wavelength antenna of Fig. 3.5.8, with dimensions (in mm) P = 9.0, H = 

3.25, for the PRS: LPRS = 8, d1=1.5 and εr = 2.55 and for the HIS: LHIS = 4.3, d2 = 1.15 

and εr=2.2. 



 

 
 

 

 

 

 

 

 

3.6 Conclusions 

In this chapter, it has been introduced an original one-dimensional double-

layer Fabry-Perot LWA that enables the control over the radiation pattern main 

features. In Sections 3.2 and 3.3 it is explained that the new LWA is based on a 

hollow parallel-plate waveguide loaded with two periodic surfaces, which are 

formed by periodic arrays of printed metallic dipoles. One periodic array acts as a 

Partially Reflective Surface which can control the leakage rate by means of its 

transparency, while the second periodic array behaves as a High Impedance 

Surface which determines the scanning angle by means of its reflection phase. The 

TEN-based tool developed in Chapter 2 has been used for the analysis and design 

of this novel 1D LWA. It has been demonstrated that, once the cavity dimensions 

are chosen to operate at a desired frequency, the length of the dipoles allow the 

control of the leaky-mode propagation constant. This enables high-gain radiation 

patterns to be synthesized using standard photolithographic processes, without 

the need for modifying the waveguide structure. Compared to previous hybrid 

LWAs based on PCBs in dielectric waveguides, the proposed antenna avoids 

dielectric losses since a hollow waveguide is used as the host medium. To verify 

the concept and design theory, several LWA antenna prototypes operating at 15 

GHz have been fabricated. Measured results agree with the predicted ones. It is 

demonstrated that it is indeed feasible to independently control the scanning angle 

and the directivity of the antenna at a fixed frequency, whilst keeping 90% 
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radiation efficiency. In addition, in Section 3.4 it has also been proven that the 

frequency scanning sensitivity of the novel antenna can also be controlled. The 

proposed topology increases the frequency scanning sensitivity, thus reducing the 

required bandwidth to scan the main beam from near broadside to near endfire. It 

avoids the use of dielectric-filled waveguides, thus minimizing the associated 

dielectric losses. Experimental results on fabricated prototypes have also been 

reported, showing very good agreement with theory. Thus the first objective of 

this chapter (O4) has been accomplished. 

Double layered two-dimensional (2D) Fabry-Perot antennas have been 

subsequently studied in Section 3.5. In particular, three uniform LWAs are 

designed providing broadside radiation at 14GHz with different cavity profiles. In 

this section it is explained that the TEN-based approach developed in Chapter 2 

can be employed for the analysis of 2D structures. The produced dispersion 

diagrams were in good agreement with those derived by a MoM-based technique. 

It is also shown that the validity of the single mode TEN is limited by the reactive 

interaction between the periodic layers due to evanescent higher-order Floquet 

harmonics.  Therefore, very low-profile LWAs can not be accurately analyzed with 

the TEN technique. From these results it can be said that the last objective of this 

chapter (05) has been fulfilled. 
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Synthesis of tapered double-layer Fabry-Perot LWA  

 

 

 

 

 

In this chapter it is aimed the synthesis of tapered double-layer Fabry-Perot 

leaky wave antennas, both in one-dimensional and two-dimensional topologies. 

Thanks to the work carried out in the previous chapters, now we have a PRS-HIS 

LWA with the key feature of providing independent control over its propagation 

constant and that has been completely characterized with frequency and its 

geometry. Whereas the antennas proposed in the previous chapter are uniform 

(i.e., with constant dimensions of the periodic unit-cell), tapered LWAs are here 

designed, where the unit cell dimensions are modulated in order to shape the 

radiated fields. At this point, it is possible to take full advantage of double-layer FP 

LWAs and perform the synthesis of desired aperture distributions. Thus, the 

following specific objectives will be pursued in this chapter:  

O6. Analysis and design of double-layer tapered one-dimensional Fabry-

Perot leaky-wave antennas.  

O7. Analysis and design of double-layer tapered two-dimensional Fabry-

Perot leaky-wave antennas.   
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This chapter is organized as follows: 

Firstly, a state-of-the-art review on the tapering of one-dimensional and 

two-dimensional LWAs and its applications is explained in Section 4.1. 

Secondly, in Section 4.2, it is described an original technique for the 

efficient synthesis of double-layer Fabry-Perot leaky-wave antennas. It is based on 

the study of the reflection characteristics presented by the two periodic surfaces 

that form the cavity. The synthesis technique avoids the search for modal 

solutions in the complex plane, which is typically needed to characterize the 

dispersion of the leaky modes associated with the antenna geometry. Instead it 

involves the solution of two simple equations, so that the desired aperture 

distribution (amplitude and phase) can be directly synthesized. 

The previous synthesis equations are applied in Section 4.3 in order to 

shape the near field patterns in 1D FP LWAs and reduce their sidelobes level for 

any desired scanning angle. Numerical and experimental results are shown in 

order to prove the efficiency of the synthesis approach  

Later, the synthesis equations are also employed in Section 4.4 and Section 

4.5 for the control of the illumination of 1D and 2D FP LWAs which point at 

broadside. A quasi-uniform taper is here proposed in order to achieve high 

aperture efficiency, while assuring high radiation efficiency and to minimize 

diffraction and standing waves. 

Finally, in Section 4.6 the main conclusions and results will be summarized, 

together with the discussion about the achievement of the aimed objectives. 



 

 
 

 

 

 

 

 

 

4.1 Introduction 

Uniform Leaky-Wave Antennas (LWAs) are those which geometry is 

invariant along their length (even if they are periodical, the periodic unit-cell 

dimensions remains constant along the whole antenna). In these structures, the 

complex propagation constant does not change along the radiating aperture. 

Therefore, the near field illumination has linear phase and exponential amplitude 

variation. By modulating the geometry of the antenna, such aperture distributions 

can be modified, resulting into a wide variety of new features and new applications 

for LWAs. 

The control of the illumination aperture distribution in LWAs has been 

extensively dealt with by antenna engineers from early times. The first attempts 

were focused on 1D topologies, an early example can be found in [Honey 1959]. 

The underlying concept is the control of the leaky-mode longitudinal complex 

wavenumber along the LWA aperture. As it was convened in the previous chapter, 

in the case of one-dimensional antennas, the longitudinal wavenumber is defined 

in the y direction as 

               ,              (1) 

whereas in the case of two-dimensional LWAs, a radial wavenumber is defined 
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                  .                  (2) 

In order to shape the radiation pattern of the antenna, both the phase 

constant (β) and the leakage rate (α), should be independently varied, as it was 

explained in [Oliner 1993]. To this end, the topology of the LWA must be properly 

engineered to support the requested tapering of the wavenumber at each point of 

the aperture. 

The illumination synthesis has been classically applied in 1D LWAs to the 

reduction of the sidelobe level (SLL) while keeping a highly-directive main 

scanned beam. As sketched in Fig. 4.1.1(a), uniform 1D leaky waves decay 

exponentially in the near field, which translated to the far fields, results in a SLL of 

-13dB in the radiation pattern (see Fig. 4.1.1(c)). Tapering the magnitude of the 

radiating near fields by modulating the leakage rate (αy) along the antenna 

aperture, the value of the SLL can be reduced. The value of the phase constant, or 

equivalently, the radiation angle (    ), should be maintained fixed to the same 

value so that the far-field radiation from all sections of the LWA is pointing to the 

desired direction [Oliner 1993]. As an example, a synthesized cosine near field 

pattern is shown in Fig. 4.1.1(b), which associated radiation pattern has a SLL of 

 23    (see Fig. 4.1.1(c)). This cosine illumination is provided by the modulated 

value of αy at each point of the antenna length and constant      shown in Fig. 

4.1.1(d). The reduction of the sidelobe levels has been applied to different LWA 

technologies, such as inductive-grid-loaded cavities [Honey 1959], non-radiative 

dielectric waveguides [Sánchez 1987], [Schwering 1988], strip-loaded dielectric 

guides [Ghomi 1993], [Zong-Wen 1997], stub-loaded, stepped and rectangular 

waveguides [Di Nallo 1995, 1997-I and II], [Lampariello 1998], [Tsuji 2003 and 

2007], corrugated dielectric-coated conducting cylinders [Chang-Won 2003], 

hybrid printed-waveguides [Gómez 2005-III and IV], ferrite-loaded waveguides 

[Kodera 2010], and more recently in Substrate Integrated Waveguide (SIW) LWAs 

[Cheng 2011]. Active tapering was proposed in [Casares-Miranda 2006] to 

distribute amplifiers along a metamaterial-type LWA. Although an interesting idea, 

the use of active circuits to taper the aperture would increase the antenna cost 

significantly. Pattern shaping has also been applied to design broadband tapered 

microstrip LWAs [Hong 2003], [Jin-Wei 2010]. Some examples are shown in Fig. 
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4.1.2, which show how the LWA geometry is modulated to taper the wave 

propagation constant, and therefore, achieve the SLL reduction. 

 

 

(a)                                                                 (b) 

(c)  

(d)  

Fig. 4.1.1 SLL reduction in 1D LWAs. Longitudinal near fields above the 1D 

radiating apertures of (a) uniform (b) cosine-tapered LWAs. (c)Radiation patterns. 

(d) α/k0 and θRAD at each point of the tapered antenna. 
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(a)  

(b)  

Fig. 4.1.2 Tapered 1D LWAs for SLL reduction, (a) hybrid waveguide-planar 

technology LWAs [Gómez 2005-III] (b) substrate integrated waveguide long slot 

LWAs [Cheng 2011]. 

More recently, new unconventional 1D LWA tapering procedures have been 

proposed, where not only the leakage rate (αy), but also the phase constant (βy) is 

varied along the aperture length. These techniques were firstly applied to the 

synthesis of broad-beam patterns [Burghignoli 2003], [Gómez 2011-II]. In order 

to obtain a broad main radiated beam, with high rejection out from the prescribed 

wide beam, the radiated leaky waves must diverge. Othera firstly proposed to 

curve a dielectric grating LWA to make the emitted rays converge/diverge and 

thus obtain the desired broad-beam patterns [Othera 1999, 2001 and 2002]. 
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However, Burghignoli later proved that by applying nonstandard tapering 

techniques, broad-beam LWAs could be obtained without the need of curving the 

LWA [Burghignoli 2003]. In this way, the volume and manufacturing complexity of 

the structure is reduced. Gómez goes one step further in [Gómez 2011-II], where 

he examines practical design issues and validates this nonstandard tapering 

approach using the hybrid waveguide printed-circuit technology proposed in 

[Gómez 2005-II]. An example of this nonstandard tapering technique is shown in 

Fig. 4.1.3. The near field patterns of Fig. 4.1.3(a) and (b) illustrate the differences 

between uniform and divergent illuminations. It can be seen that in the second 

case, the beam angle is varied to make the emitted rays diverge in a specific 

fashion. Finally, Fig. 4.1.3(c) shows two examples of broad-beam patterns where 

the pointing angle along the antenna is diverged within the range 

[0 ,  0 ] and [ 20 , 60 ], respectively. For comparison purposes, that figure also 

shows the radiation pattern of an antenna were θRAD is kept fixed to 20 . 

 

(a)                                                                (b) 

(d)  

Fig. 4.1.3 Diverging broad beam synthesis in 1D LWAs. Longitudinal near fields 

above the 1D radiating aperture with (a) uniform/ (b) diverging illumination. (c)  

Broad-beam radiation patterns. (from [Gómez 2011-II]) 
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Non-standard tapering procedures are also employed to design conformal 

1D LWAs, were the tapering techniques amend the effect of the LWA curvature 

allowing the conformal structure to refocus its radiation main beam and have a 

comparable performance as the planar version. An example of the effects of 

conforming a LWA in the radiation pattern is shown in Fig. 4.1.4, which clearly 

shows the effectiveness of the tapering technique. Figure 4.1.5 shows the 

conformal metamaterial-based transmission-line proposed in [Hashemi 2008]. 

Other tapered conformal LWAs are also designed in [Losito 2007] and [Gómez 

2011-III]. Gómez also proposed tapering techniques to produce radiation 

diagrams with wide nulls [Gómez 2010], an example shows in Fig. 4.1.6. Another 

recent contribution to unconventional pattern synthesis achieved in 1D LWAs is 

presented in [Martínez-Ros 2012]. Here, the LWA is designed in SIW technology 

and allows the independence control over    and   , as proven in [Martínez-Ros 

2011]. 

 

Fig. 4.1.4 Radiation pattern of 1D LWA. 

Finally, converging near-field focusing patterns were proposed in [Gómez 

2011-IV] and [Losito 2009] by modulating both the phase and leakage constant 

along 1D LWAs. These antennas could be extensively applied, for example in 

hyperthermia therapy systems and non-contact (remote) sensing or wireless 

power transmission. Figure 4.1.7 illustrates this case with an example. The near 

field patterns of Fig. 4.1.7(a) and (b) show how the radiated energy converges in a 

focus. 
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Fig. 4.1.5 Conformal metamaterial-based LWA proposed in [Hashemi 2008]. 

 

 

 

Fig. 4.1.6 (a) Radiation diagram with wide null between [ 10 , 10 ]. (b)Near field 

pattern in the tapered 1D LWA. 
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(a)                                                                    (b) 

Fig. 4.1.7 Near field focusing. Converging pattern with (a) -5dB/(b)-30dB scale. 

With the development of two-dimensional LWAs, tapering techniques 

have started to be also applied to 2D structures. Normally, the purpose here is 

not the reduction of the SLL, due to the fact that the illumination in 2D LWAs is 

already quasi-cosine shaped [Jackson 2008]. The first attempts of 2D tapering 

were performed in Fabry-Perot cavity LWAs [Yeo 2009], [Wu 2010]. Their aim is 

to increase the antenna gain and bandwidth. An example of the obtained results is 

shown in Fig. 4.1.8. In these works, the bottom layer of the resonant cavity is 

physically modulated; the sketches of the proposed bottom layers are shown in 

Fig. 4.1.9. In contrast to the previous 1D tapering techniques, no accurate control 

over the propagation constant    is performed. Thus, it is not reported how    or 

   must be modulated along the structure in order to achieve their goal. 

Later, when the synthesis of tapered 2D LWAs attracted more attention, 

research was focused on the accurate control over    and the concept of 

“metasurfing” was introduced [Maci 2011 and 2012]. Engineered artificial 

surfaces which allow the local modification of the propagation constant (at a 

constant frequency) can be considered as modulated reactance surfaces [Oliner 

1959] or metasurfaces [Maci 2011 and 2012]. Therefore, metasurfing arises as a 

reinterpretation of tapering, which consists in the synthesis of an inhomogeneous 

surface impedance that provides a desired dispersion equation. In this way, the 

modulated surfaces of Fig. 4.1.9 can also be named as metasurfaces.  
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(a)                                                            (b) 

    

(c)                                                            (d) 

Fig. 4.1.8 Tapering of 2D FP LWAs. Realized gain in (a)H- (b)E-plane. (c) Return 

loss, gain and directivity in (c)uniform (d)tapered design.  

(Figs. 2, 3 and 4 in [Yeo 2009]) 

 

        (a)                                                                  (b) 

Fig. 4.1.9 Tapered surfaces employed as bottom layers of 2D FP LWAs in  

(a) [Yeo 2009] and (b) [Wu 2010]. 
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Holographic-surface antennas [Sievenpiper 2005] can also be interpreted 

as tapered 2D LWAs, where a local modulation of the surface impedance leads to a 

transformation from a guided surface-wave to a radiative leaky-wave. The 

connection between holographic pattern and the leaky wave mechanism was 

clarified in [Nannetti 2007]. Thus, the concepts of artificial complex surfaces or 

metasurfaces [Kildal 2005], [Fong 2010], sheet impedances [Holloway 2009], and 

transformation electromagnetics [Pendry 2006],[Engheta 2006] are also related to 

the modulation of leaky waves and the design of holographic surface 2D LWAs. As 

an example, the modulated surface proposed in [Fong 2010] is shown in Fig. 

4.1.10(a), which consists of an array of sub-wavelength metallic patches on a 

grounded dielectric substrate. The size of the patches is varied in order to achieve 

a desired dispersion of the input wave. In particular, they produce a scattered 

leaky wave with circular polarization (straight arrows in Fig. 4.1.9(b)) from a 

linearly polarized point source which excites a surface wave (undulating arrows in 

Fig. 4.1.9(b)).  

 

(a)                                                                 (b) 

(c)  

Fig. 4.1.10 Holographic antennas proposed in (a)[Fong 2010], (b) [Minatti 2011-I 

and II]. 
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Recently, holographic LWAs have been proposed to produce highly 

directive circularly polarized radiation patterns which radiate at broadside, from 

very flat structures which are simply fed by a single-point coaxial probe [Minatti 

2011-I and II]. The scheme of this antenna is displayed in Fig. 4.1.10(c). The 

control over    or    is achieved employing the Oliner-Hessel method [Oliner 

1959], able to predict the leaky-mode radial complex propagation constant    for a 

given surface modulation index and period.  

Holographic printed-slot leaky-wave lenses have been also recently 

presented in [Gómez 2012]. In this case, focused near-field patterns are 

synthesized by modulating the radial separation between slots and the width of 

the slot unit-cell. Pictures of the proposed lens are depicted in Fig. 4.1.11. This low-

profile structure provides high radiation and aperture efficiency, using a very 

simple coaxial probe feeding.  

 

Fig. 4.1.11 Holographic lenses proposed in [Gómez 2012]. 
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4.2 Synthesis equations 

Once the technology that provides a flexible control over ky has been 

chosen, the most intricate aspect of the pattern shaping is to find an appropriate 

geometry synthesis technique  to determine the cross-sectional dimensions along 

the LWA length that produce the required complex wavenumber. Typically, this 

entails at least two geometrical degrees of freedom which are carefully selected to 

tune the phase constant ( ) and the leakage rate ( ) in Eq. (4.1.1) or (4.1.2). In 

practice, however, this is not trivial due to the fact that the geometrical degrees of 

freedom and the real and imaginary part of the complex wavenumber are coupled. 

In other words, the geometrical parameters of the LWA that have control over βy 

also affect αy, and vice-versa. Therefore, traditional synthesis approaches were 

based on iterative techniques to mitigate this inter-dependence [Oliner 1993], [Di 

Nallo 1995, 1997-I and II], [Hong 2003]. These techniques typically involve the 

solution of a large number of non-canonical eigenvalue problems in the complex 

plane, which is computationally costly. To avoid these costly iterations in the 

design, some authors chose to adjust αy assuming small variation of βy [Ghomi 

1993], [Cheng 2011], [Casares-Miranda 2006]. However, this approximation might 

lead to undesired phase-aberration effects which would result in a loss of 

directivity as shown in [Gómez 2005-III]. Alternative techniques for avoiding the 

non-canonical complex eigenvalue problem involve reciprocity and pattern 

matching [Mateo-Segura 2012], but it request the expensive computation of full-
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wave near fields inside the cavity. Finally, a simultaneous variation of the two 

design parameters can be performed to post-process the resulting two 

dimensional dispersion charts, as proposed in [Gómez 2005-III and 2011-II]. This 

approach allows the direct design of the tapered LWA (no iterations are 

requested), but a large set of dispersion data must be processed. 

In this section it is proposed a direct non-iterative synthesis technique 

which does not need the computation of two-dimensional dispersion data, 

specifically suited to the design of tapered Fabry-Perot LWAs, and which 

accurately takes into account the coupling between the geometrical parameters 

and the complex leaky wavenumber. The proposed technique involves the solution 

of a set of two linear equations, one related to the design of the tapered PRS and 

the second related to the tapered HIS. The key feature of this approach lies in the 

fact that it is based on the study of reflection rather than the study of leaky-mode 

dispersion [Maci 2005]. As a result, this approach avoids the minimization of the 

transcendental equation that describes the homogeneous electromagnetic 

problem, which mathematically translates to a complicated task of zero finding for 

a complex function in the complex plane (β, α) to search for the leaky-mode 

solutions [Oliner 1993], [Maci 2005], [Cano 1995], [Gómez 2004-III]. Since this is 

not an iterative method, the antenna parameters can be directly extracted from the 

desired tapered aperture distribution, thus dramatically reducing the 

computational cost, which is very important for real-time synthesis of 

reconfigurable antennas. At the same time, the mutual dependence of the PRS and 

HIS geometry on β and α is automatically considered, thus avoiding any 

approximation which might lead to undesired phase and amplitude aberrations. 

The proposed synthesis approach is presented in this section by means of 

an example involving the 1D PRS-HIS LWA configuration presented in the previous 

chapter (Section 2.3). The antenna is schematically depicted in Fig. 4.2.1(a) and it 

comprises a one-dimensional Fabry-Perot cavity formed between a PRS and a HIS 

placed in a parallel-plate waveguide. As explained in the introduction, it is essential 

to simultaneously control the phase constant (βy) and the leakage rate (αy) of the 

propagating leaky wave [Oliner 1993]. This control is flexibly provided by the 

proposed LWA topology as demonstrated in Section 2.3. In this structure, the 
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length of the metallic dipoles of the PRS and the HIS (LPRS and LHIS in Fig. 4.2.1(a)) 

can be adjusted to modify βy and αy over a wide range of values. The design goal of 

a tapered LWA is the determination of LPRS(y) and LHIS(y) along the antenna length 

that provides the desired tapering in the leaky-mode complex propagation 

constant βy(y) and αy(y) in Eq. (4.1.1). 

 

(a)                                                      (b) 

Fig. 4.2.1 (a) Configuration of the 1D FP LWA (b) transverse equivalent network (a 

= H = 11 mm, S = 5 mm, D = 1.13 mm, єr = 2.2, P = 1.5 mm and Q = 0.5 mm). 

As commented in the introduction of this chapter, one way to pursue the 

synthesis of the antenna radiation pattern is to employ two-dimensional leaky-

mode dispersion charts as originally proposed in [Gómez 2005-III]. In our case, the 

dispersion of the leaky-mode phase and leakage rates for all potential values of LPRS 

and LHIS can be obtained from the Transverse Equivalent Network (TEN) shown in 

Fig. 4.2.1(b). To this end, as it was explained in Section 2.3, the Transverse 

Resonance Equation (TRE) associated with the previous TEN must be solved for 

the unknown leaky-mode complex propagation constant ky, and for every possible 

pair of values (LPRS, LHIS). This is a very cumbersome task, since a zero search in the 

complex plane (βy, αy) must be performed for every pair (LPRS, LHIS) [Oliner 1993], 

[Cano 1995], [Gómez 2004-III]. Then, by post processing these data [Gómez 2005-

III], one can plot contour curves and identify the dimensions (LPRS, LHIS) which 

provide certain requested values of βy or αy as shown in Fig. 4.2.2. As an example, 



204 Chapter 4: Synthesis of tapered double-layer FP LWA 

 

 

Fig. 4.2.2 illustrates with a black cross the dimensions required to synthesize a 

leaky wave with normalized complex propagation constant given by βy/k0 = 0.342 

and αy/k0 = 0.05, leading to LPRS = 8.23mm and LHIS = 7.67mm (the rest of 

geometrical parameters of the LWA are kept constant to the values given in the 

caption of Fig. 4.21). 

 

Fig. 4.2.2 Two dimensional dispersion plots for the design of 1D PRS-HIS LWA in 

Fig. 4.2.1 at 15GHz. 

The earlier described LWA synthesis procedure is direct (in contrast to 

iterative design approaches [Oliner 1993], [Di Nallo 1995, 1997-I and II], [Casares-

Miranda 2006]), but it needs to solve the leaky-mode        dispersion for all 

possible values of LPRS and LHIS. A much more direct synthesis of the Fabry Perot 

LWA is proposed in this section by recalling the Transverse Resonance Equation 

(TRE) for the values of (  ,   ) which one wants to synthesize. To this end, we 

express the TRE using the equivalent reflection coefficients shown in Fig. 4.2.1(b): 

                     
                                                    

where H stands for the FP cavity height, and the complex transverse wavenumber 

kz is directly related to the desired leaky-mode longitudinal wavenumber ky by:  

      
          

 
                                                



4.2 Synthesis equations  205 

 

 

As it was explained in Section 2.1, the improper nature of this forward 

leaky-wave is patent in this equation, with an amplitude that increases 

exponentially along the transverse z-direction [Oliner 1993], [Gómez 2004-III], 

[Jackson 2008]. As introduced in Section 2.2, due to the fact that the HIS is metal-

backed, all the waves that impinge on it are fully reflected, and therefore it is 

satisfied that |ρHIS| = 1 [Feresidis 2005]. As a consequence, the complex Eq. (4.2.2) 

can be decomposed into the following magnitude and phase terms: 

                                                                         

                                                                           

where θPRS and θHIS are the reflection phases associated with ρPRS and ρHIS, 

respectively. Considering a fixed frequency and a desired propagation constant of 

the leaky wave (ky), the synthesis approach proposed here is based on the solution 

of the two linear equations (4.1.3) and (4.2.4). In order to obtain the unknown 

values of LPRS and LHIS, the next three steps should be followed: 

1) From the desired leaky-wave propagation constant ky = βy - jαy and 

considering a fixed operating frequency, the transverse wavenumber kz = βz + jαz is 

calculated by applying (4.2.2). For the example introduced at the beginning of this 

section, a leaky-wave with longitudinal ky = k0 (0.342-j0.05) presents an improper 

transverse wavenumber kz= k0 (0.941 + j0.018). 

2) As it can be inferred from Eq. (4.2.3), the length of the dipoles in the PRS 

(LPRS) must create a given transparency to the leaky waves inside the cavity with 

value       . As αz is already defined in (4.2.2) and H is fixed, the only unknown in 

(4.2.3) is LPRS. To obtain LPRS, the reflection coefficient of the PRS (ρPRS) must be 

calculated as a function of LPRS at the operating frequency, under plane-wave 

incidence and taking into account that the leaky wave impinges on it with a fixed 

angle of incidence given by [Oliner 1993], [Trentini 1956]: 

                                                                   

Once the function            is numerically obtained, it is necessary to find 

the value of LPRS that satisfies Eq. (4.2.3). This step is illustrated in Fig. 4.2.3 for the 
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case of the aforementioned example. For this case, the magnitude and phase of ρPRS 

as a function of LPRS are plotted with continuous lines in Fig. 4.2.3(a) and 4.2.3(b), 

respectively. These results are obtained at 15 GHz, considering 

                     (4.2.5) and employing the MoM-based approach 

presented in [Goussetis 2006-I]. As Fig. 4.2.3(a) shows, the PRS totally reflects all 

the incident waves (|ρPRS| = 1) when LPRS = 11 mm (which is approximately half a 

wavelength at 15 GHz [Trentini 1956]).  As the length of the dipoles is decreased, 

the transparency of the periodic sheet increases (|ρPRS| < 1). The value of LPRS 

needed for the given LWA design is the one that satisfies Eq. (4.2.3). It is 

represented in Fig. 4.2.4(a) with a red rectangle, which corresponds to the point 

where the continuous blue curve (left term in (4.2.3)) coincides with the green 

dotted line (constant value given by the right term in (4.2.3)). In our example, the 

obtained design value is     
      

 = 8.23 mm. It is interesting to note that due to the 

improper nature of leaky waves [Oliner 1993], [Gómez 2004-III], the FP cavity of 

height H acts as an amplification medium for the leaky mode, so that the 

experimented amplifications (given by       ) must balance the radiation losses 

given by the PRS sheet (|ρPRS| < 1). Indeed, the amplitude equation (4.2.3) is similar 

to the magnitude condition customarily used in the design of negative-resistance 

reflection oscillators [Pozar 2005]. 

3) The value of     
      

 found in the previous step provides the desired 

magnitude of ρPRS and a given associated phase,          
      

 , which is marked 

with a red square in Fig. 4.2.3(b) (in our example PRS =172º). Therefore, as    is 

also defined from (4.2.2), we can calculate the constant value taken by the right 

term of (4.2.4), which is plotted with a green dotted line in Fig. 4.2.3(c) (in this 

example 2Hz - PRS = -154º). As it is inferred from Eq. (4.2.4), this constant value 

must be equal to the reflection phase seen by the leaky-wave when it impinges on 

the bottom HIS, θHIS. Since θHIS depends on the length of its metallic dipoles LHIS, 

and considering a fixed angle of incidence θinc (4.2.5) and a fixed frequency of 

operation, the numerical function HIS(LHIS) can again be computed using a MoM-

based analysis tool [Goussetis 2006-I]. In the case of the presented example, the 

HIS phase response θinc(LHIS) at 15 GHz and for θinc = 20  is plotted with a blue 

continuous line in Fig. 4.2.3(c). Equation (4.2.4) can now be solved by finding the 



4.2 Synthesis equations  207 

 

 

intersection between the continuous and the dotted curves in Fig. 4.2.3(c), 

obtaining the requested HIS dipoles (    
      

= 7.67 mm, as it is marked with a red 

circle in Fig. 4.2.3(c)). Again, it is interesting to see that the phase equation (4.2.4) 

is similar to the phase condition that must be satisfied in the design of oscillators 

[Pozar 2005]. 

 

Fig. 4.2.3 Synthesis algorithm steps (a) Solving magnitude equation to obtain LPRS 

(b) Obtaining the reflection phase of the designed PRS (c) Solving phase equation 

to obtain LHIS. 

 

Fig. 4.2.4.  Flow chart describing the steps of the proposed synthesis procedure. 
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Figure 4.2.4 summarizes in a flow chart the main steps involved in the 

proposed direct procedure. After these three steps, the geometrical values of LPRS 

and LHIS which provide the requested values of βy and αy have been found. The 

geometrical values obtained in our numerical example (    
      

 = 8.23 mm and 

    
      

= 7.67 mm) are exactly the same as the ones previously obtained using the 

2D dispersion analysis approach, and shown in Fig. 4.2.2. 

In the next sections, the efficiency of this approach will be proven by the 

synthesis of 1D LWAs with low SLL (Section 4.3) and 1D and 2D LWAs with high 

aperture efficiency (Section 4.4 and 4.5, respectively). 



 

 
 

 

 

 

 

 

 

4.3 Sidelobe level control of scanning 1D FP LWA 

In this section, the previous synthesis approach is applied in the tapering of 

the 1D FP LWA presented in the previous chapter (Section 3.2) with the aim of 

reducing the sidelobe level (SLL). Uniform LWAs with constant leakage rate along 

their length have an associated SLL of -13 dB, as it corresponds to the exponential 

natural decay of non-tapered leaky waves [Oliner 1993]. By modulating the 

leakage rate along the antenna length so that a cosine aperture distribution is 

synthesized, this SLL can be theoretically decreased to -23 dB [Gómez 2005-III]. In 

order to prevent phase aberration and to perform an accurate taper, the phase 

constant of the leaky waves must be kept unchanged along the antenna [Oliner 

1993].  

A first approximation to this design is performed in the case of the 1D 

PRS-loaded LWA presented in Section 2.3.3, which is depicted in Fig. 4.3.1 

together with its main geometrical parameters and its transverse equivalent 

network (TEN). The antenna can be recognized as a 1D Fabry-Perot cavity which 

consists of a grounded parallel plate waveguide (PPW) loaded with a periodic-

dipole-based FSS acting as a partially reflective surface (PRS) [Trentini 1956]. The 

transparency of the FSS controls the amount of energy that reaches the top 

aperture of the antenna and therefore it determines the radiation rate of the leaky 

mode (αy/k0). The reflectivity of this kind of PRS mainly depends on the length of 
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its resonant dipoles (LFSS, see Fig.3). In order to reduce the SLL, the FSS is properly 

tapered by engineering the variation of LFSS along the LWA length.  

 

(a)                                                 (b) 

Fig. 4.3.1 (a) 1D PRS-loaded FP LWA (b)TEN of the structure. (        11   ,

  5   ,   1.13   ,    2.2,  1.5    and   0.5   ).  

 

 

Fig. 4.3.2 Normalized radiation rate and pointing angle of the LWA shown in Fig. 

4.3.1, as a function of the FSS dipoles length (frequency of operation 15GHz). 

This LWA is analyzed with the software tool developed in Section 2.3, 

employing the TEN in Fig. 4.3.1(b). The results obtained are plotted in Fig. 4.3.2, 
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and they are compared with full-wave results based on Finite Element Method 

(FEM, [HFSS 2011]), showing very good agreement. In Fig. 4.3.2 we confirm that 

the radiation rate of the antenna αy/k0 can flexibly be controlled by modifying LFSS, 

although the LWA pointing angle θRAD experiences only a small variation. 

A uniform (non-tapered) LWA is designed, pointing at θRAD = 30º at 15GHz, 

with a ηRAD = 75% radiation efficiency and a radiating length LA = 3.5 λ0, which 

provides a  = 17º beamwidth. This performance can be achieved by using a 

uniform FSS with LFSS = 8mm, which provides the required αy/k0 = 0.04 leakage rate 

(see curve of Fig. 4.3.2). The radiation diagram of this non-tapered LWA 

corresponds to the blue plots in Fig. 4.3.3 (FEM results are shown in continue line 

while leaky-mode results are shown in dashed line). It is seen that a SLL =-13dB is 

obtained, as it corresponds to the exponential illumination of the non-tapered LWA 

[Oliner 1993].  

 

Fig. 4.3.3 Normalized radiation patter (La = 3.5 λ0, ηRAD =75%, f=15GHz). 

In order to obtain a desired illumination M(y), the leaky-mode must radiate 

with a certain radiation rate at each point y0 of the LWA length, and can be 

obtained from this known expression [Oliner 1993]: 



212 Chapter 4: Synthesis of tapered double-layer FP LWA 

 

 

    

  
 

  

  

       

 
    

          
    

   
           

    

   

                           

Fig. 4.3.4(a) shows the variation of αy/k0 along the LWA length needed to 

achieve a cosine illumination, together with the corresponding variation of the 

length of the dipoles, according to Fig. 4.3.2. The resulting tapered printed-circuit 

profile is shown in Fig. 4.3.4(b). The radiation diagram of this tapered LWA is also 

shown in Fig. 4.3.3, illustrating the clear reduction of the SLL to -23dB. Again, the 

leaky-mode results obtained from the TEN are in very good agreement with full-

wave FEM simulations, while requiring a much lower computational time. A 

broadening of the main beam is also manifested, which is related to the cosine 

illumination [Balanis 1982]. However, it is possible to reduce the SLL of a radiation 

diagram while maintaining a desired directivity if we design a new antenna with a 

longer radiating aperture. Further reduction of the SLL could be achieved by 

performing a squared cosine illumination or other tailored functions [Balanis 

1982]. 

 

Fig. 4.3.4 (a) Radiation rate (αy/k0) at each point of the tapered LWA, and length of 

the dipoles in the FSS (LFSS) that provide it. (b) Scheme of the tapered FSS. 

(a) 

 

 

(b) 
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Fig. 4.3.5 Normalized illumination of the uniform and tapered LWA. 

 

 

Fig. 4.3.6 (a,b)Poynting vector in the top aperture of the LWA. (c,d) Magnitude of 

the electric field in the aperture. (a,c) LWA with uniform FSS. (b,d) LWA with 

tapered FSS. 

Figure 4.3.5 shows the aperture illumination of the designed antennas. The 

blue lines in this figure correspond to the uniform antenna, where we can easily 

check that the pattern is exponential. On the other hand, the red lines are 

(b) 

 

 

 

 

(d) 

(a) 

 

 

 

 

(c) 
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associated to the tapered antenna, where the cosine illumination is patent. Once 

more, the comparative between the theoretical and the full-wave results is 

reasonably good. The effect of the tapering can be also noticed in Fig. 4.3.6, where 

it is shown the poynting vector (Fig. 4.3.6(a) and (b)) and the magnitude of the 

electric field (Fig. 4.3.6(c) and (d)) in the top aperture of the antenna. Both Fig. 

4.3.6(a) and (c) show that in the uniform antenna the energy is mostly radiated at 

the beginning, and decreases exponentially. However, in the tapered antenna (Fig. 

4.3.6(b) and (d)) the maximum radiation is produced at the middle of the antenna 

while it is null at the edges.  

 

Fig. 4.3.7 Normalized radiation diagram (La = 10 λ0, ηRAD = 75%, f = 15 GHz). 

This tapering procedure not only produces a modulation of the radiation 

rate along the LWA length, but it also introduces variations in its radiation angle 

θRAD (see Fig. 4.3.2), which will result in phase aberration. In the previous design, 

this effect is not perceptible in the radiation pattern due to its wide beamwidth 

(see Fig. 4.3.3). However, some improvement will be required when dealing with 

more directive antennas. In these cases, it is needed to find the way to control αy 

without affecting βy, so that all parts of the aperture radiate to the same angle θRAD. 

An example that illustrates this necessity is shown in Fig. 4.3.7, where the 

proposed tapering procedure has been applied to a longer antenna (LA = 10 λ0, in 

contrast to the previous antenna which length was 3.5 λ0,). The phase aberration 
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effect is clear in the tapered radiation diagram, where it is possible to see the 

distortion produced in the main beam. As it can be seen in Fig. 4.3.7, the main 

beam suffers a higher broadening and the reduction of the SLL is not successfully 

achieved. As it was explained in Section 3.3, the 1D PRS-HIS LWA proposed in 

Section 3.2 overcomes this difficulty by loading the bottom side of the FP 

cavity with a HIS, allowing the simultaneous control over βy and αy. This 

feature was proven in Section 3.4 by designing several uniform LWAs with variable 

pointing angle and beamwidth. However, when designing tapered LWAs, it is 

possible to take full advantage of the wavenumber independent control. Next, 

some tapered antennas are designed in order to prove the versatility of the 1D 

PRS-HIS LWA together with the efficiency of the synthesis equations proposed in 

Section 4.2.  

Two tapered 1D PRS-HIS antennas are now designed, LWA1 and LWA2, 

with respective scanning angles θRAD = 20º and θRAD = 50º, operating at 15 GHz with 

radiation efficiency ηRAD = 90%, and Half Power BeamWidth (HPBW) Δθ = 10º. 

Another set of uniform antennas with exponential illumination are considered for 

comparison. The length of each LWA is respectively LA1 = 146 mm and LA2 = 214 

mm (LA1 = 7.3λ0 and LA2 = 10.7λ0 at 15 GHz), needed to provide the specified HPBW 

Δθ = 10º for their particular scanning angles with cosine illumination [Oliner 

1993]: 

  

  
 

     

            
                                                          

The constant value of   which corresponds to the designs can be easily 

obtained from the pointing angle by applying the well-known expression 

              [Oliner 1993]. As it was explained in Section 3.1, for the non-

tapered designs, the constant value of    can be readily obtained from the 

radiation efficiency ηRAD by applying [Oliner 1993]: 
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The reduction of the SLL is performed in both antennas by modulating the 

leakage rate along the radiating aperture. Employing the well-known expression in 

(4.3.1), we obtain the leakage rate tapering function at each longitudinal section y 

of the LWA for the desired cosine illumination M(y). Note that equation (4.3.3) is a 

reduced form of (4.3.1) assuming an exponential illumination M(y) (as it 

corresponds to non-tapered LWAs). Figure 4.3.8 shows the tapered leakage 

functions (y)/k0 for LWA1 and LWA2 with cosine aperture distribution. The 

pointing angle RAD remains constant along all the aperture length to optimize the 

aperture phase efficiency at the prearranged scanning angles θRAD = 20º and θRAD = 

50º. 

The desired leaky-mode tapering functions (y)/k0 and RAD(y) of Fig. 4.3.8 

can then be used as the input of the synthesis technique presented in the previous 

section, which must be applied to all longitudinal positions y of the LWA. This way, 

the geometrical tapering of the PRS and HIS metallic dipoles lengths, LPRS(y) and 

LHIS(y), are obtained as plotted in Fig. 4.3.9. The dashed horizontal lines in Fig. 4.3.9 

correspond to the non tapered antennas, with uniform PRS and HIS dimensions 

along the whole LWA length. For the case of the tapered designs, it must be noted 

that null radiation (αy/k0 = 0) is requested at the edges of the tapered antennas 

[Oliner 1993] (see Fig. 4.3.8). The PRS must present total reflection at these null-

leakage points located at the antenna input and output: this is obtained for 

resonant PRS dipoles at the design frequency of 15GHz (LPRS = 11 mm  0/2) in 

Fig. 4.3.9(a). It can also be inferred from Fig. 4.3.8 that maximum leakage is 

demanded at a longitudinal point y which is right shifted from the center of the 

tapered LWAs [Oliner 1993]; here, the transparency of the PRS is the highest 

(lowest values of LPRS), allowing high leakage from the FP cavity. It is easy to see 

from Fig. 4.3.8 and 4.3.9(a) that the tapering of LPRS follows an inverse variation to 

the requested modulation of αy/k0. Notice that the tapered LWA2 presents lower 

values of LPRS that LWA1, although LWA1 requests higher values of αy/k0. This is 

due to the fact that LWA2 operates at 50º, which is less perpendicular to the PRS 

sheet than LWA1 (operating at 20º). As it is well-known, the PRS transparency 

decreases as the incident angle is increased [Goussetis 2006], and therefore, the 
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PRS dipoles of LWA2 must be much shorter than those of LWA1 to provide the 

same of even lower leakage rates. 

 

 

 

 

 

 

Fig. 4.3.8 Tapering of the leaky-mode pointing angle (θRAD) and normalized leakage 

rate (αy/k0) requested to achieve a cosine illumination with RAD=90%. 

 

As it was explained in detail in Section 3.2, LPRS not only modifies the 

radiation rate, but also affects the LWA pointing angle RAD. Therefore, LHIS must 

also be modulated in order to correct any deviation and to achieve the desired 

constant value of RAD [Gómez 2005-III]. This variation of LHIS is shown in Fig. 

4.3.9(b): it is more pronounced for the case of LWA1 due to the fact that shorter 

LWAs need higher variations of αy/k0 for similar radiation efficiencies and aperture 

functions than longer LWAs (see Fig. 4.3.8). As a result, these stronger leakage 

modulations create higher distortion of the scanning angle RAD which must be 

corrected with higher tuning of LHIS. 
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(a)  

(b)  

Fig. 4.3.9 Tapered length of the dipoles in the top PRS and bottom HIS. 

 

Table 4.3.1. Comparison of computation time needed for the synthesis of LWA2. 

Two sets of tapered dimensions LPRS(y) and LHIS(y) are plotted in Fig. 4.3.9 

for each LWA. The first curves correspond to the synthesis equations proposed in 

this paper and they are plotted with circles, while the second set of dimensions are 

represented with continuous lines and they have been extracted from the 2D 

dispersion chart of Fig. 4.2.2, which is used as a look-up table. Good agreement is 

found between both techniques. Some discrepancies between these two 

approaches are attributed to numerical errors associated with interpolations in 

Synthesis equations 
approach 

2D dispersion 
charts 

Full-wave optimization 
[HFSS 2011] 

30 s. 10800 s several days 
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obtaining the blue curves in Fig. 4.2.2: it must be highlighted that the direct 

synthesis equations are more accurate due to the fact that it avoids any 

interpolation of the dispersion data which is normally done in the post processing 

to complete all possible values of LPRS, LHIS (as explained in Section 3.3). In addition, 

the main advantage of the direct synthesis approach is the dramatic reduction in 

the computational cost associated to the design procedure, as shown in Table 4.3.1. 

 

Fig. 4.3.10 Manufactured PCBs for LWA1 (a) Non-tapered (b) Tapered designs. 

The accuracy of the proposed synthesis approach is proven in this section 

through the manufacture and measurement of the uniform and tapered LWAs 

designed in Section II (LWA1 and LWA2). These prototypes have been constructed 

and measured at CSIRO ICT laboratories. Taconic TLY-5-0450 substrates (D = 1.13 

mm, εr = 2.2, tan = 0.0009) were used for the PRS and HIS printed circuits. Fig. 

4.3.10 illustrates some pictures of the uniform and tapered PCBs of length LA1 

which correspond to LWA1. The PRS and HIS shown in Fig. 4.3.10(a) belong to the 

non-tapered prototype, where the length of the dipoles (LPRS and LHIS) remains 

constant. As it can be seen in Fig. 4.10(b), the modulated PRS and HIS follow the 

tapering functions shown in Fig. 4.3.9, with the PRS dipoles shorter at the LWA far 
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center, while the HIS dipoles become longer at the same longitudinal position. 

These PCB designs are then placed inside the metallic 1D parallel-plate waveguide 

structure described in Section 3.3, where a TE01 leaky mode is fed by using a 

simple coaxial-to-waveguide transition. 

 

(a)  

(b)  

Fig. 4.3.11 Theoretical and measured normalized radiation patterns for the 

designed antennas, showing the reduction of the SLL achieved by the taper. 

The radiation patterns of the uniform and tapered prototypes operating at 

15 GHz are plotted in Fig. 4.3.11, for both LWA1 and LWA2. Measured results are 

compared with radiation patterns obtained from simple leaky-wave theory [Oliner 

1993]. Good agreement is obtained for the major and the minor radiated lobes, 

even in the case of the reflected lobe at -50º shown in Fig. 4.3.11(b). The pointing 

angles in Fig. 4.3.11(a) and (b) are respectively 20º and 50º, which perfectly match 
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the specified scanning values. The SLL reduction is also proven in Fig. 4.3.11, which 

shows with blue lines that the SLL presented by the uniform designs (in the order 

of 11-13dB) can be effectively decreased below 20dB by properly tapering the 

LWA geometry patterns plotted with red lines (an ideal cosine illumination would 

provide -23 dB SLL [Oliner 1993]). 

Finally, Fig. 4.3.12 shows measured radiation patterns for tapered LWA2 as 

frequency is shifted. It is observed that secondary lobes are kept below -20dB as 

the main beam is frequency scanned from 20º (12GHz) to 55º (16GHz). At higher 

frequencies, a side lobe emerges and degrades the SLL performance. This is due to 

the fact that RAD increases and y/k0 decreases as frequency is shifted to higher 

values (this is the normal dispersion of a leaky mode [Oliner 1993]). This makes 

the aperture distribution become much distorted for higher frequencies with 

respect to the cosine function synthesized at 15GHz, tending to a more uniform 

distribution which presents a higher SLL. On the contrary, a quasi cosine 

distribution is maintained at lower frequencies, due to the fact that y/k0 increases 

as frequency decreases from 15GHz. This makes the SLL remain low at the expense 

of an increase in the HPBW , as a result of the decreased effective illuminated 

length (observe the wide main beam at 12GHz in Fig. 4.3.12). 

 

 

Fig. 4.3.12 Measured normalized radiation patterns of the tapered LWA 2 at 

different frequencies. 
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4.4 Control of the illumination at broadside of 1D FP 

LWA 

In this section, broadside radiation from non-uniform 1D FP LWAs is 

studied; this time the source is placed at the middle of the antenna length. In 

contrast to the previous section, the illumination of this antenna will be tapered in 

order to improve the radiating aperture efficiency, while achieving broadside 

radiation and keeping high radiation efficiency (ηRAD) at a fixed operation 

frequency. Low sidelobes level (SLL) is also achieved due to the LWA quasi-cosine 

near field illumination resulting from the two opposite-directed exponentially-

decaying leaky waves. 

In recent years, it has been proven that broadside radiation is no longer a 

limitation to leaky wave antennas (LWAs), remarkable examples can be found in 

[Ip 1990], [Guglielmi 1993], [Chien-Jen 1999], [Caloz 2005], [Burghignoli 2006] 

and [Lovat 2006]. Particularly, interesting results have been lately published in 

order to achieve this feature in 1D LWAs. Considering periodic configurations, the 

radiation is produced by the leaky n=-1 spatial harmonic (SH) [Guglielmi 1993], 

[Burghignoli 2006]. In the case of using composite right-left-handed transmission 

lines, is the n=0 SH the responsible for the radiation [Caloz 2005]. Broadside 

radiation from homogeneous 1D LWAs can also be produced by the n=0 SH by 

satisfying the splitting condition in a symmetrically fed configuration [Ip 1990], 
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[Lovat 2006], [Chien-Jen 1999]. These papers show leaky-mode frequency results 

regarding the optimization of the splitting condition [Sutinjo 2008], the radiated 

power at broadside, -3dB beamwidth (Δθ)…  

 

Fig. 4.4.1 Scheme of leaky-waves propagation along the z axis in three different 1D 

LWAs configurations: (a) Non tapered, unidirectional (b) Tapered, unidirectional 

(c) Non tapered and symmetrically fed (bidirectional). 

 

1D LWAs are commonly fed at one end, and therefore are based in the 

propagation of leaky-waves in a single direction [Oliner 1993], [Balanis 1982], 

[Lampariello 1985]... The main advantage of this configuration is the single 

frequency scanned beam in the radiation pattern [Oliner 1993]. These LWAs are 

considered unidirectional, and are illustrated in the scheme of Fig. 4.4.1(a). As it 

was studied in the previous section, these LWAs have an associated exponential 

near field illumination to which corresponds a SLL of approximately -13dB. This 

SLL value may not be acceptable for some practical applications, and it is necessary 

(a) 

 

 

 

 (b) 

 

 

 

 

(c) 
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to shape the antenna near field patterns in order to reduce the SLL. Convenient 

illuminations such as cosine can be achieved by tapering the leakage rate 

associated to the leaky-mode (α). Fig. 4.4.1(b) shows the scheme of a 1D LWA with 

a cosine taper, which provides lower SLL than the non tapered antenna in Fig. 

4.4.1(a). However, this amplitude taper can be avoided when the source is placed 

in the middle of the antenna [as illustrated in Fig. 4.4.1(c)]. In this situation, the 

uniform guiding structure supports propagation in both opposite directions, 

achieving a quasi-cosine near field illumination. As it can be seen in Fig. 4.4.1(c), 

the resulting radiation pattern is a superposition of the radiation contribution of 

both unidirectional waves. Particularly, as it was explained in Section 3.1, when the 

splitting condition βy = αy is accomplished; a single broadside beam is produced 

due to the coalescence of the two radiated beams [Sutinjo 2008]. Yet, this 

configuration is only attractive for broadside radiation, due to the fact that two 

main beams appear in the radiation pattern for other pointing angles [see Fig. 

4.4.1(c)]. In order to clarify these aspects, three different scenarios of 1D LWAs 

that satisfy the splitting condition are illustrated in Fig. 4.4.2. In particular, the 

radiation patterns and near electric fields associated to each antenna are shown. 

The first case [Fig. 4.42(a)] corresponds to a unidirectional non tapered LWA. As it 

can be seen, the radiation is produced at a small angle greater than zero. A SLL of -

13dB is achieved in this configuration, as corresponds to exponential illumination 

of the near field patterns. The second case corresponds to a unidirectional LWA in 

which a cosine taper has been performed. Thus, the SLL in Fig. 4.4.2(b) is lower 

than in the previous case, although the pointing angle is the same. The collimated 

illumination in this antenna (cosine shaped) can also be observed in the near field 

patterns. At last, the third case corresponds to a non tapered LWA which is 

symmetrically fed. As Fig. 4.4.2(c) shows, broadside radiation and low SLL is 

achieved with this configuration. The radiation pattern beamwidth is increased 

due to the aforementioned superposition of beams. The quasi-cosine illumination 

can also be observed in the near field patterns of Fig. 4.4.2(c). 
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Fig. 4.4.2 Near longitudinal electric fields of 1D LWAs (a) Non tapered, 

unidirectional (b) Tapered, unidirectional (c) Non tapered and symmetrically fed 

(bidirectional). 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 
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     (a)                                      (b)                                      (c) 

Fig. 4.4.3 Aperture illumination for 1D LWAs, (a) and (b) are non tapered, (c) is 

tapered. 

 

Fig. 4.4.4 Scheme of 1D and FP LWA with planar PRS and HIS (Dimensions: H = 

10mm, a = P = 8.5 mm, D =1.13mm, Q = 3mm, PHIS = 1.7mm, QHIS = 0.5mm, εr = 2.2). 

For the previous reasons, although most of 1D LWAs have been used to scan 

in the elevation plane, recently there is an increased interest on the study of 1D 

LWAs which are symmetrically fed from its center position, and which present 

optimized broadside radiation when the leaky-mode satisfies the splitting 

condition [Chen 1998], [Yamamoto 1999], [Lovat 2006], [Li 2007], [Sutinjo 

2008],[Komanduri 2010]. To this author´s knowledge, all previously reported 

designs of broadside-directed 1D LWAs are not tapered, and therefore, only 

exponential amplitude aperture illuminations are obtained. In these non-tapered 

situations, one can only choose a higher or a lower value of       which is kept 

constant along the whole LWA length, as sketched in Fig. 4.4.3(a) and 4.4.3(b). 
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These non-tapered examples clearly show that the illumination of the radiating 

aperture becomes more uniform when       is lowered [Fig. 4.4.3(b)]. Therefore, 

the reduction of       could be considered as a first approach to improve the 

aperture efficiency (   ) of a FP LWA. However, when       is decreased, more 

guided energy reaches the LWA far ends, as it can be seen in Fig. 4.4.3(b). Two 

possible solutions have been proposed to deal with this non-radiated power: 1) to 

place matched loads at the antenna’s edges to absorb it [Lovat 2006], [Li 2007], 

[Sutinjo 2008],[Komanduri 2010], or 2) to use open or short circuited terminations 

[Chen 1998], [Yamamoto 1999]. In the first case, the radiation efficiency 

(            ) falls as     is increased (i.e., as      is decreased). As 

demonstrated in [Komanduri 2010], the theoretical compromise gives an ideal 

maximum normalized gain factor               when           

and         . If the second solution is employed, the open or short circuits may 

create a standing leaky-wave [Chen 1998], [Yamamoto 1999], which further 

reduces the aperture efficiency (as a result of the generation of standing waves), 

and it also creates diffraction lobes due to the strong discontinuity at the edges. 

This compromise between radiation and aperture efficiency can be 

overcome if the leakage rate is tapered along the LWA length, so that uniform 

illumination with ideal       can be theoretically achieved whilst keeping 

radiation efficiency as high as possible, as depicted in Fig. 4.4.3(c). Typically 

         is pursued, to avoid too high values of   at the last sections of the 

tapered LWA [Gómez 2006-III].  In this section, this approach is employed for the 

aperture efficiency enhancement of the 1D FP LWA of Fig. 4.4.4. This double 

layered FP structure is analogous to the one presented in Section 3.2, and also 

provides simultaneous and independent control over the leaky-mode phase 

constant (  ) and leakage rate (  ). In contrast to the 1D PRS-HIS LWA previously 

considered (see Fig. 4.2.1(a)), the PCB located at the top of the FP cavity now 

consists of a metallic sheet periodically perforated with slots (see Fig. 4.4.4), which 

again acts as partially-reflective surface (PRS). This PRS provides the control over 

   by modifying the length of its resonant slots (LPRS, shown in Fig. 4.4.4). 

Particularly, low leakage will be induced when the slots in the PRS are short, and 

vice versa. As it was explained in Section 2.3, this structure can also be analyzed 

with the TEN-based technique developed. 
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The value of      at any longitudinal position of the antenna that provides a 

desired field distribution along the LWA aperture can be found using the following 

well-known expression (already introduced in the previous section) 

    

  
 

  

  

       

 
    

          
    

   
           

    

   

                           

The same tapering function is applied to the leaky wave phase constant     , so 

that the splitting condition       (y) is satisfied at any longitudinal position z of 

the antenna and broadside radiation is optimized along the whole LWA with length 

La in each one of the two directions.  

As an illustrative example, a symmetrically fed 1D LWA with La = 30 is now 

considered. Three different cases of non-tapered antennas with             

0.1, 0.05 and  0.02 are designed. The corresponding near field patterns are 

depicted in Fig. 4.4.5(a), (b) and (c), which illustrate the previously explained 

effect of increasing the radiation rate in both the illumination and the diffraction 

level at the edges of the antenna. In particular, Fig. 4.4.5 shows the magnitude of 

the longitudinal electric field (plane yz in Fig. 4.4.4) and the poynting vector of the 

fields radiated by the aperture and the edges of the antenna. As       is decreased 

in the uniform designs, the radiated wavefront in the aperture becomes more 

uniform; however, it can be clearly observed that the radiation efficiency is also 

decreased and more energy reaches the borders of the antenna, resulting in high 

diffraction. Both uniform illumination and high radiation rate (RAD=0.85) can be 

achieved at the same time by tapering the leakage constant, as Fig. 4.4.5(d) 

confirms. In this case, the needed modulation of the leakage rate and phase 

constant along the antenna corresponds to the red dashed line in Fig. 4.4.6. As this 

line shows, low leakage is required at the centre of the antenna (where the source 

is placed). The value of       increases as the edges of the LWA are reached, 

compensating the natural exponential decay of the leaky-wave. This tapered value 

of             is provided along the LWA length by modifying the length of the 

resonant elements in the periodic layers, as shown in Fig. 4.4.7. The blue dotted 

line in Fig. 4.4.6 indicates that the slots in the PRS are short in the centre of the 

antenna, providing the required low leakage close to the feed. Their lengths 
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increase as we move towards the edges, allowing the requested increase of   . In 

order to satisfy the splitting condition at each point of the LWA length (i.e., to 

achieve the corresponding variation of       , the lengths of the dipoles in the 

HIS must also be varied, as the red continuous line in Fig. 4.4.7 shows. 

(a)  

(b)  

(c)  

(d)  

Fig. 4.4.5 Longitudinal near electric field and poynting vector (plane yz, see Fig. 

4.44) in non-tapered 1D FP LWAs (a)         , (b)          , (c)           

and (d) tapered      (uniform illumination). 
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Fig. 4.4.6 Tapering function for 1D LWAs.  

 

Fig. 4.4.7 Synthesized length of the slots in the PRS (LPRS) and length of the dipoles 

in the HIS (LHIS) which provides the tapered illumination of Fig. 4.4.5. 

The tapered design with the central coaxial feeding is depicted in Fig. 4.4.8. 

The lengths of the slots in Fig. 4.4.8(b) and the dipoles in Fig. 4.4.8 (c) correspond 

to the synthesized dimensions plotted in Fig. 4.4.7.  

The normalized radiation patterns obtained with [HFSS 2011] for the cases 

exposed in Fig. 4.4.5 are plotted in Fig. 4.4.8. As it corresponds to 1D LWAs, the 

patterns in Fig. 4.4.8 characterize fan-beams; the main beam is narrow in the H-

plane [Fig. 4.4.8(a)] and wider in the E-plane [Fig. 4.4.8(b)]. The main differences 

between the four cases under study can be clearly identified in Fig. 4.4.8(a), 

regarding beamwidth, sidelobe level and diffraction level [measured at 90  from 

the broadside direction in the H-plane of Fig. 4.4.8(a)].  
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(b)  

(c)  

Fig. 4.4.7 Tapered 1D FP LWA (a) 3D model with central coaxial feeding (b) 

Tapered 1D slotted-based PRS, (c) Tapered 1D dipole-basded HIS. 

 

The main concluding results are summarized in Table 4.4.1. As previously 

explained, the case of lowest leakage rate (y/k0 = 0.02) provides the highest 

aperture efficiency AP = 99.6%. However, this is at the expense of the lowest 

radiation efficiency (RAD = 53%) and the highest diffraction level (-21dB) when 

compared to higher constant values of   /    0.05, 0.1 (which are worse in the 

sense of aperture efficiency but present higher radiation efficiency and lower 

diffraction level). As explained before, the highest diffraction is due to higher 

energy reaching the LWA edges discontinuity (in this case it is a radiating open 

end), as a result of the lower radiation efficiency RAD. All these facts affect the 

directivity, which reaches a maximum value of     11.63     for the non-tapered 

design with constant y/k0 = 0.05. On the contrary, the 1D FP LWA with tapered 

y(y) makes available a directivity of D = 13.15 dBi. This is possible thanks to very 

high aperture efficiency AP = 0.98 as a result of the more uniform illumination, 

while it is kept very high radiation efficiency (RAD = 0.85). Also, the simulated SLL 

is reported in Table 4.4.1 for each case, observing how the SLL increases as the 

aperture is more uniformly illuminated, tending to theoretical -13dB for perfect 

uniform illumination. 
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Fig. 4.4.8 Normalized radiation patterns in dB of 1D FP LWAs (a) H-plane (b) E-

plane. 

 

 

Table 4.4.1 Directivity enhancement in H-plane of 1D FP LWAs 

CASE D(dBi) ηAP ηRAD Diffraction Sidelobe 

α/k0 = 0.1 11.15 60.8% 97.7% -40 dB -29 dB 

α/k0 = 0.05 11.63 88.4% 85% -30 dB -25 dB 

α/k0 = 0.02 11.02 99.6% 53% -21 dB -15 dB 

Tapered α/k0 13.15 98% 85% -25 dB -14 dB 

 

(a) 

 

 

 

 

 

 

 

(b) 
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4.5 Control of the illumination at broadside of 2D FP 

LWA 

Two-dimensional FP LWAs produce high-directive pencil beams radiating 

at broadside by exciting a cylindrical leaky wave from a single point source [Ip 

1990]. However, they usually present very narrow bandwidth and low aperture 

efficiency due to the high quality factor of the resonator. Improved bandwidth is 

obtained when the PRS reflectivity is decreased at the cost of reducing the 

illumination efficiency [Alkhatib 2007]. Multiple fed FP LWAs have also been 

proposed to increase the bandwidth and illumination efficiency at the expense of a 

much more complex array feeding network [Weily 2007], [Leger 2005],  losing one 

of the most interesting features of FP LWAs which is their simple feeding scheme. 

The use of double-layer PRS with slightly different resonant frequencies can 

extend the bandwidth; however, the reported gain and aperture efficiency were 

deficient [Vu 2007], [Moustafa 2008]. The use of step-sized HIS (also known as 

compound FP LWAs [Zhang 2007], [Wu 2010], or tapered AMC LWAs [Yeo 2009]) 

has been proposed to increase the gain-bandwidth product and the associated 

aperture efficiency. However, the tapered designs presented in [Zhang 2007], [Wu 

2010] and [Yeo 2009] relied on full-wave simulations of the whole antenna, and an 

efficient technique to design the tapered dimensions of the HIS has not been 

proposed so far. Recently, a design procedure has been suggested for spiral 
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circularly polarized LWAs based on modulated surface impedance [Minatti 2011]. 

In this section, it is presented, for the first time a systematic approach to design 

tapered 2D FP LWAs, in which both periodic layers (PRS and HIS) are modulated to 

obtain high aperture efficiency while assuring pencil-beam broadside radiation. 

The structure of Fig. 4.5.1 is here considered, which is the two-dimensional version 

of the one-dimensional LWA studied in the previous section (see Fig. 4.4.4). It must 

be noticed that the tapering of 2D LWAs is a much more complicated task than the 

one performed for the 1D case, not only due to the cylindrical nature of the excited 

leaky-waves, but also due to the hybrid polarization of the radiating leaky-wave. A 

similar rationale to the one applied in [Takahashi 1991] is now followed to obtain 

the requested tapering of the cylindrical leaky-wave leakage rate as a function of 

the radial distance  . 

 

Fig. 4.5.1 Scheme of (a) 1D and (b) 2D Fabry-Perot Leaky-Wave Antennas with 

planar PRS and HIS (Dimensions: H = 10mm, a = P = 8.5 mm, D =1.13mm, Q = 3mm, 

PHIS = 1.7mm, QHIS = 0.5mm, εr = 2.2). 

The formulation regarding two-dimensional uniform LWAs was presented 

in Section 3.1.2. As it was explained there, because of the horizontal electric dipole 

that feeds the structure (see Fig. 4.5.1), two cylindrical leaky waves are excited. In 

particular, the x-polarized electric dipole placed in the middle of the cavity excites 

a pair of cylindrical leaky waves, a TEz and a TMz one. The x-polarized field can be 

considered as a TM wave when propagating in one of the main transverse axis [x-

axis,  = 0º in Fig. 4.5.1], a TE wave when propagating in the complementary axis 
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[y-axis,  = 90º in Fig. 4.5.1], and a combination of both polarizations for any other 

transverse direction and azimuthal angle  [Ip 1990]. Therefore, although the 

illumination of the 2D LWA is described employing Hankel functions (as it was 

explained in Section 3.1.2), the following approximated expression can be 

employed when considering one of the main planes [Takahashi 1991] 

                
  

          

 
     

            
 
      

            
 
  

        

         

           

where   
     

 and   
     

 stand for the phase constant and leakage rate associated 

to the TMz or TEz cylindrical leaky waves, respectively. Equation (4.5.1) is very 

similar to the illumination of 1D LWAs (equation (3.1.12)), the only difference is 

the factor    , that in this case accounts for the cylindrical dispersion of the wave. 

Reversing the above expression it is possible to obtain the leakage rate which 

provides a certain cylindrical leaky wave illumination        in each of the main 

planes 

          

  
 

  

  
           

 
    

             
 

  
              

 

  

 

        

         

           

The condition   
     

     
     

   is imposed, in order to satisfy the 

splitting condition and therefore, broadside radiation. As an illustrative example, 

an antenna aperture of           is considered, and the quasi-uniform 

illumination of Fig. 4.5.2(a) is pursued (it is assumed to be  -independent). Then, 

by applying Eq. (4.5.2) it is obtained the value of   
     

     
     

   at each 

point of the aperture that supports the desired illumination (plotted in Fig. 

4.5.2(b)). As it was proceeded in the 1D case, the geometry of both periodic PRS 

and HIS layers is now synthesized in order to achieve the desired leaky-mode 

complex propagation constant at each point of the antenna. Applying the equations 

approach described in Section 4.2, the dimensions of the PRS slots and the HIS 

dipoles are obtained (see Fig. 4.5.3). As the blue dotted line in Fig. 4.5.3 shows for 
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LPRS(), the PRS slots are widened as we move far from the antenna center feed. 

This is needed to exponentially increase the leakage rate, so that both the 

cylindrical dispersion and the exponential energy drop are compensated, and 

quasi-uniform illumination is obtained across the whole antenna aperture. At the 

same time, the HIS dipoles lengths LHIS() must be complementarily tapered, so 

that the phase variations introduced by the PRS modulation are compensated, and 

the splitting condition is satisfied at any antenna aperture position. The modulation 

of the HIS dipoles lengths is plotted with red continuous line in Fig. 4.5.3. 

 

(a)  

 

(b)  

Fig. 4.5.2 (a)Quasi-uniform illumination in 2D FP LWA and (b) Leakage-rate that 

provides it.  
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Fig. 4.5.3 Synthesized length of the slots in the PRS (LPRS) and length of the dipoles 

in the HIS (LHIS) which provides a tapered quasi-uniform illumination in a 2D FP 

LWA. 

Figure 4.5.4 illustrates the near-field aperture illumination for three cases 

of 2D FP LWA with dimensions          : the first case is a non-tapered LWA 

with high leakage-rate (         ), the second non-tapered case presents lower 

rate (          ), and the third case is a tapered design with quasi-uniform 

illumination and RAD = 90%. As it can be easily seen from the currents in the 

aperture, the most uniform distribution is obtained for the tapered case. The non-

tapered case with leakage rate      provides simple exponential illumination with 

very poor aperture efficiency (AP = 24.3%) and therefore low directivity (D = 

23.8dBi while the maximum achievable directivity is 29.9dBi). Negligible 

diffraction lobes are obtained as a result of the high RAD = 98% (as Fig. 4.5.4(b) 

shows, very little energy reaches the edges of the antenna). The non-tapered 

scenario with leakage rate 0.015 illuminates better the antenna surface, but it 

suffers from distortion of the aperture field as a consequence of the standing 

waves created by the low amount of radiated energy (RAD = 61%), and therefore 

the high amount of guided energy reaching the edges of the antennas [Sun 2012], 

[Muhammad 2012] (as it is pointed out in Fig. 4.5.4.(d)). The nulls and maxima 

associated to the standing wave can be clearly appreciated surrounding the 

aperture centre in Fig. 4.5.4(c). As a result, the directivity is increased by only 

2.3dB when compared to the non-tapered case with higher leakage, obtaining D = 

26.45dBi and A = 44.7%. However, the diffraction level strongly increases from 
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below -40dB up to -18dB, as summarized in Table 4.5.1. As it happened in the 

previous section with the 1D LWA, the tapered solution gives the best balance, 

providing AP = 73.2% and RAD = 90%, resulting in the highest directivity (D = 

28.6dBi), and keeping low diffraction levels (below -30dB). 

                     

 

Fig. 4.5.4 Near fields in 2D FP LWAs (a,b)           (c,d)             

(e,f) tapered      

The previous results are summarized in Table 4.5.1, and the normalized 

radiation patterns in both H and E planes are plotted in Fig. 4.5.5. In contrast to the 

fan-beam patterns obtained in the previous section (see Fig. 4.4.8), the main lobes 

in Fig. 4.5.5 are pencil beams, as it corresponds to a 2D FP LWAs. The previous 

numerical results are in coherence with these radiation patterns. It can be clearly 
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Electric field in the transverse planes 

 

Currents in the top PRS 

 



4.5 Control of the illumination at broadside of 2D FP LWA 241 

 

 

checked in both Fig. 4.5.5(a) and (b) that among the three studied LWAs, the 

tapered case provides both narrow beamwidth and low diffraction, thus validating 

the validity of the proposed tapering technique. 

 

Table 4.5.1 Directivity enhancement in 2D FP LWAs. 

 

Fig. 4.5.5 Normalized radiation patterns in dB of 2D FP LWAs (a) H-plane (b) E-

plane.

(a) 

 

 

 

 

 

 

 

(b) 

CASE D(dBi) ηAP Diffraction 

α/k0 = 0.07 23.8 24.3% -40dB 

α/k0 = 0.015 26.1 44.7% -18dB 

Tapered α/k0 28.6 73.2% -30dB 
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4.6 Conclusions 

In this chapter, the efficient modulation of the illumination in 1D and 2D FP 

LWAs has been carried out. The basic concepts underlying the tapering procedure 

and its main applications were explained in Section 4.1.  

Next, an efficient synthesis technique especially suited for double-layer FP 

LWAs has been proposed in Section 4.2. The approach is based on the numerical 

solution of two simple equations extracted from an equivalent transverse network, 

which yields the dimensions of the PRS and HIS circuits that produce the desired 

leaky-mode complex wavenumber. The approach is simple and requires the 

computation of the periodic layers response under the condition of plane-wave 

incidence, thus avoiding the much more expensive solution of leaky-mode 

dispersion problems. 

Due to its efficiency, this approach can be directly applied to the design of 

tapered FP LWAs, which modulate the printed circuit dimensions to synthesize 

specific aperture distributions. As an example, in Section 4.3, two low-sidelobe 

tapered 1D LWAs were designed to point at 20º and 50º at 15GHz. Experimental 

results confirmed the accuracy of the proposed synthesis technique, and the 

tabulated simulation times demonstrated that it is much less time consuming than 

other known methods. 
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Finally, the optimization of the aperture illumination efficiency in 1D and 

2D Fabry-Perot leaky-wave antennas was theoretically studied in Section 4.4 and 

4.5. A quasi-uniform taper was proposed in order to achieve high aperture 

efficiency, while assuring high radiation efficiency to minimize diffraction and 

standing waves. Also, the splitting condition must be satisfied in all radiating 

sections of the LWA to obtain the highest directivity at broadside. In particular, the 

proposed technique was applied in the case of 1D and 2D LWAs loaded with a 

slotted-based partially-reflective surface (PRS) and a dipole-based high impedance 

surface (HIS). It was illustrated with various numerical examples how the proper 

modulation of the PRS and HIS surfaces makes possible to increase the directivity 

of this type of resonant antennas in a totally novel manner.  

In conclusion, the two objectives aimed at the beginning of this chapter 

(O6 and O7) have been successfully achieved. 
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Conclusions and perspectives 

 

 

 

 

5.1 Conclusions 

The main achievement of this thesis has been the systematic and efficient 

control of the field distribution in double-layer Fabry-Perot Leaky-Wave 

Antennas (FP LWAs). As it was explained in the first chapter of this dissertation, 

this accomplishment may become a relevant success for the antenna community, 

since it allows the synthesis and design of high gain antennas with very exotic 

features. However, it has not been possible to address this general problem 

without first tackling several specific issues along Chapter 2, 3 and 4, thus 

achieving many other goals throughout the development of this thesis. 

The double-layered FP LWAs considered in this work are schemed in Fig. 

5.1.1. Both, the one-dimensional (1D) and the two-dimensional (2D) scenarios 

have been studied, which are respectively depicted in Fig. 5.1.1(a) and (b). So far, 

1D FP LWAs have been generally used for scanning purposes whereas 2D FP LWAs 

have been useful when they provided a pencil radiated beam at broadside [Jackson 

2008]. The periodic layers which have been considered to form the structure are 

either arrays of metallic dipoles/patches or complementary metallic sheets 

periodically perforated with rectangular holes (see Fig. 5.1.1). These top and 

bottom Frequency Selective Surfaces (FSS) behave respectively as a Partially 
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Reflective Surface (PRS) and a High Impedance Surface (HIS). The performance of 

these layers is of key importance for the operation of the whole FP structure. Then, 

the first specific requirement for this thesis is now clear: the efficient and accurate 

modeling of periodic surfaces. 

(a)  

(b)  

Fig. 5.1.1 Double-layer FP LWAs considered in this Ph. D both in (a) one-

dimensional and (b) two-dimensional topologies. 

Chapter 2 has been centered in obtaining pseudo-analytical expressions of 

the equivalent admittance of dipole-based frequency selective surfaces. Firstly, it is 

proposed a modification of the pole-zero matching technique developed in [Maci 

2005]. The presented expansion allows to obtain an analytical expression which is 

a function of the wave unknown propagation constant and the length of the 

resonant dipoles. In this way, dispersion curves as a function of the dipoles length 

can be efficiently obtained for the first time, without any geometrical restriction. 

This technique is valid for any dimension of the dipoles, and also for square 

patches, apertures and slots. The only restriction is that the simple transverse 
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equivalent network is valid if higher-order Floquet-modes are below cut-off in the 

transverse direction. The novel technique has been illustrated by obtaining useful 

parametric curves for the design of practical structures based on printed-circuit 

FSS, such as a miniaturized HIS-loaded waveguide, and a Fabry-Perot resonant 

leaky-wave antenna. Results have been validated by comparing with more costly 

full-wave techniques based on method of moments and finite element method. 

Excellent agreement has been obtained for propagating modes and also for 

radiating leaky-waves, thus confirming the efficiency and versatility of the 

proposed approach. 

A software tool which implements the previous pole-zero approach has 

been implemented in MATLAB®. This tool and is based on a Transverse Equivalent 

Network (TEN) technique and it is especially suited to the analysis of rectangular 

waveguides excited by TE0 modes and loaded by FSSs. The tool lets the user obtain 

the dispersion diagrams of such structures. Its graphical user interface is very 

intuitive, and guides the user through different semiautomatic analysis steps. Its 

results are really similar to the ones obtained by full-wave techniques, which have 

higher computational cost. 

Finally, in this chapter it has been proposed a more physical insightful 

approach to the circuit modeling of the reflection/ transmission features of 2-D 

arrays of printed dipoles. This approach is based on the physical modal 

decomposition of the electromagnetic fields around the scatterers (printed dipoles 

in our case). The contribution of the infinite number of very high order modes 

scattered by the printed surface can be represented by a simple inductor and a 

simple capacitor. Only TE and TM modes with cutoff frequencies in the region of 

interest must be treated explicitly. After setting up the appropriate connection 

characteristics of the proposed equivalent network, the specific contribution of 

these few modes can be extracted by solving a small linear system of equations 

whose coefficients comes from a few full-wave numerical simulations carried out 

at certain specific frequency points. The accuracy of the circuit model predictions 

has been demonstrated for two different polarizations and a wide range of 

frequencies and incidence angles. An example of the modeling of a printed dipole-
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based FSS is shown in Fig. 5.1.2, where it can be clearly seen that the accuracy 

extends to the grating lobe regime.  

The availability of a circuit model not only reduces the overall 

computational effort but, even more importantly, it also provides a theoretical 

frame for understanding the qualitative performance of the patterned surface and 

to design devices based on such structures. In particular, the extraordinary 

reflection behavior that has given place to various and controversial theories in the 

past is very simply accounted for by our model. It should be highlighted that this 

equivalent-circuit model can also be used to characterize FSS structures with more 

complicated geometries of the scatterers, with the condition that their current 

profile does not change significantly with frequency. As a representative example, 

Fig. 5.1.3 shows the modeling of two arrays with different printed elements (i.e., a 

cross-dipole and a symmetric ring).  

 

 

Fig 5.1.2 Magnitude of the reflection coefficient under    0  incidence on E- and 

H-planes for a doubly periodic arrangement of metallic dipoles (the periodicity in 

both dimensions is 5mm) printed over a dielectric substrate (   3 and width 

0.5mm). The wave electric field is parallel to the dipoles, which width is 0.5mm 

and their length is (a) 3.5mm (b) 2mm.  
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Fig 5.1.3 Magnitude of the reflection coefficient under TM normal incidence for 

periodic arrangements (Px = Py = 5 mm) of circular rings (r = 3 mm, t = 0:5 mm,) 

and cross-dipoles (ax = 2 mm, ay = 3.5mm and wx = wy = 0.5 mm). The arrays are 

printed on a substrate of    = 2, d = 1 mm.  

The work developed in Chapter 2 has given rise to the publication of 3 

peer-review international journal papers (IJ), 4 international conference papers 

(IC) and 3 Spanish conference papers (SC) which correspond respectively to the 

references IJ1, IJ5, IJ6, IC1, IC9, IC10, IC11, SC1, SC5 and SC6detailed in Section 5.3. 

After the periodic surfaces characterization, in Chapter 3 it is possible to 

perform the analysis and design of uniform Fabry-Perot Leaky-Wave Antennas of 

Fig. 5.1.1. Firstly, the novel one-dimensional leaky-wave antenna shown in Fig. 

5.1.1(a), with flexible control of the scanning angle and the leakage rate has been 

proposed and studied. This structure has been analyzed using the TEN-tool 

developed in the previous chapter, from which the leaky-mode dispersion curves 

are obtained. In addition, the TEN-tool also gives physical insight into the 

operating mechanism of this antenna. It has been demonstrated that, once the 

cavity dimensions are chosen to operate at a desired frequency, the length of the 

dipoles allow control of the leaky-mode propagation constant. Specifically, one PCB 

forms a PRS, whose transparency controls the leakage rate of the antenna. The 

second grounded PCB creates a HIS, whose equivalent reflection phase determines 

the effective cavity height, and the pointing angle of the antenna. This enables high-

gain radiation patterns to be synthesized using standard photolithographic 
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processes, without the need for modifying the waveguide structure. Compared to 

previous hybrid LWAs based on PCBs in dielectric waveguides, the proposed 

antenna avoids dielectric losses since a hollow waveguide is used as the host 

medium. To verify the concept and design theory, several LWA antenna prototypes 

operating at 15 GHz have been fabricated. Measured results agree with the 

predicted ones. A coaxial-to-waveguide transition which serves as feeding and 

matched load device has been also carefully designed. A summary of the measured 

radiation patterns is shown in Fig. 5.1.4, which shows that it is indeed feasible to 

independently control the scanning angle and the directivity of the antenna at a 

fixed frequency, whilst keeping 90% radiation efficiency.  

 

 

Fig 5.1.4 Measured radiation pattern of 1D FP LWA designs at 15GHz. (a) Designs 

with constant pointing angle and variable directivity. (b) Designs with fixed 

directivity and different pointing angles. 

In Chapter 3, it was also demonstrated the improvement in the frequency 

scanning sensitivity of a hollow LWA due to the insertion of the HIS. The new 

topology increases the frequency scanning sensitivity, thus reducing the required 



5.1 Conclusions  253 

 

 

bandwidth to scan the main beam from near broadside to near endfire. It avoids 

the use of dielectric-filled waveguides, thus minimizing the associated dielectric 

losses. The HIS must be designed to introduce an Artificial Magnetic Conductor 

(AMC) resonance condition close to the cut-off of the leaky mode, so that the 

broadside and the endfire radiation frequencies are located in close proximity. 

Experimental results on fabricated prototypes have also been reported, showing 

very good agreement with theory. The designed 1D HIS-loaded LWA shows a 

scanning range of [5º,67º] in a bandwidth from 11GHz to 16GHz, achieving a 

frequency sensitivity of 12.4 /GHz. A similar LWA without HIS presents a scanning 

range of [7º,65º] in the frequency range from 13GHz to 26GHz, which has a 

frequency sensitivity of 4.5 /GHz. Therefore, the frequency sensitivity is almost 

three times higher when the HIS is added to the hollow LWA. A dielectric-filled 

LWA with similar frequency sensitivity as the HIS-loaded air-filled LWA would 

introduce 4dB higher insertion losses, subsequently decreasing the LWA radiation 

efficiency. It should be noted that the frequency-scanning enhancement shown in 

this work can be extended to any type of air-filled LWAs due to the fact that the HIS 

is able to perturb the leaky-mode by introducing a strongly dispersive AMC 

boundary condition.  

Finally, this chapter ends with the analysis and design of uniform 2D FP 

LWAs. Here it is explained that, by applying the method of images, it is possible to 

characterize 2D antennas in the H and E planes by analyzing two one-dimensional 

scenarios employing the tool developed in Chapter 2. Three cases of 2D LWAs have 

been designed to point at broadside with different cavity heights. The dispersion 

characteristics of uniform 2D FP LWAs in the main planes are efficiently obtained. 

In addition, the employed approach has also enabled the design of the two printed 

circuits together with the height of the cavity, in order to obtain broadside 

radiation. The main restriction of this efficient TEN-based analysis technique is its 

limitation to a minimum height H between the PRS and HIS sheets in the order of 

H=0/10. Below this limit there is a strong interaction between evanescent higher-

order Floquet-Modes created at the PRS and HIS circuits, which is not modeled by 

the simple TEN circuits. 
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The work developed in Chapter 3 has given rise to the publication of 3 

peer-review international journal papers (IJ), 5 international conference papers 

(IC) and 1 Spanish conference paper (SC) which correspond respectively to the 

references IJ2, IJ3, IJ4, IC2, IC3, IC4, IC5, IC6 and SC2 detailed in Section 5.3. 

Thanks to the work developed in Chapter 3, in Chapter 4 it was possible to 

perform the synthesis of tapered double-layer FP LWAs, both in one-dimensional 

and two-dimensional topologies. Here, non-uniform LWAs are designed, where the 

unit cell dimensions are tapered in order to synthesize any desired aperture 

distribution which creates a given radiated fields pattern. An efficient synthesis 

technique is firstly proposed, which is specially suited for double-layer Fabry-

Perot leaky-wave antennas. The approach is based on the solution of two simple 

linear equations extracted from an equivalent transverse network. The previous 

equations must be solved to obtain the dimensions of the PRS and HIS circuits, 

which produce the desired near field illumination. Due to its efficiency, this 

approach can be directly applied to the design of tapered Fabry-Perot LWAs, which 

modulate their printed circuit dimensions to synthesize specific aperture 

distributions. The theory is quite simple (resembling the design equations of 

negative resistance oscillators), and requires the computation of the PRS and HIS 

response under plane-wave incidence (FSS response), avoiding the much more 

expensive solution of dispersion problems (modal solutions in the complex plane). 

This synthesis approach has been compared with more standard and costly leaky-

mode dispersion methods showing significant reduction in synthesis time, which is 

very important for complex and electrically-large reconfigurable antennas.  

Due to its efficiency, this approach can be directly applied to the design of 

tapered FP LWAs, which modulate the printed circuit dimensions to synthesize 

specific aperture distributions. As an example, two low-sidelobe tapered 1D 

LWAs have been designed to point at 20  and 50  at 15GHz. Experimental results 

confirm the accuracy of the proposed synthesis equations, and the tabulated 

simulation times demonstrate that it is much less time consuming than other 

known methods. An example of the sidelobe level reduction is shown in Fig. 5.1.5, 

when comparing the uniform (blue lines) and tapered (red lines) results. These 
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experiments confirm that the SLL can be effectively decreased below 20dB by 

properly modulating the LWA. 

 

 

Fig 5.1.5 Measured radiation pattern of 1D FP LWA designs at 15GHz. (a) Designs 

with constant pointing angle and variable directivity. (b) Designs with fixed 

directivity and different pointing angles.  

 

 

(a)                                                                                (b) 

Fig 5.1.6 Aperture illumination in 2D FP LWAs with 90% radiation efficiency. (a) 

Uniform desing, 25%aperture efficiency. (b) Quasi-uniform taper, 74% aperture 

efficiency.  

 



256 Chapter 5: Conclusions and perspectives 

 

 

Finally, the main objective of this thesis was tackled in Chapter 4; for the 

first time, it was performed the optimization of the aperture illumination 

efficiency in 1D and 2D FP LWAs pointing at broadside. A quasi-uniform taper 

is proposed in order to achieve high aperture efficiency, while assuring high 

radiation efficiency to minimize diffraction and standing waves. Also, the splitting 

condition must be satisfied in all radiating sections of the LWA to obtain the 

highest directivity at broadside. In particular, the proposed technique is applied in 

the case of 1D and 2D LWAs loaded with a slotted-based partially-reflective surface 

(PRS) and a dipole-based high impedance surface (HIS). It has been illustrated with 

various numerical examples how the proper modulation of the PRS and HIS 

surfaces makes possible to increase the directivity of this type of resonant 

antennas in a totally novel manner. As an illustrative example of a tapered 2D FL 

LWA, Fig. 5.1.6 shows how the aperture efficiency is increased from 25% to 74% 

by applying a quasi-uniform taper. The radiation patterns which correspond to this 

example are shown in Fig. 5.1.7, where it is clear that the quasi-uniform taper has 

enhanced the directivity in more than 4dBs. It should be highlighted that this work 

was presented in the 6th European Conference on Antennas and Propagation 

(EuCAP), in March 2012. This conference paper (reference IC12 in Section 5.3) was 

given the Best paper Award on Antenna Theory.  

In addition, the work developed in Chapter 4 has also given rise to the 

publication of 1 peer-review international journal papers (IJ), 2 Spanish journal 

papers (SJ), 2 international conference papers (IC) and 3 Spanish conference paper 

(SC), which correspond respectively to the references IJ7, SJ1, SJ2, IC7, IC9, SC3, 

SC4 and SC7 detailed in Section 5.3.  
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Fig 5.1.7 Radiation patterns in dB of high-gain uniform and tapered 2D FP LWAs. 
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5.2 Perspectives 

The present Ph. D. dissertation has led to original ideas and results that 

could be further improved and which may generate several future research lines.   

One immediate extension of this work is the development of a 

electronically reconfigurable version of the 1D FP LWA proposed in section 

3.2. It is worth highlighting that, in the case of the present 1D FP LWA, the 

radiation pattern is mainly determined by the response of its two periodic layers, 

namely, the top Partially Reflective Surface (PRS) and the bottom High Impedance 

Surface (HIS). As these surfaces are very sensitive to the length of their resonant 

dipoles, varactor diodes could be used to electronically change their effective 

length and therefore, to enable the electronic control of the radiation pattern. More 

specifically, varactor diodes are characterized by a capacitance that can be 

electronically varied by changing their bias voltage. In addition, dipole-based 

frequency selective surfaces can be characterized by an equivalent L-C network, as 

it was explained in Section 2.4. Therefore, when varactor diodes are connected to 

the metallic dipoles, a variable capacitance is added to the FSS equivalent LC 

network, creating an electronically reconfigurable FSS. The scheme of the 

reconfigurable 1D FP LWA is depicted in Fig. 5.2.1. As it was explained in Section 

3.3, by changing the length of the dipoles in the PRS and the HIS, it is possible to 

achieve any desired pointing angle and beamwidth. As a result, by properly 
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changing the bias voltage of the PRS and HIS varactor diodes, it is possible to 

electronically control the main features of the antenna radiation pattern at a fixed 

frequency. 

 

 

Fig 5.2.1 Electronically reconfigurable double-layer 1D FP LWA employing 

varactor diodes.  

 

 

Fig. 5.2.2 Measured radiation patterns of reconfigurable double-layer 1D FP LWA 

at 5.6GHz as a function of the varactor´s bias voltage (from [Guzmán-Quirós 

accepted]).   
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The above research line is already being tackled within this research group. 

In particular, varactor diodes have been added to the HIS in order to vary the 

antenna pointing angle at a fixed frequency. This work has lead to the journal 

paper [Guzmán-Quirós accepted]. This contribution proves with both theoretic and 

measured results that it is possible to produce a continuous scanning from 9  to 

30  in a prototype operating at the fixed frequency of 5.6GHz, by varying the 

varactors’ bias voltage from 18VDC to 5VDC (see Fig. 5.2.2). 

The work developed in Section 2.4 can be also extended in order to 

characterize metallic surfaces perforated by holes and sandwiched by 

dielectric substrates. The development of an accurate equivalent circuit for this 

scenario would enhance the modeling and synthesis techniques of many practical 

devices. For example, it would be greatly useful for applications at optical 

frequencies, where this kind of surfaces is commonly used. 

The manufacture and measurement of practical tapered 2D FP LWAs is 

another straight forward continuation of this dissertation. For this purpose, a 

feeding device must be designed, because an ideal source has been considered so 

far in order to perform the theoretical studies of Section 4.5. As broadside 

radiation is required from this antenna, it operates very near the cutoff frequency 

of the Fabry-Perot cavity (as it was explained in Section 4.5). Therefore, it is not a 

trivial task to design a feeding network which couples energy to a mode which is 

almost at cutoff. This job will be tackled soon, in order to experimentally prove the 

optimization of 2D FP LWAs. 

Another interesting continuation of this work is the application of the 

proposed tapering technique to the beamforming of double-layer 2D FP LWAs. 

For example, 2D LWAs could be synthesized which present: broad-beam patterns 

[Burghignoli 2003], [Gómez 2005-II], radiation diagrams with wide nulls 

[Gómez 2010], or near-field focusing patterns [Losito 2009], [Gómez 2011-IV]. 

In addition, the synthesis approach proposed in Section 4.2 could also be efficiently 

applied to the design of conformal 2D FP LWAs [Losito 2007], [Hashemi 2008], 

[Gómez 2011-III]. 
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5.3 List of publications 

This Ph. D. dissertation has introduced novel techniques and equivalent 

models that have been applied for the analysis, synthesis and design of new Fabry-

Perot antennas working in the microwave regime. The publications of several 

technical and scientific international papers guarantee the quality and interest of 

the novel ideas proposed. Specifically, the work presented in this thesis has 

contributed to the publication of 7 peer-review international journal papers (5 of 

them as a first author), 2 Spanish national journal papers (all of them as a first 

author), 12 international conferences (7 of them as a first author, and 2 of them 

invited), and 7 Spanish national conferences (6 as a first author). 

This section gives a list of the main relevant published contributions for 

the scientific community derived from the present work. The acronyms employed 

to denote and distinguish journals and conferences follows the structure of 

[NameNumber], where Name is related to the type of publication [J for peer-

review international journal, SJ for Spanish national journal, IC for international 

conferences and SC for Spanish national conferences] and Number is related to the 

number of a specific paper within the same type of publication. It is worth 

mentioning that one of these published papers (IC12) presented in the 6th 

European Conference on Antennas and Propagation (EuCAP) in March 2012, was 

given the Best paper Award on Antenna Theory. 
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