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Abstract 

The objective of this paper is to present a distribution-free inferential framework 
for the Q(m) statistic based on permutational bootstrapping. Q(m) was introduced 
in the literature as a tool to test for spatial association of qualitative variables, or 
more precisely, patterns of co-location/co-occurrence. The existing inferential 
framework for this statistic is based on asymptotic results. A challenge for these 
results is the need to limit the overlap in the neighborhoods of proximate 
observations, which tends to reduce the size of the sample, with consequent 
impacts on the size and power of the statistic. A computationally intensive 
inferential framework, such as presented in this paper, allows for greater 
versatility of Q(m). We show that under the bootstrap version the issues with size 
are ameliorated and the test is more powerful. Furthermore, in this framework 
there is no longer the need to control for overlap, which allows for applications to 
variables with more categories and smaller sample sizes. The proposed approach 
is demonstrated empirically using a case study of co-location of business 
establishments in Madrid. 
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Inferencia con Q(m) basada en bootstrappermutacional: explorando 
modelos de co-localización espacial de empresas en Madrid 

Resumen 

El objetivo de este artículo es evaluar el comportamiento del estadístico Q(m) 
bajo un marco inferencial basado en remuestreo permutacional. El estadístico 
Q(m)fue introducido en la literatura para contrastar la independencia de la 
distribución espacial de variables categóricas/cualitativas, siendo además un 
instrumento útil para explorar patrones de co-localización o co-ocurrencia de 
eventos. El marco inferencial bajo el que originalmente fue desarrollado está 
basado en el comportamiento asintótico del estadístico y requiere limitar el 
número de observaciones que de forma efectiva se utilizan en la muestra con el fin 
de evitar el solapamiento de observaciones espacialmente próximas. Esta 
reducción de la información que se suministra al contraste tiene importantes 
consecuencias sobre el tamaño y potencia del test en muestras pequeñas. El marco 
inferencial basado en bootstrap permutacional permite una mayor versatilidad de 
Q(m). En este nuevo marco no es necesario controlar el grado de solapamiento de 
las m-historias y por tanto puede ser aplicado en aquellas situaciones en las que se 
disponga de un elevado número de categorías aunque el tamaño muestral sea 
pequeño. Un ejemplo del funcionamiento del contrate se utiliza para explorar los 
patrones de co-localización de las empresas en Madrid. 

Palabras Clave: Datos Categóricos, Independencia Espacial, bootstrap, empresas, 
Madrid. 

Clasificación JEL: C21, R12 

Clasificación AMS: 62M30, 62H11  

1. Introduction 

A foundational problem in spatial analysis is the detection of spatial pattern in 
georeferenced variables. Initial work in the analysis of statistical maps was concerned 
with the case of qualitative (categorical) data or k-color maps, where k refers to the 
number of colors or categories (Moran 1948, Dacey 1968). The need to test for 
independence in the residuals obtained from linear regression models quickly drew 
attention to the analysis of continuous variables (Geary 1954; particularly p. 144). 
Subsequently, most work to date has been concerned with the analysis of spatial pattern 
for continuous variables (Anselin 1988, Griffith 1988, Haining 1990, Cressie 1993).  

As reviewed by Ruiz et al. (2010), a burgeoning field of applications concerned with the 
analysis of qualitative data in a spatial context has been observed in recent years. This 
has prompted the development of tools that extend the analytical potential of the 
classical join-count statistic developed for k-color maps (Dacey 1968). These 
developments include the Local Indicators for Categorical Data (LICD) of Boots (2003, 
2006), which are currently limited to binary data and regular lattices. Transiograms are 
similar to variograms, but instead of capturing the change in a continuous variable at 
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increasing spatial separations, measure the change in transition probability to a new 
categorical state as a function of distance (e.g. Li 2006).The Co-location Quotient 
(CLQ) of Leslie and Kronenfeld (2011), in contrast, is defined on the basis of the 
number of first neighbors that correspond to a certain category, say aj, with respect to a 
certain reference category, say ai (where i is possibly equal to j). Thus, although the 
classification system can contain k different categories, the CLQ is implemented for 
pairwise comparison of classes between first-order neighbors. 

Another recent development, and the focus of this paper, is the Q(m) statistic of Ruiz et 
al. (2010). Q(m) is designed for the exploratory spatial analysis of qualitative variables, 
and can be used to contrast an empirical spatial distribution of values against the null 
hypothesis of a spatially random (i.e. independent) sequence. The statistic is defined for 
an arbitrary number of categories k, and can be implemented using a neighborhood 
(called an m-surrounding) that includes the m-1 nearest neighbors of an observation.The 
basis for Q(m) is the fact that there is a finite number of unique ways of arranging k 
categorical outcomes in a surrounding of size m (i.e. of patterns of co-location). Given 
an empirical sequence of values, it is possible to tally the frequency of appearance of 
each unique configuration, which is denoted by a symbol. A measure of symbolic 
entropy can then be calculated to assess the degree of randomness or ordering in the 
sequence: in a highly ordered map, a small number of symbols (unique configurations 
of map elements) will appear with high frequency. On the contrary, in a spatially 
random map, all symbols will tend to appear with similar relative frequencies. 

Q(m) has features that make it an attractive alternative for the exploratory analysis of 
georeferenced qualitative variables. The statistic is intuitive and easily interpretable. 
The relative frequency of the symbols at the core of the statistic can be retrieved and 
used to further explore the characteristics of the spatial distribution. Also, the use of 
symbols presents additional opportunities for spatial analysis (see Páez, Ruiz, López 
and Logan 2012). 

The inferential framework for the statistic, based on asymptotic results, was presented in 
Ruiz et al. (2010). It was shown there that the statistic is asymptotically 2 distributed, 
which allows for testing departures from the null hypothesis at a desired level of 
significance . The finite sample properties of the test were explored by Ruiz et al. (2010) 
by means of Monte Carlo simulations, the results of which provide evidence that as the 
values of k (number of categories) and/or m (size of the neighborhood) increase, 
convergence to asymptotic results can be slower, in particular for smaller samples. This 
issue is compounded by the need to limit the overlap of m-surroundings of proximate 
observations in order to achieve good conformity with the underlying assumptions used to 
derive the asymptotic results. A consequence of this is that the sample size (S) that can 
effectively be used in the analysis is often only a subset of the number of observations 
actually available (N). This also has an impact on the size and power of the statistic. 

The objective of this paper is to present an alternative inferential framework for the 
Q(m) statistic that does not depend on asymptotic results. Use of distribution-free 
approaches – for instance, based on permutational boostrapping – is appropriate in 
situations where asymptotic or exact results are not available (e.g. Anselin 1995). In 
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some applications the underpinnings of the asymptotic theory may not be present. Lin et 
al.(2011), for example, investigated the performance of Moran’s I using asymptotic 
results and bootstrapping, and demonstrated that under ideal conditions both approaches 
are equivalent. However, when there are departures from these conditions (i.e. non-
normality), or for densely connected systems, the distribution-free version is superior. 
Yet another reason for investigating a distribution-free approach in the present case is 
that larger values of k and m impose important limitations for Q(m) in applications to 
smaller samples. Use of a computational approach may provide a valuable alternative 
for inference in such situations. 

The structure of the paper is as follows. In the following section we introduce the Q(m) 
statistic. An inferential framework based on permutational bootstrapping is described 
next. This is followed by the results of numerical experiments that provide useful 
information to decide which inferential framework might be more appropriate given the 
characteristics of the data. An empirical case study, of co-location patterns of firms in 
Madrid, with a focus on industrial activities, helps to demonstrate the application of the 
statistic and inferential approaches. Finally, we summarize our findings and suggest 
directions for further research. 

2. The Q(m) statistic 

Q(m) was introduced by Ruiz et al. (2010) as a tool to explore geographical co-
location/co-occurrence of qualitative data. Consider a spatial variable X which is the 
result of a qualitative process with a set number of categorical outcomes aj (j=1,...,k). 
The spatial variable is observed at a set of fixed locations indexed by their coordinates si 
(i=1,..., N), so that at each location si where an event is observed, Xi takes one of the 
possible values aj. 

Since the observations are georeferenced, a spatial embedding protocol can be devised 
to assess the spatial property of co-location. Let us define, for an observation at a 
specified location, say s0, a surrounding of size m, called an m-surrounding. The m-
surrounding can be constructed in various ways – the one proposed by Ruiz et al. (2010) 
beingbased on a distance criterion. Using this criterion, the m-surrounding is the set of 
m-1 nearest neighbors from the perspective of location s0. In the case of distance ties, a 
secondary criterion can be invoked based on direction. Various embedding protocols are 
discussed in Ruiz et al. (2010, 2011) and Páez et al. (2012). A general rule for different 
protocols is that they must satisfy the uniqueness of observations within a given m-
surrounding (i.e. the same observation should not be present more than once). The 
analyst can define rules of proximity in other ways if desired. 

Once that an embedding protocol is adopted and the elements of the m-surrounding for 
location s0 have been determined, a string can be obtained that collects the elements of 
the local neighborhood (the m-1 nearest neighbors) of the observation at s0. The m-
surrounding can then be represented in the following way: 

    0 1 -10 , ,...,
mm s s sX X X Xs  1 
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Since each observation Xs takes one of k possible values, and there are m observations in 
the m-surrounding, there are exactly k possible unique ways in which those values can 
co-locate. This is the number of permutations with replacement. For instance, if k=2 
(e.g. the possible outcomes are a1=0 and a2=1) and m=3, the following eight unique 
patterns of co-location are possible (the number of symbols is n=8): {0,0,0}, {1,0,0}, 
{0,1,0}, {0,0,1}, {1,1,0}, {1,0,1}, {0,1,1}, and {1,1,1}. Each unique co-locationtype 
can be denoted in a convenient way by means of a symbol i (i=1, 2,...,km). It follows 
that each site can be uniquely associated with a specific symbol, in a process termed 
symbolization. In this way, we say that a location s is of type i if and only if Xm(s)=i. 
Equivalent symbols (see Páez, et al. 2012) can be obtained by counting the number of 
occurrences of each category within an m-surrounding. This surrenders some 
topological information (ordering within the m-surrounding is lost) in favor of a more 
compact set of symbols, since the number of combinations with replacement, which is 
calculated as k(k+1)...(k+m−1)/m!, is in general < km. The equivalent symbols (denoted 
by *) for k=2 and m=3 are as follows: {3,0}, {2,1}, {1,2}, {0,3}. The symbols in this 
case denote the number of zeros and ones in the m-surrounding (i.e. {1,2} means that 
one observation is of category a1, and two are of category a2). 

It is straightforward, once that a set of locations s where observations have been 
recorded is symbolized (i.e. the unique symbol for each location has been determined), 
to calculate the relative frequency of each symbol. This is simply the number of times 

that i is observed (
i

n ), divided by the number of symbolized locations (S): 

 i
i

n
p

S


   2 

These frequencies can be used to calculate a measure of symbolic entropy as follows: 

  ( ) - ln
j j

j

h m p p    3 

The entropy function, it can be easily ascertained, has a theoretical lower bound of zero 
when only one symbol is observed in the empirical series. Accordingly, as the symbolic 
entropy approaches zero, this tends to indicate that the map is highly organized. The 
value of the entropy function under the null hypothesis of a spatial random sequence, 
call it (m), is derived by Ruiz et al. (2010). The Q(m) statistic, finally, is a likelihood 
ratio test that contrasts the symbolic entropy of the empirical sequence, to the symbolic 
entropy of a random sequence: 

     = 2S η m - h mQ(m)  4 

Q(m) is asymptotically 2 distributed, with degrees of freedom equal to the number of 
symbols minus one. In order to derive the asymptotic distribution, a random variable 

i s
Z  is defined as follows: 
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i

m i
s

1 if (s)

0 otherwise,
 

 


X
Z  5 

It can be seen that 
iσ sZ  is a Bernoulli variable with probability of “success” 

i
p , where 

“success” means that location s corresponds to symbol i. As is always the case

jσj
p = 1 . The total number of cases where s is of type i is: 

 
i is

s S
 


 Y Z  6 

which is a sum of Bernoulli variables, and is bounded between 0 (when the symbol is 
not observed) and S (when every symbolized location is of type i). 

In order to derive the test under asymptotic conditions (see proof of Theorem 1 in Ruiz, 
et al. 2010), we must assume that 

i
Y  is a binomial random variable. The sum of 

Bernoulli variables can be approximated to a binomial random variable under two 
conditions(see Soon 1996): (i) the probability of success 

i
p  is small for all i; and (2) 

the dependency between 
i s

Z  and 
it

Z  is weak, between locations s and t (s്t). 

Condition (i) is satisfied by the way the symbols are constructed (the number of 
symbols tends to be large, and therefore the probability of success for each symbol is 
low under the null). In contrast, condition (ii) is more challenging. Clearly, 

i s
Z  and 

it
Z  will not be independent if the m-surroundings of locations s and t overlap. In order 

to address this issue, Ruiz et al. (2010) proposed to conduct the analysis using a sub-
sample of observations (size S), selected in such a way that the maximum degree of 
overlap between proximate m-surroundings is controlled. This approach seems to work 
reasonably well, based on the evidence of numerical experiments reported in Ruiz et al. 
(2010). On the other hand, the need to control the degree of overlap has the unfortunate 
consequence of reducing the size of the sample that effectively can be used for analysis 
(i.e. S<N since not all observations are symbolized). This, in turn, can impair the 
applicability of Q(m) in situations where k and/or m are large, or where N is small. These 
situations (combined or even in isolation), tend to increase the number of symbols (n) 
relative to the size of the sample. Greater values of m, as well, mean that the potential for 
overlap, and consequently dependencies, is greater. Hence the motivation for introducing 
an alternative inferential framework for the statistic based on a distribution-free approach. 

3. Distribution-free inference for Q(m) 

The principle behind distribution-free approachesis described by Bivand (2009): 
“[these] procedures [provide] a way to examine the distribution of the statistic of 
interest by exchanging at random the observed values between observations, and then 
comparing the simulated distribution under the null hypothesis of no spatial patterning 
with the observed value of the statistic in question.” This description highlights the 
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computationally intensive nature of bootstrapping, particularly the random exchange of 
values between locations, and the recalculation of the statistic of interest. 
Computationally intensive approaches have been used for inference in previous work in 
spatial data analysis, including in applications of LISA (Anselin 1995), the Lagrange 
Multiplier test for spatial error autocorrelation (Born and Breitung 2011), the join-count 
statistic (Stevens and Jenkins 2000), Ripley’s k-function (Marcon and Puech 2003), and 
CLQ (Leslie, et al. 2011). 

Distribution-free approaches, in particular using bootstrapping, are attractive in 
situations where exact or asymptotic results are not available. It is possible as well that 
the conditions required for asymptotic results are difficult to attain. Or, as is the present 
case, the conditions can be met, but at a certain cost, for instance reduced sample size. A 
distribution-free approach can be computationally expensive, but is still manageable for 
moderately sized samples. The simulation procedure for Q(m), given a fixed embedding 
dimension 2m  with a number r of replications, is composed of the following steps: 

 Compute the value of the statistic Q(m) for the original samples   S
X s s

. 

 Re-label the set of coordinates by randomly drawing from the list of outcomes 

without replacement, to obtain the series  rs
s S

X


 where r is the index of the replication. 

 Calculate the bootstrapped statistic r
B (m)Q  for the simulated sample  rs

s S
X


. 

 Repeat steps 2 and 3 T-1 times to obtain T realizations of the bootstrapped statistic

  Tr
B

r=1
mQ . 

 Compute the pseudo-probability as:     
R

r
b B

r=1

1
p = I m > m

T
Q Q  where  I  is the 

indicator function which assigns a value of 1 to a true statement and 0 otherwise. 

 Reject the null hypothesis if bp    for a nominal size . 

It is worth noting that Q(m) is a global independence indicator. In addition to this 
indicator of co-location, one might be interested in the empirical distribution of each 
symbol – that is, the frequency of different type of co-location – and its relationship to 
the expected distribution under the null. Using a procedure similar to the one described 
above, it is possible to compute the 100(1-)% confidence interval for the relative 

frequency of a symbol i, iσ
p , by computing its bootstrapped realization 

i
r
σp  for each of 

the permuted series  rs
s S

X


, for every symbol as follows: 

    σ α/2 1-α/2I α = I ,I  7 
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where αI  is the percentile  of the distribution of  i
Tr

σ
r=1

p . Accordingly, we will say that 

the null is rejected at the  level for symbol i whenever the relative frequency of the 
symbol falls outside of the confidence interval, i.e. when  p

i i
I   .  The interval of 

confidence can be used to determine, separately from the global significance of the 
statistic, whether a specific symbol is observed more or less frequently than expected by 
chance. 

4. Numerical experiments 

In order to assess the performance of the permutational bootstrapping inferential 
approach, in this section we report the results of a series of numerical experiments. The 
experiments have two objectives. First, we compare the performance of the test under 
asymptotic results and bootstrapping, in terms of size and power for the case of small 
samples. And secondly, we explore the behavior of the test in extreme situations where 
the number of observations is small relative to the number of symbols. 

4.1 Data generation process 

With respect to the first objective stated above, we use the same experimental design 
described in Ruiz et al. (2010). However, for brevity of exposition, we consider only 
situations where the distribution of events is irregular and categorical outcomes are not 
equally probable (categories are not observed with equal frequency). 

In order to obtain categorical random variables with controlled degrees of spatial 
dependence, we have designed a two-stage data generating process. Firstly, we simulate 
autocorrelated data using the following model:  

  -1Y (I - W)   8 

where  ε ~ N 0,1 ,I is the identity matrix,   is a parameter of spatial dependence, and W 

is a connectivity matrix that determines the set of spatial relationships among points. In 
the second step of the data generation process, the continuous spatially autocorrelated 
variable Y is used to define a discrete spatial process as follows. Let ijb  be defined by: 

 ij
i

P( b ) =  with i < j
j

Y    9 

Let 1 2{ }kA a a … a     and define the discrete spatial process as:  

 
1 1

1

1

if

if

if

s k

s i i k s ik

k s k k

a Y b

X a b Y b

a Y b



 

 


  


 10 
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The data are generated using equation (8) with the connectivity matrix defined in terms of 
first-order contiguity. Matrix W is row-standardized for the calculations.The number of 
replications is 1,000 for the experiments on size and 200 for the experiments on power. 

4.2 Size and power of tests: Comparison between asymptotic and bootstrapped 
tests 

The experimental design in this case covers three values of k (k=2, 3, and 4) and six 
values of N (N=100, 400, 900, 1,600, 2,500 and 3,600). The results of the experiments 
are reported in Tables 1, 2, and 3 for different values of k. It is important to note that the 
degree of overlap (od) has been set to a small value, to try to approximate the theoretical 
conditions as closely as possible (i.e. by reducing the dependencies between locations) 
for the asymptotic implementation of the test. The degree of overlap determines the 
number of observations S that can be symbolized for testing under asymptotic results. 
This is not a consideration in the case of testing under bootstrapping, and all 
observations are symbolized in every case (i.e. S=N). 

With respect to the size of the test, the results indicate that bootstrapping provides more 
stable results than the asymptotic version, with only minor deviations from the nominal 
level of 0.05, irrespective of the size of m. The size is not affected by the number of 
observations in the sample N or the number of categories k. This is true for the 
calculation of Q(m) using both standard and equivalent symbols. 

With regards to the power of the tests, comparison between the asymptotic and 
bootstrapped implementations clearly shows that bootstrapping has a clear advantage 
with greater power, for all combinations of parameters m, k, and N used in the 
experiment. It can also be observed that the power of the bootstrapped version of the 
test is slightly superior for lower values of m when N is small. As N increases the effect 
of m disappears. Use of equivalent symbols results in a slight increase in power. 
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Table 1 

Size and Power of Q(m) for k=2. Irregular lattice and p1=1/4; p2=3/4 
    Asymptotic test (see Ruiz et 

al. 2010) 
Permutational bootstrapping test (S=N) 

    standard symbols standard symbols equivalent symbols 

N S m od ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 

100 
49 3 1 0.027 0.042 0.090 0.704 0.051 0.099 0.489 0.998 0.052 0.111 0.509 1.000

97 4 3 0.053 0.054 0.170 0.897 0.056 0.087 0.457 0.996 0.046 0.086 0.498 0.996

400 
199 3 1 0.025 0.059 0.354 1.000 0.055 0.102 0.408 0.992 0.042 0.233 0.970 1.000

199 4 2 0.036 0.062 0.423 1.000 0.052 0.227 0.970 1.000 0.049 0.204 0.967 1.000

900 

449 3 1 0.038 0.078 0.764 1.000 0.050 0.165 0.946 1.000 0.050 0.496 1.000 1.000

449 4 2 0.048 0.113 0.817 1.000 0.050 0.161 0.862 1.000 0.050 0.447 1.000 1.000

299 5 2 0.056 0.113 0.685 1.000 0.051 0.462 1.000 1.000 0.044 0.387 1.000 1.000

1600 

799 3 1 0.036 0.116 0.950 1.000 0.056 0.377 1.000 1.000 0.049 0.754 1.000 1.000

799 4 2 0.046 0.144 0.977 1.000 0.043 0.304 0.999 1.000 0.065 0.647 1.000 1.000

532 5 2 0.067 0.126 0.942 1.000 0.049 0.720 1.000 1.000 0.054 0.596 1.000 1.000

Table 2 

Size and Power of Q(m) for k=3. Irregular lattice and p1=1/8; p2=3/8; p3=4/8 
    Asymptotic test (see Ruiz et al. 2010) Permutational bootstrapping test (S=N) 

    standard symbols standard symbols standard symbols 

N S m od ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 

400 199 3 1 0.027 0.042 0.090 0.704 0.050 0.258 0.995 1.000 0.056 0.304 0.998 1.000

900 
449 3 1 0.025 0.059 0.354 1.000 0.053 0.550 1.000 1.000 0.046 0.637 1.000 1.000

449 4 2 0.036 0.062 0.423 1.000 0.056 0.434 1.000 1.000 0.051 0.472 1.000 1.000

1600 
799 3 1 0.038 0.078 0.764 1.000 0.052 0.840 1.000 1.000 0.052 0.906 1.000 1.000

799 4 2 0.048 0.113 0.817 1.000 0.055 0.704 1.000 1.000 0.058 0.729 1.000 1.000

2500 
1249 3 1 0.036 0.116 0.950 1.000 0.049 0.972 1.000 1.000 0.043 0.986 1.000 1.000

1249 4 2 0.046 0.144 0.977 1.000 0.054 0.914 1.000 1.000 0.056 0.907 1.000 1.000

 
  



Fernando A. López, Antonio Páez  Distribution-free inference for Q(m)... 145 

 

V
o

l. 
54

. N
úm

 1
77

 / 
20

12
 

Table 3  

Size and Power of the Q(m) test for k=4. p1=1/12; p2=2/12; p3=3/12; p4=6/12 
    Asymptotic test (see Ruiz et al. 

2010) 
Permutational bootstrapping test (S=N) 

    standard symbols standard symbols standard symbols 

N S m od ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 

900 449 3 1 0.039 0.085 0.755 1.000 0.057 0.875 1.000 1.000 0.054 0.872 1.000 1.000

1600 799 3 1 0.052 0.103 0.965 1.000 0.054 0.980 1.000 1.000 0.058 0.983 1.000 1.000

2500 1249 3 1 0.036 0.149 0.999 1.000 0.044 1.000 1.000 1.000 0.039 1.000 1.000 1.000

3600 
1799 3 1 0.038 0.240 1.000 1.000 0.047 1.000 1.000 1.000 0.050 1.000 1.000 1.000

1799 4 2 0.098 0.399 1.000 1.000 0.051 0.990 1.000 1.000 0.049 1.000 1.000 1.000

4.3 Q(m) with small sample size relative to number of symbols 

Another situation of interest is when the sample size (N) and/or the number of symbolized 
locations (S) is small relative to the number of symbols (n), since this affects convergence 
of the distribution of Q(m) to the asymptotic 2 distribution. A problem in this case is that 
the size of the test, which indicates the probability of detecting false positives, increases. 
Since the number of symbols standard (n) and equivalent (n) depends on k and m, this 
may impose some limitations to the asymptotic approach when working with multiple 
categories, or restrict the analysis to smaller m-surroundings. In this section we report the 
results of experiments designed to evaluate the size and power of Q(m) when testing is 
conducted using bootstrapping, and N/nis small (<5). The experimental design in this 
case covers three values of k (k=5, 7, and 10), four values of N (N=50, 100, 200, and 400), 
and three values of m (m=2, 3, and 4), using standard and equivalent symbols. 

The results of the experiment are reported in Table 4. With respect to size, the values 
obtained are slightly higher to those reported in the previous set of experiments, but still 
close to the nominal value of =0.05, and less than =0.10 in every case. The power of 
the test indicates that it might be difficult to identify patterns with moderately strong 
association in the case of very small samples (N≈50). In contrast, the power is high for 
stronger patterns of spatial association in small samples, and for moderately sized 
samples (N≥200) even under extreme conditions (N/n<2). 
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Table 4 

Size and Power of Q(m): bootstrapped test and N/n<5 
  Permutational bootstrapping test 

  standard symbols equivalent symbols 

N m n n* ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 ρ=0 ρ=0.2 ρ=0.5 ρ=0.9 

k=5 

50 

2 25 15 0.058 0.087 0.235 0.871 0.060 0.097 0.287 0.922

3 125 35 0.055 0.076 0.190 0.911 0.066 0.069 0.233 0.938

4 625 70 0.063 0.062 0.155 0.702 0.066 0.074 0.163 0.805

100 

2 0.072 0.107 0.479 1.000 0.068 0.118 0.521 0.999

3 0.062 0.085 0.376 0.998 0.062 0.092 0.437 0.998

4 0.070 0.093 0.269 0.996 0.066 0.082 0.320 1.000

200 

2 0.069 0.152 0.741 1.000 0.064 0.161 0.776 1.000

3 0.056 0.131 0.683 1.000 0.063 0.138 0.734 1.000

4 0.054 0.116 0.550 1.000 0.061 0.120 0.614 1.000

400 

2 0.075 0.198 0.949 1.000 0.071 0.215 0.954 1.000

3 0.064 0.194 0.932 1.000 0.058 0.200 0.942 1.000

4 0.063 0.171 0.842 1.000 0.062 0.180 0.881 1.000

k=7 

50 
2 49 28 0.064 0.089 0.210 0.852 0.062 0.115 0.308 0.938

3 343 84 0.068 0.071 0.178 0.864 0.054 0.087 0.276 0.951

100 
2 0.053 0.096 0.396 0.997 0.062 0.129 0.594 1.000

3 0.051 0.077 0.283 0.993 0.049 0.097 0.488 0.999

200 
2 0.061 0.126 0.759 1.000 0.066 0.204 0.913 1.000

3 0.055 0.132 0.592 1.000 0.055 0.165 0.854 1.000

400 
2 0.071 0.244 0.983 1.000 0.067 0.344 0.999 1.000

3 0.062 0.169 0.943 1.000 0.065 0.257 0.994 1.000

k=10 

50 
2 100 55 0.053 0.066 0.153 0.725 0.065 0.103 0.330 0.960

3 1000 220 0.066 0.064 0.147 0.573 0.068 0.092 0.216 0.846

100 
2 0.049 0.073 0.284 0.997 0.061 0.139 0.637 1.000

3 0.056 0.079 0.232 0.983 0.058 0.108 0.385 1.000

200 
2 0.059 0.095 0.599 1.000 0.069 0.245 0.948 1.000

3 0.053 0.097 0.447 1.000 0.055 0.132 0.680 1.000

400 
2 0.065 0.146 0.949 1.000 0.051 0.398 1.000 1.000

3 0.044 0.148 0.830 1.000 0.048 0.217 0.967 1.000
nߪ =number of standard symbols; nߪ* =number of equivalent symbols;  
for k=5 p1=0.1; p2=0.4;p3=0.2;p4=0.2;p5=0.1;  
with k=7 p1=0.1; p2=0.2 ;p3=0.2;p4=0.2;p5=0.1; p6=0.1; p7=0.1;  
for k=10 p1=0.1; p2=0.05 ;p3=0.15; p4=0.15 ;p5=0.1 ; p6=0.1; p7=0.1; p8=0.1 ; p9=0.1; p10=0.05 

4.4 Practical recommendations 

The experiments reported above suggest some practical recommendations for the selection 
of testing approach, using asymptotic results or bootstrapping. Use of asymptotic testing is 
preferred to bootstrapping when the sample size is large and the number of categories k is 
low, as long as the degree of overlap between m-surroundings is kept low. In a situation 
like this, bootstrapping can be onerous in terms of computational load. Bootstrapping 
would be appropriate in situations where the sample size is small and the number of 
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categories is large. In this case, the computational requirements are manageable, and the 
bootstrapped version of the test provides good power with reasonable size. In the case of 
larger samples, if the number of categories is high, bootstrapping might be the only 
alternative for testing, if for the asymptotic test S/n<5.  

With respect to the size of the m-surrounding, lower values of m lead to fewer symbols, 
which, as suggested by the numerical experiments, give a more powerful test. Ideally, 
the selection of m must be reflective of the true scale of the spatial process (Matilla-
García and Marin 2011); in practice, this scale is not always evident, and other practical 
considerations may be relevant. The selection between standard and equivalent symbols 
depends on the objective of the analysis. Standard symbols retain more information 
about the pattern of co-location which allows the analyst to detect, for instance, 
asymmetric patterns. For instance, the following symbols {0,0,1} and {1,0,0} are 
equivalent as far as the number of categories is concerned: {2,1}. When standard 
symbols are used, bootstrapped-based testing can provide an advantage since 
overlapping between m-surroundings is not a consideration, and the full sample can be 
used. Equivalent symbols can be used if detailed information on the ordering of co-
located events is not essential.  

5. Application: Co-location of business establishments in Madrid 
A broad consensus exists about the competitive advantage of spatial proximity between 
businesses, due to reduced transfer costs, the emergence of economies of agglomeration 
and scale, and the ease of exchange of information, among other factors (e.g. Hoover 
and Giarratani 1984, Sorenson 2003, Jimenez and Junquera 2010). An important body 
of research is concerned with the detection of geographical patterns in the distribution 
of businesses and industrial activities (e.g. Ellison and Glaeser 1997, Arbia 2001, Espa, 
Arbia and Giuliani). Traditionally, this research has relied on information aggregated at 
the level of administrative units (e.g. counties or regions), but increasingly use is made 
of micro-data in a trend that Arbia (2011) identifies as the emergence of spatial micro-
econometrics. The availability of micro-data creates an ideal opportunity for the 
application of techniques that rely on information at the level of individual firms 
(Albert, Casanova and Orts 2011, Leslie, et al. 2011, Paez, Trepanier and Morency 
2011). In this section, we are interested in the patterns of co-location of firms in Madrid. 
Analysis using Q(m) helps to address the following research questions: (1) are firms of 
different types co-located in non-random ways? (2) If so, which types of business tend 
to co-locate? Does co-location tend to happen with firms within the same or different 
sectors? Analysis is conducted with asymptotic or bootstrapped tests, as appropriate 
given the characteristics of the data. 

Two sources of data form the basisfor our application. 

The first one is the Central Business Directory (DIRCE for the acronym in Spanish) 
compiled by Instituto Nacional de Estadística (INE; the National Statistics Institute). 
DIRCE is a census of all businesses located in Spain, classified according to their 
economic activity (CNAE-93 groups: National Classification of Economic Activities). 
Georeferencing in this directory is relatively coarse, and the location of firms is 
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identified at the level of Spanish provinces (equivalent to NUTS 3 level). From DIRCE 
we are able to extract all businesses located in Madrid (ES300 in Eurostat terminology). 
These business records include the type of economic activity at the 2-digit level 
according to CNAE-93. The database corresponding to the year 2009 contains 511,804 
records, with distribution by activity code as shown in the Appendix. 

The second source of data is the database SABI (acronym for Iberian Balance Analysis 
System) which collects economic information, with a focus on accounting information, 
for an extensive list of businesses in Spain and Portugal. The database corresponding to 
2009 contains 213,282 records for businesses in Madrid. Unlike DIRCE, SABI is not a 
census and coverage is uneven for different regions in Spain – Madrid is one of the 
regions with the best coverage, and approximately 40% of all businesses listed in 
DIRCE are also contained in SABI. An important advantage of working with SABI is 
that individual firms are georeferenced at the level of x and y coordinates. 

In order to explore the patterns of co-location of businesses in Madrid, we take a 
stratified sample from records in SABI, maintaining the known composition, in terms of 
percentage of firms in 2-digit level sectors, from the census information in DIRCE. In 
this way we obtain 51,183 records. These records cover 52 different categories of 
economic activity, corresponding to four primary classes of activities1: (M)anufacturing 
(5.66% of all firms), (C)onstruction (11.75%), (T)rade (26.43%), and (O)ther Services 
(56.16%).These businesses are located in 31,897 unique coordinates, since some firms 
are in the same building. These locations are shown in Figure 1, for the province and in 
the inset the central part of the city. 

In some cases two or more firms shared a coordinate, typically by sharing the same 
outside address (offices in the same building). In these cases, in order to determine the 
m-surroundings, first the firms with the same coordinates were selected as nearest 
neighbors. If the number of firms with the same coordinates exceeded the number 
required to complete the m-surrounding, a random selection was made of m-1 firms. 
  

                     
1 DIRCE does not include agricultural activities, and therefore we exclude firms of this type from the 
sample. 
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Figure 1 

Spatial distribution of firms in Madrid (with central part of city in inset) 

 

5.1 Co-location of business establishments in Madrid: Analysis and results 

Analysis with k=4 

The first analysis is conducted for k=4, corresponding to the broad activity classes previously 
identified (Manufacturing, Construction, Trade, and Other Services). The results of applying 
Q(m) to the data when we consider 4 categories are summarized in Table 1. We calculate the 
statistic using standard and equivalent symbols for different values of m. The results are 
highly significant, and indicate that the spatial pattern is not random. 

Table 5 

Results for k=4 (Manufacturing, Construction, Trade, and Other Services) 
   Asymptotic test Permutational 

bootstrapping test 

   standard symbols equivalent symbols standard 
symbols 

equivalent 
symbols 

m od S n S/n Q(m) n* S/n* Q(m) Q(m) Q(m) 

2 1 51182 16 3198.8 839.3* 10 5118.2 836.4* 1054.2* 1052.4* 

3 1 25591 64 399.8 1190.1* 20 1279.5 1149.3* 2826.4* 2792.0* 

4 1 17060 256 66.6 1630.5* 35 487.4 1388.7*
5241.3* 5031.0* 

4 2 25590 256 100.0 2309.9* 35 731.1 2079.3*

5 1 12795 1024 12.5 2826.5* 56 228.5 1721.4*
8466.9* 7364.7* 

5 2 17060 1024 16.6 3197.7* 56 304.7 2132.7*
* p-value or pb-value < 0.001 (999 iterations) 
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As seen in the table, the null hypothesis can be rejected with a high level of confidence 
for all selected values of m and r. In this case, given the large ratio of S/n and S/n 
(>5), we are confident that the asymptotic distribution of the statistic is valid.  

It is possible to further explore the reasons why the null hypothesis has been rejected, 
by comparing the empirical frequency of each symbol to the expected frequency under 
the null.  

Figure 2.  

Relative symbol frequency for Q(3) and economic activity Manufacture; 
Construction; Trade and Other Services.  

 
The sequence of numbers on the x axis denote nMncnTnO in an m-surrounding of 3 (e.g. 0111 is 0 Manufacture; 1 Construction; 
1 Trade; 1 Other Services). 

As an illustration, Figure 2 shows the empirical frequency of equivalent symbols for the 
case of m=3 and od=1. Each bar represents the frequency of one specific symbol, and is 
accompanied by its corresponding 99% confidence interval. As seen in the figure, 13 of 
20 symbols appear significantly more frequently than expected. Included in this group 
are the symbols corresponding to three firms of the same category, for every category. 
This is a result that echoes the findings of Leslie and Kronenfeld (2011), who report that 
businesses, irrespective of their category, display a strong geographical affinity with 
other businesses of the same class. It bears remarking that the symbol for three co-
located manufacturing firms {3M}, despite its low relative frequency, is the one that is 
seen with greater probability than expected under the null. Empirically, this symbol is 
observed 43 times, or in 0.168% of cases, whereas under the null hypothesis if would 
have been observed only 4.6 times, or in 0.018% of cases. Similar results are obtained 
for m=4 and m=5. In every case there is significant evidence of a tendency towards co-
location by firms of the same activity category. A question is whether the same pattern 



Fernando A. López, Antonio Páez  Distribution-free inference for Q(m)... 151 

 

V
o

l. 
54

. N
úm

 1
77

 / 
20

12
 

of co-location can be observed under a more detailed classification of firms. This is 
explored next. 

Analysis with k=12 

In order to refine the analysis, we obtain a more detailed disaggregation of firms. 
Construction and Manufacturing are retained as separate classes. Firms in the category 
Trade are further categorized as follows: Wholesale Trade (8.41% of the total of firms), 
Retail Trade (11.90%), and Hostels and Restaurants (6.12%). Other Services are further 
categorized as: Transport (7.52%), Financial Intermediation (2.07%), Real Estate 
Activities (11.09%), Other Business Activities (21.33%), Education (2.79%), Health 
(4.42%), and Other Services Activities (6.94%). 

The results of applying Q(m) to the data when we consider 12 categories are 
summarized in Table 6. We calculate the statistic using standard and equivalent symbols 
for different values of m. The first thing to note is the large number of standard symbols 
when k=12, even for relatively small values of m. The ratio S/n is less than 5 only when 
m≤3, and the use of asymptotic results for testing is not recommended otherwise. Use of 
equivalent symbols allows us to use m≤4, although in this case we lose the ability to 
explore asymmetric co-location patterns, since position of the events within the m-
surrounding is lost.  

As seen in Table 6, the null hypothesis is rejected in some cases when S/n>5 and the 
asymptotic test is used; these results are suspect due to the known issues with the size of 
the statistic (i.e. the probability of false positives). In order to use standard symbols, the 
best alternative is to use the distribution-free version of the test, which, as it can be 
ascertained from the table, rejects the null hypothesis at a high level of confidence 
(99%) for all values of m tested, including those where the asymptotic testing 
framework yields results that are questionable. 

Table 6 

Results for k=12 
  Asymptotic test Permutational 

bootstrapping test 

      Standard symbols equivalent symbols standard 
symbols 

equivalent 
symbols 

m  od  S  n S/n Q(m) n* S/n* Q(m) QB(m) QB(m) 

2  1  51182  144 355.4 2487.9* 78 656.2 2450.4* 58559.4* 2857.5* 

3  1  25591  1728 14.8 5021.8* 364 70.3 3557.3* 9223.9* 8023.8* 

4  1  17060  20736 0.8 21015.2 1365 12.5 5079.5*
34510.4* 15777.2* 

4  2  25590  20736 1.2 24336.2* 1365 18.7 7114.1*

5  1  12795  248832 0.0 59807.8* 4368 2.9 8318.4 
136686.4* 27760.1* 

5  2  17060  248832 0.1 71914.6 3.9 10016.5 
* p-value or pb-value < 0.001 (999 iterations) 
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6. Conclusions 

Analysis of spatial qualitative/categorical data is receiving renewed attention in the 
literature. A recent addition to the toolbox for the spatial exploratory analysis of this 
type of data is the Q(m) statistic. This statistic, which is based on the principle of 
symbolic entropy, can be used to test the hypothesis that the spatial distribution of 
values of a qualitative spatial variable is random, or contrariwise, displays patterns of 
co-location/co-occurrence. As an additional exploratory tool, the empirical frequency of 
specific co-location patterns can be investigated and contrasted against the expected 
frequency under the null. 

The inferential framework introduced by Ruiz et al. (2010) for Q(m) is based on 
asymptotic results. These results are applicable in a broad range of situations. In other 
cases, the asymptotic results can be less appropriate. For instance, when the number of 
categories k, or the desired size for the m-surroundings is large, the number of symbols 
can become large relative to the number of symbolized observations, even for relatively 
large sample sizes. Equivalently, the sample size may be small to begin with. In 
situations like this, a relatively small ratio of symbolized observations to symbols can 
overwhelm the ability of the asymptotic test to reliably discriminate between random 
and non-random patterns. 

The objective of this paper has been to propose an alternative inferential framework for 
situations where asymptotic results may be suspect. Use of a distribution-free approach 
for testing, based on permutational bootstrapping, can be computationally expensive. It 
does, on the other hand, circumvent the need to reduce the overlap between proximate 
m-surroundings (thus increasing the number of effectively usable observations to N), 
and can be used in situations where the ratio of symbolized observations to symbols is 
critically low for the application of the asymptotic test. A set of numerical experiments 
show that the distribution-free approach does not present problems with the size of the 
test, and is in general at least as powerful, and in some situations more powerful, than 
the asymptotic test. A distribution-free approach is found to be in general more reliable, 
especially in limit situations with large k and/or m, and/or small sample size. 
Application of the testing approach proposed in this paper to a sample of firms in 
Madrid indicates that even in the case of large samples, a distribution-free approach can 
expand the potential range of applications of Q(m) and increase the reliability of the 
findings. 

The experiments suggest some guidelines for the selection of the testing approach. The 
computational load is likely manageable for smaller samples with large k and/or m where 
asymptotic results are in doubt. For larger samples, a possible avenue for reducing the 
computational cost would be the application of methods based on sequential Monte Carlo 
(Silva, Assuncao and Costa 2009). This is an avenue for further research. 
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Appendix 
 (Continue) 

 Codes of activity (CNAE-93) and number of firms DIRCE Sample 
SABI 

% 

10 Mining of coal and lignite; extraction of peat 15 2 0.003%

11 Extraction of crude petroleum and natural gas 17 2 0.003%

13 Mining of metal ores 16 2 0.003%

14 Other mining and quarrying 179 18 0.035%

15 Manufacture of food products and beverages 1555 156 0.304%

16 Manufacture of tobacco products 2 0 0.000%

17 Manufacture of textiles 569 57 0.111%

18 Manufacture of wearing apparel and dressing 1744 174 0.341%

19 Tanning and dressing of leather 224 22 0.044%

20 Manufacture of wood and of products of wood  967 97 0.189%

21 Manufacture of pulp, paper and paper products 367 37 0.072%

22 Publishing, printing and recorded media 7158 716 1.399%

23 Manufacture of coke, refined petroleum products  10 1 0.002%

24 Manufacture of chemicals and chemical products 586 59 0.114%

25 Manufacture of rubber and plastic products 614 61 0.120%

26 Manufacture of other non-metallic mineral products 644 64 0.126%

27 Manufacture of basic metals 220 22 0.043%

28 Manufacture of fabricated metal products 4445 445 0.868%

29 Manufacture of other machinery and equipment 1637 164 0.320%

30 Manufacture of office machinery and computers 262 26 0.051%

31 Manufacture of electrical machinery  390 39 0.076%

32 Manufacture of radio, television and other appliances 254 25 0.050%

33 Manufacture of medical, precision and instruments 992 99 0.194%

34 Manufacture of motor vehicles, trailers  206 21 0.040%

35 Manufacture of other transport equipment 170 17 0.033%

36 Manufacture of furniture and other products 2952 295 0.577%

37 Recycling 24 2 0.005%

40 Electricity, gas, steam and hot water supply 2679 268 0.523%

41 Collection, purification and distribution of water 65 7 0.013%

45 Construction 60143 6014 11.751%

50 Sale, maintenance and repair of motor vehicles  9712 971 1.898%

51 Wholesale trade and commission trade 33316 3332 6.510%

52 Retail trade, except of motor vehicles and motorcycles 60919 6092 11.903%

55 Hotels and restaurants 31327 3133 6.121%

60 Land transport; transport via pipelines 31000 3100 6.057%

61 Water transport 52 5 0.010%

62 Air transport 87 9 0.017%

63 Supporting and auxiliary transport activities 4813 481 0.940%
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   (Conclusion)

 Codes of activity (CNAE-93) and number of firms DIRCE Sample 
SABI 

% 

64 Post and telecommunications 2540 254 0.496% 

65 Financial intermediation (exc. insurance/pension funding) 696 70 0.136% 

66 Insurance and pension funding 272 27 0.053% 

67 Activities auxiliary to financial intermediation 9645 965 1.885% 

70 Real estate activities 38603 3860 7.543% 

71 Renting of machinery and equipment without operator 3208 321 0.627% 

72 Computer and related activities 11244 1124 2.197% 

73 Research and development 3721 372 0.727% 

74 Other business activities 2679 268 21.329% 

80 Education 109163 10916 2.786% 

85 Health and social work 14261 1426 4.415% 

90 Sewage and refuse disposal, sanitation and similar activities 22595 2260 0.182% 

91 Activities of membership organizations n.e.c. 930 93 1.072% 

92 Recreational, cultural and sporting activities 5485 549 3.406% 

93 Other service activities 17431 1743 2.282% 

 Total:    511804 51183 100% 
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