Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Towards Transactional Memory for Real-Time Systems

Schoberl, Martin; Thomsen, Bent; Thomsen, Lone Leth

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Schoberl, M., Thomsen, B., & Thomsen, L. L. (2009). Towards Transactional Memory for Real-Time Systems.
(09-001 ed.) Department of Computer Science, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 28, 2020


https://vbn.aau.dk/en/publications/5aeba3f0-040a-11de-82e6-000ea68e967b

Towards Transactional Memory for
Real-Time Systems

Authors: Martin Schoeberl
Lone Leth Thomsen
Bent Thomsen

Technical Report 09-001
Department of Computer Science
Aalborg University

Created February 25th, 2009



Towards Transactional Memory for Real-Time Systems

Martin Schoeberl
Institute of Computer Engineering
Vienna University of Technology, Austria
mschoebe @mail.tuwien.ac.at

Bent Thomsen, Lone Leth Thomsen
Department of Computer Science
Aalborg University DK-9220 Aalborg
bt, lone@cs.aau.dk

TU Wien Technical Report 19/2009
AAU CS Technical Report 09-001

Abstract

In this paper, we explore a new synchronization
paradigm for real-time systems: transactional memory
for real-time systems. Transactional memory is con-
sidered as a solution for parallel programs on a shared
memory chip multiprocessor. It simplifies the program-
ming model and increases the average case throughput.
However, in real-time systems we are interested in the
worst-case execution time. In this paper we show that
for a periodic thread model the maximum number of
transaction aborts can be bounded and the system is
time predictable. Furthermore, we propose a possible
hardware implementation in the context of a Java pro-
cessor and show first results in a multiprocessor simu-
lation.

1 Introduction

Transactional memory (TM) is proposed in two flavors:
as implementation in hardware (HTM) [10] and as im-
plementation in software (STM) [22]. The granularity
of conflict detection can be word based (STM, HTM),
cache line based (HTM), or object based (STM).

For our proposed transactional memory we do not
aim at a high average case throughput, but time pre-
dictability and low worst case execution time (WCET).
We want to provide a simpler programming model and
analyzable timing properties. Therefore, all design
and architecture decisions are driven by minimizing the
WCET.

Two well known issues are present in chip-
multiprocessor (CMP) systems:

1. Synchronization and cache coherence/consitency

is expensive

2. Multithreaded programming needed to use CMP,
but the programming model is too complex

With TM we can relax the memory coherence and
consistency model [7]. That results in simpler and more
efficient hardware for shared memory multiprocessing.
The use of generic atomic primitives relieves the pro-
grammer from the headaches to get get the synchroniza-
tion correct and provide the maximum possible concur-
rency. For real-time systems (RTS) we shift the prob-
lem from the programmer to analysis tools to provide
safe and tight WCET estimates.

2 Related Work

In [12] Knight proposes hardware support for transac-
tions for mostly functional languages. The key elements
are two fully associative caches: the depends cache im-
plements the dependency list (besides acting as normal
data read cache) and the confirm cache that acts as local
cache for uncommitted writes (side effects in his termi-
nology).

The term transactional memory was coined by Her-
lihy and Moss [10]. They realized that only a minor
modification of the available cache coherence protocol
is needed to implement transactional memory.

As computer architects were not convinced by the
transaction idea no hardware implementation exists up
to date in commercial microprocessors. To solve this
chicken-egg problem researchers started to investigate
solutions in software. In [22] Shavit and Touitou
present software transactional memory (STM). The



proposed STM provides static transactions. That means
the data set has to be known in advance.

Saha et. al. [18] propose an ISA extension to provide
architectural support for STM. The idea is based on ad-
ditional mark bits for parts of a cache line (e.g., for 16
byte blocks of a 64 byte cache line).

Language support for transactions [8] in Java reinves-
tigates Hoare’s conditional critical regions. To distin-
guish between normal field access and field access un-
der a transaction a second method table holds references
to a transactional version of methods. In [11] a practi-
cal implementation as a library (DSTM2) for standard
Java is presented that requires only compare-and-swap
(CAS) instructions.

In [7] a Transactional memory Coherence and Con-
sistency (TCC) model is proposed. TCC combines
the simpler hardware for message passing and the sim-
pler shared memory programming model. The standard
cache coherence protocol with the latency issue on each
load and store instruction is substituted by the TCC
hardware. The TCC hardware broadcasts all writes
from each transaction in a single packet. Automatic
rollback resolves any correctness violation. TCC dif-
fers from other approaches as all instructions are part
of a transaction. The code is just split into transactions
which can be done manually or automatically by the
hardware. In [6] language extensions for loop and fork
based parallelization for TCC are presented. The pa-
per also contains detailed simulation results of speedup
and write set size. The speedup is reported in the range
of 4.5 to 7.8 for a 8 processor CMP configuration. For
most applications a write buffer of 1 KB is sufficient.
We assume that applications in the real-time domain
will nced even less on-chip memory. Also a finer gran-
ularity of the write buffer (single words instead of 64
Byte cache lines) will reduce the needed size.

A first prototype of TCC in FPGAs [25] implements
a 8 processor configuration with PowerPC cores and a
custom data cache for the transaction buffer. The sys-
tem consists of 4 FPGAs for the TCC (2 PowerPCs per
FPGA) and one control FPGA that runs Linux. Al-
though the PowerPC can be clocked up the 300 MHz,
the TCC system is clocked with 100 MHz. The paper
also reports issues with the implementation of the cus-
tom data cache in current FPGA technology. The 4-
way set associative TCC cache has an access time of 13
clock cycles and clearing cache state bits at the end of
a transaction takes 257 clock cycles. An on-chip block
RAM is used for the register checkpoint.

Our proposed TM shares many ideas with TCC. We

also perform late conflict detection at commit and grab
the commit token early on a buffer overflow. However,
the design of the transaction buffer in our approach is
different: TCC uses standard cache organization for the
transaction buffer while we optimize our design for time
predictability and not for average case throughput. Fur-
thermore, TCC uses transactions for g/l memory opera-
tions. The resulting high variability of memory access
times is hard to include in the WCET analysis!. We use
the TM only for short atomic code sections and perform
non transactional loads and stores via a time-predictable
memory arbiter [16]. The TCC design consumes about
8000 LCs per processor core (not including the proces-
sor). We expect that our implementation will consume
about 2000 LCs.

Unbounded transactional memory (UTM) [2] uses
register renaming to support the register snapshot. The
transactions state (address of the abort handler, transac-
tion counter — for nested transactions, and a save bit in
register file) is visible to the OS to be saved on a context
switch. Eager versioning, log in virtual (global) mem-
ory. There is still a hardware limit in the proposal: the
number of physical registers determine the maximum
concurrent number of transactions in one CPU. A sim-
plified version (LTM) was simulated. LTM is different:
lazy versioning, cache + hash table for overflow, does
not survive a context switch. The idea is just a simple
logging of versions. [3] is the Journal version of the
paper.

Log-based TM (LogTM) [15] performs eager (early)
versioning (write to memory) + eager conflict detection.
The argument for this decision is that commits are the
common case and should be fast.

To the best of our knowledge, preemptible atomic re-
gions (PAR) [14] is the only proposal of TM for real-
time systems.

2.1 Database Management Systems

Transactions have been studied widely in the context
of database management systems (DBMSs) where they
provide a powerful mechanism to manage concurrent
access to a database.

Most DBMSs support the ACID properties: atomic-
ity - a transaction executes completely or not at all; con-
sistency - transactions are a correct transformation of

IThe bounds become impractical high: for n processors the
WCET of a single load or store is n— 1 times the longest commit
time.



state; isolation - even though transactions execute con-
currently, for each transaction all other transactions ap-
pear to either happen before or after, but not both; dura-
bility - modifications performed by completed transac-
tions survive failure.

Most DBMSs are designed to maximize transaction
throughput rather than to meet timing constraints of in-
dividual transactions. However, there is also a well de-
veloped literature on real-time DBMS, but most litera-
ture on RT-DBMS is really on fast-time DBMS or min-
imizing the number of transactions overrunning their
deadlines [1, 17, 21].

A lot of DBMS research has gone into protocols for
conflict detection and resolution. Lock-based proto-
cols are usually termed pessimistic concurrency pro-
tocols. Lock-based protocols, with two-phase lock-
ing, are (probably) in widest use in RT-DBMS. When
a DBMS does conflict detection at the end of a transac-
tion (during commit) it is called optimistic concurrency
[13]. Optimistic protocols, where transactions are run
to completion and then checked for conflicts, are con-
sidered wasteful.

There are studies of main memory real-time DBMS,
which are used in telecommunication applications, e.g.
[4] where an object-oriented design is presented.

2.2 Time-predictable CMP

For the schedulability analysis of (hard) real-time sys-
tems the worst-case execution time (WCET) of all tasks
and critical sections needs to be known. WCET analy-
sis of complex architectures is far from trivial. Archi-
tectural enhancements that dynamically extract instruc-
tion level parallelism are practically not analyzable. A
multi-core chip consisting of simpler pipelines is a pos-
sible solution for high-performance, time-predictable
systems [20].

For our HTM we assume a CMP system with a time-
division multiple access (TDMA) scheduled memory
access. The TDMA arbitration policy isolates the cores
of the CMP in the temporal domain and is therefore
time predictable. The WCET of memory accessing in-
structions can be calculated when the TDMA schedule
is known [16].

3 Hardware Transactional Mem-
ory for RTS

We propose a hardware implementation of the HTM.
Each core is equipped with a small, fully associative
buffer to cache the changed data during the transaction.
All writes go only into the buffer and all reads are ei-
ther cached in the same buffer or marked in a read set (a
simplification that uses only tag memories). On a com-
mit the buffer is written to the shared memory. During
the write burst on commit all other cores listen to the
write addresses and compare those with their own read
set. If one of the write addresses matches a read address
the transaction is marked to be aborted. The atomicity
of the commit itself is enforced by a single global lock
— the commit token.

The commit token can also be used on a buffer over-
flow. When a transaction overflows the write buffer or
the memory for the read set is grabs the commit to-
ken and continues with the transaction. The atomicity
is now enforced by the commit token. Grabbing the
commit token before commit is intended as a backup
solution on buffer overflow. It effectively serializes the
atomic sections. The same mechanism can also be used
to protect I/O operations that usually cannot be rolled
back. On an I/O operation within a transaction the core
also grabs the commit token.

Conflict detection can be performed early, when the
first conflict really happens, or late on commit. Early
detection is very expensive in hardware as all buffer lo-
cal write traffic has to be observed by all other cores.
That means n — 1 devices have to listen to the other n — 1
device. Furthermore, there is not much benefit in the
WCET analysis from early conflict detection. There-
fore we propose to use late conflict detection during
the commit. When one transaction commits its write
buffer to the shared memory all other transaction units
just need to listen to this write burst, i.e. n— 1 listeners
to one writer.

When a conflict is detected the corresponding thread
can be notified to abort the transaction early or late.
Early notification can be represented by a thrown ex-
ception. Late notification just marks the transaction for
an abort and the abort can be communicated at the end
of the transaction. Again from a real-time perspective
the worst-case behavior is the same and the implemen-
tation of the late notification is simpler in hardware. It
also gives a cleaner software interface.

Two concurrent transactions conflict when the read



set of one transaction intersects with the write set of
another transaction. We perform the conflict detection
during the atomic commit.

We have two options for the transaction abort: (1)
just mark the abort and perform the abort and retry on
the end of the transaction instead of commit; or (2)
throw an interrupt to the aborted transaction for an ear-
lier restart. From the worst-case perspective their be-
haviors are equivalent. Option (1) is slightly simpler to
implement.

On a commit the commit token is arbitrated, the write
set is written to main memory (we could keep it in the
cache), and the read set addresses are broadcasted. All
other processors compare the write set of the commit-
ting processor with their read set and the read set of the
committing processor with their write set. Any overlap
triggers a transaction abort.

Furthermore, we can handle I/O within a transaction:
just grab the commit token before the I/O operation.

Our proposed TM system has the following proper-
ties:

1. Local buffering of stores

2. Atomic commit of the stores to the memory

W

. Conflict detection between transactions

4. Rollback of the transaction on a conflict

19

. Global lock for commit; also used for HW buffer
overflow

6. Abort on context switch

31

The question remains if we support atomic blocks or
only atomic methods. When we use code blocks we
have to save all local variables that are live at the trans-
action start to rollback the transaction (or we would
need to buffer local variable writes, which is not really
an option). When using atomic methods local variables
are empty. With methods we do not need a change in
the Java language, we can go with an annotation as in
[14].

Transactional Memory (TM) shares many common-
alities with Database transactions, but there are differ-
ences as well. Durability is not importantin TM - or has
to be interpreted differently - if the system crashes it is
a disaster and memory is lost. In DBMS we only have

Language Integration

transactional access, in TM we may have both transac-
tional and non-transactional access, i.e. a variable can
be read and written inside a transaction and outside a
transaction - what is the meaning of that? For further
discussions see [5].

In DBMS transactions can be aborted from within
the transaction. Similar concepts have been studied in
Haskell [9]. Do we have similar concepts, e.g. atomic,
retry and orelse, in Java TM? This is an open question.

3.2 Programming Style

Atomic regions simplify concurrent programming as
the hardware automatically resolves synchronization
conflicts. However, for good performance and tight
WCET bounds the programmer should follow a few
rules:

Minimize False Positives: Without any knowledge
and analysis each atomic region can conflict with
each other region and has to be considered by the
real-time analysis. A data flow and type analy-
sis can detect non conflicting regions and reduce
the worst-case number of aborts. However, a pro-
grammer can still help the analysis. As an example
consider using lists to communicate between pro-
ducer and consumer threads. If independent pro-
ducer/consumer pairs use the same type of lists it
is hard to analyze their independency. With differ-
ent subtypes for different lists the analysis is triv-
ial. Although this practice is contrary to common
OO design wisdom it can help when sophisticated
analysis tools are not available.

Avoid Buffer Overflow: The on-chip transaction
buffer is of limited size. An overflow is correctly
handled by the hardware, but stalls all other
processors in the system. Keeping the read and
write set of transactions within the buffer limits
avoids the expensive atomic execution on an
overflow.

Short Transactions: The execution time of a transac-
tion is multiplied by 2n — 1 for the WCET analy-
sis. For large n the execution time of the transac-
tion can dominate the overall WCET of a thread.
Keeping transactions short minimizes this cost.



4 HTM Analysis

To use transactions in a real-time system we need to find
a bound on the maximum number of possible transac-
tion aborts and the resulting retries. To find this bound
we have to analyze all threads in the system. The bound
per thread itself is then integrated into the WCET anal-
ysis of the individual threads. With twcgr as the orig-
inal WCET, #4omic the maximum execution time of the
atomic region, and k the number of times the atomic
region is executed (1 + number of retries) the overall
WCET tycpr is

@)

Theorem 1. For n periodic threads that contain a
single atomic region the maximum number k a single
thread has to execute that region per period is

tweer = WCET +tatomic(k—1)

k=2n-1 )

Proof. We assume the critical instant where 7 threads
start their period at the same time and have their atomic
region at the beginning. One thread will commit and
n— 1 threads will have to perform a retry. We again as-
sume a critical instant where now n — 1 threads execute
their atomic region and n — 2 threads have to execute
their atomic region a 3rd time. The last thread that will
commit was aborted n — 1 times and had to execute the
atomic region n times. In that case k = n.

However, if we construct a phasing where a commit
of period i is back to back with a commit of period
i+ 1 for each thread those two commits can abort the
other thread’s atomic regions two times. Therefore, the
last thread has been aborted its atomic region 2(n — 1)
times and needs to execute the atomic section k = 2n— 1
times. O

We can analyze situations where a thread j’s period is
shorter than the conflict resolving time. However, this is
only useful when other threads are involved. Otherwise
thread j can starve. Considering this case results in a
recursive formulae. However, for practical systems the
assumption that the period of each thread involved in
a possible conflict is longer then the maximum conflict
time is a reasonable one.

4.1 Region Analysis

The above bound assumes one atomic region per period
with the same #4,mic for all threads. This is not an un-
common assumption, but it is rather restrictive.

If we assume that the execution time for atomic re-
gions may vary for each periodic thread, we can still
calculate the maximal number of retries for each atomic
region in each periodic thread. We still assume that
there is only one atomic region in each period.

Theorem 2. For n periodic threads that contain a sin-
gle atomic region the maximum number k; the j’'th
thread has to execute its region per period is bounded
by the following:

-8 [2] 5 ]

i=1 i=j+1

3

Proof. The number of possible conflicts a thread j kan
have with another thread i depends on the length of pe-
riod P; and P;. If P; is equal to or longer than P; then
there is at most one conflict between the two threads
which implies that one of them will have completed its

atomic region sucessfully and [%—1 = 1. If P; is shorter

than P; then [—I;f-l is equal to the number of times thread

i can execute during the period of thread j. Each such
execution of thread i could have its atomic region con-
flicting with the atomic region in thread j. Finally we
need to sum up over all threads in the system. O

The above sum is dominated by the following num-
ber which may be easier to calculate:

Theorem 3.

C))

benn [

4.2 Analysis to reduce possible conflicts

The formulas introduced in the previous section calcu-
late the maximal numbers of retries under the rather
conservative assumption that all atomic regions could
be in conflict with each other. This is clearly a safe
assumption, but will often lead to very pessimistic run-
time assumptions.

If it is possible to determine that a thread i does not
share variables or references to objects with another
thread j, it is safe to eliminate [%1 from the count of
possible retries the atomic region in thread j may have
to go through.

We envision that Points to Analysis for Java, can be
adapted to calculate an abstract set of memory locations
each thread may refer to during their execution of their
atomic region and thus calculating the intersection of



// The producer task
while (cnt < Const.CNT) {
RTTM.start();
if (!queue.full()) {
++cnt;
queue.eng((T) obj);
}
RTTM.end();

}

// The consumer task
while (cnt<Const.CNT) {
RTTM.start ();
Object obj = queue.deq();
if (obj!=null) {
++cnt;

}
RTTM.end();
}

// The mover task
while (cnt<Const.CNT) {
RTITM.start();
if (!in.full()) {
Object obj = out.deq();
if (obj!=null) {
in.enq((T) obj);
++cnt;

}
RTTM.end();

}

Figure 1: The producer, consumer, and mover tasks

such sets for each pair of threads would be straight-
forward. The Soot framework already provides three
implementations of points-to analysis: CHA, SPARK
and Paddle [24]. [23] presents a scalable and precise
context-sensitive points-to analysis for Java.

Another way of looking at such an analysis, is that
if it yields a high level of possible sharings between
threads in the system, it is possibly a sign of program-
ming error or at least bad design.

5 Evaluation

For a first evaluation of HTM we have implemented
HTM within a simulation of the Java processor JOP
[19]. The simulation was extended to simulate a chip-
multiprocessor version of JOP. Within this simulation
we are able to gather some statistics on the HTM be-
havior that will guide the hardware implementation. We
varied the size of the transaction buffer and the read

Address set

Thread Trans. Retries Write Read
Producer 1000 0 654 679
Consumer 1001 1000 4 19
Table 1: Single vector
Address set
Thread Trans. Retries Write Read
Producer 1000 0 654 679
Mover 1001 501 7 30
Consumer 3005 1000 4 19

Table 2: Two vectors

set cache. As applications we used a few micro bench-
marks.

TM for RTS is evaluated with a few micro-
benchmarks implementing different configurations of
the producer/consumer pattern. We use two different
buffers for the data exchange: (1) the standard Java Vec-
tor, and (2) a bounded queue. Three types of tasks ex-
change information: the task Producer, the task Con-
sumer, and the task Mover. All tasks run in a tight
loop and perform their operations 1000 times. Figure 1
shows the code for the three tasks for the queue version.
The Producer inserts 1000 objects into the buffer. The
same object is reused to provoke maximum transaction
collisions in the examples. The Consumer removes el-
ements from the buffer.

The Mover task is the classic example that does not
compose with traditional locks. An element shall be re-
moved from queue A and inserted into another queue B
with the invariant that the element has to be either in A
or B. When the queues use internal locks for the syn-
chronization, the transfer needs to be protected by an
additional lock. However, other threads that operate on
the queues are usually not aware of the additional trans-
fer lock. With atomic sections this operation composes
naturally.

The tables 1-6 show the transaction statistics for each
worker thread for the six examples. The tables show
the number of transactions committed, retried after an
abort, and the size of the write and read set.

With the first experiment, the Vector based communi-
cation with 2 threads (one producer and one consumer),
shown in Table 1, we see large read and write sets. The
consumer does not keep up with the producer and the



Address set Address set
Thread Trans. Retries Write Read Thread Trans. Retries Write Read
Producer 1 1000 0 654 679 Producer 1 1000 999 3 18
Consumer 1 1001 501 4 19 Consumer 1 5360 636 2 13
Producer 2 1000 0 654 679 Producer 2 1000 999 3 18
Consumer 2 1002 501 4 19 Consumer 2 5371 633 2 13
Table 3: Two independent vectors Table 6: Two independent queues
_ Address set no change the state of the queue the retry count for the
Thread Trans. Retries Write Read Producer and the Consumer is quite low. (3) The Mover
Producer 1000 999 3 18 task is aborted as often as it successfully commits.
Consumer 5359 637 9 13 In summary, we evaluated the HTM with examples

Table 4: Single queue

Vector is internally resized to buffer the request. The
experiment shows that this kind of data structure is not
ideal for real-time systems. The Vector based commu-
nication with 3 threads (one producer, one mover, and
one consumer), shown in Table 2, shows the similar is-
sue with the resizing of the internal array in the first
queue. As the code of the Mover takes longer to execute
than the code of the Consumer the Vector between these
threads does not grow. The last Vector example shows
two independent producer/consumer pairs. As the sim-
ulation runs all cores in lock-step, the results of both
pairs, shown in Table 6, is almost identical.

We have run the same examples with bounded queues
for the communication. The results of the simulation
are shown in Tables 4-6. As the queues are bounded
we see only small read and write sets. From the re-
sults in Table 5 we can derive a few observations on
the three thread example: (1) The Mover task has the
longest execution time and limits the throughput. The
other two tasks execute their atomic sections more of-
ten finding the queue either full (Producer) or empty
(Consumer). (2) As the test for full and empty does

Address set
Thread Trans. Retries Write Read
Producer 5317 208 3 18
Mover 1003 1006 4 28
Consumer 8420 269 2 13

Table 5: Two queues

that stress the transaction system to observe some real
conflicts. All threads run in a tight loop executing an
atomic section. Even under this load no thread starved.
For real-world applications the atomic section is only
a small part of the workload and conflicts are seldom.
We have run some examples with periodic threads, but
could not produce enough conflicts to provide interest-
ing results.

6 Conclusion

In this paper, we explored a new synchronization
paradigm for real-time systems: transactional memory.
We showed various formulaes to bound the maximum
number of retries for a transaction. Therefore, transac-
tional memory can be considered in real-time systems.

Furthermore, we have implemented TM in a simula-
tion of the Java processor JOP and evaluated the design
with producer/comsumer tasks. It has been shown that
bounded queues result in a small read and write set.

As future work we consider more simulation with
realistic applications and an implementation of TM
within an FPGA.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-
time transactions. SIGMOD Rec., 17(1):71-81,
1988.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul,
C. E. Leiserson, and S. Lie. Unbounded trans-
actional memory. In Proceedings 11th Inter-
national Conference on High-Performance Com-
puter Architecture (HPCA 2005), pages 316327,



[3]

(4]

(5]

(61

(71

(8]

9]

[10]

San Francisco, CA, USA, Feb. 2005. IEEE Com-
puter Society.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul,
C. E. Leiserson, and S. Lie. Unbounded transac-
tional memory. IEEE Micro, 26(1):59-69, 2006.

S. K. Cha, B. D. Park, S. J. Lee, S. H. Song, J. H.
Park, J. S. Lee, S. Y. Park, D. Y. Hur, and G. B.
Kim. Object-oriented design of main-memory
dbms for real-time applications. In RTCSA "95:
Proceedings of the 2nd International Workshop on
Real-Time Computing Systems and Applications,
page 109, Washington, DC, USA, 1995. IEEE
Computer Society.

P. Felber, C. Fetzer, R. Guerraoui, and T. Har-
ris. Transactions are back—but are they the same?
SIGACT News, 39(1):48-58, 2008.

L. Hammond, B. D. Carlstrom, V. Wong,
B. Hertzberg, M. K. Chen, C. Kozyrakis, and
K. Olukotun. Programming with transactional co-
herence and consistency (TCC). In S. Mukher-
jee and K. S. McKinley, editors, Proceedings of
the 1Ith International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS 2004), pages 1-13,
Boston, MA, USA, October 2004. ACM.

L. Hammond, V. Wong, M. Chen, B. D. Carl-
strom, J. D. Davis, B. Hertzberg, M. K. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun. Trans-
actional memory coherence and consistency. In
ISCA °04: Proceedings of the 31st annual interna-
tional symposium on Computer architecture, page
102, Washington, DC, USA, 2004. IEEE Com-
puter Society.

T. Harris and K. Fraser. Language support for
lightweight transactions. In Proceedings of the
OOPSLA ’03 conference, pages 388-402, New
York, NY, USA, 2003. ACM Press.

T. Harris, S. Marlow, S. Peyton-Jones, and
M. Herlihy. Composable memory transactions. In
PPoPP ’05: Proceedings of the tenth ACM SIG-
PLAN symposium on Principles and practice of
parallel programming, pages 48—60, New York,
NY, USA, 2005. ACM.

M. Herlihy, J. Eliot, and B. Moss. Transactional
memory: Architectural support for lock-free data

(11]

(12]

(13]

[14]

[15]

[16]

(17]

[18]

structures. In Computer Architecture, 1993. Pro-
ceedings of the 20th Annual International Sympo-
sium on, pages 289-300, 1993.

M. Herlihy, V. Luchangco, and M. Moir. A flexi-
ble framework for implementing software transac-
tional memory. In Proceedings of the 2006 OOP-
SLA Conference, pages 253-262, New York, NY,
USA, 2006. ACM Press.

T. Knight. An architecture for mostly functional
languages. In LFP ’86: Proceedings of the 1986
ACM conference on LISP and functional program-
ming, pages 105-112, New York, NY, USA, 1986.
ACM Press.

H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans-
actions on Database Systems, 6(2):213-226, June
1981.

J. Manson, J. Baker, A. Cunei, S. Jagannathan,
M. Prochazka, B. Xin, and J. Vitek. Preemptible
atomic regions for real-time java. In Proceedings
of the 26th IEEE International Real-Time Systems
Symposium (RTSS’05), pages 62-71, Los Alami-
tos, CA, USA, 2005. IEEE Computer Society.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: Log-based transactional
memory. In Proceedings of the 12th International
Symposium on High-Performance Computer Ar-
chitecture, pages 254-265. IEEE Computer Soci-
ety, Feb. 2006.

C. Pitter. Time-predictable memory arbitration
for a Java chip-multiprocessor. In Proceedings of
the 6th international workshop on Java technolo-
gies for real-time and embedded systems (JTRES
2008), pages 115-122, New York, NY, USA,
2008. ACM.

K. Ramamritham, S. H. Son, and L. C. Dipippo.
Real-time databases and data services. Real-Time
Syst., 28(2-3):179-215, 2004.

B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson.
Architectural support for software transactional
memory. In MICRO 39: Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 185-196, Washington,
DC, USA, 2006. IEEE Computer Society.



(19]

(20]

(21]

[22]

(23]

[24]

[25]

M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1-2:265-286, 2008.

M. Schoeberl. Time-predictable computer archi-
tecture. EURASIP Journal on Embedded Systems,
in press, 2009.

S. Semghouni, L. Amanton, B. Sadeg, and
A. Berred. On new scheduling policy for the
improvement of firm rtdbss performances. Data
Knowl. Eng., 63(2):414-432, 2007.

N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 10(2):99-116,
1997.

M. Sridharan and R. Bodik. Refinement-based
context-sensitive points-to analysis for java. In
PLDI ’06: Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language de-
sign and implementation, pages 387-400, New
York, NY, USA, 2006. ACM.

R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing java
bytecode using the soot framework: Is it feasible?
In CC ’00: Proceedings of the 9th International
Conference on Compiler Construction, pages 18—
34, London, UK, 2000. Springer-Verlag.

S. Wee, J. Casper, N. Njoroge, Y. Tesylar,
D. Ge, C. Kozyrakis, and K. Olukotun. A prac-
tical fpga-based framework for novel cmp re-
search. In FPGA ’07: Proceedings of the 2007
ACM/SIGDA 15th international symposium on
Field programmable gate arrays, pages 116-125,
New York, NY, USA, 2007. ACM.



