ESCUELA TECNICA SUPERIOR DE INGENIERIA DE TELECOMUNICACION
UNIVERSIDAD POLITECNICA DE CARTAGENA

Trabajo Fin de Master

Implementation of Algorithms for Navigation of an
Autonomous Mobile Robot by using software
component based frameworks

AUTOR: Jo&o Miguel Marques Melo
DIRECTORES: Dr. D. Francisco José Ortiz Zaragoza
Dr. D.Diego Alonso Caceres

07 /2012

Index

1

2

3

Introduction
1.1 Introduction
1.2 Goals and Objectives
1.3 Structure of the document
Robotic Subsystems and Architectures
2.1 Robotic Subsystems
2.2 Robotic Architectures
2.2.1 Hierarchical Architecture
2.2.2 Reactive Architecture
2.2.3 Hybrid Architecture
2.3 Perception
231 Sensors
2.3.2 Sensor fusion
2.4 Navigation
2.5 Local navigation
25.1 Vector Field Histogram
2.5.2 Dynamic Window Approach
2.6 Global navigation
2.6.1 Localization
2.6.1.1 Single hypothesis belief
2.6.1.2 Multiple hypothesis belief
26.1.2.1 Markov
2.6.1.2.2 Kalman
2.6.2 Mapping
2.6.2.1 Continuous
2.6.2.2 Discrete
2.6.2.2.1 Metric
2.6.2.2.1.1 Spatial
2.6.2.2.1.2 Geometric
2.6.2.2.2 Topological
2.6.3 SLAM
2.6.4 Path Planning
2.6.4.1 A* Algorithm
2.6.4.2 D* Algorithm
2.6.4.3 Potential fields
2.7 Motion Control
2.7.1 Path Execution
2.7.1.1 Pure Pursuit Algorithm
2.7.2 Acting
2.7.2.1 Siegwart Equations
Software Engineering for Robotics
3.1 Object-Oriented Frameworks
311 Robotic Object-Oriented Frameworks and Middleware
3.1.1.1 Player (http://playerstage.sourceforge.net/)
3.1.1.2 Webots API (http://www.cyberbotics.com/)
3.1.1.3 ARIA (http://robots.mobilerobots.com/wiki/ARIA)
3.2 Component-Based Frameworks
3.2.1 Types of users and requirements of a component-based framework
3.2.2 Robotics Component-Based Frameworks
3.2.2.1 OROCOS (http://www.orocos.org/)
3.2.2.2 Orca (http://orca-robotics.sourceforge.net/)

©CO~NRRANNR R

3.2.2.3 Marie (http://marie.sourceforge.net/)
3.2.2.4 RoboComp (http://robocomp.sourceforge.net/)
3.2.25 Microsoft Robotics Studio (http://www.microsoft.com/robotics/)

3.3

Model-Driven Engineering Frameworks

4 Robotic Frameworks used on this project

4.1
411
412

4.2
421
422
4.2.3

Smartsoft
Smartsoft Component-Based Framework
Smartsoft MDSD
MinFr
MinFr Component-Based Framework
V3 CMM
MinFr from the point of view of an end-user

5 Application Design

5.1

5.2

53

5.4
54.1
54.2
54.3
544
545
5.4.6

Robotic Platform Pioneer 3-AT
Requirements
Components
Algorithms
CommonFunctions
MapOperator
A*
VFH
To Goal
Pure Pursuit

6 Application Implementation

6.1
6.1.1

Smartsoft
Implementation with the Player/Stage simulator

6.1.1.1 Communication objects
6.1.1.2 Components

6.1.1.2.1 UPCTcompConsole
6.1.1.2.2 UPCTcompMissionPlanner
6.1.1.2.3 UPCTcompExecutor
6.1.1.2.4 UPCTcompAstar

6.1.1.25 UPCTcompVFH

6.1.1.2.6 UPCTcompPurePursuit
6.1.1.2.7 UPCTcompToGoal
6.1.1.2.8 UPCTcompLocalization

6.1.1.3 Deployment
6.1.1.4 How to run the application

6.1.2
6.2
6.2.1

Implementation with the robot Pioneer 3-AT
MinFr
Tutorial

6.2.1.1 Components Libraries

6.2.1.1.1 C_Console

6.2.1.1.2 C_ToGoal

6.2.1.1.3 C_RobotBasePioneerHAL
6.2.1.1.4 C_MobileSimCon

6.2.1.2 Application Structure
6.2.1.3 Application Distribution
6.2.1.4 Activities

6.2.1.41 C_Console

6.2.1.4.1.1 A_Console

6.2.1.4.1.2 A_ReportingGoalStatus
6.2.1.42 C_ToGoal

6.2.1.4.2.1 A_AtGoal

6.2.1.4.2.2 A_MovingToGoal

74
76
76
77
80
80
80
83
85
85
94
96
100
100
103
103
106
106
107
109
112
113
115
118
118
118
119
119
119
121
123
125
126
127
128
130
131
134
136
137
139
140
141
144
149
149
150
152
157
159
159
161
163
163
165
Il

6.2.14.3
6.2.1.4.4

C_RobotBasePioneerHAL
C_MobileSimCon

6.2.1.5 How to run the application
6.2.2 Hybrid Architecture
6.2.2.1 Component Libraries

6.2.2.1.1
6.2.2.1.2
6.2.2.1.3
6.2.2.1.4
6.2.2.1.5
6.2.2.1.6
6.2.2.1.7
6.2.2.1.8
6.2.2.1.9

C_Console
C_MiissionPlanner
C_ObstaclesDetector
C_Executor

C_Astar

C_VFH
C_PurePursuit
C_ToGoal
C_Localization

6.2.2.2 Application Structure
6.2.2.3 Application Distribution
6.2.2.4 Activities

6.2.24.1
6.2.2.4.2
6.2.2.4.3
6.2.2.44
6.2.2.45
6.2.2.4.6
6.2.2.4.7
6.2.2.4.8
6.2.2.4.9

C_Console
C_MissionPlanner
C_EXxecutor
C_ObstaclesDetector
C_Astar

C_VFH
C_PurePursuit
C_ToGoal
C_Localization

6.2.2.5 How to run the application
7 Conclusions and Future Work

8 References
9 Appendices

9.1 Appendix A: Diagram of how to work with MinFr
9.2 Appendix B: MobileSim laser packet

169
169
170
175
177
177
177
178
179
180
180
181
181
182
182
182
183
184
184
185
186
186
186
187
187
187
188
194
196
198
198
199

1 Introduction

1.1 Introduction

When speaking about robots, the main question most people have is “What is a
robot?”.

A robot is a machine, with both mechanic and electronic components, that can perform
actions automatically or by remote control, which are based on both computer and electronic
programs.

These two types of programs are composed by functions, which basically are a portion
of code or a group of electronic components, respectively, that take in inputs, process them and
produce outputs.

The process part of these two types of programs consists on performing a task, which
can vary from very simple, like summing two inputs and as output put the result, to very
complex, like performing an action on a robot.

Also, functions can use other functions to perform more complex tasks, which mean
that there are different types/categories of functions.

On this document, the only type of robots that is going to be mentioned is autonomous
mobile robots (AMR), which are robots that are able to move from one position to another in an
autonomous way, which means that there is no use of remote control.

According to Siegwart and Nourbakhsh [Siegwart04], every time an AMR wants to
move, there are three key factors that need to be accomplished:

= “Where am I?” — The robot needs to know its location in the environment, its
initial position;

= “Where am I going?” — The robot needs to know where to go to, its desired final
position;

= “How do I get there?” — The robot needs to calculate a path to be able to move
from its initial position to the desired final position.

In order for an AMR to be able to accomplish these three factors, it needs to have some
specific types of subsystems, which can be classified according to their function.

The two most known methods of classification of subsystems of an AMR are robotic
components [Siegwart04] and robotic primitives [Murphy00].

The way the subsystems of an AMR are organized in terms of the interactions between
them, define the intelligence and behavior of an AMR. There are three different ways of
organizing the subsystems of a robot, also known as robotic architectures, which are
hierarchical, reactive and hybrid.

With all that was mentioned until now, it is clear that when one wants to built an
application for an AMR, it needs not only to build the components but also to define how they
will work together, since with same components it is possible to get different behaviours
depending on the interactions between them.

On this project, it is described in detail each robot subsystem, and how to organize them
to generate different behaviours. Also, it is described the design of an application that simulates
an hybrid behaviour, and its respective implementation on two different robotic frameworks,
MinFr and Smartsoft.

1.2 Goals and Objectives

This project is divided into five main goals/objectives:

= Definition of a classification method for the various robotic subsystems used for
navigation of an autonomous mobile robot. Together with this goal, it comes the
analysis of the state of the art in terms of algorithms for local and global navigation of
an autonomous mobile robot.

= Implementation on C++ of the algorithms A* and Vector Field Histogram, for global
and local navigation, respectively.

= Design of an application that performs an hybrid behaviour in terms of navigation of an
autonomous mobile robot. As main feature of this application, there is a decision-
making component that makes the robot able to choose between both algorithms
depending on environment around it. If the environment is not known, this component
must request the local navigation algorithm to guide the robot since on this situation, the
main goal is to avoid the unknown obstacles on the environment, and if the environment
is known, this component must request the global navigation algorithm to guide the
robot since on this case, the main goal is to go through the shortest path.

= Analysis of the state of the art in terms of software engineering for robotics.

= Implementation of the designed hybrid application and respective components on two
different robotic frameworks, MinFr and Smartsoft.

1.3 Structure of the document

Excluding this first chapter, this document is divided into eight chapters:

2. Robotic Subsystems and Architecture — The first section of this chapter (2.1)
describes the classification method robotic components, and how it was adapted to
generate the method of classification used on this project for the various robotic
subsystems used for navigation of an autonomous mobile robot.

On section 2.2, it is described each of the three robotic architectures, and then,
on the following sections of this chapter it is explained in detail each robotic subsystem,
as well as, an analysis of the state of art in terms of the most used algorithms for
navigation.

3. Software Engineering for Robotics — This chapter consists on a state of the art in
terms of software engineering for robotics. It is described the different types of
frameworks that exist on the field of robotics, as well as, some of the most known
frameworks of each type.

4. Robotic Frameworks used on this project — This chapter is an extension of the
previous one, since it consists on a detailed description of the two robotic frameworks
used on the implementation part of this project, MinFr and Smartsoft.

5. Application Design — On this chapter, it is described how it was designed the
application that simulates the hybrid behaviour on a robot, in terms of requirements that
need to be fulfilled by the application, components that were needed to develop and the
relationship between them.

6. Application Implementation — On this chapter, it is described on a step by step way
how it was implemented the application explained on chapter 5 on two different robotic
frameworks, MinFr and Smartsoft. Also, it is here described a tutorial of how to work
with MinFr.

7. Conclusion and Future Works — Here it is mentioned the conclusions taken after
finishing this project, as well as, some possible ideas that can be used as future projects.

8. References — Here, it is mentioned all the details about the references used on this
project.

9. Appendices — It includes a detailed diagram of how to work with the robotic
framework MinFr, and also, how the laser packet of the simulator MobileSim is
structured.

2 Robotic Subsystems and Architectures
2.1 Robotic Subsystems

The process of navigation in an autonomous mobile robot (AMR) is divided in
subsystems, in a way that when a robot has to perform an action each subsystem is responsible
for a part of the whole process.

According to Siegwart and Nourbakhsh [Siegwart04], the control scheme of a mobile
robot can be divided in four components/subsystems:

Perception — Consists on the components of the robot that are responsible for
getting knowledge about its surroundings, its “world”, which usually are sensors.

Localization — It is the component that answers to the question “Where am 1?”. In
this component the robot calculates its absolute position in the world, and also, its
relative position to moving objects, such as a person. Mapping is part of this
component.

Planning — It is the component responsible for calculating the path that will make
the robot to reach its goal.

Motion Control — It is the component responsible for translating the path given by
the planning component into motor inputs, in a way that the robot achieves what is
desired.

On Fig. 1 it is shown these components and the relationships between them. This figure
also shows that there is a sequence that is followed every time the robot wants to execute a

movement.

To explain that sequence in step by step way, consider the situation when a robot wants
to go from its actual position to a goal position:

1*" step: The perception component of the robot senses the environment around the
robot with the sensors.

2" step: The localization component builds a map with those perception readings.

3" step: Considering a map, which can be the one built on step 2 or a given one, and
some cognitive knowledge, the localization component localizes the robot on the
environment.

4™ step: The planning component determines the path that is needed to follow to go
from the actual robot’s position to the goal.

5" step: The motion control component executes the movements that are needed for the
robot to follow the path.

Knowledge, Mission
Data Base Commands

\

"Position”

Global Map
Environment Model Path
Local Map 1
1
Information Path
Extraction Execution
=
=
= i
] Raw data Actuator Commands
2
B+

Motion Control

Sensing

Fig. 1 — Control scheme of a mobile robot considered by Siegwart and Nourbakhsh
[Siegwart04]

The method used on this document for the classification of subsystems of a robot is this
one but with two changes.

The first change is that mapping is considered as another robotic subsystem and not part
of localization, since both localization and planning use the map.

The second change is the addition of a new subsystem called navigation, which
according to Fox [Fox97] is divided in two types:

= Local navigation - When using this type of navigation, a robot acts based on
reactive behaviours, which main priority is to avoid collisions with the obstacles on
the environment around the robot but also to reach a goal. To be able to do so, the
robot needs real-time exteroceptive sensors readings. On other words, the robot
decides how to behave based on a real-time local point of view of what is around it.

= Global navigation — When using this type of navigation, a robot needs a map
representation of the whole environment, which can be given or built by the
mapping component, in order to localize itself and plan a trajectory to reach a goal
on the environment around it. On other words, the robot localizes itself and decides
the trajectory to reach a goal based on a global point of view of what is around it.

Both types of navigation are goal oriented, the main difference between them is that
local navigation is based only on the actual environment around the robot while global is based
on the whole environment around the robot.

Making an analogy with situations from the day by day of a human, the local navigation
can be when a person wants to cross a street, since it needs to have real-time information about
the cars that are coming when it comes up to decide to cross or not, while the global navigation
is when a person wants to go from one side of a city to another, and for that it needs first to
locate itself by using a map of the city and then plan the trajectory it needs to do to go to the
other side.

These two types of navigation can be used together in order to improve the navigation
performance of an autonomous mobile robot.

As conclusion for this section, the resulting structure and control scheme that are used
on this document to classify the different subsystem of an autonomous mobile robot are the ones
shown on Fig. 2 and Fig. 3, respectively.

5

Autonomous Mobile

Robots

Motion Control

Local navigation Global navigation
Mapping

Perception

Reactive behaviours Localization

Fig. 2 — Structure of an AMR

Navigation

Path Planning

Global Navi_gation

Local Navigation

Reactive
| \ Behaviours

Environment Model
Local Map

Raw Data

N
W/

Environment

Real World ’

Fig. 3 - Control scheme of an AMR

Path Execution

Actuator Commands

Motion Control

2.2 Robotic Architectures

According to Murphy [Murphy00], who refers to architectures as paradigms, a
paradigm is a set of assumptions and/or techniques which characterize an approach to a class of
problems.

In other words, architecture is an approach, which is composed by some
techniques/modules, to solve a type of problems. Then, when it is said that we have two
architectures for a problem, it means that there are two different ways of solving that problem.

Considering robotics, the problem is how to organize the intelligence of the robots (how
is the robot going to behave) and the solutions/architectures are described in terms of the two
following factors:

= The relationship between the three robotic primitives;

= The way sensory data is processed and distributed through the system, which can be
local or global.

Robotic primitives are categories which define the different functions of a robot in
terms of their inputs and outputs (see also Fig. 4):

= SENSE - functions that take as input information from the robot’s sensors and
produce as output sensed information, which is later used by other functions;

= PLAN - functions that take as input information (can be sensed or its own
knowledge) and produces as output directives, which are tasks for the robot to
perform;

= ACT - functions that take as input information sensed information or directives, and
produces as output commands to motor actuators.

ROBOT PRIMITIVES

INPUT

OUTPUT

SENSE

Sensor data

Sensed information

PLAN

Information (sensed
and/or cognitive)

Directives

ACT

Sensed information

Actuator commands

or directives

Fig. 4 - Robotic primitives [Murphy00]

Making an analogy with the robotic subsystems mentioned on the previous section, 2.1,
the sense primitive is the perception component, the plan primitive is the navigation component
and the act primitive is the motion control component.

The sensed information produced by the functions of the category SENSE is called
world model, which consists on what the robot can see/sense, and there are two types of it:

= Local — when the sensed information is restricted to be used in a specific way for
each function of the robot, and so the processing is local to each function;

= Global — when the sensed information is processed first into one global world model
by the sense functions and then distributed in subsets to other functions as it is
needed.

In terms of the relationships between these three robotic primitives, they can change
depending on the design of the chosen architecture, but there are two dependencies that always
need to be respected:

= PLAN and ACT always depend on SENSE, because without the sensed information
the robot is blind, which means that it doesn’t know where it is neither it is able to
avoid obstacles.

= ACT depends or not on PLAN, depending on what the robot has to do, because with
the sensed information but without the planning part the robot knows where it is but
it doesn’t know where to go and so, the robot can wonder around but can’t be given
a task to do since it can’t plan how to do it.

Following this theory, there are three different architectures, hierarchical, reactive and
hybrid, which are explained on the three following sub sections.

2.2.1 Hierarchical Architecture

This robotic architecture is the oldest one and it’s a type of architecture where before
each action the robot needs to sense the surroundings, plan the actions and then do it, which
means that the robot always does the same sequence before each action.

In terms of behaviors between the robotic primitives, a robot working with this
architecture does the following sequence every time it wants to move:

= First, senses its surroundings by using its SENSE functions and creates a global
world model with all the sensed information it has gathered,;

= Second, with the sensed information sent by the SENSE functions plus its own
knowledge, the robot plans the next action (PLAN);

= Finally, with the directives sent by the PLAN functions, the robot actuates on the
motors (ACT) in order to execute the planned move.

This architecture works in a loop mode, which means that after each move the robot
repeats this sequence in order to plan the next move (see also Fig. 5).

I—- SENSE PLAN ACT —|

ROBOT PRIMITIVES INPUT OUTPUT

SENSE Sensor data +» Sensed information
T
Information (sensed L
PLAN and/or cognitive) ™ Directives

ACT F‘:+ Actuator commands
irectives

Fig. 5 - Robotic primitives in hierarchical architecture [Murphy00]

In this architecture, the global world model created on the SENSE functions, it’s
composed not only by what it senses but can be also composed by a previously acquired
representation of the “world”, a map, and some previous knowledge.

The big disadvantage of this architecture is that it can’t run concurrent actions at the
same time and so, when the environment has objects moving the robot can collide with them.

The resulting control scheme of an AMR with this architecture is the one shown on Fig.
6.

Navigation

Global Navigation

Environment Model Path
Local Map

Path Execution

Actuator Commands

Perception
Motion Control

O

Environment

Real World ’

Fig. 6 - Control scheme of an AMR with hierarchical architecture

2.2.2 Reactive Architecture

This robotic architecture only works with two primitives, SENSE and ACT, which
means that the input of the ACT functions are not directives but sensed information (see Fig. 7).

SENSE ACT

F 3
L J

ROBOT PRIMITIVES INPUT OUTPUT

SENSE Sensor data

~ Sensed information

Sensed information

Actuator commands

Fig. 7 - Robotic primitives in reactive architecture [Murphy00]

The idea of this architecture is the robot to have a behavior similar to an animal, which
behaves in a stimulus-response way and combines concurrent behaviors happening at the same
time.

In order to accomplish such behavior in a robot, this architecture permits the existence
of concurrent processes of SENSE-ACT, also known as behaviors, running at the same time in a
way that there are different ACT functions processing sensed information and acting on the
motors at the same time. This architecture also permits the combination of commands by the
robot when there are two ACT functions sending different commands to the motors at the same
time.

To understand better this feature there is the following example:

When there is a command saying “move forward 10 meters” (ACT on drive motors) to
reach a goal (SENSE goal) and another saying “turn 90 degrees” (ACT on steer motors) to
avoid a obstacle (SENSE obstacles, the robot will go forward with an angle of 45 degrees,
which is a combination of both commands, since no command said to go at 45 degrees, that
makes it possible to go towards the goal and avoid the obstacle at the same time.

The two big advantages of this architecture are the fast execution of commands, since
there is no planning, and the possibility of having concurrent tasks and combine them. On the
other hand, it has a big disadvantage that is not being able to work with human intelligence
since there is no planning.

The resulting control scheme of an AMR with this architecture is the one shown on Fig.
8.

10

Navigation
Local Navigation

7~

Environment Model
Local Map

Path

Actuator Commands
Raw Data

Perception
Motion Control

N
W

Environment
Real World

Fig. 8 - Control scheme of an AMR with reactive architecture

2.2.3 Hybrid Architecture

This robotic architecture is a combination of the two previously mentioned architectures
which means, that basically it is a reactive architecture with planning, making it possible for the
robot to react in real-time but also to plan the actions that it needs to perform (see also Fig. 9).

ROBOT PRIMITIVES INPUT OUTPUT
Information (sensed i i
PLAN and/or cogpnitive) ——E)_I_ISCHVES
-
SENSE-ACT Sensor data t# Actuator commands
(behaviors)

Fig. 9 - Robotic primitives in hybrid architecture [Murphy00]

The idea of this architecture is first, to plan a task for the robot to accomplish, and then
execute it by decomposing it on a set of behaviors.

11

In terms of robotic primitives, this architecture can be thought of as PLAN and then
SENSE-ACT.

With this, it means that planning is out of the reactive part of the architecture, but it’s
also true that planning needs sensing to get knowledge about the environment and so, SENSE is
not only used by ACT but also by PLAN, which makes SENSE hybrid since it works with both
PLAN and ACT.

So, the main feature of this architecture is SENSE, since at the same time it gives a
global world model to PLAN functions, so they can plan the tasks with all the information of

the environment around it, and local world models to ACT functions, so they can avoid
collisions.

Clearly, this architecture solves the disadvantages of the reactive architecture, being
then the best architecture (out of this three) to choose for an autonomous mobile robot.

The resulting control scheme of an AMR with this architecture is the one shown on Fig.
10.

Navigation
-
Global Navigation

Environment Model
Local Map

Raw Data

Perception
Motion Control

‘ . Actuator Commands

Environment
Real World

Fig. 10 - Control scheme of an AMR with hybrid architecture

2.3 Perception

One of the most important tasks of an autonomous system of any kind is to acquire
knowledge about its environment. This is done by taking measurements using various sensors
and then extracting meaningful information from those measurements [Siegwart04].

Perception, consists on the components of the robot that are responsible for getting
knowledge about its surroundings, its “world”, which usually are sensors.

According to Murphy [00] there are three types of sensors:

12

= Proprioceptive sensors, measure internal values of the robots such as motor speed,
wheel rotation, acceleration and orientation of the robot, etc.

= Exteroceptive sensors, get data from the environment around the robot such as
distance to features, light intensity, sound amplitude, etc.

= Exproprioceptive sensors, get data about the robot’s position on the environment
by communication between sensors that are on the robot and others that are on the
environment.

These three types of sensors can be passive or active, depending on what is supposed to
measure.

Passive sensors measure environmental energy such as temperature, sound, image, etc.,
while active sensors emit some kind of energy into the environment such as light, sound, etc.,
and then measure the environment reaction to it. Examples of passive sensors are thermometers,
microphones or cameras, and of active sensors are lasers, sonars or infrareds.

Considering the three mentioned types of sensors, a robot can get two different types of
measurements, absolute position measurements and relative position measurements, like shown
on Fig. 11.

Perception

Relative Position

Absolute Position

Measurements Measurements

Fig. 11 - The two types of measurements a robot can get with perception

Absolute position measurements are gotten by using the exproprioceptive sensors.
The measurements of this type of sensors are gotten by communication between sensors on the
robot and on the environment, which gives an estimation of the absolute position of the robot on
the environment, since it is calculated according to the environment frame of reference.

Relative position measurements are gotten by using proprioceptive and/or
exteroceptive sensors. The measurements of these two types of sensors are gotten by only using
sensors on the robot, which gives a estimation of the relative robot position on the environment,
since it is calculated according to the robot frame of reference.

It is also possible to get an estimation of the absolute position of the robot on the
environment by matching the exteroceptive sensors data with a localization algorithm and a map
of the environment. This happens because exteroceptive sensors measure data from the
environment and so, by localizing the sensed data on a given map of the environment, it is
possible to get an estimation of the absolute position of the robot on it.

A general diagram with how to get the two estimations of the robot position, absolute
and relative, with perception is shown on Fig. 12.

13

Absolute Position Relative Position

Measurements Measurements
Exteroceptive Sensors . .

* gata Proprioceptive Sensors Data

Localization Map of the
algorithm environment

Exproprioceptive Sensors
Data

Estimation of the absolute
position of the robot on the
environment

Estimation of the relative position
of the robot on the environment

Fig. 12 -How to get the estimations of the absolute and relative position of the robot on the
environment with perception

Comparing both types of measurements, when a robot uses relative position
measurements, the estimation of the position of the robot has a bigger error than when using
absolute position measurements, since they use as reference the robot itself and not the
environment. On the other hand, relative position measurements are always possible to get, the
sensors are self-contained and can always provide the robot with an estimation of the relative
position of the robot, while the absolute position measurements availability depends on the
environment where the robot is and on the type of sensors that it has.

Most autonomous mobile robots use the three types of sensors, proprioceptive,
exteroceptive and exproprioceptive, in order to get both types of measurements and also the best
estimation of the position of the robot in all the situations.

Different sensors and methods of the three types of sensors are shown and classified on
the sub section 2.3.1.

A technique that combines measurements of different types of sensors, called sensor
fusion, is explained on the sub section 2.3.2.

2.3.1 Sensors

On autonomous mobile robots, sensors play a crucial role since it is needed the data of
the sensors in order to make any type of movement. The configuration of each robot in terms of
sensors depends on its needs.

Like mentioned before, on perception there are two types of measurements, absolute
and relative position measurements, and to get them it is needed to use different types of
Sensors.

To get absolute position measurements, it is needed to use exproprioceptive sensors.
There are two types of exproprioceptive sensors, active beacons and global computer vision.

14

Perception

Absolute Position
Measurements

Relative Position
Measurements

Exproprioceptive Proprioceptive Sensors
Sensors

Active Beacons Global Computer Vision

Triangulation Trilateration

Fig. 13 — Different sensor methods that measure the absolute position of the robot on the
environment

Active beacons is a method that calculates the absolute position of the robot by
measuring the direction of incidence of three of more actively transmitted beacons. The
transmitters usually transmit light or radio frequencies and need to be located at known
locations on the environment. There are two implementations of active beacons,
triangulation and trilateration:

e Triangulation is an implementation of active beacons, where there are three or more
active transmitters placed at known locations on the environment and a rotating
sensor on the robot.

With the rotating sensor, the robot registers the angles at which it “sees” each of
the transmitters relative to the robot’s longitudinal axis and computes its absolute
position on the environment based on them.

e Trilateration is another implementation of active beacons that places three or more
active transmitters at known locations on the environment and one sensor on the
robot, or the opposite, three or more receivers at known locations on the
environment and one transmitter on the robot.

This method computes the robot’s absolute position on the environment by
using the time-of-flight data of the transmitted signals to calculate the distances
between the transmitter and the receiver or, between the receivers and the
transmitter, depending on the configuration. GPS is an example of trilateration.

Global computer vision is a method that uses cameras placed at a fixed location on the
environment and computes the absolute position of the robot on the environment by

15

detecting the robot on the images provided by the cameras. This method is computer based
since it requires image processing to detect the robot and to calculate its position on the
environment.

A diagram with the mentioned sensors methods of getting absolute position
measurements is shown on Fig. 13.

To get relative position measurements, it is needed to use exteroceptive and/or
proprioceptive sensors.
There are two types of exteroceptive sensors, ranging and computer based sensors.

Perception

Absolute Position Relative Position
Measurements Measurements

Exproprioceptive

Exteroceptive Sensors Proprioceptive Sensors
Sensors

Ranging Sensors Computer Based Sensors

Radio Frequency
Identification

Lasers

iInfrared Video cameras

Ultrasonic

Fig. 14 - Types of exteroceptive sensors

. Ranging sensors, measure the proximity between the robot and features on the
environment. To do so, this type of sensors emit some type of energy (light, sound) to
the environment and, by measuring the environment reaction to them (reflectivity, time-
of-flight) the robot calculates its relative position on the environment. Lasers,
ultrasonics, infrareds and sonars are examples of ranging sensors.

] Computer based sensors, are a type of sensors that require some computer
intelligence in order to process the data that they measure from the environment around
the robot, and to calculate the relative position of the robot on the environment based on
that data. This happens because when sensing the environment, this type of sensors
provide an enormous amount of data, where not all is important for the robot.

The measurements that can be gotten with this type of sensors are detection and
distances from landmarks.

16

Landmarks are features that are distinct on the environment and that can be
recognized from the sensors data by using techniques of image processing. There are
two types of landmarks, natural and artificial:

e Natural landmarks are those features that are already on the environment
and have a function other than for robot navigation. The selection of which
features are considered as natural landmarks is very important since it
determines the complexity of the algorithms of detection. Examples of
natural landmarks are doors, wall junctions and corners.

o Artificial landmarks are specially designed objects or markers that are
placed on the environment with the purpose of helping on robot navigation.
Usually, the size and shape of this type of landmarks is known in advance
by the robot. An example of an artificial landmarks is retro reflective
barcodes.

Two examples of computer based sensors are video cameras and radio
frequency ldentificators.

A diagram with the two mentioned types of exteroceptive sensors and respective
examples is shown on Fig. 14.

Finally, about proprioceptive sensors there are also two types, dead reckoning and

heading sensors.
Measurements
m———

Dead Reckoning Sensors Heading Sensors

Relative Position

Absolute Position
Measurements

Exproprioceptive
Sensors

Fig. 15 - Types of proprioceptive sensors

. Dead reckoning sensors, also known as odometry, measure wheel rotation, motor
speed and/or steering orientation of the robot while moving through the environment. By
combining these measurements, the robot is able to calculate how much and how it moved

17

through the environment and compute its relative position on the environment. Encoders are
an example of dead reckoning sensors.

= Heading sensors, measure the orientation of the robot in relation to the robot frame of
reference. To do so, this type of sensors measure the rate of rotation and acceleration of the
robot and by combining them, the robot is able to calculate how much and how it moved
through the environment and compute its relative position on the environment.
Accelerometers, compass and gyroscopes are examples of heading sensors.

A diagram with the two mentioned types of proprioceptive sensors and respective
examples is shown on Fig. 15.

The accuracy of the position calculated by using proprioceptive sensors data depends
only on the sensors noise and limitation but, when using exteroceptive sensors, the accuracy
also depends on the distance and angle between the robot and the landmarks.

With the sensor data of the proprioceptive and exteroceptive sensors, it is possible to
calculate the relative position of the robot on the environment since what they measure are
internal values from the robot and distances between the robot and features on the environment,
respectively.

Also, like mentioned on the previous section, it is also possible to calculate the absolute
position of the robot by matching the sensor data of the exteroceptive sensors with a localization
algorithm and a map of the environment. On the case of computer based sensors, the absolute
position of the robot on the environment can also be calculated if a database with the description
of the landmarks and their location on the environment is given a priori to the robot.

A diagram with the all the mentioned sensors and sensing methods of getting absolute
and relative position measurements is shown on Fig .16.

2.3.2 Sensor fusion

Sensor fusion in this context is the process of integrating data from distinctly different
sensors for detecting objects, and for estimating parameters and states needed for robot self-
location, map making, path computing, motion planning, and motion execution [Kam97].

On other words, an autonomous mobile robot gets information about the environment
that is around it by using exteroceptive sensors and gets an estimate of its position according to
a fixed reference frame by using the proprioceptive sensors readings.

In order to get better estimates of the position of the robot and what is around it, the data
of both types of sensors can be integrated. This process of matching data from different sensors
is called sensor fusion.

According to Martinez [Martinez01], all the sensors provide readings with a degree of
uncertainty depending on their characteristics and so, in many applications, by matching
inaccurate information coming from various sensors with sensor fusion, the uncertainty of the
global sensor information can get reduced.

There are many techniques of sensor fusion. On the bibliography [Martinez01],
[Kam97], [Luo89] and [Crowley] can be seen many different techniques that are usually used
for fusion of different sensors readings in a way that, the result of that fusion becomes useful for
the other components of the robot.

18

@

sadoasoio

i N

$13)3W043]32dY

siosuas Bujppay siosuas BujuoyIay poag

s13po2u3z

siosuas anpdacoudoid

uoppIYUIpP|
Adouanbaiq ojpoy

SDI3WDI 03PIA

s10su3S paspg Jandwio)

paipiful

=] o

Jpuos squosoin ' ’ !
19507

siosuas bujbuoy

$J0suas anndaloiaix3

Sjuawainsoap
uopsod anjiojay

uojsip 4a3ndwio) [pgojo

uopnonbupyiy

SU0ID3g NIV

Si0SuUas
anpdasopdosdx3

SIUIWINSDIW
uonisod anjosqy

uondaziad

Fig. 16 - Types and examples of sensors used to get absolute and relative position measurements

19

2.4 Navigation

According to Siegwart and Nourbakhsh [Siegwart04], given partial knowledge about
its environment and a goal position or series of positions, navigation encompasses the ability of
the robot to act based on its knowledge and sensor values so as to reach its goal positions as
efficiently and as reliably as possible.

An autonomous mobile robot must be able to calculate the best path that will make it
reach its goal but also have a reactive attitude where it must be able to react in real-time to avoid
collisions. For that to be possible, the robot must be given real-time sensors readings so it can
realize about possible collisions, calculate a new path to avoid those collisions and still arrive to
the goal.

With this, it’s means that the navigation component of an AMR includes two
competences:

= Given a map and a goal location, planning involves identifying a trajectory that will
cause the robot to reach the goal location when executed,;

= Given real-time sensor readings, obstacle avoidance means modulating the
trajectory of the robot to avoid collisions but still reach the goal.

Considering that and according to Fox [Fox97], it is than clear that there are two types
of navigation:

= Local navigation — When a robot wants to avoid obstacles but also reach a goal. On
this type of navigation, the robot needs real-time exteroceptive sensors readings in
order to know what is around it, so it can decide how to behave, in a way that it
needs to avoid c