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Preface

This dissertation is the result of a Ph.D. study at The Department of Mathematics, Aal-
borg University, Denmark, conducted in the period from September 1st, 1998 to August
31st 2002. The theme of this dissertation is Reconstruction Methods for Inverse Prob-
lems as they apply to the Inverse Medium Problem, Inverse Scattering Problem and
Inverse Conductivity Problem.

First an introduction to the physical and intuitive rational behind Inverse Problems,
as they apply to non-destructive testing, is made. In Chapter 2 and Chapter 5 general
remarks on the Inverse Medium Problem, and the Inverse Conductivity Problem are
included. These chapters are included to give an understanding of the mathematical
problems and to put results in their contexts. For more exhastive treatments I refer to the
numerous references included in the bibliography.

In Chapter 3, the results in Berntsen, Cornean, and Moeller (2001), are given [BCM01].
Chapter 4 includes the work in Berntsen and Moeller (2002), [BM02]. Chapters 6 and 7
contain results obtained for the The Single Measurement Conductivity Problem, and
numerical results hereon.

Early on in my Ph.D. studies, I was introduced to regularization techniques by Per
Christian Hansen and Arnold Neumaier at the “Second Interdisciplinary Inversion Sum-
mer School”. A great deal of my research has been spent on utilizing regularization of
different integral equations, as well as back projection methods in Computerized To-
mography. I was introduced to the latter topic in 1999, during studies with Professor G.
Uhlmann, at the University of Washington, Seattle, USA.
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Summary

This dissertation explorers problems of uniqueness, construction, and stability for three
different Inverse Problems. These can be the physical problems where internal proper-
ties of different medias are sought from boundary measurement. Although the question
of existence has not been answered, the notation of admissibility, data for which the
reconstruction methods work that is not too restrictive, are introduced for two of the
problems. The range space for Inverse Problems are normally not closed, so a good and
not too restrictive characterization of admissibility can normally not be expected. The
three Inverse Problems that have been explored are:

� The Inverse Medium Problem - time-harmonic fields.
� The Inverse Scattering Problem - one time dependent field.
� The Inverse Conductivity Problem - one current experiment.

In chapter 3, we considered the Inverse Medium Problem in
���

for a fixed frequency,
when the unknown permittivity only depends on two variables and has compact support.
A new reconstruction method was established, by reducing the problem to solving a
Second-kind Fredholm problem. This enabled the definition of admissible data as a
number of condition, such that the Second-kind Fredholm integral equation had one
and only one solution. The conditions for admissible data could also be proved to hold
for almost all frequencies, making it near optimal. A stability result followed for data
satisfying the admissibility condition.

In chapter 4, we established a theory, Generalized Fourier Transforms, for the in-
version of a large class of First-kind Integral Equations. The theory describes classes,
such that the inverse operator for each class, will have a certain explicit simple structure.
These classes may in some cases be characterized explicitly. This was done for one class
related to the Fourier Transform, and for another class a subset hereof was characterized
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iv Summary

explicitly. Spaces, such that the Generalized Fourier Transforms tool was a homeomor-
phic mapping, was found for both of these classes. As an application of the theory, an
Inverse Scattering Problem using one time dependent experiment was considered for an
isotropic medium without absorption. Using the theory a reconstruction method was
derived, and an associated uniqueness result was established in the Born approximation.
A stability result hereof, related to reconstructing Fourier coefficients of the unknown
permittivity, was obtained.

In chapter 6, the Inverse Conductivity Problem with one experiment was investi-
gated. The conductivity was considered to be piecewise constant with known location
of the jumps. An algebraic equation for the conductivity constants with at most two so-
lutions was found. The solutions of this algebraic expressions depends continuously on
the induced current. If the conductivity consisted of any finite number of disjoint piece-
wise constant inhomogeneities, then these could also be reconstructed uniquely from
one boundary experiment. Numerical verification of the latter was done in chapter 7,
where numerical stability, and dependence on limited aperture data, where tested.



Dansk Resumé
(Summary in Danish)

Denne afhandling afdækker spørgsmål om entydighed, konstruktion og stabilitet for tre
forskellige Inverse Problemer. Disse problemstillinger kan være de fysiske problemer
hvor objekters indre egenskaber ønskes bestemt fra målinger foretaget på randen af
sådanne objekter. Eksistensproblematikken er ikke løst men begrebet tilladeligedata,
som er mindst muligt restriktive krav for hvilke rekonstruktionsmetoderne virker, er in-
troduceret for to af problemerne.

Billedrummet for mange Inverse Problemer er ofte ikke lukket, så en god og ikke
for restriktiv karaterisering af tilladeligedata er normalt ikke forventelig. De tre Inverse
problemer der er blevet behandlet er

� Det Inverse Medium Problem - tidsharmoniske felter.
� Det Inverse Sprednings Problem - et tidsafhængigt felt.
� Det Inverse Ledningsevne Problem - et strøm eksperiment.

I kapitel 3 betragtes det Inverse Medium Problem i
� �

for fastholdt frekvens, når
den ukendte permittivitet kun afhænger af to variabler og har kompakt støtte. En ny
rekonstruktionsmetode blev etableret ved at reducere problemet til et Second-kind Fred-
holm integrallignings problem. Dette gjorde det muligt at definere tilladelige data som
en række betingelser således at Second-kind Fredholm integralligningen havde en og
højst en løsning. Betingelserne for tilladelige data kunne vises at holde for næsten alle
frekvenser, hvilket er næsten optimalt. Et stabilitets resultat fulgte for tilladelige data.

I kapitel 4 blev teorien Generaliserede Fourier Transformationer etableret til at løse
en stor klasse af First-kind Integralligninger. Teorien beskriver klasserne således at den
inverse operator for hver klasse vil have en bestemt eksplicit struktur. Selve klasserne
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vi Dansk Resumé (Summary in Danish)

kan i visse tilfælde karakteriseres eksplicit. Dette er gjort for en klasse relateret til
Fourier Transformationen og for en anden klasse er en delmængde heraf karakteriseret
eksplicit. Rum, således at den Generaliserede Fourier Transformation er en homeomorf
afbildning er fundet for disse klasser. Som en anvendelse af teorien er et inverst spred-
ningsproblem for et isotropisk legeme uden absorption betragtet for en indkommende
bølge. Ud fra teorien er en rekonstruktionsmetode udledt og i Born Approximationen er
et tilhørende entydighedsresultat fundet. Et stabilitetsresultat hørende til Fourierkoeffi-
cienter for den ukendte permittivitet er opnået.

I kapitel 6 er det Inverse Ledningsevne problem med et eksperiment undersøgt. Led-
ningsevnen er antaget at være stykkevis konstant og med kendt lokalisering af springene.
En algebraisk ligning med højst to løsninger er fundet for de ukendte ledningsevnekon-
stanter. Løsningerne til denne algebraiske ligning afhænger kontinuert af den påtrykte
strøm. Hvis ledningsevnen består af et endeligt antal disjunkte stykkevis konstante in-
homogeniteter så kan disse også rekonstrueres entydigt fra et randeksperiment. Nu-
merisk verifikation af det sidste er gjort i kapitel 7, hvor numerisk stabilitet såvel som
afhængighed af begrænset apparatur er undersøgt.
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Chapter 1

Introduction

The theme of this dissertation is Reconstruction Methods for Inverse Problems related
to non-destructive testing. Results are established on the Inverse Scattering Problem,
Inverse Medium Problem, and Inverse Conductivity Problem. All are Inverse Boun-
dary Value Problem for a body � embedded in

���
, �����	��
 . In Chapters 2 and 5 the

mathematical introductions of the Inverse Medium Problem, and the Inverse Conductiv-
ity Problem, are made.

The problems of non-destructive testing are, from knowledge of measured data on
the boundary of �� , to reconstruct what is inside � . For the Inverse Conductivity Prob-
lem, the boundary data consists of pairs of data. The pairs are a current and the measured
potential related to this current, or by symmetry, the current related to the applied po-
tential. For the Inverse Scattering Problem, and Inverse Medium Problem the data are
acoustic fields at �� or any boundary encircling � . These fields are scattered waves from
time-dependent and time-independent waves respectively. The time-dependent scattered
wave is known for all times and the time-independent wave is known for all incident
waves with a fixed frequency.

The mathematical question of uniqueness for the Inverse Boundary Value Problem
is, initially, to determine what type of data can be obtained, and then, if all possible
experiments are sufficient, for a unique determination of what is inside � .

In full generality, for anisotropic mediums, the answers for uniqueness have been
either negative or are still unknown. However, there are many important problems where
a-priori knowledge leads to Inverse Boundary Value Problems, where uniqueness may
indeed be established.

For the above mentioned Boundary Value Problems, extensive literature is available.
These include, the study of existence, uniqueness, and stability. The actual numerical
computations of solutions to forward problem may often be very extensive calculations,
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2 1. Introduction

and are treated through Finite Element Methods, Finite Difference Methods, Integral
Equation Methods, and combinations hereof.

For the two elliptic Inverse Boundary Value Problems with isotropic mediums, the
Inverse Medium Problem and the Inverse Conductivity Problem, the most complete
treatment has been undertaken using the Lippmann-Schwinger-Fadeev scattering solu-
tions. In

� �
uniqueness of the Inverse Medium Problem has been found, using the scat-

tered fields related to incident plane-waves from all directions [Nac88]. In
� �

unique-
ness has been established for the Inverse Conductivity Problem when the conductivity

� has smoothness ����������� , i.e. almost two derivatives, [Nac88]. For
�
	

uniqueness
has not been established for the Inverse Medium Problem, but it has been established for
regularity of the class � 	 � � , ���� [BU97] for the Inverse Conductivity Problem. For
anisotropic medias, the question of uniqueness has been answered negative for both the
Inverse Medium Problem and the Inverse Conductivity Problem.

When the medium has some a-priori regularity, or less information about � is sought,
many uniqueness results have been established. This has led to the question of how lit-
tle information is needed in order to achieve some of these uniqueness results. Some
of these are what can be obtained from one experiment and what can be obtained from
partial aperture? Answers to questions of this type will be addressed.

From the viewpoint of applications, the problems of uniqueness are less relevant.
Instead, questions of reconstruction and stability is at heart. The pitfall for many inverse
problems are that they suffer from being ill-posed. This means that large changes in the
subject may only induce small differences in the observations and visa versa, making it
difficult to distinguish the internal properties. Stability estimates are therefore sparse.

The concept of Inverse Boundary Value Problems, may nicely be understood by an
analogy, that Christopher R. Johnson made in the introduction for an IEEE theme, on
“Computational Inverse Problems in Medicine” [Joh95], where he compared inverse
methods with imitating the great detective Sherlock Holmes. Johnsen writes:

“ Methods for solving Inverse Problems are the opposite of predic-
tion? Basically, you carefully study the evidence of the scene and
from it try to infer who was there and what happened. To do this
you might simply observe, but more likely, you will poke or tap at
the scene - send various signals through it, for instance, and take sen-
sitive detector readings of what happened to them. Then fitting the
evidence to your knowledge of how the world works? you essen-
tially throw out all scenarios that are impossible and whatever is left,
however improbable, must be the truth.”

The Aim of this Dissertation

The aim of this dissertation is to consider the following Inverse Boundary Value
Problems, and under some a-priori assumptions address the questions of reconstruction
and stability. The problems and reconstruction to be considered are:
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1. For The Inverse Medium Problem for
� �

using one frequency and fields from all
incident directions, to reconstruct the refractive index.

2. For The Inverse Scattering Problem using one time dependent incident field to recon-
struct the refractive index.

3. For The Inverse Conductivity Problem using one current experiment to determine a
piecewise constant conductivities with fixed location.

Numerical implementation of all these reconstruction methods have been under-
taken, but after some effort, two of these have been abandoned, since results could not
be expected within the project time.

The Result of this Dissertation

For the Inverse Medium Problem in
� �

, if the scatter has some smoothness, and
depends on only two variables, we found:

� An explicit reconstruction method;
� Verifiable conditions (admissible data) that almost always are satisfied for the

scattered data from scatters, which satisfy the assumptions;
� Stability of the method, within the class of admissible data.

For the Inverse Conductivity Problem, if the conductivity is piecewise constant, and
the location in the jumps in the conductivity is known, we found:

� That one pair of a current and the associated potential are sufficient for the
unique determination of � disjoint constants;

� That there exist currents such that, for two nested piecewise constant inhomo-
geneities, there exists at most two different sets of constants.

For the Inverse Scattering Problem:

� A theory for finding simple inverse integral operators to a large number of
classes of integral equations. The theory has been made explicit for some
classes, and mapping properties of the operators are found. Spaces for which
the inverse integral operators are homeomorphic mappings are found;

� The use of the integral operators in the Born Approximation of the Inverse
Scattering Problem for acoustic time-dependent waves was done. Fourier Co-
efficients related to the unknown wavenumber is expressed explicitly as an
algebraic expression in terms of the measured scattered wave.

The Structure of this Dissertation

Chapter 2, considers the physical problem of Acoustic Scattering, and discusses the
results of Chapters 3 and 4.

Chapter 3 is the work in S. Berntsen, H. Cornean, and S. Moeller (2001), Wave-
number Reconstruction from Boundary Measurements, Technical Report R-01-2005.



4 1. Introduction

Respectively, Chapter 4 includes the work in S. Berntsen and S. Moeller (2002), Gener-
alized Fourier Transform Classes, Integral Transforms and Special Functions, Volume
13, Issue 5, 2002, pages 447-459. Also, an application hereof to the Inverse Scattering
Problem is included.

Chapter 5 review the Conductivity problem, and Chapters 6 and 7 are new theoretical
and numerical results for The Single Measurement Inverse Conductivity Problem.

Each chapter may be accessed independently of each other except for chapter 7
which builds on results of chapter 6.



Chapter 2

Acoustic Scattering

In this chapter, the Acoustic Scattering Problem is considered and the results on Inverse
Acoustic Problem obtained in [BCM01] and [BM02] are discussed. These results are
presented in Chapter 3 and 4. The aim of this chapter is to motivate some physical
applications, define the mathematical problems and highlight some key results. Re-
construction results will be emphasized with focus on the Dual Space Method, and the
reduction to and motivation of the Linear Sampling Method. The reconstruction results
from Chapter 3 and 4 concludes this chapter.

Acoustic scattering, is the scattering of a sound wave by an obstacle embedded in a
(normally) homogeneous background. An obstacle can be either acoustically penetrable
or impenetrable, depending on whether the wave can travel through the media or not.
If a penetrable obstacle has a variation in the density, it is an inhomogeneous obstacle.
Different types of obstacles, will be characterized by different boundary conditions on
the obstacle, depending on how the wave gets scattered and/or penetrate the obstacle.

The direct problem of acoustic scattering is, given the knowledge of what type of
scatter and what the incident wave is, to find the scattered wave. The inverse problem
takes this answer to the direct scattering problem as its’ starting point, and asks what is
the nature of the inhomogeneity that gave rise to a particular scattered field.

If the acoustic wave is time harmonic, then the field amplitude is described as the
solution of Helmholtz equation with a radiation condition. Whereas, if it is a time de-
pendent field, then the wave is described through the wave equation.

What is referred to as the forward problem, is discussed and Far Field Patterns and
the Born Approximation are introduced. Subsequently, general questions of uniqueness,
existence, and reconstruction will be discussed for the Inverse Problem. Here, it is bene-
ficiary to remark that there are only very few existence results for inverse problems. This
is due to the non-trivial task of specifying appropriate conditions on data.

5



6 2. Acoustic Scattering

2.1. The Forward Problem

Inspired by the theory of Electromagnetic Propagation denote ������� the refractive index
and assume that ����� ������� is compactly supported in a bounded set 	 with � 	 boundary
and that � � � � �
	�� . An imaginary part of � is used for modeling absorption. The wave
vector is defined as � ������ � where � 	� is the sound speed for the background medium.

The mathematical formulation for the scattering of a Time Harmonic Acoustic Wave��� � in
� �

is for fixed � to find the total field � � � 	 � � � � solving��� 	�� � 	 ��������� � ��� �������� � � � � �
���� ��� ���� � � � � ��� ���� � ��� � ��� ���� ��!"���� 	 � � 	 � � � � � � ��� ���� ��� � � � � �
�#� (2.1)$&%&'(*),+.- /
� � � �
� - �10 � � �2��3 ��� - �54 ��4 �
67�

where the background permittivity is �8� and Im � ���:9;� .

The most common tool for studying existence, uniqueness and continuous depen-
dence of � on ��� � of (2.1a)-(2.1d) is the Lippmann-Schwinger equation. This equation
is defined as� ��� ���� � � � � ��� ����<�=� 	?>A@�B ��� ��CD�"� �E�F� ��������� � ��C ����G6HC � � � � � (2.2)

where
B ��� ��C8� is the free space fundamental solution for the Helmholtz equation defined

as B ��� ��C8� �JI ��K �ML"N �PO"Q RTSVUAQ �����*4 �W�XCY4Z�[� � � ��\H] �� ���V^ � � 4 �_�XCY4Z� � � � 	
where ] �� is a Hankel function of the first type and order zero. The acoustic problem
(2.1a)-(2.1d) and (2.2) are equivalent for functions in � 	 � � � � .

Since (2.2) is a Second Kind Fredholm Integral Equation, existence, uniqueness, and
continuous dependence of � on � � � are readily discussed. From a unique continuation
argument follows that (2.1) has at most one solution [CK98]. From the Riesz-Fredholm
theory then follows that (2.2) can be solved uniquely for � � � 	 � � � � and that � �
� 	 � � � � depends continuously on �`� � . The forward problem of acoustic scattering is
therefore well-posed in the setting of Hadamard [Had23]. That is, it satisfies: existence,
uniqueness and stability.

The concept of Far Field Patterns that is to be introduced is a functions essentially
containing all possible information about the scatter. And, even though it will not be ad-
dressed further we will in passing mention that the Far Field Pattern are for the Acoustic
Scattering Problem what the Dirichlet-Neumann map is for the Conductivity Problem
from Chapter 5.



2.1. The Forward Problem 7

Every radiating solution � to the Helmholtz equation in
���

has the asymptotic be-
havior of an outgoing spherical wave� � � ����� � K �ML Q R7Q4 ��4�� � + ����D� ����� �4 ��4	��
 � 4 ��4��� (2.3)

uniformly in all directions �� � ���A4 ��4 , where the function � + � �� �*67� defined on the unit
sphere � 	 is known as the Far Field of � . Furthermore any incident field may be ex-
pressed as the combination of incident plane waves. The Far Field Pattern is the Far
Field from all incident plane waves with directions �6 ��� 	 , and is denoted � + ���� � �67� .
Therefore if � � � ����� � > K � L R�� ��� ��� 6��7�
67� � � � � �

��� ��� 	 � � �
(which is also the definition of a Herglotz Wave Function) then the Far Field for � � � is� + ����8� � >��� � + ���� �*6�� � �
67�76�� �
6�� �
The Far Field operator !#"$� 	 �%� 	 �&�'� 	 �%� 	 � is defined as�(! � �"����D� � >��� � + ���� �*6�� � �
67�76�� �
6��
and has dense range for �� ��� 	 if Im � ��� � � , [CK98]. From (2.2) and (2.1c) is seen
that � � � ����� � � � 	?>*),+ B ��� ��C8�"� � � ����C8��� � ��CD�G6 C � � � � � � (2.4)

Since for fixed � , K �ML Q R SVUAQ4 � �XC:4 � K �ML Q R7Q4 ��4.- K S �ML�/0 � 1:��� � �4 ��4	�32
it follows from (2.3) that� + � �� � � � � 	4*5 > K S � L /R�� U � � � ����C8��� � ��CD�G6HC&�
If �76 �86 +:9 � then � ��CD�<; � � � ��C8� , and the Born Approximation is obtained as�>= + � �� � � � � 	4*5 > K �ML�/0 � U � � � ����C8��� � � � ��C8�G6 C (2.5)

Some methods for solving (2.1a)-(2.1d) are discussed in [CK98] and general meth-
ods for solving the Second Kind Fredholm Integral Equation (2.2) can be found in
[Atk76], [Kre98]. Recently, Vainikko proposed a new numerical method for solving the
Lippmann-Schwinger equation [Vai00]. His method has recently been used by Hohage
[Hoh01] for the Acoustic Scattering Problem and by Siltanen [Sil99], in his implemen-
tation of Nachman’s reconstruction method for the Inverse Conductivity Problem.



8 2. Acoustic Scattering

2.2. The Inverse Problem

Considering the Inverse Problem for recovering the permittivity that caused an observed
scattered field, two distinct methods for discussing a solution appear. One is to find the
support of � , which amounts to the question “where is it?” and the other, is the actual
reconstruction of � , which is the answer to “what is it?”

The onset for studying the Inverse Medium Problem is the determination of suffi-
cient physical information for uniqueness. Uniqueness for obstacle scattering was from
knowledge of the Far Field Pattern on the units sphere � 	 and one frequency initially
proved by Schiffer (1960), [CK83]. The question whether the knowledge of the Far
Field Patterns for �� �*6 � � and fixed � also uniquely determines the index of refraction
in
� �

was answered in the affirmative by Nachmann [Nac88] and Novikov [Nov88], in-
dependently. Their ideas were motivated by the paper of Sylvester and Uhlmann [SU87]
on Complex Geometrical Optics Solutions for the Inverse Conductivity Problem. The
proof has subsequently been simplified by Hähner [Häh96] using Fourier series tech-
niques.

For
� 	

uniqueness is yet not known, but partial results exist. If two Far Field Patterns
for two different permittivities and same frequency agree then the difference between
these refractive index is � � � � [SU93]. Also, if the Far Field Pattern agree for an interval
of frequencies uniqueness can be proved.

The uniqueness proof of Nachmann follow as a consequence of a unique reconstruc-
tion algorithm. The reconstruction method though has so far not been implemented for
the Acoustic Problem since it is rather difficult to follow up all the steps from which
the reconstruction algorithm is made of. Stability for the Inverse Medium Problem was,
however, proved by Hähner using a method of Stefanov [Ste90], that does not rely on a
reconstruction method. If two permittivities � � and � 	 are close Hähner found that6 � � ����� � � 	 ����� 6 + � � � � $�� � 6�� ��� ��� �

� 6 ��� S �
	 ���
where a complicated norm was used on the Far Field operators � �� [Häh96]. Recently,
an estimate with the � 	 norm on the Far Field Operators and the factor � � � � ���H� ex-
pressed in terms of a Sobolev regularity index � have been found by Hohage and Hähner,
[HH01]. There the assumption of � � and � 	 being close was also removed. Furthermore,
they found that better stability estimates can be obtained for point sources than for plane
waves.

From applicational and theoretical aspects, it is of interest to state under what a-
priori conditions simple reconstruction algorithm can be derived, and to see what can be
recovered for incomplete data.

2.2.1. Reconstruction Methods. The Inverse Medium Problem that may be proposed
from the Lippmann-Schwinger equation (2.4) is to find a function ������� such that

��� � � � � � (2.6)
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where
� � ",� 	 �
	�� � � 	 �%� 	 � � � �
� ��� ��� depends on the total field itself and when

� � �
� ��� � is a sphere containing 	 . This equation is nonlinear in � and linear in � . The
data are normally the Far Field Patterns! " ��� � + ��� �*6 � �#4 � � � ���	�	�	�	��

where � 6 � 4 � � � ���	�	�	�	�� denote a countable dense set of vectors on the unit sphere
indicating incident directions of plane waves � � � ��� �� �*6�� . For recovering the index
of refraction � , various Born Approximations have been suggested linearizing (2.6) to
essentially (2.5). In the survey article [CR88] some different Born Approximations are
discussed, along with error estimates, when such can be established.

In some engineering papers, the Lippmann-Schwinger equation is referred to as the
Contrast Type Integral Equation and the Born Approximation of (2.6) is the Distorted-
wave Born Approximation [TBLdH01].

Instead of working with the Lippmann-Schwinger equation, Gutman and Klibanov
[GK94] in a series of papers, considered the Helmholtz equation directly. They de-
veloped a regularized quasi-reversible method for determining a finite set of Fourier
Components of ������� . Their method applies to slowly varying permittivities which is,
for instance, the case in underwater acoustics. Some medical applications also satisfy
this assumption [Ish78].

In many applications, slowly varying permittivities and Born Approximations are
not justified, and methods that deal with the full nonlinearity of the problem are needed.

Monk and Colton have developed the Dual Space Method, to be explained in sec-
tion 2.2.2, for reconstructing ������� which does not directly use (2.5) but leads to a
least squares optimization method involving the Lippmann-Schwinger equation [CK98].
Their method is somewhere between solving the nonlinear equation (2.6) and the lin-
earized equation (2.5). Their investigations have led to the suggestion of the Linear
Sampling Method, to be explained in section 2.2.3, for determining the support of in-
homogeneous scatters. The first version of the Linear Sampling Method was proposed
by Kirsch and Colton [CK96], and subsequently improved by Colton, Piana, Potthast
[CPP97], and Kirsch [Kir98] and [Kir99].

2.2.2. The Dual Space Method. The Dual Space Method of Colton and Monk is es-
sentially an extension to the Inverse Medium Problem of a method developed for the
Inverse Obstacle Problem. It is based on properties of Herglotz wave functions which
are entire solutions to the Helmholtz equation ��� � � 	 ��� ��� , defined as

������� � > �� K �ML R� �� ���<�G6��7���D� � � � � � � �
��� 	 �%� 	 � �

It can be shown [CK98] that the Far Field Pattern is proportional to ����� �L�� �� ������ if
and only if the scattered field is � �� ��� �� ���E4 ��4Z� � �� � ���� . The Dual Space Method is to first
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determine
�
��� (i.e. the incident field) from

� �
� � " � >�� � + ���� ���<� � ��� ���<�D6��7���<� � 0 � S �� � �� ����D� � (2.7)

Then from the differential equations

��� � � 	 ��������� ��� � � � � � 	 � ��� � �_	 � (2.8)

and the boundary conditions

� � � �� � � � ���
��� �

� � ��
���

� � �
��� � � � 	 � (2.9)

to determine � and ������� . This method for finding � and � in turn leads to a large
optimization problem.

If Im � ��� �5� the Dual Space Method have problems because there may exist non-
trivial solutions of the homogeneous problem of (2.9) and (2.8). Different modifications
to the Dual Space Method has been suggested to avoid this problem. A comparison be-
tween two methods can be seen in [CK98]. It can be seen that when Im � ��� ; � the
solvability problems for the Dual Space Method becomes apparent.

2.2.3. Reconstructing the Support. The equations for the linear sampling method is
essentially the same as for the Dual Space Method except that it does not solve a large
optimization problem as in the Dual Space Method.

The price paid for avoiding solving a large nonlinear optimization problem is that
only the support of anomalies in the index of refraction against a background (not neces-
sarily constant, see [CCM00] for discussion hereof) are obtained rather than the actual
values of the index of refraction itself. Their method also works for inhomogeneous
background mediums, which is not the case for most other methods.

Instead of using � � � �L � �� in (2.7) the Far Field Pattern
B + � � 4*5 � S � K �ML�/0 � U for

the fundamental solution
B ��� ��C8� is used. The Far Field Operator has dense range if

Im � ��� ��� and hence for every ����� there exist a function
� ��� �
	 � � � 	 �%� 	 � such that6�� �

��� � B + 6 � �
�
��
�� � . For 	 approaching � 	 it can be shown that the Herglotz wave

Function becomes unbounded in � +
which is only possible if

�
� � becomes unbounded.

The support of � can be found from solving (2.7) for different values of C and, observing
where

�
��� ��� ��C8� becomes unbounded.

Kirsch proved that for a non-absorbing medium the function
B + ��� ��C8� is in the range

of � ��� � � �
	 \ � ��� � B + ��� ��C8� if and only if C �_	 . From the operator equation � ��� � � �
	 \
it is therefore possible to conclude that 6 � ��� �
� � 6 becomes unbounded both when 	 ap-
proached � 	 from inside and outside 	 . A property that has not been proven for the
original linear sampling method, but was observed.

Numerical experiments with the Linear sampling method shows so far to be better
for finding the support of impenetrable scatters than inhomogeneous obstacles [TCP02],
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even though the method does not a-priori assume that the boundary conditions on � 	
are known.

Another method for finding the boundary of 	 is the Point Source Method of Pot-
thast [Pot97], [Pot01] which also is based on the existence of a Herglotz Wave Function.
In light of the improved stability estimate for point sources by Hähner and Hohage point
sources seem favorable over say the Linear Sampling Method that uses plane waves. But
since here both methods are only used for finding the support of 	 , and not the refractive
index which is what the stability estimate is about, the validity of such a statement has
not been proved. However an advantage of the Point Sources Method is that a minima is
sought, whereas a maximum tending to infinity is sought in the Linear Sampling Method.
This means that the regularization for the Linear Sampling Method is used differently
from normal regularization where

�
’s norm usually is penalized in order that is does not

get to large.

For the Inverse Medium Problem both (2.7) and (2.5) needs to be regularized in
order to get satisfactory reconstructions of

�
� � and � respectively. For the linear Sam-

pling Method a comparison between the four different regularization strategies TSVD,
Tikhonov, Landweber Iteration, and Conjugated Gradient, has been made in [TCP02].

2.3. Wave Number Reconstruction

In [BCM01] the reconstruction of the refractive index (or the permittivity) ������� for
dimensional simple scatters was considered. The refractive index was assumed to be
cylindric, depending only on base variables, i.e. ������� ��� ��� � �*��� , where � depends
only on base variables �

� �
� 	 and has compact support. The background medium was

assumed to have a positive absorption, which is the physical realistic case, i.e. Im � � � � �� . For the Inverse Medium Problem it is possible to derive a simple reconstruction
algorithm. The reconstruction method is based on the Helmholtz Equation. Because of
the simplicity of the reconstruction method, it is then possible to list explicitly necessary
demands that the scattered field must satisfy in order to come from a permittivity of
the form ������� ��� ��� � �*��� . These conditions are not minimal in the sense that they
are neccesary, but scattered fields satisfying these assumptions can be proved to exist.
The reconstruction method is proved to be stable and unique for small frequencies and
bounded permittivities in � � �
	�� . For higher frequencies, there exists at most a discrete
set of frequencies for which the reconstruction method does not work, and they do not
accumulate at zero.

When comparing with solving (2.7) and (2.5), finding conditions that the scattered
field must satisfy is appealing. For (2.7) and (2.5) regularization techniques much be
applied, and appropriate conditions on the data are not known.

The reconstruction method in [BCM01] is based on the commutation of the Lapla-
cian in rectangular coordinates with the directional derivative in the direction of inde-
pendence; � � 0 + � � 0 � � 0 � � 0 + � �5� . Consider the simpler model of Helmholtz equation on
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the bounded convex Lipschitz domain 	 � � �  8� ��� . Assume that � � ��� 	 � ] �
	 	 � � 	 �
and let � � , 0 ��� ��� be solutions of the boundary value problem��� �

��������� � � ��� � � 	 (2.10)� � ��� � � � ��	 (2.11)

Since 	 is convex with Lipschitz boundary, (2.10) and (2.11) has a unique solution,
[Gri85] [Isa98]. From Green’s theorem follows that> � � � � ��� � Q � O �

�
� 	 �������G6 � � 6 � 	 � >A@

� 0 + � � � � 	 ���������G6H�
�

> � � � � ��� � � � 0 + � � �"� � 0 + � 	 �8� � 0 � � 0 � � � ��� 0 � � 0 � � 	���
	� 6 � � 6 � 	 �> 	� > � � � � ��
�� � � 0 + � � � 	 � � 0 � 0 � � 	 �

� 0 + � 	 � 	 ��� 0 � 0 � � � 6H� � "� (2.12)

where � 	 is the outward normal to � ��� � 	
. The boundary integral  only contains

known boundary contributions.

Hence, for this dimensional simple domain, it is easy to find ������� from knowledge
of the total field on the boundary. In [BCM01], the formula is essentially (2.12), except
for being over a ball, see (3.15) page 22. Becausse ��� � is not continous across � � , the
extension of  in (2.12) to an integral over a sphere is nontrivial.

By assuming that � � � is a plane-wave with a fixed frequency and complex wave
number � 	 � � and that �

� �
� 	 , the kernel � 	 �� 	� decomposes as� 	 �
� �  �<� � 	 �
� �  � � ��K � � � 0 � � � + 	 � �`�2� � � �*� �  ��� 	 �;��K � � � 0 � �`�2� � � �*� �  ��� 	

� ��K � � + 	 � � � K � 	 � 0 ���
�

and hence > K � � 0 ������� � > �
� ������� �� (2.13)

If
�
� � � 	 � � � � 	 � and �� � 	 � � 	 � then the Fourier transform turns (2.13) into a

second Fredholm integral problem. In [BCM01] conditions necessary for (2.13) to be
solvable was identified, see definition 3.5, and scattered fields satisfying this list of con-
ditions was denoted as admissible experiments; ��� . The list of conditions for admissible
experiments was then for a fixed ������� shown to hold for all experiments, except for at a
discrete set of frequencies.

We restate (see theorem 3.9 page 24)

Theorem 2.1. Let  � � � and � � � be arbitrarily large, but fixed.

i. Assume that ��� � � � � � � � 	 � and  is allowed to take values in �
� �� � � . Denote by� � ] 	����� � � � � the solution to the forward problem corresponding to � 	 (see Defini-
tion 3.1 and formula (3.12)). Then there exists a finite set ! � �
� ������ such that for any
frequency  �=�
� �� � �#"$! one has � � � 4 
��&% �'�(� .
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ii. There exists ���� � such that for any  ���
� ���� � and any � 	 ������� � � � � � � � � 	 �
with

'���� � 6 Re ��� ^ �?� 6�� � �$6 Im ��� ^ �?� 6�� � � � � (see Definition 3.3 page 21) one has� � � 4 
��&% �'�(� . Therefore, in this case � 	 ������� can be uniquely reconstructed by (2.13).

The uniqueness results of theorem 2.1 for solving (2.13) means knowing the scat-
tered field related to incident plane waves for all directions. For a finite number of
incident plane waves, uniqueness is not established but reconstruction of ������� in some
finite dimensional space is possible by solving the First Kind Fredholm Integral equation
(2.12). This is similar in spirit to Gutman and Klibanov trying to obtain a finite number
of Fourier coefficients, except here the full nonlinearity is used.

2.3.1. Ill-posed Integral Equations. Assume that the total fields from a finite number
of incident fields are known on a sphere with radius � containing the cylinder � �  8� ��� ,
i.e. � � �2� ��� �  � � ��  � � � 	 � � 	 � � � � �	�	�	� � 
 . Firstly, the field has to be backprojected
to the hyper-surfaces � � �*�T� and � � �*�A� . Since � is known on the surface of

� �
� ��� � , �
can be found in the complement of

� �
� ��� � from solving the exterior Dirichlets problem.
Denote by � a vector in the � � direction, and let

��S
and

� �
denote hyper-surfaces

perpendicular to � at �
� �*� � � � � and �
� �*� ��� � respectively. The scattering problem (2.1)
is then an initial value problem��� � � � 	 � �E� �

��������� � ��� � � � � �� � � S � � � � �
� � � � � � � S � � � � �

and a similar problem can be written for
� �

. This formulation is identical to the one of
Natterer [Nat97] where he uses this formulation to propagate � 4
	 � to � 4 	�� for known
��� � � . He proves that the instability in recovering � 4
	 � is a pure high-frequency phenom-
enon, hence frequency regularized � 4 0 +  � and � 4 0 +  	 can be found stably for sufficiently
large � 	 .

Since
�
� in (2.13) is needed for all  � � 	 , (2.12) can be used for reconstructing

������� , except that the boundary data must be taken on the sphere or any other geome-
try that contains � �  8� ��� , unless � is convex, in which case the boundary data can be
propagated to � �  8� ��� . The first kind integral equation (2.12) therefore reads>

� � 	 � � �  � ��� � �G6 � �� �  �
and must be solved using regularization methods.

Remark: The boundary integral  is numerically unstable since it contains deriva-
tives of � �� 
�� � � � � � . Also for finite number of incident directions, � �� � is also regularized,
making (2.12) more ill-conditioned.



14 2. Acoustic Scattering

2.4. Generalized Fourier Transforms

A second reconstruction method that has been established for non-absorbing media (i.e.
Im ���V� � � ) was based on the data from one time dependent experiment. For this the
inversion tool “Generalized Fourier Transforms” for inverting First Kind Integral Equa-
tions with special classes of integral kernels, has been established, [BM02]. This theory
complements the theory of � -transforms established by [SSK98] for product kernels.
An application hereof to low-contrast mediums of small size have been indicated in
[Ber00], and is here extended to general low-contrast mediums. An explanation of the
“Generalized Fourier Transforms” theory is made in section 2.4.1 and the application to
low-contrast mediums is explained in section 2.4.2

2.4.1. The Generalized Inverse. For some First Kind Integral Equations analytic in-
version tools exist that are better than the regularization methods discussed in [Han98]
and [EHN96]. If the kernel is a convolution kernel � �	� ���*� � � �	� ���*� and � �	� ����� �� 	 � � � � � or if � �	� ���*��� K � � � then the Fourier identities for convolution operators ap-
ply to deconvolve, and if the problem is not ill-posed then this is favorable. Also, using
regularization methods, uniqueness and continous dependence gets lost for the original
problem.

In [BM02] product kernels � �	� ���*� � � �	����� where considered and a new result within
the theory of � -transformations, studied in [SSK98], was established. Consider the
integral equation ��� " � � � �

� ���� �	�
�<���� � > +� � �� - ���<� - �G6 - �� � (2.14)

If
�

satisfy a number of conditions, then it was proved that there exists an explicit
operator � such that the inversion is given as

�<� - � � > +S + � � � � �  - ��� � ����G6T - � � � (2.15)

There are different types of conditions
�

can satisfy, and these in turn define the operator
� . The conditions on

�
are easiest expressed in the Mellin transformed space (see the

definition of � � page 49 and � � page 53). It was shown that all operators defining the
same operator � form an Abelian group.

The space  was defined as the smallest Hilbert space, with the inner product
� �� ����� � � �� � - S 	 � � �

�
)
� � �

which contain the space of test functions ��� � � � , and the space � was defined as � �
� �  , where � � is the canonical element for the Abelian group. The operator � was
found to be a homeomorphism between these spaces. Hence existence, uniqueness,
construction, and continuity of � solving (2.14) was proved.
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2.4.2. The Reconstruction Method from One Time Dependent Experiment. This
method for reconstructing the index of refraction using the transformation theory is again
essentially based on the Helmholtz equation under the assumption that Im � ��� � � .

Assume that the scattered field of a time-dependent scattering experiment is known
on the boundary of � � �
� �*��� encircling the inhomogeneity. This is equivalent to knowing
the solution of the time-independent scattering experiment on � � �
� �*�A� for all frequen-
cies. Here let �?� � � .

If � is a free space solution of ��� � � 	 � � � � for � � � � , then from Green’s Formula
applied to Helmholtz Equation follow that>


�� � � � 	 � � � � �2�
� �

� � �2� � �
� � 6H� � >

� � � � 	 � � 	 � � � ��� � ��� � �,6H� �
A general free space solution � can be expressed as � ��� ����� � ���E4 ��4Z� � �� ������ where � �
are spherical Bessel functions and � �� are spherical harmonics. From the Born Approx-
imation � ; � � � follows>


 � � � � 	 � � � � � �
���

� � � � � �
��� 6T� � >

� � � � 	 � � 	 � �F� ��� � ��� � � � � 6H�." � � ����
The Fourier Coefficients � � � � - � , with - � 4 ��4 , of � � � ��������� expanded in Spherical
Harmonics are determined by

� �� ���� " � �� >

 � � � � 	 � � �� - � � ��� - � 66 - � � � � � �2� 66 - � � ��� - � 2 6H�

�
> 	� � - � � � � � ��� - � - � � � � - �?6 - � � � � - � � � � � (2.16)

If � � � is chosen as either � �� or � � the product of - � � ��� � can be shown to be a kernel
for which the Generalized Fourier Transformation theory applies.

Hence, if � �� ���� is known for all  and satisfies that the Fourier transformation of
� �� ���� , ! S � � �� , has compact support on

�
and ! S � �� � �"� ��� � ! S � � � ��� ��� S � �(! S � � �"� �*�
�� 	 � � � , then - � � � � - � is readily calculated by (2.15).

The reconstruction of ������� is formally� �F� ��������� ���
� � � � � � - � � �� ����D�

where - � � � � - � depends continuously on � , for � � � .
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3.1. Introduction

This paper considers the inverse scattering problem for time-harmonic acoustic waves in
an inhomogeneous medium, which is usually referred to as the Acoustic Inverse Medium
Problem (see [CK98] and references therein).

As is very well known, solving such an inverse problem would mean to determine
the wave number of a (compactly supported) scatterer immersed in a homogeneous host
medium. The typical experiments consist in scattering some particularly chosen incident
fields, and then their corresponding scattered fields are measured somewhere outside the
scatterer (or equivalently, we measure their far field patterns).

There are at least two very interesting questions regarding the full three dimensional
Inverse Medium Problem. First, the uniqueness of its’ solution under some a priori as-
sumptions on the scatterer’s properties and second, the availability of a stable, as explicit
and simple as possible reconstruction procedure.

The uniqueness aspects are well understood by now and many elegant ways of prov-
ing such results may be found in the literature. Among these, probably the most complete
results were obtained employing the powerful method of Lippmann-Schwinger-Fadeev
scattering solutions. Let us cite here only the works of Nachman [Nac88], Novikov
[Nov88] and Ramm [Ram86, Ram88 ].

Even though the above mentioned method also allows one to reconstruct the wave
number (actually, in this case the uniqueness is a simple consequence of the unique re-
construction), it is rather difficult to follow up all the steps from which the reconstruction
algorithm is made of. It is even more difficult to formulate stability results, especially
when reconstruction procedures are not available. For the conductivity problem this
goal was achieved by Alessandrini [Ale88] who inspired Stefanov [Ste90] in the inverse
problem of potential scattering; Stefanov’s proof was subsequently carried over to the
electromagnetic case by Hähner [Häh00].

In order to be able to formulate inverse medium problems with more easily solvable
uniqueness, reconstruction and stability issues, one has to impose some more restrictive
conditions on the scatterer’s assumed properties. In [Ber02] this was established for
piecewise constant wavenumbers with fixed location using one experiment. The present
paper generalizes the method to scatters with more general geometry. What we actually
do in this paper: we formulate a three dimensional inverse medium problem in which
the scatterer is bounded, has a cylindrical shape and the wave number only depends on
base variables.

We then show that the wave number can be uniquely reconstructed as soon as we
know the scattered field on the cylinder’s boundary. The reconstruction algorithm is
explicitly given and proved to be stable.

Let us now briefly describe the structure of the paper:
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Section 2 contains the rigorous description of our setting and the statements of our
results. We start by describing the a-priori assumptions we make on the scatterer, and af-
ter a few definitions concerning various direct problems we arrive at our inverse problem
(see Definition 3.4). The next step we make is to define a space of “admissible data”; a
function belongs to this space if it fulfills a certain list of conditions. These conditions
build in fact the algorithm one should follow for the reconstruction of the wave number.

Clearly, the difficult problem resides in proving that these conditions are also neces-
sary for scattering fields coming from “almost all” forward problems. For more preci-
sion, see Theorem 3.6.

Theorem 3.8 and Corollary 3.9 reformulate the “almost” equivalence between the
inverse problem and the space of admissible data. Corollary 3.10 states a uniqueness
result from the knowledge of partial data.

Finally, Theorem 3.11 employs the reconstruction procedure in order to conclude
that small changes in the measured boundary field lead to small changes in its corre-
sponding wave number.

Section 3 contains the main technical core of our paper, being entirely dedicated to
the proof of Theorem 3.6. For reader’s convenience, we added a concluding overview
intended to “put all the things together”.

Section 4 gives the proofs for Theorem 3.8 and Corollaries 3.9 and 3.10.

Section 5 contains the proof of Theorem 3.11.

3.2. Preliminaries and the Results

3.2.1. General Notations. The acoustic scatterer will be modeled by a cylindrical do-
main � � � �

. If � � � 	
is an open, bounded and connected � +

domain, then for� � � we define
� � � � � � �*���7� (3.1)

Throughout the paper, three dimensional vectors � will sometimes be represented as� � � � � � � � , where � � � 	 and � � � � ����� � � . The characteristic function of a set !
will be denoted by ��� .

From technical reasons, we introduce a smoother domain �	� � � � � � � � � � 9��  ,
obeying

��� � � � � � �*�T� � � � �*�A� � � � � ��� � � � � + � (3.2)

Let us now enumerate our a-priori assumptions on � 	 ; the set of all such wave numbers
will be generically denoted by � :
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Assumptions 1.

(1) Outside the scatterer, the square of the wave number is constant and equal to� 	� � �
�� �O � 02 ��� � ��� � � �1 � � , while inside it only depends on two

variables: � 	 ����� ��� �8� � � ��� � � 	�� � � � � � � 	� , ���
	�	E��� ���� ;

(2) There exist two real valued functions � � ��� 	 � � �� � � � such that for �� � :
(a)

�&�D� � � �� 	 � � � � � ��� �� 	 � � ��� (3.3)

(b)� 	 ����� � � �8� � � � � � � 	�� � � � � � � 	�
�  	 � � � � � � ��� � � 	�� � � � � �

� ��� 	� � ���  � � 	 � � � ��� � � 	�� � � � � �
��� ��� (3.4)

(c) %��
�R�� ),+ � � 	 � � � � � � � 	�� � � � � �
� � � � ��� (3.5)

Throughout the paper, by ^ � we mean the principal branch of the complex square
root, holomorphic on

� ",� � � �*� � . Define

� � �  �  � � � �  � � � 	� � 4  4 	 � � � � �  � �
	
�  � �  � �  � � � � Im �  � �
�;��� (3.6)

Notice that (see (3.6)) K � � + 	 � ������ for all  and moreover,$&%&'Q � Q ),+ �4 K � � + 	 ���T4 ���$�
The incidents fields we work with are:� � � ����� � � � � � � � � � � � �  � � K � 0 � � � � � + 0 + � (3.7)

for all possible values of  � � 	 at some frequency  � � .

Definition 3.1. We say that � ����� solves the forward acoustic scattering problem if:

(1) ��� � � 	 ������� � ��� , � � ] 	����� � � � � ;
(2) � ����� � � � � ����� � � � � ����� ;
(3) ��� � � 	� � � � � � � in

� �
, � 	� � �

�� �O � 02 ��� � � � �;� � �� � ;

(4)
$&%&' (*),+ - � 
 ���! 
 ( �X0 � � � � � � ��� .

Under our a-priori assumptions on � 	 , the above forward problem has a unique solution
(see Theorem 8.7 in [CK98]). We also know that the solution to the forward problem
also solves the Lippmann-Schwinger equation in ] 	"$# � � � � � :� � � � � � � � �����D� >

�&% � ��� ��C ����"��� 	 ��C8�<�=� 	� � � ��C8�G6HC � (3.8)
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where

% � ��� ��C ���� � � 4*5 4 � �XCY4Z� S � � � 	 � 0D� � ����#4 � �XC:4 � � (3.9)

Denote by
� �8��� 	 � the integral operator having the kernel % � ��� ��C ����"��� 	 ��C8�D� � 	� � .

Then
� ����� 	 � is a compact operator on � � � �:� . Due to the unique solvability of (3.8), it

can be easily argued that the operator �
� � �8��� 	 � is one-to-one, therefore invertible (the

Fredholm alternative). Denote by
� ��� �  ���� � � � � ��� 	 � � � � �����  ����  ����� � � � � � � ; the

same notation will be employed for its natural extension to ] 	 � � � � :
� ��� �  ���� � >

� % �H��� ��C ����"��� 	 ��CD�D� � 	� � � � � ��C �  �G6TC&� (3.10)

Then the restriction to � of the scattered field � �2� is represented as:�`�2� �����  ���� � � � � � � � �8��� 	 � � S � � ��� �  ����  ����� (3.11)

The solution to (3.8) is:� �����  ���� � � � � ��� �  ����8� � ��� �  ���� �>
�&% � ��� ��C ����"��� 	 ��C8�<� � 	� � � � � � � ����� 	 � � S � � ��� �  ����  ��CD� � (3.12)

Definition 3.2. We say that �
� � �E� solves the exterior Dirichlet problem if:

(1) ��� � � 	� ���� ��� in
� � " � � , �� � ] 	����� � � � " � � � ;

(2) �
� 4 
��&% �	� � ] � 	 	 � � � � � � � � � � � � ���

(3) �
� satisfies the Sommerfeld radiation condition at infinity.

It is well known (see Theorem 3.21 in [CK83] or Theorem 3.9 in [CK98]) that the
exterior Dirichlet problem has a unique solution.

3.2.2. Stating the Inverse Problem. As we have already outlined in the introduction,
our main interest resides in reconstructing the wave number from the measured boundary
data. The experiments we consider consist in the scattering of the particularly chosen
incident fields � � � �����  ���� (see (3.7)) at a fixed frequency ��;� and all possible values
of  � � 	 .

A particularly interesting set is composed from the values of the scattered field on
the boundary of � � , generated by all possible � � � ; this set will be denoted by � � :

� � " � � � � � �����  ����F4 � � � � � �  � � 	 ��� � �  � (3.13)

Another important definition comes next:

Definition 3.3. Fix � � � . We denote by � �  � the set of wave numbers for which' ��� �74M4 � � 4M4 � � � 4M4 � 	 4M4 � �  � � . Then by ��� � ��� � � we understand the subset of only
those

B � ’s which correspond (via the forward problem) to wave numbers in � � .

The inverse problem we study can be stated as follows:
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Definition 3.4. Fix a frequency  � � and perform the above experiments, for every
possible  � � 	 . Denote by

B � ��� �  � the scattered field restricted to � � � . Then

i. Existence: find sufficient conditions for a function
B ����� �  � � ] � 	 	 � � � � � to be an

element of � � .

ii. Unique reconstruction: if
B � ��� � , then construct a unique � 	 � B ��� � � such that

by introducing it into the forward problem (see Definition 3.1), the scattered field such
obtained coincides with

B � on � � � .

Remark. In this paper we only answer the unique reconstruction question ii. The more
difficult problem of giving sufficient conditions for a

B � in order to be an element of
� � , remains open.

In what follows, we are mainly interested in three things:

(1) First, to formulate a list of sufficient conditions on the measured data
B � � � �

which should hold in order to permit the unique reconstruction of the wave
number (or � � ); these conditions will also provide the reconstruction algorithm
for � � . The set of measured scattered fields having those properties will be
called the space of admissible data and generically denoted by � � ; clearly,
�(�  � � .

(2) Second, to prove that � � “is not empty” and sometimes equals � � (for more
precision see Theorem 3.6).

(3) Third, to study some stability properties of the mapping � ��� B ���� � 	 � B � �
�
� .

Let us now start the rigorous description of ��� :

Definition 3.5. We say that
B
� � � if

(1)
B ��� �  �
� ] � 	 	 � � � � � , for all  � � 	 ;

(2) Denote by � �� � B � � ��� �  � the solution to the exterior Dirichlet problem corre-
sponding to the boundary value

B ��� �  � and denote by

� � � B � � ��� �  � � � � � ��� � � � � �
�
� � B � � ��� �  � � (3.14)

Take � � � so large that the ball centered at the origin with radius � (i.e.� �
� ����� ) includes � � . Define

� `� B � � �  � � �K � � + 	 ��� > Q UAQ �� �T� � � � � � � � � � � � � � � � � � � ��W6 � ��C8� � (3.15)

where � is the exterior normal; our second condition is

�  � B � � ��� 	 � � 	 � � (3.16)
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(3) If � � � , define
� � � �  � " � �K � � + 	 ��� � � � � B � � 	 � � �*���  �D� � � � B � � 	 � � �*� �  �  �

� K � 	 � � 0 ���
� � � �  � � (3.17)

where

�
� � � �  ��" � �K � � + 	 ��� � � � � � � B � � � �*� �  � �

� � � � � B � � � �*� �  � � B 	 � � �*� �  �D� B 	 � � �*� �  �	
,� (3.18)

Our third condition is:
�
� � � 	 � � � � 	 � � % � � � > � � ),� 4 � � 4 	 � � �  �G6 � 6   � � (3.19)

(4) If ! � denotes the partial Fourier transform with respect to the “ ” variable, then
define � � � ��� � � � ! � � �

� ��� �  � �H� ��� � � � � (3.20)

Denote by � the Hilbert-Schmidt operator corresponding to
�

acting on� 	 � � 	 � � � and with the same letter its natural restriction to � 	 � � � � � . Then
our fourth condition is that the operator �

� � is invertible in
� �(� 	 � � � � ��� ;

(5) Denote by
�
�E� B � � ��� � � � ! � �  � B �"�  � �H� � � ��� � � (3.21)

and with the same letter its natural restriction to � 	 � � � .
Denote by

��� B � � � � � �=� S � � � B � ��� 	 � � � � (3.22)

extended by zero outside � . Our fifth condition is that� 	 � B � " ����� B � � � � � 	�� � � 	� � (3.23)

obeys the Assumptions 1;

(6) Introduce � 	 � B � in (3.11) and denote the scattered field such obtained by � � � � B � �] 	����� � � � � . The last condition is

� �2� � B �#4 
 � % � B � (3.24)

Remarks. 1. It may seem that the last two conditions are awkward and superfluous as
soon as we assume that

B � comes from a forward problem (i.e. belongs to � � ). But
they are justified if we reason from the point of view of a practical application. Indeed,
the scattering experiments provide us with a

B � which could come from a wave number
which is not in � (this would mean that our a-priori assumptions for the scatterer are
wrong). Hence even if the computation of � 	 � B � in (3.23) is possible, we still have
to check that (3.24) holds in order to conclude that our a-priori assumptions about the
scatterer are correct.
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2. Although equation (3.24) is highly nonlinear, it only involves
B

; a characteriza-
tion of its solutions would automatically lead us to an affirmative answer to the “exis-
tence” part of our inverse problem.

3.2.3. The Results. We now are prepared to give our first result. It essentially says that
the space of admissible data � � is not empty:

Theorem 3.6. Let  � � � and � � � be arbitrarily large, but fixed.

i. Assume that � � � and  is allowed to take values in �
� �� � � . Denote by � �] 	����� � � � � the solution to the forward problem corresponding to � 	 (see Definition 3.1
and formula (3.12)). Then there exists a finite set ! � �
� �� � � such that for any fre-
quency �� �
� ��8� � " ! one has � �2� 4 
��&% � � � .

ii. There exists �� � � such that for any  � �
� ���� � and any � � � � (see Defini-
tion 3.3) one has � �2� 4 
 � % �'�(� . Therefore, in this case � � � � � � � .

Remark. During the proof of Theorem 3.6, we will show that � � � 4 
��&% always obeys the
first three conditions in Definition 3.5. The only problem which could appear in the
reconstruction process is that the operator �

� � introduced in the fourth condition
might not be invertible. That is why the following definition is justified:

Definition 3.7. Fix ��;� and take � 	 � � 	 ���� as in (3.4). Construct the integral kernel� � � ��� ���� as in (3.20). We say that  is regular with respect to � � and � 	 if the operator
�

� � ���� is invertible.

The next theorem couples Theorem 3.6, Definition 3.5 and Definition 3.7, stating
the conditions we need such that the reconstruction part of our inverse problem to have
a unique solution:

Theorem 3.8. Fix  � � � and choose some  in �
� �� � � . Then the following two state-
ments are equivalent:

i. The scattered field restricted to the boundary belongs to the space of admissible data;

ii. The inverse problem (see Definition 3.4) has a unique solution � � � given by some
� � ��� 	 � � �� � � � (see (3.4)), and the frequency is regular with respect to � � and � 	 .

The next corollary is a natural consequence of the above theorems, saying that if the
wave numbers are restricted to some � � , we can uniquely reconstruct them from the
knowledge of the scattered field on the boundary, for some sufficiently small frequency:

Corollary 3.9. Fix � � � and assume that the wave numbers are only allowed to belong
to � � (see Definition 3.3). Then there exists  � � � such that for any frequency � �
� �� � � , the inverse problem has a unique solution in � � , given by (3.23) and
(3.22).

We can also formulate a uniqueness result claiming that if we have two wave num-
bers in � for which we know that their corresponding scattered fields are equal at the
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boundary for some frequencies and some (not all)  ’s, then those wave numbers must be
equal:

Corollary 3.10. Let  � � and let � � � � 	 � � . Denote by �
� �����  ���� ( � 	 �����  ���� )

the total field obtained by introducing � � ��� 	 � in (3.12), i.e. the solution to the forward
problem.

Assume that �
� 4 
��&% ��� �  � � � ��� � � 	 4 
��&% ��� �  � � � ��� for all  in an open subset of

� 	

and � � � � . Then � � � � 	 .
Finally, let us state our stability result for the inverse problem. We will prove (see

(3.35)) that if
B
� � � , then ���
	 U � 
��&% 4 B ��C �	� �#4 ��� 	 � � 	 � . Then introduce the following

norm on � � :

4M4M4 B 4M4M4 	 " � > ) ��� ���
	U � 
 � % 4 B ��C �  �#4 � 	 6  � (3.25)

It is not difficult to see that4M4 �74M4 	� �
��
�� % � ) � � � 4 � � � 4 4M4M4��74M4M4 	 � (3.26)

We thus justified the use of 4M4M4 � 4M4M4 -norm for measuring the distance between two boundary
data:

Theorem 3.11. Fix � � � , choose an  � �
� �� � � and fix an arbitrary
B
� ��� � � .

Then for any � � � , there exists � �;� such that4M4 � 	 ���,�8� � 	 � B �#4M4 � �
�
�
�  � � � K �?K	��K - � � � � � � � �E6 4M4M4���� B 4M4M4  � �

3.3. Proof of Theorem 3.6

The strategy will consists in showing that if � � � , all the conditions in Definition 3.5
can be verified except for the case in which the frequency  belongs to a finite subset !
of �
� �� � � .
3.3.1. An Equation for � . Consider � � � large enough such that the ball

� �
� ���A�
includes � � . Then:

Lemma 3.12. Let � � � (see Assumptions 1) and let � ��� �  � � ] 	"$# � � � � � be the cor-
responding solution to the forward problem (see Definition 3.1). Denote by

B ��� �  � �] � 	 	 � � � � � the restriction of � � � �����  � to � � � . Then � satisfies the following integral
equation (see (3.15) and (3.17)):> � � � � �  � �?� � �G6 � � � ! S � ��� � � � �  � � > � �

� � � �  � ��� � �G6 � � � `� B � � �  � � (3.27)
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Proof. Due to the uniqueness properties for both exterior and forward problems (see
Definitions 3.2 and 3.1), one can easily see that (3.27) is equivalent to> � � � 	 ��� �*�T� � � 	 ��� �*��� � ����� �G6 � � > Q UAQ �� � � � � � �"� � � � �D� � � � � � � � �  6 � ��C8� � (3.28)

where � is the exterior normal.

We will first give the formal derivation of (3.28) and then we will argue why the
formal computations are justified. First, write the Helmholtz equation ��� � � 	 � � �5�
and differentiate it with respect to � � :� � � 0 + ��� 	 � � � 	 � � � � 	 � � 0 + � � � � 	 � � 0 + � � � � � � �7� � � �D� �7� � � �X�A� 

� ��� 	 � � 	 �"� � 0 + � � � � � � 0 + ��� 	 � � 	� � � � (3.29)

where the Dirac distribution acts on
� � � � .

Then> Q R7Q � � � � � 0 + � � � ��� 	 � � 	 � � � � � � ��� 	 � � 	 �"� � 0 + � � �� 6H� � > Q R7Q � � � 	 � � 0 + ��� 	 � � 	� � � 6H� �
(3.30)

Apply Green’s formula in the left hand side, taking into account the fact that the distri-
bution � 0 + ��� 	 � � 	� � is supported on � � �*�T� and � � �*�A� :> Q R�Q �� �T� � � 0 + � �"� � � � � � � � � 0 + � � � �  6 � ����� � > � �?��� � � � 	 ��� �*���<� � 	 ��� �*�T� � 6 � � (3.31)

Notice that the above integrals are well defined, since � is a � + function outside � and
continuous on � � � (in fact, the restriction of � to � � � belongs to ] � 	 	 � � � � � ).

In order to justify these formal computations, consider ��� �  ��� � � � � � � � an ap-
proximation of the Dirac distribution, where

���
	�	?��� � � � � �
� � � � ��� � �	� � � ����� �
� � �*4 ��4Z� � (3.32)

Define � � �
� ��� � ; they are � +
functions and for any - � � :$&% '

� ),+ ��4M4 � � � � 4M4  �
� � � � � ( � � � 4M4 � � 0 + � � ��� ��� � ��� 	 � � 	� � � �2�� � � � � � ��� 	 � � 	� � � 0 + � �G4M4 � � � ) + � 
 ����� (3.33)

Then due to (3.32) the following identity holds ( � sufficiently large):> Q R�Q � � � � � 0 + � � � � ��� � � 	 � � � � � ��� ����� 	 � � 	� � � � �2�� � � � ��� � � 	 � � 0 + � � � � ��� ����� 	 � � 	� � � 0 + � � � 
 6H� �
�

> � ����� � > Q R7Q � � � � � ������� � ��� �;��� �*�T��� � ��� �*�T�D� � � ������� � ���W�;��� �*�A��� � ��� �*�A��� 6H� �
�

> � ����� � � � ��� �*�T� � � ��� � � � ��� �*�T�D� � ��� �*�A� � � ��� � � � ��� �*���  6 � � (3.34)
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Notice that � � � � � � � � � � , where
� � �
� � � � � is another approximation of the Dirac

distribution and $ %&'
� ) + 4M4 � ��� � � � 4M4  �

� � � � � � � � � ���
Taking � to the limit, employing Green’s formula and the continuity of the trace operator
between ] 	 � � �
� ���A��� and � 	 � � � � � , (3.28) follows. �
3.3.2. Checking (3.19). This subsection will prove that the scattered field � �2� �����  �
corresponding to a wave number � � � is sufficiently well localized in  in order to
insure (3.19). Looking at the definition of

�
� , one sees that it would be enough proving

for � � � �����  � an estimate of the form

���
	R�� � 4 ��� � �����  �#4 � �� � �
 	 � � ���� � (3.35)

where � is some constant and � � � . The next lemmas will make this precise.

Remember that � � � is determined by � �8� � � �� 	 � � � � � � 02�� 	 � � � , where �� �
and � ��� 	 � � �� � � � . In particular, this implies:4M4 � ��� 	 4M4 � � " � '����Q � Q � � ���
	0 � � 4 	 � � ��� 	 � � �#4  � � (3.36)

Recall first that � 	� �  	 ��� 	� � 0 � �  , � � ��� ,  � � ,  � �
� � 	� �  	 and Im �  � � ��� .

For further purposes, we introduce �   � and

� � " ��� � � � � �  Re � � �   � � 4 Im � � �#4  � � � � � 4 *� (3.37)

If  � � � , then Im �  � � � � . Clearly, there exists a constant
� � � , only depending on� � such that if 4  4�9 �

then  ��� 0 4  4 i.e.

Im �  � �Y9 4  4
� � 4  479 � � �$� (3.38)

Lemma 3.13. Fix � � � ,  � � 	 and �� � � . Consider (see also (3.10) and (3.7))

� ��� �  ���� � >
� % � ��� ��C ���� � �<��� � � � � � 	�� ��� � � K � � � 1 � � � + 1 + 6HC � (3.39)

Fix �  �  � . Then there exists a positive constant � � � � � � � � � such that for any�� � � and  � � 	 :

���
	R � � 4 � ��� �  ����#4 � � � � � � � � � �� � � 4  4Z� � �	� 4M4 �&�D4M4 � ��
 � � �
Im ��� � � 	�� � 4 � � 4

Im ��� � �� � (3.40)
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Proof. Fix �  �  � . Define �D�  � � � � � 4  4Z� S � . One of the key ingredients used in
the proof of (3.40) is the following estimate, uniform in �� � � (see also (3.38)):

� � 	 � �F���<�  � Im �  � ��� � ���� � % � 4  4 � � � � � � � �
� � 	 � �F�`4  4 � S � � � � % � 4  479 � � � � � � � (3.41)

First, rewrite
�

as

� ��� �  ���� � > � > 	� % �H��� ��C ���� � � ��� � K � � � 1 � � � + 1 + 6 � 6 � � " � �

� ��� �  ���� � � 	 ��� �  ���� �
(3.42)

where
�

� ��� �  ���� � > � > 	
	�� � � ��% � ��� ��C ���� � �D��� � K � � � 1 � � � + 1 + 6 � 6 � � (3.43)

and
� 	 ��� �  ���� � > � > 	�� � � �� % � ��� ��C ���� �&� ��� � K � � � 1 � � � + 1 + 6 � 6 � � � (3.44)

Let us first treat
�

� . Since �	�D�  �  � �  � ,4 K � � + 1 + 4 � K S Im �
�
+ � 1 + � � � 	 � �F�	�D�  � Im �  � � � �

it follows from (3.41) that� � � 4  4Z� � �	� 4 �

� ��� �  ����#4 � � � � � � � �F4M4 � �D4M4 � � >
�

�4*5 4 � �XCY4 6TC �
� � � � � � � �#4M4 � �D4M4 � ��
 � � ��� � � � � (3.45)

Therefore,
�

� obeys (3.40).

Secondly, let us study
� 	 . If 4  4 � � � � � � �P� , then

� 	 obeys an estimate similar to
(3.45), therefore the “nontrivial” region is 4  4�9 � � � � � � � (where we also have (3.38)).

For technical reasons, we introduce
� 	 �  by

� 	 �  ��� �  ���� � > 	�� � � �� K � � + 1 +��  ��� ��� � �  ����G6 � � (3.46)

where �
 ��� ��� � �  ���� � > ����� Q 0 S,1 Q � �� % � ��� ��C ���� � �<��� � K � � � 1 6 � � (3.47)

Since (see (3.9)) 4 % � ��� ��C ����#4 � �4*5 4 � � � 4 � (3.48)

we have
$&% '  ) � � 	 �  ��� �  ���� � � 	 ��� �  ���� . Our goal now consists in proving (3.40) for

� 	 �  uniformly in � , which would end the proof.
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Let us first remark a useful identity:

 � � 	 � � ��� �  �����X0 � �  ��� ��� � �  ���� K � � + 1 + � 	�� � � �� � 0 > 	�� � � �� K � � + 1 + � � � � � ��� ��� � �  ����G6 � � � (3.49)

Taking the limit:

 � � 	 ��� �  ���� � � 0 � � ��� �*�	�D�  ���  ���� K � � + 	�� � � � � 0 � � ��� �*� �  ���� �� 0 $&%&' ) � > 	�� � � �� K � � + 1 + � � � � � ��� ��� � �  ����G6 � � � (3.50)

The first term in (3.50) is exponentially small, due to (3.41) and to the estimate (see
(3.47)) 4 � � ��� ��� � �  ����#4 � 
 � � ��� � � �F4M4 �&� 4M4 � � � (3.51)

We decompose

� � into two terms

� �
�
�� � � � 	 �� :� �

�
�� ��� �*� �  ���� � �&�8� � � K � � � 0 >*),� K � � � � 1 S 0 � % � ��� �;��� �*�T������G6 � (3.52)

� � 	 �� ��� �*� �  ���� � >) � K � � � 1 % � ���_�;��� �*�T������ � � �<��� �D� � �8� � � � 6 � (3.53)

In order to finish the proof of (3.40) for 4  4D9 � � � , it would be enough having
three more estimates:

���
	R � � 4 � � � �� ��� �*� �  ����#4 � 
 � � ��� � � �F4M4 � �D4M4 � � 4  4 S � � (3.54)

���
	R � � 4 � � 	 �� ��� �*� �  ����#4 � 
 � � ��� � � � � � � � � � 4  4Z� S � 4M4 �&� 4M4 � �
Im ��� � � 	�� (3.55)

and

����	 � � ����
�
�


� � � ��� ��� � �  ���� ���� � 
 � � ��� � � � � � � 4M4 �&�D4M4 � � 
 � � 4 � � 4
Im ���T� �  � (3.56)

Indeed, if we replace them in (3.50), then (3.40) follows.

Let us now prove (3.54). We transform

� �
�
�� using a partial Fourier transform identity

for % � :

�
� 5 >*) 6�� K � � 0 +� 	� �  	 ��� 	 � > K S � � � � 0 S,1 � % �H��� � � � � � � ������G6 � � (3.57)
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Using that Im ��� 	� � � � , we split � 	� �  	 � � 	 � � � � � � � 	� �  	 �"� � � � � 	� �  	 �
and apply the residue theorem to the left hand side of (3.57), yielding:

� 0 K � ^ L �O S � � Q 0 + Q
�
� � 	� �  	 �

hence (3.54) holds for

� �
�
�� .

For

� � 	 �� we will finally need the � � regularity on � ��� 	 :

 ��� 	
� � 	 �� � � 0 >*) � 
 �

� � ��� 	 K � � � 1  % � ��� � ��� �*�T������"��� �<��� �D� � �8� � ���G6 �
��0 > ) � K � � � 1 I 
 �

� � ��� 	 % � ��� �;��� �*�T������  ���&�D��� �D� �&��� � ���� � �&�
� � ��� 	 ��� � % �H��� �;��� �*�T�������� � (3.58)

Since � ��� 	 ��� � � � � , 4 � ��� 	 ��� �8� � ��� 	 � � �#4 � 
 � � ����4 � � � 4 . Also,

����
�

� � ��� 	 % � ��� � ��� �*�T������ ���� � 
 � � ��� /
�
� �4 � � � 4 	 3 K S Im � L O � Q 0 S,1 Q � (3.59)

Inserting the above estimate into (3.58) we get:4 � � 	 �� ��� �*� �  ����#4 � 
 � � ��� � � � 4  4Z� S � 4M4 � �D4M4 � � �
Im ��� � � 	 � (3.60)

Unfortunately, (3.60) does not have a sufficiently good behavior when  is real and
tends to zero. To improve it, we will use a small trick: combine (3.54) and (3.51) to
obtain 4 � � 	 �� ��� �*� �  ����#4 � 
 � � ��� � � � � � �#4M4 � � 4M4 � � � (3.61)

Then write 4 � � 	 �� 4 � 4 � � 	 �� 4 � 4 � � 	 �� 4 � S � � 
 � � ��� � � � � � �F� � � 4  4Z� S � 4M4 � � 4M4 � �
Im ��� � � 	��

which proves (3.55).

Finally, let us prove (3.56). Performing the derivative with respect to � � in (3.47) we
get:

�
�


� � � ��� ��� � �  ���� �> ����� Q 0 S,1 Q � ��
� � K �ML O Q R SVUAQ4 �_�XCY4 � � 0 � � K �ML O#Q R SVU�Q4 �W�1CY4 	�� ��� � � � � � �&�D��� � K � � � 1 6 � � (3.62)
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Assume � � � � � ���� (otherwise there is nothing to prove). Using polar coordinates
in (3.62) (i.e. 4 � � � 4 � - � � ) we get

����
�
�


� � � ����
� � 5 4M4 �&� 4M4 � � 4 � � � � � 4 > +


� K S Im � L O � (� - 	 � 4 � � � � � 4 	 � � 	 	 � 4 � � 4 K S Im � L O � (� - 	 � 4 � � � � � 4 	 � � - 6 - �

(3.63)
Changing the variable in - � � - �A4 � � � � � 4 we get:

����
�
�


� � � ����
� � 5 4M4 � �D4M4 � � > +� I - �� - � 	 �

� � � 	 	 � 4 � � 4V4 � � � � � 4 K S Im � L O � Q 0 + S,1 + Q ( % � 6 - � �
(3.64)

While the first term in the above integrand is well behaved in terms of  , the second one
will generate a � � � Im ��� � � ; hence, (3.56) is proved. �
Lemma 3.14. The mapping

� � � � �� � ��� �  �
� �
� � � � � � is analytic.

Proof. Take � � � � � . It is easy to see that for fixed � � � and  � � 	 , the function
� ��� �  �	� � " � � �� �

is holomorphic (see (3.39)). Take a disk
� � � � � - � � � � and apply

the Cauchy integral formula ( � � � � � � � - � ):
� ��� �  �
� � � �

� 5 0 > Q �"S��GO Q  ( � ��� �  ��� �
�,� � � �

��� � � � � � � � � � � ��� �  � � (3.65)

where � � ��� �  � � �
� 5 0 > Q �"S�� O Q  ( � ��� �  ���7����,� � � � � � � �

Finally, employ (3.40) and obtain

4M4 � � ��� �  �#4M4 + � 
 � � ��� ��� � � � � ��� � �- � � � � 4  4Z� S � S � (3.66)

which finishes the proof. �
Lemma 3.15. Consider the natural extension of � 	 � � 	� � � for complex values of 
(see Assumptions 1).

i. There exists an open strip
�  � � containing �
� �� � � such that

%��
� R�� ),+ Im ��� 	� ������� �;�
whenever �� � ;

ii. The forward problem corresponding to � 	� has a unique solution, whose scattered
field � � � �����  ���� is given by the natural extension of (3.11) to

�
.

Moreover, the mapping
�
� � �� � � � �����  �
� �
� � � � �:� is analytic.
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Proof i. Relation (3.4) yields

Im ��� 	� ������� (3.67)

� Re ���� � � Im ���� � � � � � � ��� � � 	�� � � � � �
� ��� 	� � � � � 	 � � � ��� � � 	�� � � � � �

� � ��9 Re ����.I %��
�U � ),+ � � 	 ��� � � � � � 	�� ��� � � �
��� ��� 4 Im ����#4 � 4M4 � � 4M4 + �

� ��� 	� � �
Now use the condition (3.5); then

�
may be defined as the intersection (see also

(3.37)):
� ��� I � � � � 4 Im � � �#4  %��
� U�� ) + � � 	 ��� � ��� � � 	�� ��� � � �

� � �
� � 4M4 � � 4M4 + �

� ��� 	� � � � (3.68)

ii. Since i holds, the argument which led to (3.11) still works. It is now easy to
establish that the mapping

�
�  �� � ����� 	� �
� � � � � � �:���

is analytic, and this also remains true for
�
�  �� � � � � ����� 	� � � S � � � � � � � �:��� �

Employing the analyticity of
�

(see the previous lemma), and by a similar argument
with that one used for establishing (3.65) one gets� � � ��� �  �
�7� ���

� � � � � � � � � � � � ��� �  � (3.69)

where� � ��� �  � � � �
� 5 0 > Q �"S�� O"Q  ( ���� � � � � � � � � � � � � � ��� 	� � � S � � ��� �  ���7� 
 ����� � (3.70)

Since
���
	� Q �#S�� O Q  ( � �� � � � � � ��� 	� � � S � ��  � �

(3.70) and (3.40) imply4M4 � � ��� �  �#4M4 + � 
 � � ��� � - � � � � �
� � �- � � � � 4  4Z� S � S � � (3.71)

therefore the sequence in (3.69) converges in � � � �:� and the proof is completed. �
Denote by

B ��� �  ���� the restriction to � � � of � �2� �����  ���� , where �� � and  � � 	 .
Define (see also (3.18)):

�
� � � �  ���� " � �K � � + � � � 	 ��� � � � � � � B � � � �*� �  ����D� � � � � � B � � � �*� �  ���� �� B 	 � � �*���  ����D� B 	 � � �*� �  ���� 
 � (3.72)

Among other things, the next corollary proves (3.19).
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Corollary 3.16. Denote by � ���� the integral operator corresponding to
�
� � � �  ����

acting on � 	 � � � � 	 � . Then:

i. � ���� is a Hilbert-Schmidt operator (i.e. (3.19) holds) and the following mapping is
analytic: �

�  �� � ����
� � �(� 	 � � � � 	 ��� �
ii. For real values of �� � , $&%&'

��� � 4M4 � ����#4M4 ��� � (3.73)

Proof i. First notice that (see (3.7)) 4 � � � ��� �  ����#4 � � if � � � ,  � � 	 and  � �
.

Introduce (with � ��� ) (3.71) in (3.72) and (3.19) follows. Furthermore, reasoning as in
the previous two lemmas, one can write a power series expansion for

�
� � � �  ���� similar

to that one in (3.69), where the coefficients obey an estimate as in (3.71). Therefore, the
power expansion holds in � 	 � � � � 	 � , too, and the mapping ������ is analytic even in
the Hilbert-Schmidt norm.

ii. Let us begin by noticing that (see (3.11)):$&%&'
��� � 4M4 � �8��� 	� �#4M4 � � � O ��� � � ��� �

Using (3.40) in estimating the sup-norm in the right side of (3.11) we obtain that for�    � �
� � � � � �� � � � � �:�4M4 � � � ��� �  ����#4M4 � O ��� � � �V4M4 � ��� �  ����#4M4 � O ��� � � 
 � � ���� � � 4  4Z� � �	�  � S � � (3.74)

where the above constant depends on everything but  and  .

We have already seen that there exists a constant
� � � such that if 4  4 � �

, one
has Im �  � ������
� 4  4Z� � uniformly in �� � � .

If 4  4 � �
, then 4 � � � � �  ����#4 � 
 � � ���

�F� K S�� 	 	 	 � � � 4  4Z� S � S �  � S � �
If 4  4  �

and  � � � , define the (bounded and continuous) function

�<�  ���� � 0  � ����G�K � � + � � � 	 ��� �
Since 4  � ����#4�9 � �
	 	�  �
	 	 for any  , we have4 � � � � �  ����#4 � 
 � � ��� � ���
	 4 � 4Z�:� � � 4  4Z� S � S �  �
	 	 S � �
Now choose some �  �  � � � ; then the � 	 norm of

�
� ��� �	������ yet the Hilbert-

Schmidt norm of � ���� tends to zero with  ; therefore (3.73) holds. �
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3.3.3. Completing the Proof of Theorem 3.6. The next lemma verifies the remaining
needed conditions for � � � in order to be an element of � � :

Lemma 3.17. i. The function �  � B � � ��� � defined in (3.15) belongs to � 	 � � 	 � (i.e. (3.16)
holds);

ii. Having in mind (3.20), redenote by
� � � ��� ���� the partial Fourier transform of�

� , and by � ���� ,  � �
, the Hilbert-Schmidt operator corresponding to

�
acting

on � 	 � � � � � . Then the operator �
� � ���� is invertible in

� �(� 	 � � � � ��� for all
frequencies except maybe for a discrete set � � �

;

iii. The intersection ! " �	� � �
� �� � � is finite.

Proof i. Since both terms in the left hand side of (3.27) are � 	 vectors,  � B � is modulus
square integrable, too. Notice that this result is not at all obvious from the definition of
`� B � in (3.15), since the incident field has an exponential increase in 4  4 when � �  � .

ii. We intend to use the analytic Fredholm theorem (Theorem VI.14 in [RS80]).
Since the partial Fourier transform is a unitary operator on � 	 � � � � 	 � , we can restate
Corollary 3.16 with � ���� replaced by � ���� � � �(� 	 � � � � ��� . Next, notice that �

�
� ���� is invertible for sufficiently small and positive frequencies (see (3.73)), therefore
the “right” Fredholm alternative holds.

iii. Firstly, we have just seen that � is not an accumulation point for the eventual
positive singularities. Secondly, let us show that  � cannot be an accumulation point
for � . Indeed, one can reconsider the first two statements of this lemma for strips
containing the interval �
� ���� � � , hence if  � is not regular, it must be isolated from the
other singularities. �
3.3.3.1. Putting All the Things Together. Since the proof of Theorem 3.6 required a
lot of intermediary technical results, let us now give an overview of the argument. We
started by choosing � � � of the form given in (3.3) and (3.4). We then considered the
scattering field appearing in the forward problem (see (3.11), (3.12) and the argument
leading to them).

Denote by
B ����� �  � the restriction of the scattered field to � � � and let us see that all

six conditions listed in Definition 3.5 are fulfilled, i.e. � can be reconstructed from the
knowledge of

B ����� �  � except maybe for a finite number of frequencies in the interval�
� �� � � :
1.

B � ��� �  � � ] � 	 	 � � � � � by the trace theorem;

2. Since the scattered field � � � ��� �  ���� coincides outside � � with the solution to the
exterior problem �

� � B ��� (see Definition 3.2), we conclude that � � B �`� which enters in
the definition of �  � B �`� � �  � (see (3.15)) is in fact the total field which solves the forward
problem. We then established the key equation (3.27) which allow us to conclude that
`� B ���"��� � ��� 	 � � 	 � as soon as � 
�� ���H� holds;
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3. As we have already mentioned, equation (3.27) lies at the very foundation of our
arguments. The whole reconstruction process depends on its solvability. Since we see�
� as an integral kernel of a certain operator � ���� (see Corollary 3.16), we would very

much like to have a property as (3.19) since it would automatically imply that � ���� is
compact, and moreover, even after the partial Fourier transform with respect to the “ ”
variable, the newly obtained operator � ���� (see Lemma 3.17) remains compact.

As one can see in (3.18) or (3.72), the proof of (3.19) can be reduced to the proof
of an estimate as in (3.35). The main idea consists in using (3.11), where one can see
that the “ ” dependence is only contained by the “free” term

�
. Hence we concentrated

our efforts in proving (3.40), and then we used (3.11) in passing on the decay in  to the
scattered field.

4. We also payed a lot of attention to the frequency dependence. Since we eventually
want to invert the operator �

� � ���� in the Hilbert space � 	 � � � � � , we focused on
verifying the conditions of the analytic Fredholm alternative. This has been ultimately
achieved in Corollary 3.16 and Lemma 3.17. The main idea consisted in proving that
the compact operators � ���� and � ���� admit analytic extensions to a strip

�
containing

the interval �
� �� � � , and secondly, proving that there are points in this strip for which the
inverse exist. This was the main reason for the careful study of the frequency behaviour
of the constant appearing in (3.40) (since � 	� is  dependent). In fact, we should empha-
size that (see Lemma 3.17 ii. and iii. ) for sufficiently small frequency, we can always
invert �

� � ���� and hence to solve (3.27) and reconstruct � .

5 and 6. These points are now automatically satisfied.

3.4. Proof of Theorem 3.8 and Corollaries 3.9 and 3.10

At this point, having explained and motivated the structure of the space of admissi-
ble data �(� at a given positive frequency  , the proofs which follow are more or less
straightforward.

3.4.1. Proof of Theorem 3.8. We prove the theorem by double implication.

Assume i holds. The existence in � of a solution for the inverse problem is guaran-
teed by (3.23) and (3.24). That  is regular (see Definition 3.7) with respect to any such
solution follows from the fourth condition in Definition 3.5.

As for the uniqueness of the solution to the inverse problem, assume that we have
two solutions in � corresponding to the same

B � �'� � . Then they both solve equation
(3.27), and since  is regular with respect to both solutions (the operator � ���� is the
same), the uniqueness follows since �

� � ���� is one to one.

Assume ii holds. Then since ��� � , by following the proof of Theorem 3.6 we
see that the first three conditions in Definition 3.5 are satisfied. Since  is regular with
respect to � , we conclude that the fourth condition holds, too. Therefore the measured
data belongs to � � . �
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3.4.2. Corollary 3.9. We know from Theorem 3.6 ii that there exists an  � � � such
that for any frequency �     � , the restriction to � � � of the scattered field cor-
responding to any wave number in � � belongs to the space of admissible data � � .
Therefore, the reconstruction process can take place (according to Theorem 3.8), yield-
ing a unique solution to the inverse problem. �
3.4.3. Corollary 3.10. The proof will have two steps:

First, let us argue why the fields are in fact equal for all  ’s, not only for an open set
as stated in the hypothesis. Without loss, assume that the fields coincide for all 4  4  � at
some frequency  �;� . We know that both �

� and � 	 can be expressed as in (3.12) and
(3.10) where � is replaced by � � and � 	 respectively. Then we employ the next lemma:

Lemma 3.18. Let � ��� be arbitrary large. Fix  � � , � � � and � � � � � . Then
there exists an open strip � � � � 	

containing the “real” ball
� �
� ��� � such that the

mapping (see (3.12) and (3.10))
� �
� ��� � �  �� � �����  ����
� �

admits an analytic extension to � � .

Proof. The strip is chosen such that extending the function (see (3.6))

� �
� ��� � �  ��  � �  � � � � 	� �  	 � �

to it, becomes analytic in  . This construction is always possible since the imaginary part
of � 	� is strictly positive. Then we “propagate” this extension from (3.7) to (3.10) and
finally to (3.12) employing a similar approach to that one used in proving Lemma 3.14.�
An immediate consequence of this lemma is that the fields must now coincide on

� �
� ��� �
and since � was arbitrary, they must coincide for all  � � 	 .

Second, since we now know that the fields are equal for all  ’s and for a sequence
of decreasing frequencies (  � � � � � � � � � ), there must exist � � � � such that � ���
is a regular frequency for both � � and � 	 (since the set ! in Theorem 3.6 i is finite).
Therefore the fields are in the space of admissible data and the reconstruction procedure
assures the equality � � � � 	 . �
3.5. Proof of Theorem 3.11

We know from Theorem 3.6 ii. that � � � � � � � if  � �
� �� � � . Therefore, one can
associate to any � � ��� � � (via the reconstruction procedure) a unique � ���,� � � � . In
fact (see (3.23), what we really need to compute is �?��� � given by (3.22). The rest of this
section will prove that small changes in � lead to small changes in �?���,� .
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Let us rewrite (3.22) as:

�����,�D� ��� B � (3.75)

� � � � � � ���,� � S � � � � � � � B � � S �  �E� B � � � � � � ���,� � S � � �E���,�8� �E� B � 
� � � � � ���,� � S � � � � � B �8� � ���,� � � � � � � B � � S � �`� B � �

�`��� �D� �E� B � 
 �
The theorem would be concluded if we can prove the following three technical lem-

mas (see also (3.25)):

Lemma 3.19. Under the same conditions as in Theorem 3.11, one can find � � � � such
that 4M4 � ���,�8� � � B �#4M4 � ��� �

�
�
� �  � � � K �?K �7K - � � � � � � � �E64M4���� B 4M4 � �

��
 ��% � ) � �  � � �
Lemma 3.20. Under the same assumptions, given � � � there exist � 	 � � and a
constant � � � such that4M4 � � � � ���,� � S � 4M4 � ��� �

�
�
� �  � � ��K �?K �7K - � � � � � � � �E64M4���� B 4M4 � �

��
��&% � ) � �  � 	 �
Lemma 3.21. Under the same assumptions, given � � � there exists � � � � such that
(see (3.25)) 4M4 �E���,�8� �E� B �#4M4 � �

�
�
�  � � ��K �?K �7K - � � � � � � � �E64M4M4�� � B 4M4M4  � � �

3.5.1. Proof of Lemmas 3.19 and 3.20. Instead of a “direct” study of the
� �(� 	 � � ��� -

norm for the operator � � B �Y� � ���,� , we will estimate its Hilbert-Schmidt norm. We
know that each operator � corresponds to an integral kernel

� � � ��� � (see (3.20) and
(3.18)), obtained from

�
� � � �  � via a partial Fourier transform over the “ ”-variable.

Hence,

4M4 � � B �8� � ���,�#4M4 � ��� �
�
�
� � � 4M4 � � � B �D� �

� ���,�#4M4 � �
�
� � ),� � �

where (see (3.18)) the kernel
�
� � B �8� �

� ���,� looks like

�K � � + � � � 	 ��� � � � � � � � B � �,� � � � �*���  ����D� � � � � � � B � �,� � � � �*� �  ���� �� B 	 � � �*���  ����D� � 	 � � �*� �  ����8� B 	 � � �*� �  ���� � � 	 � � �*� �  ���� 
 � (3.76)

Remember that �� � is fixed; then (see (3.6) and (3.7))

����	
� �

),� �
�
�
�

�K � � + � � � � � 	 � � �
�
�
�

� 
 � � ��� � ���
	R � � 4 � � � �����  �#4 � �$�
Another important thing is to apply the estimate (3.74) for both

B
and � . Before

that, let us mention that the constant appearing in (3.74) also depends on the � � -norm of
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its corresponding wave number (i.e. � � and � 	 ) which by assumption is bounded from
above by � . Therefore,

���
	R � � ���
	
� �

) � 4�� 4 �����  ���� � 
 � � ��� � � � �:� (3.77)

and a similar estimate can be written for
B

, too.

It follows that

4M4 � � � B �D� �
� ���,�#4M4 � �

�
� � ) � � � 
 � � ��� � � � � �#4M4 B � � 4M4 � �

��
�� % � ) � �
which ends the proof of Lemma 3.19.

As for Lemma 3.20, we only remark that it is a straightforward consequence of
Lemma 3.20 and of a well known identity:

� � � � ��� � � S � � � � � � � B � � S � � � � � � ���,� � S � � � � B �8� � ��� � � � � � � � B � � S � � �
3.5.2. Proof of Lemma 3.21. First, from the definition of � (see (3.21)) we conclude
that it would be enough proving a similar statement with  instead of � . More precisely,
we prove two technical results:

Proposition 1. Consider the same conditions as in Theorem 3.11. Then for any � � �
there exists � � � � such that for any � � ��� � � we have> Q � Q ����� 4 `��� �#4 	 �  �G6  � � 	 �����
Remark. The above proposition states that the � 	 -“tail” of  ���,� is small, uniformly in� .

The second result states the following:

Proposition 2. Under the same assumptions as above, given � � � there exists � \ � �
such that (see (3.25))> Q � Q ����� 4  ���,�D�  � B �#4 	 � � �  � 	 � 
 � ��K �?K	��K - � � � � � � � �E64M4M4�� � B 4M4M4  � \ �

Before actually proving these two propositions, let us see why are they implying
Lemma 3.21. Indeed, choose a positive � and apply Proposition 1 for getting � � ; then

4M4  � B �<�  ���,�#4M4 	� �
�
) �
� � � � 	 � 
 � > Q � Q ����� 4  ���,�D�  � B �#4 	 � � � �

Identify � � with � \ and we are done. �
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3.5.2.1. Proof of Proposition 1. The main ingredient we employ is equation (3.27),
where

B
should be replaced with � . In other words, we will show that its left hand

side has the property stated in the proposition.

Let us start with the first term, i.e. the Fourier transform of � . Since � was assumed
to belong to � �� � � � , we employ integration by parts in deriving the next formula:


	 �

� ! S � � �
�
	 �  � � �

� ! S � � � � � � �
�
	 �  � � �

� ! S � � � 	 ��� �
�
	 �  � � (3.78)

Hence, for any � � � we get> Q � Q ��� �
� ! S � � �

�
	 �  �G6  � �

� 	
> Q � Q ��� � �� ! S � � � � ��� �

�
	 �  � � �

� ! S � � � 	 � � �
�
	 �  � � 6 

� �
� 	

� 4M4 � � ��4M4 	� �
�
) �
� � 4M4 � 	 ��4M4 	� �

�
) �
� � � 
 � � ��� � � � � �

� 	 � (3.79)

where in the second line we employed Plancherel’s identity and that � � � � . Clearly,
the right hand side of (3.79) can be made arbitrarily small as soon as � is increased,
uniformly in � and therefore in � .

Let us now say a few words about the second term in the left hand side of equation
(3.27). One can combine the estimates (3.35) and (3.77) with (3.72) getting

�
�
�
�

> � �
� � � �  � �?� � �G6 � �

�
�
�

� 
 � � ���� � � 4  4Z� � �	� �
where the above constant only depends on � and � . Now its � 	 -tail can be made
arbitrarily small, and we are done. �
3.5.2.2. Proof of Proposition 2. We will show that a stronger estimate holds, uniformly
in 4  4 � � � 4 �  � B � � �  �<� � `��� � � �  �#4 � 
 � � ��� � � ����	U�� 
��&% 4�� ��C �  �8� B ��C �  �#4 � (3.80)

After we introduce the expression of � ���,� from (3.14) in (3.15), we obtain several
integrals; one of them will only contain the incident field hence being independent of� , two of them will contain products between (derivatives of) the incident field and
(derivatives of) the radiating field �

� ���,� . The last integral will only contain the radiating
field.

Therefore, the difference �  � B � � �  � � � `��� � � �  � will only consists from integrals
whose integrands contain at least one term of the form �

�
� ��� � � ��C �  �Y� � �� � B � � ��C �  � or�

�
� ��� � � 	 ��C �  �8� � �� � B � � 	 ��C �  � , eventually with some C -derivatives acting on them.

Let us investigate a typical term:

�K � � + 	 � � > Q UAQ �� � � � � ��C �  � � � � � � � �� � B � � ��C��  �8� � � � � � �� ���,� � ��C �  � �� 6 � ��C8� � (3.81)



40 3. Wavenumber Number Reconstruction for the Acoustic Problem

First, we want to get rid of the C -derivatives acting on the radiating solutions in the
above formula. We intend to apply Theorem 3.9 in [CK98]; in order to do that, we
introduce a few notations.

Denote by � and 	 the single- and double-layer operators acting on � � � � � � � and
given by (see 3.9): �%� ���"����� " � � >


 ��% % � ��� ��� � � �8��� � �G6 � ��� � � (3.82)

and �  �`�"����� " � � >

��&%

� % �
� �E��� � � ��� ��� � � �8��� � �G6 � ��� � � � (3.83)

where � is restricted to the boundary.

Following [CK98], we express the radiating solution as

�
�
� ���,� � ����� � � � >


 ��% I � % �
� �E��� � � ��� ��� � �8�X0�� % � ��� ��� � � � � ��� � �  �G6 � ��� � � � (3.84)

where � � � � " � � , � �;� is a positive coupling parameter and

� ��� �  �
� � � � � � � � is an
yet unknown continuous function, which is to be found. Indeed, one can prove that the
operator �

�  �X0�� � has a bounded inverse in
� � � � � � � � ��� and� ��� �  � � �A� � �  �X0 � � � S � � ��� �  � � (3.85)

Introducing (3.85) in (3.84), we get that for 4 CY4 � � i.e. away from the boundary
� � � we have

���
	U � 
 ��% �� � � � � � �� � B � � ��C��  �8� � � � � � �� ���,� � ��C �  � � �� � 
 � � ��� 4M4�� ��� �  �D� B ��� �  �#4M4 + � (3.86)

Using the above estimate in (3.81) and remembering that (see (3.7))

���
	Q UAQ �� ���
	Q � Q ����� �� � � � �� ��C �  � � 
 � � ��� � � � � � �
we obtain an estimate as in (3.80).

Besides terms like that one in (3.81), we also have typical “quadratic” terms as the
next one:

�K � � + 	 ��� > Q UAQ �� � � �� � B � � � � � � � �� � B � � ��C �  �D� � �� ���,� � � � � � � �� ���,� � ��C��  � 
 6 � ��C8� �
(3.87)

We split the above term in two, trying to “linearize” it:

�K � � + 	 ��� > Q UAQ �� � �� � B � � ��C��  � � � � � � � �� � B � � ��C��  �8� � � � � � �� ���,� � ��C �  � 
 6 � ��C8� (3.88)

and
�K � � + 	 ��� > Q UAQ �� � � �� � B � � ��C �  �D� � �� ��� � � ��C �  � 
 � � � � � �� ��� � � ��C �  �G6 � ��C8� � (3.89)
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While (3.88) brings nothing new compared to (3.81), equation (3.89) still requires
an estimate more; that is, uniformly in � and 4  4 � � � we have (see also (3.77))

���
	Q UAQ �� 4 � � � � �� ���,�#4#��C��  � � 
 � � ��� � � �#4M4�� ��� �  �#4M4 + � 
 � � ��� � � � �:� �
We then conclude that (3.80) holds and so does Proposition 2. �
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4.1. Introduction

We denote by a class of integral transforms the set of all mappings ��� � � S �  , with
kernels � � � � � - � ���� � - � � �  respectively, that are integral operators mapping

� � �� �

and
�
�� � � . We are interested in finding conditions on

�
such that �

�
can be ex-

plicitly constructed. The classes of integrals transforms that we construct have kernels
� � � � - � ��� � � � � - �  with � a given operator. Hence a fixed � defines a class and a
fixed

�
defines a pair ��� � � S �  in the associated class. The class generated by � ���

we define as the Fourier transform class, and the class generated by � � - � ( -  we de-
note as the � � � Generalized Fourier transform class. The map ��� " � � �� �

is defined
by

� ���� � ���<���� � > +� � �� - ���<� - �G6 - � �� � (4.1)

and the inverse map � S � � " � �� � � is defined by

�<� - � � � S � � � - � � > +S + � � � �  - � � ����G6T � (4.2)

Generally it is difficult to find a simple expression for the inverse mapping as an
integral operator. A well known example where the inverse map may explicitly be found
is the Fourier transform and in this case

�
is defined by (4.4) with the inverse operator

� S � simply being

�<� - � �	� S � � � - � � > +S + � � �  - � � ����G6T � (4.3)

The map �
� defined by (4.1) is also known to have an inverse map given by � �
� S � � � � S � � � � � � S � � �  , with � the Mellin transform. Situations where this
inverse mapping will be explicitly expressible will be investigated and characterized
when the inverse mapping lead to a simple structure as in (4.2).

The problems to be treated in this paper is therefore to find classes of mappings of
the form (4.1) for which the inverse map is given by (4.2). For the Fourier Transform
class, generated by � ��� , the canonical element ��� � � S �  has the kernel

� � � � � � �^ � 5 K � 0 � (4.4)

whereas for the � � � Fourier Transform class the canonical element ��� � � S �  has the
kernel � � � � � � � 0^ � 5 � K � 0 � (4.5)

For many other appropriately chosen operators � the construction of Fourier Trans-
form classes may be achieved by the method of this paper. As a third example we have
the class generated by ��� -  with the canonical element ��� � � S �� having the kernel� �P� � � � �N 	�� 0 K � � 0 S��� � �

The achievements of this paper is:
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� To construct the class of all � ’s satisfying the given generalized Fourier Trans-
form pair of the form (4.1), (4.3) or (4.1), (4.2), � � - � ( -  , see theorem 4.7
and theorem 4.8 respectively.

� Prove that the structure of the class is � � � , with � an Abelian set of bounded
operators in a Hilbert space, and

� � the kernel of the canonical elements for the
class. For the Fourier Transform class � is explicitly constructed, see (4.43),
and for the 1/x Generalized Fourier Transform class a large class of kernels is
explicitly constructed, see (4.62).

� Define Hilbert spaces such that the mappings � and � S � are continuous.
� To apply the theory yielding an explicit solution of a class of integral equations

with kernels involving either products of Bessel and Hankel functions, or being
a certain general hypergeometric function.

� To apply the solution of integral equations with kernels involving products of
Bessel and Hankel functions to solve a linearized inverse medium problem.

We are going to use the Mellin transform of (4.1), (4.3) and (4.2) with � � - � ( - 
and represent the properties of the kernels by equations for the Mellin transform of the
kernels. The key of the analysis is to prove that the transform pair hold if and only if the
Mellin transform satisfy a nonlinear equation which for the Fourier transform class is

� � � �	��� � � � � � � �P� � K S � � � � K � � � � � � Re �	�P� � � ��� (4.6)

and for the � � � Generalized Fourier Transform class is

� �F� � ��� %�� 5 � � � � �	�P� � � 	 � � � � �P� � �
� Re �	��� � � ��� (4.7)

Equation (4.6) is explicitly solved for the Fourier transform case, see (4.43) and
theorem 4.7, and for the � � � Generalized Fourier transform class a large subspace of
transform pairs are found, see (4.62) and theorem 4.11.

A similar approach of constructing the inverse maps (4.2) and (4.3) was used in
[SSK98] for a large class of operators of the form (4.1). As the mapping � they used
the � -transform defined by hypergeometric functions and found, for a specific choice of
parameters, the transformation pair as

�
� � ] � �<� - � � � - � ( > +� B �� - � ] �<����G6H � (4.8)

with the kernel
B � � � being given byB � � � � � S � � ���� � � �F� �P�  � � � � (4.9)

Remark: In (4.8) the � -transform is defined for �� � � whereas (4.1), (4.3) is
defined for  � � .
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For the � -transform the Mellin transform of the kernel can explicitly be found as

� � � � � � �� � � 
 �
� � � � � � ��� ���!�� � � �P� ��� � ����
�  �

��
�  �

� ��!�� � � � �P� ���  � � � � �=� � � � � �P�
��(  � � � � �
� ( � � ( �P� ��

�  � � �
� � �F�=! � � �

� ��� �
(4.10)

Thus the functions � � and � �$� � � � � � �P� have the same structure and
B

given by
(4.9) is again a hypergeometric function. The common idea of [SSK98] and the present
paper is to represent structure properties of the kernels of � and � S � by specifying
properties of the Mellin transform of the kernels.

For the Fourier transform class, as well as the 1/x Generalized Fourier Transform
class, we will give a number of examples including the hypergeometric functions, show-
ing that the ] transform of [SSK98] with imaginary argument and properly chosen co-
efficients, transform by (4.1), (4.3). One of the elements in the 1/x Generalized Fourier
Transform Class will be

� � � � � � � ��� � � � � ] �� � � � , with ] and � Hankel and Bessel
functions and � � � a complex constant.

An application with this type of integral equations is the inverse scattering prob-
lem in

� �
with a specific spherical incident wave. This Inverse Problem may through

the transformation theory be represented as a Second Kind Fredholm problem. The lin-
earized equation is represented as (4.1) with the kernel

� � � � � � � � � � � � � ] �� � � � or� � � � ����� � � � � � � � � � � � .
The structure for the solution of � 	 �<� - � ] �� � � 6 - � � ���� � ! �8� �*� is expressed in

terms of the Fourier transform, ! , as

�<� - � � �A� � � � � � - � ( �8� � - �D� ��� � �
� � �8� � - � � > 	 (� % � � � � - � �8� �*�G6 �  � (4.11)

where % � � � � - � can be explicitly calculated and is given in (4.77).

In section 4.2 of this paper we start with a review of the generalized Mellin trans-
form theory of distributions, define the spaces to be used and establish the needed Mellin
transform of �
� . For the Fourier Transform class we find the function � � S � in sec-
tions 4.2.1, show the key relation (4.38) and construct the space of kernels for the Fourier
transform class. Finally in section 4.2.2 we establish similar results for the 1/x Gen-
eralized Fourier Transform class. For the two transform classes the continuity of the
mappings � and � S � are proved.

In section 4.4 an integral equation formulation of the inverse acoustic scattering
problem is derived and solved. Basically the problem is from knowledge of trace data
of � � � ���� to determine the coefficient � 	 � � � of an elliptic linear PDE -the Helmholtz
equation ��� � � 	 � � ��� � � � ���� � � . Through the use of the transformation theory an
explicit solution for a linearized problem is found, and this can be extended to iteratively
solving the associated full problem - that will though not be treated here.
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4.2. Generalized Fourier Transform Classes

The classical Mellin transform of a function defined on
� � is defined through the Fourier

Transform ! as

��� �<�	�P� � ^ � 5 ! � K � � �<��K � � � ���A� � > +� 6 - �<� - � - � S � � � � �
� 0 � � (4.12)

and the inverse transform is

�<� - � � �
� 5 0 > 6�� � � �	��� - S � � (4.13)

with the integral along the line � � �
� 0  .

In order to define the distributional Mellin transform we will introduce the space of
test functions and the topology of that space. Let � be any real number. Introduce the
space

� � � � � � � of test functions with support on the positive axis as
� � � ��� � � � + � � � � 4 K � � �8��K � � � � � � � � (4.14)

For
� � � define the semi norms

 	 = � �`� � ���
	( � ) � 4V� � - � ( � = � $�� - � 	 - � �8� - � 4 � (4.15)

where � � ! are non negative integers. Let the space � � � � � be equipped with the induced
topology of

�
, that is the semi norms5 	 = � ���&�`� � ���
	1�� ) 4$� 	 � =� �����X4 � � � �

� 0 �>� (4.16)

Then we have the result:

Lemma 4.1. Let the topology of ��� � � � be the induced topology of
�

. Then the map-
ping

� � � � ��� � � � � �
is a isomorphism. And, for any

�
��� � � � � the following

equations hold: > +� 6 - � � - � ��� - � � �
� 5 0 > 6���� � � � �F� �P� � � �8�	��� � (4.17)

and > +� 6 - � �� - � �8� - � � �
� 5 0 > 6��  S � ��� � � � � �P� �����8�	�P� � (4.18)

with the integral along the line � � �
� 0 � , where � is fixed in the complex � plane.

Proof. The mapping � � � � � �[K � � �8��K � �
� � is an isomorphism of
� � � onto

�
with

the topologies introduced. And the mapping
� �'! �

is an isomorphism.

The relations (4.17) and (4.18) are simple computational results. �
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The generalized Mellin transform is then defined for any
�

in the space
�
�� � by the

continuous linear functional where we affix the superscript “
�
” to emphasize that it is a

generalized function

� � ��� � � �
� 5 0 � � �

�

� � � � ��� � � � ���	�P� � 1 � � � �
� 0 � � (4.19)

with the linear functional in the variable � . We have the result:

Lemma 4.2. The mapping
�
�� � � ��� � �� � is an isomorphism of

�
�� � onto

� �

�

�
�� � � �

� .

In the remaining part of this subsection the real part of � will be �	 , and we will omit
the index � , that is we use � � � �� . The next lemma is important for a rigorous
definition of the generalized Fourier transform pair (4.1), (4.3). We define the space of
tempered � +

functions by
�

� � � � � � + � � �,4 � ��� �`� 6 � � � � 	 � S � �8� � � 6 +  � *� (4.20)

Lemma 4.3. Let
� ��� - � � �

���� � and assume that � � � ��� - �"�	�P� � �
� . Assume that

� � � ��� � . Then ��� defined by (4.21) and (4.24) for  positive or negative respectively, is
a mapping of

� ��� � into
� ��� � , and the generalized Mellin transform of �
� on the positive

and negative axis satisfies (4.23) and (4.25) respectively. The functions � � � ���<���� � � �	 �0 �V� and � � � �
�<� �F�� � � �	 � 0 �V� are test functions in the space
�

.

Proof. With the assumptions of the lemma we may define for any  � � the linear
functional ��� by

���<���� � � � �� - � � �<� - � � � � � � - � � � �<� - � � � (4.21)

The functional (4.21) is a function, which in terms of the Mellin transform may be
expressed as the integral along the line Re �	��� � �	

� � �� - � � �<� - � � � �
� 5 0 �  � S � � � � � �F� ��� � � �<�	�P� � � � �

� 0 � � (4.22)

The generalized Mellin transform of ��� is easily proved to be

� � �
�<�	�P� � � � � �	��� � �<� � � �P� � � � (4.23)

In a similar way define for �� �
�
�<� �F�� � � � � �F - � � �<� - � � � � � � � - � � � �<� - � � � (4.24)

The generalized Mellin transform of ��� on the negative axis is:

� � � ���<� � �� � �	��� �	� � � � � � - � � �	�P� � �<� �F� �P� � � � (4.25)�
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We will now define the function space for the kernels of the Fourier transform class.
The canonical kernel �

� 	���0  � � is a holomorphic function of � tending to zero at infinity
in the upper half complex plane. The space of kernels is defined such that this prop-
erty hold for any kernels in the space. This will be the case if the space of kernels is
introduced by:

Definition 4.4 (Definition of the space of kernels � � ).

� � � � � � � � �� � 4 � � � � � 5 �7"TK S � � � � � � �	�P� � � +
� (4.26)

� � � � � � 5 � " 6 K S � � � � � � 6 +  �  � � ����� � � 0 � �
We will prove:

Lemma 4.5. Let
� �'� � then there exists a function

� � � � holomorphic in
� � such that

the distribution
�

on the real positive axis defined by (4.31) is continuous from above,
and

�
may be defined on the negative real axis such that (4.33) hold. For any � � � ��� �

the operators ���<��� �� � � ��� � , and � � �
�<��� �� � � , and for any � � � � � 5 � we have:

� � � � - K � � �"�	�P� � K S � � � � � � � � - � � �	�P� - �;��� (4.27)

Proof. Before defining the analytic continuation of
�

by (4.30) we will investigate the
behavior of � � �

. Let � � � � � 5 � , and assume that � � Im �	��� � � . There exists a
positive � such that � � �  5

and:4$� � K S � � � � � � �	�P� 4 � 4$� � K S � 1 K S � � � � � � � � � � �	�P� 4�� (4.28)

From the definition of � � the function K S � � � � � � � � � � �	��� belong to the space
�

� , and
the right hand side of (4.28) tend to zero as � ��� . In a similar way for �  � we have:4 � � K S � � � � � � �	�P� 4 � 4 � � K � 1 � � � �	��� 4 � (4.29)

which tend to zero for � � � � . That is the right hand side of (4.27) is in
�

for
any � � � � � 5 � and

� � � � may be defined in the upper half plane as the inverse Mellin
transform � � � � � �

� 5 0 > 6�� � S � � � � �	��� � (4.30)

with the integral along the line � � �	
� 0 � . From this equation it is seen that equation

(4.27) hold for � � � � � 5 � . Finally to prove that
�

on the real axis is the limit from
above of

� � � � , let � be a number such that � � � � 	 � S � � � � � �	 � 0 �A� is bounded. Then� � � � 	 � S � � �<� K S � � � � � ��� � �	 � 0 �A� tend uniformly to zero for � � � � , on any compact
interval. The same function tend to zero uniformly at � � � � . Which proves that for
any � � � ��� �$&%&'� ) � � � � ��K � � - �8� � � - � ��� � � �

� 5 0 $&%&'� ) � � � � � � � ��K � � - �8� � � - � � � � � ��� � � �8�	�P� � �����
(4.31)
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This proves that
�

in the distributional sense is continuous from above on the posi-
tive axis. The distribution

� � � - � is defined by� � � - � � � � � � S � � K S � � � � � � *� (4.32)

With that definition equation (4.27) is proved to hold for � � 5
. In the same way as used

above the limit of the function
� � �7� on the negative axis is

� � � - �$&%&'�G) � � � � � � � K � � � S � � - � � �F� �P�8� � � � � � - � � � � ��� ��� � ����� (4.33)

The generalized Mellin Transform of �
�<���� for  positive is given by (4.23), and
from the assumptions of the lemma follows that � � ��� � � , and �
� � � ��� � . Similarly
(4.25) show that � � ���<� � �� � � , and ���<� � �� � � ��� � . �

The fundamental properties of the Mellin Transformation that is used for establish-
ing the Fourier Transform class and the 1/x Generalized Fourier Transform class have
now been derived.

4.2.1. The Fourier Transform Class. We may now give a rigorous formulation of the
Fourier Transform pair (4.1), (4.3). According to lemma 4.3 for any

� � � � we may
define the Fourier transform on the space

� � �� by

�
�<���� � � � �� - � � �<� - � � � (4.34)

Lemma 4.5 shows that the inverse Fourier Transform (4.3) may be defined on the space
� � ��� � by

� S � � � - � � � � � �  - � � � ���� � � � � � � � �� - � � � � �F�� � � � � � (4.35)

The next result will show that � S � is indeed the inverse of the mapping � if and only if
the Mellin transform of

�
satisfies the nonlinear condition (4.38).

Lemma 4.6. Let
� � � � and let ��� � ��� � . Assume that

� � - � � � � � - � for - � � .
Then the Fourier Transform pair (4.34) and (4.35) hold if and only if � � � �

�
� � � �

with
� � the kernel of the canonical Fourier transform and

�
� � with the space �

defined by (4.43).

Proof. In lemma 4.3 it was proved that (4.23) hold. With the definition of the inverse
transform � � ��� � � ��� � , and using (4.35), (4.23) and (4.25) it follows that

� � � S � � �	��� �	� � � � �F� �P� � � � � � � - � � �	�P� � � � � � � �F�� � � � �.�P� � � � � � - � � �	�P� �
(4.36)

For the function ���<� � �� equation (4.23) is used to prove that � � � � � �� will sat-
isfy equation (4.27). Then using (4.27) and (4.23), equation (4.36) reduces to

� � � S � � �	�P� � � � � �	��� � � � � � � �P� � K S � � � � K � � � � � �<�	�P� � (4.37)

Hence � � � S ����� for any � � � � �� if and only if � � �
satisfy the equation

� � � �	�P� � � � � � � ��� � K S � � � � K � � � �� �$� (4.38)
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The Mellin transform of what is denoted the canonical Fourier Transform kernel
may explicitly be found as

� � � � �	�P� � ��0G� �^ � 5 � �	�P� � (4.39)

From
� � �Y� �P� � �	�P� � �

����� � � follows that � � � satisfies the equation (4.38). That is
� S � ��� �	� if and only if

� � �	�P� � � � � �	�P� � �	�P� (4.40)

with

�
� � � any solution of� �	�P� � � � � ��� � � � Re �	��� � �

� � (4.41)

If in addition the distribution
�

satisfies the condition
� � � � � � � � � � for � � � ,

then the function

�
must also satisfy� �	��� � � � � � � Re �	�P� � � ��� (4.42)

It is easy to see that a function

�
� � � is in the space� � �

�
� � � ��

� � �� � 0 �V� � � � � 	 � 0 �D���V�  � �D���V� � �D���V� � � �D� � �V� � � � � + 

(4.43)

if and only if the function satisfies (4.41) and (4.42). �
Thus the set of all Fourier Transform pairs is explicitly given by (4.40) with

�
in the

space � .

Next we will investigate the mappings generated by the Fourier Transform class.
Introduce the Hilbert spaces:

 � � 	 � � � � � ��� �  � � � � � � (4.44)

The inner product of  and � are � 	 inner products, and in � we have an addi-
tional factor �	�� in the inner product. It is well known that the mapping ! � � � is an
isomorphism of  onto � which is a subspace of � 	 , and the Mellin transform is an
isomorphism of � 	 ��� � � onto � 	 ��� � for � � �	

� 0 � . Using  ��� and � as index for
the inner products we have for any �� � � � ��� � :� �� � � � � � �<� �� �<� � � � � � � �<� �� � �<� � ��� � � � �<� � � � �<� � ��� � (4.45)

The main result for the Fourier transform class can now be formulated:

Theorem 4.7. Assume that the kernel
� ��� � , and

� � � - � � � � - � for - � � . Then
the transform pair (4.34) and (4.35) hold if and only if

� � � � � � S � � � ��� � , with

�
any function in the space � defined by (4.43). The mappings � and � S � have unique
extensions to � 	 ��� � � and �<� 	 ��� � � . And the mapping � � � � �
� is an isomor-
phism of the Hilbert spaces � 	 into � 	 . The class of operators in � � which satisfies
the transform pair may be constructed by ���  ��� � � , where � �	� S � � � is a set of
Abelian bounded operators defined on the space � .
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Proof. The first statement of the theorem is proved in lemma 4.6. The isomorphism
of the mapping � on the space

� � �� follows from (4.45) and 4 � 4 � � . The bounded

operator has a unique extension to � 	 ��� � � . This mapping is an isomorphism, and any
transformation has the form indicated in the theorem. �

This conclude the proof of theorem 4.7, and the construction of the Fourier Trans-
form class.

Example 1.

1. Consider the differential equation:
��

�  � �
� � � � 6 0 � � �
��

�  � �
� � �
�
� � 6 0 � � � � (4.46)

with
� � the canonical kernel (4.4). A solution of this differential equation is:

� �	� S � � � �	��� � � � �	�P� � � (4.47)

with � �	��� � � �	���� � �F� �P� � �	��� � ��

�  � �
� � �
� � �P� � (4.48)

Clearly
�

is an example of a kernel of a Fourier Transform pair.

2. Consider a kernel defined by (4.47) and (4.48) but with
�

defined by:� �	�P� � ��
�  	

� ��!�� � � � �P� ���  � � � � �=� � � � � ��� � (4.49)

A simple calculation show that the function ] defined on the imaginary
axis by ] � �F0 � � � � � � � and

�
given by (4.47) and (4.49) is the Hyper-

geometric function ] � � 0 � � of [SSK98] with properly chosen values of the
coefficients � � � � � �*� � and !�� .

Remark: In the paper [SSK98] a condition on � � � � � � � !�� � � �  is imposed that is
not satisfied for the � � � � � � � !�� � � �� in (4.49), so even though the kernels have similar
structures the space of kernels do not overlap. In addition the ] function is here defined
on the imaginary axis, whereas in [SSK98] it is defined on the real axis.

4.2.2. The � � � Generalized Fourier Transform Class. Consider the class of trans-
forms given by the transform pair (4.1), and

�<� - � � � S � � �
> +S + 0 - � ( -  � � �  - � � ����G6T � (4.50)

which is basically a generalization of the previous theory.

The canonical kernel is (4.5). This function is singular at zero, and the distribution
space to be used is

� � � S � � � . We are going to construct a second class of kernels which
are regular at zero in the sense that the distribution space to be used is

� ��� � as in the
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previous case. We will show that the product of Hankel and Bessel functions � � � ] �� � �
with � 9 � belong to the class constructed. The main difference of the present section
and the previous one is that the nonlinear equation for the Mellin Transform of the kernel
will couple the function � � �

on different lines in the complex � plane, see (4.58).

In order to formulate the theory we introduce an additional condition for the space
of kernels assuming that the Mellin Transform of the kernels are holomorphic functions
in a strip. Let �] � � � denote the set of functions which are holomorphic in the set � . The
space of kernels will be defined by:

� � � � � � � � ��
� � � � � � �F� �P� � � 	 � �	��� � �] ��� Re � � � �� � � � 
� � � � ��

� �
� � � �� � � � 
� � � � � � 	 � � �

� 0 �A�
� � � 
 � (4.51)

where � � 	 � denote the analytic continuation of the function � � � � �	 � 0 �V� onto the
strip �,KT�	�P� � � �	 � � � �	 � � � . The condition � � 	 � � � � is by definition uniform in � that
is we assume:

� ��� � � � �
� � � �� � � � 
 � � � � 6 � � � � 	 � S � � � 	 � � �

� 0 �V� 6 +  � � (4.52)

The inverse transform in the distributional sense is introduced as

� � S � � ��� � � > +S + 6H. � ���� � - � � �F - � � 6 � 0 - �8� - � �6 - � � (4.53)

In theorem 4.8 it is proved that (4.53) indeed define a linear functional on the space
of test functions � � ��� � � � . The set of kernels in � � for which (4.53) is the inverse
operator of � will also be found.

Theorem 4.8. Let
� � � � and let � � � ��� � . Then (4.53) define a linear functional on

the space � � � � � � � . The � � � Generalized Fourier Transform pair (4.34) and (4.53)
hold if and only if � � �

has the form (4.59) with

�
any function which satisfies the

equation (4.60). If in addition
� � - � � � � � - � for - � � then (4.42) hold.

Proof. First we prove that the integral (4.53) over positive  exists. With the assump-
tions of the theorem, the function � � � ��� � . For ��;� a similar result to (4.22) is found
as

� 5 0 � -  � ��� - �� � � - �8� - �
� - � � �  � S � � � � � ��� - � � � �,� ��� � � � � ��� � �8�	�P� � �  � � � � � 1 �

(4.54)

The function � � � � � � - � � � � � ��� is expressed in terms of � � � � � - � � � ��� �P� by (4.27).
The functions � � � �

, and � � � �P� � � � � � � - � � � �,� ��� � �
� , are both analytic or has

analytic continuations in the strip � � � �	 � � � �	 � � � . Let � � 	 � � � � - � � � � � �P� be the
analytic continuation of the function � � � � � � - � � � � �.�P� . The contour of (4.54) may be
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deformed onto the line Re �	�P� � �	 . The part of the integral (4.53) over positive values of is then reduced to

� 5 0 > +� 6H  � ���� � - � � �  - � � ��0 - �8� - �
� - � � (4.55)

� � � �  � �	�P� � � 	 � � � � - � � � � � �P� � � �F� �P� � ���	�P� � �  � � � � 1 �
In a similar way the corresponding relation for the integral over negative  is found

as

� 5 0 > �S + 6T  � ���� � - � � �F - � � �V0 - �8� - �
� - � � (4.56)� � � � � � �F�� � �	��� � � 	 � � � - � � � �,� ��� � � � � ��� � �8�	�P� � �  � � � � 1 �

Using (4.27) in (4.55) and (4.56) it follows that5 � � S � � ��� � � � � � �	��� � %�� 5 � � � 	 � � � - � � � � � ��� � � � � ��� � �8�	�P� � �  � � � � 1 � (4.57)

Collecting the results it is seen that a function in the set � � is a kernel of a transform
pair if and only if the following relation for the generalized Mellin transform hold

� �F� � ��� %�� 5 ��� � � �	��� � � 	 � � � � �P� � �
� Re �	�P� � �

� � (4.58)

The generalized Mellin transform of the canonical kernel
� � (4.5) is defined for

� � � �  � . Let � � 	 � � denote the analytic continuation of the generalized Mellin
transform of

� � . A simple calculation show that � � 	 � � satisfies (4.58). Thus the set of
transformations will be given by

� � � �	��� � � �	��� � � 	 � � �	�P� � � 	 � � � � �^ � 5 K � � � � � �	� ��� � � (4.59)

with

�
� � � an analytic function in a strip � �	 � � � �	 � � ��� � which satisfies the equation� �	�P� � � �,� ��� � � Re �	�P�
� � �� � � � 
� � � � � (4.60)�

Now implicitly all possible functions
�

in the space � � , which are kernels of a � � �
Generalized Fourier transform pair, are constructed,

The conditions for the functions may seem complex therefore consider the following
simple subspace of functions for which the transform pair hold. Let �] � � � �	 � �	 � � denote
the space of bounded holomorphic functions in the strip � �	 � �	 ��� �

�] � � � �� � 
� � � � �
�
� �] � � �� � 
� ��� � � 4 � ��� + � � �� � 
� � � � � *� (4.61)

Introduce the space� � � �
�
� �] � 4 � �	��� � � �	���

� � � � �P� � � � �P� � � �	�P� � �]  � (4.62)
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where �] �
and �] are bounded holomorphic and holomorphic functions respectively in

the strip � �	 � �	 � . Let
� �[� � � � S � � � � � � , with

�
� � � and

� � the canonical � � �
Generalized Fourier Transform. Then

� � � � , and the two equations (4.60) and (4.42)
hold; i.e.

�
is a kernel of a � � � Generalized Fourier Transform pair.

Theorem 4.9. Assume that
� � � � � � S � � � � � � � . Then

�
is kernel of a � � � Gener-

alized Fourier Transform pair.

An interesting class of operators for which this apply is the following:

Example 2.

Let the kernel be given by a product of a Bessel and a Hankel function:

� � � � ��0 � 5
� K � � � ��� S � � ] �� � � � � � � � � ��9��=9 � (4.63)

This function is in � 	 , and
�

is the limit of
� � , with

� � of the same form, but
instead of ] �� � � � we use ] �� � � � �� � . The Mellin transform of

� � is found in
standard mathematical tables of integrals [GR79], and the limit function � � �
is determined as

� � 	 � �	�P� � � �	�P� � � 	 � � �	��� � � �	���
� � � � �P� � � 	 � �H�	��� �

with

� �	��� � �
�
�
� S � � 	 	 � � �F� �P� � � � � � � �

� � � � � � � ���
� � � (4.64)

Hence

�
from example 2 is in the space � � , and the following result has been obtained

Corollary 4.10. Let �_9�� 9;� then the functions
�

given by (4.63) are kernels of � � �
Generalized Fourier Transform, with the inverse transformation given by (4.53).

Remark: As another example the functions from Example 1.2 (4.49) can be used to
construct a kernel that also is a hypergeometric functions for the � -transform.

Finally introduce Hilbert spaces with the property that the transform pairs are home-
omorphic mappings. In the space ��� � � � introduce the inner product by

� �� � ��� � > +� 6 - �<� - �- 	 � � - � � (4.65)

The space  is defined as the smallest Hilbert space, with the inner product (4.65),
which contain the space � � � � � . In the space � � � �  , with

� � the canonical kernel
(4.5) of � � , the inner product is defined by

� � � % �
�
�

> +S + 6TW 	 � ���� % ���� � (4.66)
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The operator � � is then an isomorphism of  onto � . Finally the inner product for
the classical Mellin transform of � in the set � � �

	
� 0 � is defined for any � � % � � by

� � � � � % � � � �
� 5 > +S + 6 � � � � 
H� � � 0 �V� � % � 
H� � � 0 �V� � (4.67)

It is easily proved that � is an isomorphism of � onto � .

Theorem 4.11. Let
� � � � � � S � � � � � � with

�
� � � the kernel of a � � � Generalized

Fourier transform � . Then � � � S � is a � � � Generalized Fourier Transform pair and �
has a unique extension onto  . The mapping � "  � �  � � is a homeomorphisms
of  onto � . The transform � in the space  is found from,

���<���� � � � + � � S � � �	�P� � � 	 � � �	��� � �<� �F� �P� � (4.68)

and the inverse transform defined on � is given by (4.69).

Proof. The function � � 	 � � �	�P� � �<� � � ��� is in the space � for all � �  . Since the
function

�
is bounded

� �	��� � � 	 � � �	�P� � �<� � ���P� � � and � given by (4.68) has a
unique continuous extension to the space  , and �
� � � will satisfy (4.68) for any
� �  . The inverse mapping is given by:

� S � � � S �� � S � � S � �'� (4.69)

With the assumptions of the theorem the mappings

� ��� � and

� S � ��� � , are continuous
in the space � , and it is concluded that

�
as well as

�_S � are continuous mappings
defined on the spaces  and � . This completes the proof. �

We are going to apply the theory for the solution of integral equations with kernels
which are products of Bessel and Hankel functions. Thus we will also need the result
that corollary 4.10 hold for that case. From (4.64) follows that:

4 � � 
� � 0 �V� 4 � � 4 � � �	
� 0 ��447� � �
��0 � 4 � (4.70)

with � a constant. Hence the assumptions of corollary 4.10 is satisfied for this kernel and
we have the result:

Corollary 4.12. Let the kernel of the generalized Fourier transform be given by (4.63).
Then the mapping � "  � �  � � is a homeomorphisms of  onto � .

4.3. Explicit Construction of Solutions

The aim in the remaining part of this chapter is the explicit construction of �<� - � from
� ���� , and its applications to an inverse time dependent scattering problem.
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4.3.1. Integral Equations - Kernels are Products of Hankel and Bessel Functions.
Let

�
be given by (4.63) and the numbers � and � be nonnegative half-number integers

with � 9 � 9 � . This restriction on � � � �W� is to allow only the Hankel and Bessel
functions that have been treated previously. The fundamental integral equation is> +� 6 - �<� - � � �� - � � � ���� � (4.71)

From corollary 4.12, follows that this integral equation has a unique solution given by
(4.53), with the mapping from � onto � being continuous. We will refer to the solution
of this problem as the “frequency space” solution.

The kind of integral equations to be analyzed is (4.71) with the kernels

� �� � � � � ! � � � �� � � � � � � � � � � � � �� � � � ] � �� � � � � ! � � �
� ^ � 5 � � 0G� � S � � (4.72)

where � � and � � denote the spherical Bessel and Hankel functions defined by � � � � � �� �
	 � � � � �� � � � and � �� � � � � � �

	 � ] �� � �� � � � . We will show how the problem may be

solved in a case relevant for the inverse scattering problem which allow us to introduce
proper space restrictions. Let  be the Hilbert space with inner product (4.65).

Theorem 4.13. Assume that �8� ��� � ! S ��� has compact support on
� � , with � � - S ��� ��� � �� 	 � � � . Then the integral equation (4.71) has a unique solution in the space  . The ex-

plicit solution is given by (4.76). Let � and � be the normed spaces defined by (4.78)
and (4.79), then the mapping (4.76) is continuous.

Proof. Let

� ���� � �^ � 5 > +� 6 � ��� �*� K � � �

(4.73)

For the Spherical Hankel functions we use the known expansion

� � � �� � - � � � � 0 � � K � (0 - � � � �
�
�  �

� � �- �  (4.74)

with � � � known complex coefficients. A corresponding expression as a finite sum exists
for the Spherical Bessel function. Using this, the kernel reduces to

� �� � - � � � �5 � � � � � � � � K � 	 (0 - � � � �
�
�  �

� � �- � ��� �0 - � � � �
�
�  �

� � �- � ��*� (4.75)

We now find the formal solution of the integral equation (4.71). That is, we assume
that � with the specified assumptions is in the space � ��  . Then � may be calculated by
the inverse transformation (4.53). The last term will give zero contribution to the inverse
transform, by closing the contour of integration, and the first term (proportional to K � 	 ( )
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reduces after a few calculations to the expression

�<� - � � � � �� � S � ! �8� - � �
�A� � � � � � - � ( �8� � - �D� ��� � �

� � �8� � - � � > 	 (� % � � � � - � �8� �*�G6 �  � (4.76)

with

% � � � � - � � � - � ( �
�
�  	

0 � � � �- � �  � � ��� � �8� � - � � S � � (4.77)

Using the space assumptions � � - S � � ��� � �#� 	 � � � and substituting � � - � � in

% � � � � - � we easily verify that � given by (4.76) is in the space  . That is � � � �� 
and � is the unique solution of the integral equation (4.71).

Assume that the support of � is on � � ��� � . Define the space

� � � � � ] � � � � ��� ��� �� 6 �&6 � ' ��� � 6 �&6 � �
� � � � � � � �$6 � ( �&6 � �

� � � � � � � � 
 � (4.78)

and introduce � by:

� � � � ��� 	 � � �*����� �� 6 ��6�� 6 ��6 � �

 � (4.79)

then the mapping � � � � � � �� � S � ! � � � is continuous. �
In the same way the following integral equation may be solved explicitly:> +� 6 - �<� - � � S� �� - � � � ���� � (4.80)

with the kernels: � S� � � � � ! � � � 	� � � � � � � � � � (4.81)

Assume the right hand side of (4.80) to have support for its Fourier Transform on
the negative axis. Let

� ���� � �^ � 5 > �S + 6 � �8� ��� K � � � � (4.82)

Now the complex conjugate of (4.80) has exactly the same form as (4.71), and we
find the explicit solution of (4.80) from the previous result as

�<� - � � � � S� � S � ! �8� - � �
�A� � � � � � - � ( ��� � � - �8� ��� � �

� � �8� � � - � � > 	 (� % � � � � - � �8� � �*�G6 � *� (4.83)

We have the result:

Theorem 4.14. Assume that �8� � ��� � ! S � � has compact support on
� � , and � � - S � � ��� � �� 	 � � � . Then the integral equation (4.80) has a unique solution in the space  . The ex-

plicit solution is given by (4.83). Let � and � be the normed spaces defined by (4.78)
and (4.79), then the mapping (4.83) is continuous.
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This concludes the construction and proof of basic theorems for the integral equa-
tions with kernels, that are products of a Hankel and a Bessel function. We note that
similar explicit solutions of the form (4.76) or (4.83) may be obtained for integral equa-
tions with kernels � � � � � � � � � � � and � 9 � .

4.3.2. Integral Equations - Kernels are Products of two Bessel Functions. Using the
above constructions for solutions of integral equations with kernels that are products of
Hankel and Bessel functions, we can find the solution of integral equations with kernels
that are products of two Bessel functions. The kind of integral equations to be analyzed
are > +� 6 - �<� - � � � �� - � � � ���� � (4.84)

with the kernels
� � � � � � � ! � � � � � � � � � � � � � � �� � � � � � � � � � � S� � � � � (4.85)

where
���� are the previously defined kernels (4.72) and (4.81).

It is assumed that the functions � and  � are in � 	 . We may decompose � in a
sum of two functions with inverse Fourier transforms on a half axis:> 	� 6 - �<� - � � � �� - � � � � � � � � � � � � S � � � � ���� � � S ���� � (4.86)

where the projection operator used is ! � � � � ! S � :
� � ���� � ! � � � � ! S � � � �^ � 5 > +� 6 � ��� �*� K � � �

� (4.87)

and

� S ���� � � �F� ! � � � � ! S � � � � �^ � 5 > �S + 6 � ��� �*� K � � � � (4.88)

The integral equation is then:

� �� � � � �
� � S �;� � � � � � S� �>� (4.89)

The left hand side of this equation has an inverse Fourier Transform (in the distribu-
tional sense ) with support on the set � � � � � , and the right hand side has support on the
set �?� � �*� � . Then, the support of (4.89) is on 0. That is ! S � � � �� �W� � � � is a finite
sum of derivatives of delta functions in 0. Now � � ��� 	 � � � and we are looking for
solutions � �  , i.e.  � ��� 	 � � � . Then ! S � � � �� � � � � ���� , and we have found the
following integral equation: > 	� 6 - �<� - � � �� �� - � � � � ���� � (4.90)

with the unique solution � � � � �� � S � ! � . In the same way we obtain:> 	� 6 - �<� - � � S� �� - � � � � � � � � S ���� � (4.91)
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with the unique solution � � � � � � � � � S� � S � � .

Since both (4.90) and (4.91) uniquely determines �<� - � , the solutions of (4.90) and
(4.91) must coincide. Using Corollary 4.12 and theorems 4.13 and 4.14 we may prove
the result:

Theorem 4.15. Assume that � � ! S � � has compact support on
�

and belong to the
space � � - S ��� ��� � � � 	 ��� � . Then the integral equation (4.84) has a unique solution in
the space  , if and only if, the unique solution of (4.90) coincide with the unique solution
of (4.91). The mapping from the space � to � is continuous and given by

�<� - � � � � � - � ( �8� � � - �D� ��� � �
� � �8� � � - � � > 	 (� % � � � � - � ��� � ���G6 � � (4.92)

where the kernel % is defined by (4.77).

4.4. Application to the Inverse Scattering Problem for Low Contrast
Mediums

The scattering of an acoustic wave by a penetrable inhomogeneous medium (a scatter)
is normally discussed in either the frequency or the time domain. This means that the
scatter is either illuminated with a time harmonic/periodic field, or with a time varying
field. In the first case, the underlying PDE is the Helmholtz Equation, whereas in the later
case, the PDE will be the Wave Equation. For the Inverse Medium Problem properties
of the bounded inhomogeneous medium may be found from measuring the fields outside
the inhomogeneous medium.

When considering medical applications, two different contexts appear naturally. One
is where only the location of an object is of interest, and this could be when trying to
examine whether there is a tumor in the body and how big it is [CCM00]. The other is
when internal properties are needed - such as for instance the glucosamine production
of a tumor for predicting survival rates and recommending treatment plans for patients.
The latter is a much more difficult problem, since local variations are needed, in contrast
to the first, where only an overall change is of interest.

For the method to be proposed here the forward scattering problem (of illuminating
an object) will be discussed in both the frequency and time domain. The incident field
will be the composition of an incident spherical field and the scattered field hereof by a
homogeneous medium. The mathematical formulation of these two problems are given
in table 1

The relationship between the two formulations are that � ��� ���*� � ! ��� ��� ���� . If in
addition the medium is assumed to be non-absorbing the coefficients in the PDE’s will
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Frequency domain equations Time domain equations��� 	 � � 	 ������� � ��� �������� ��� 	 �=� S 	 ����� 

�


 �

� � � ��� ���*� ���
� ��� ���� � � � ��� ���� �

� �2� ��� ���� � ��� ���*� � � � ��� ����� � � � � ��� �����
� � ��� ���� � � � � ��� ���� �

� �2�� ��� ���� � � ��� ���*� � � � � ��� ���*� � � � �� ��� ���*���� 	 � � 	� � � � � ��� ���� ��� ��� 	 �=� S 	� 

�


 �

� � � � � ��� ���*� ���$ %&'(�) + - /
� � �2��
� - � 0 � � � �2�� � 3 � � $&%&'(*),+ - /

� � � ��
� - � 02� � � � �� 3 ���

$ %&'(�) +.- /
� � �2�
� - � 0 � � � �2� � 3 � � $&%&'(*),+.- /

� � � �
� - � 02� � � � � 3 ���

Table 1. Table of the mathematical formulation for the acoustic scattering problem in
the frequency and the time domain respectively.

satisfy

� 	 ����� � � 	�
������� (4.93)

� 	 ����� �  	� 	 ����� � � 	� � � �
��������� @ � � � � ������ � (4.94)

where �
@

denotes the characteristic function for an open set 	 , � � the speed of sound
outside the inhomogeneous medium and ������� the refractive index.

The inverse time dependent problem is from knowledge of the incident and scattered
fields for all times on a sphere encircling the inhomogeneity to reconstruct the refractive
index.

A common way of representing the solutions of the scattering problem in the fre-
quency domain is by the Lippmann-Schwinger integral equation.

� ��� ���� � � � ��� ����<� � 	� >A@ B ��� ��CD�"� � � ��������� � ��C ����G6HC � � � � � (4.95)

Since � 	� � � 	 ����� has compact support equation (4.95) is a Second Kind Fredholm Prob-
lem for � ��� ���� with

B
the Green’s function for the Helmholtz Equation and � � the

incident field.

We construct an additional integral equation that can be used for solving the prob-
lem. Let ����� ���*� ��� ��� ���� denote free-space solutions ( � 	 � � 	 constant respectively). By
introducing � � � � � � and denoting � � � the convolution between � � � it follows
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from Green’s Theorem that>
� � � � 	 � � �F� ��� � � �,6T�_� >

� � � � 	 � � �F� ���"� � � � � � � 6H�
� �� 	� >


 � � � � 	 � � �8� � � � � �
���

� � � � � � � � �� � 6 � �� (4.96)

and>
� � � � 	 � �
� S 	� �=� S 	 � � 	� � 	 � � � �76H� � >

� � � � 	 � �
� S 	� �=� S 	 � � 	� � 	 � � � 6T�
�

>

 � � � � 	 � � � � �� � � � � � �

��� 6 � � � (4.97)

Assuming that the contrast of the medium is low and without absorption ( ������� ; � ,� 	 ����� ; � 	� ) the second terms in (4.97) and (4.96) respectively are of second order
compared to the r.h.s. In physical terms this means that the scattered field is very small,
since for a low contrast medium most of the field will be transmitted through the medium.
Hence, for mediums with low contrast (4.97), (4.96) reduces to>

� � � � 	 � �
� S 	� � � S 	 � � 	� � 	 � � ��6T� � � � �8� ��� (4.98)>
� � � � 	 � � �F� ��������� � � �,6T� � �� 	�  (4.99)

which are equations that we will be able to construct explicit solutions for.

4.4.1. Reduction to a One-dimensional Integral Equation. After having listed the
forward problem in table 1, and defining the necessary integral equations, we introduce
the inverse problem of finding ������� and elaborate on how the transformation theory
applies to solving (4.98). Let ������� be compactly supported in

� �
� �*�A� , a ball with center
at zero and radius � .

Assume that � ��� ���*� is known for 4 ��4 � � and � � � . Then � ��� ���� is known for
all  � � . If � � � ��� ������� � � � � � � 4 ��4Z� , then � � ��� ���*��� �7� � � � # 4 ��4Z� � � � � � � # 4 ��4Z� and
� � ��� ���� � � � ��� � - � .

For the 3-dimensional Helmholtz Equation, a general free-space solution � ����� can
be written as � � � � � � � � ��� � 4 � 4Z� � �� � �� � where � � � � ��� � �

	 0 � � � �� � � � are the Spherical

Bessel functions and � �� � �� � Spherical Harmonics. Let � � � ��������� � � � � �� � � �*4 � 4Z� � � � � �� �
then using � � � � � � � ��� � 4 ��4Z� � �� � �� � and either � � ��� �� ��� � - � or � � � � � ��� � - � the r.h.s.
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of (4.99) (or (4.96)) reduces to

� 	� > 	� � � ��� � - � � � ��� � - � >

 � � � � ( � � �������D��� � � �� � �� �G6�� - 	 6 -

�
> +� � � ���T� - � � � ���T� - � �� � � � - � - 	 6 - (4.100)

Our inverse problem of finding ������� is therefore reduced to that of finding � � � � - � �- �� � � � - � compactly supported on � � �*��� from the integral equation (4.101)> +� �H� - � �P���T� - � � � ���T� - ��� � � � - �D6 - � ! ��� �*� (4.101)

�8� �*� � ! S � �� � >

�� � � � 	 � � ��� � � � � �

� �
� � � � � � � � ���� 6 �

If �8� �*� satisfies the assumptions of theorem 4.15 then the result of theorem 4.15
applies to � � � � - � .
Corollary 4.16. Assume ��� �*� in (4.101) satisfy the conditions in Theorem 4.15, then
equation (4.101) has a unique solution and the permittivity can be found as

� � �F� ��������� � � �� � � �
� � � � � 	 � � � �- � � � �*4 ��4Z� � � � � � 9 � (4.102)

4.5. Conclusion

We have constructed classes of integral kernels such that the Generalized Fourier Trans-
form pairs ��� � � S �� are continuous mappings and such that elements in the classes are
found through an Abelian map � ��� .

New spaces of � -transform with inverse maps have been constructed and a space of
kernels that are products of a Bessel and a Hankel function have been constructed.

To the authors knowledge, no theory handling these classes of kernels exist.

The theory’s application to the Inverse Medium Problem has been established by
solving a first kind problem representation explicitly. This representations of the problem
in terms of time dependent data is also new to the authors knowledge.
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Chapter 5

The Conductivity Problem

The aim of this chapter is to motivate the Inverse Conductivity Problem, briefly describe
the results with many boundary experiments and then focus on the single boundary mea-
surement problem. The chapter concludes with the obtained results of chapters 6 and 7.

The range of possible applications for the Inverse Conductivity problem is large and
includes fields such as control of sediments, and finding structural flaws in metals. The
physical aspects of the problem is to induce a current on the boundary of a conducting
body, no matter whether it is a human, the earth, or a metal constructions and then from
the boundary values of the potential, to determine physical properties of the subject. The
inverse conductivity problem was among the mathematical areas that was discussed in
the 1996 National Research Council work [Cou96] on emerging areas of biomedical
imaging. The medical use may be reviewed in the IEEE special issue on “Electrical
Impedance Tomography”, [IEE02].

Let � � � �
, � � �	��
 be a bounded simply connected domain with smooth bound-

ary �� . The electrical conductivity of � is represented by a bounded positive function
� ����� 9 � �;� . In the absence of sinks and sources, the equation for the static potential
is given by

� �T� � ����� � � � � � � � � � (5.1)

Let ] denote the usual Sobolev space of weak derivatives. Given a voltage potential
��� ] �
	 	 � �� � on the boundary �� , the induced potential � � ] � � � � is a solution of
the Dirichlet problem

� �T� � ����� � � � ��� � � � � (5.2)� �	� � � �� � (5.3)

65
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The Dirichlet to Neumann map, or the voltage to current map, is then given by

� � � �E� � - �
� �
� � S 2 ���� 


� � (5.4)

For every
�
� ] S �
	 	 � � � � with � 


� � ��� the Neumann boundary value problem��� � � ����� � � � ��� � � � � (5.5)

�
� �
� � �

� � � � � � (5.6)

has a unique solution � � ] � � � ). The Neumann to Dirichlet map, or current to voltage
map is then defined as

� S �� " ] S �
	 	� � �� � �� ] �
	 	� � �� � (5.7)�
�� � �� 


�
(5.8)

where the subindex on ] S �
	 	� � � � � means that the integral over � �� � is zero.

The present mathematical formulation for the Inverse Conductivity Problem dates
back to Calderón [Cal80], who asked if the potentials from all possible currents are suf-
ficient for a unique determination of the conductivity? The question has been answered
in the affirmative for isotropic medias in

� �
. In

� 	
results exist for a large class of con-

ductivities proving that if the conductivity is in ����� ��� � � with  � � , i.e. having one
weak derivative in � � , then uniqueness hold [BU97].

Before Calderón proposed this formulation, experiments with and extension of the
traditional EKG had been carried out in the late 1970’s by Colli Franzone and Colleagues
[Fra79]. They attached hundreds of electrodes on the surfaces of the torso and measured
the potential that the contraction of the heart induces on the surface of the torso. Their
results with inferring the electric potential on the surface of the heart where promising in
simplistic experiments, but unsuccessful in clinical application. The complexity of the a-
priori unknown electrical properties of tissue, essentially made the method unsuccessful.

In 1985, Kohn and Vogelius [KV85] proved that if � � ��� +
and � is piecewise

real analytic, then � � determines � uniquely in dimensions � 9 � . In [SU87] Sylvester
and Uhlmann showed that if � � � � +

, then � � determines � in � + � � � in dimensions
� 9 
 . Nachman gave a reconstruction method in [Nac88] in dimensions � 9 
 for� � � ����� � � � and �� � � ����� . In [Nac96] he then proved that for � � � uniqueness holds
for �� Lipschitz and � ��� 	 � � � � � for  � � . The uniqueness result was extended to� � � ��� � � � � for  ��� in 1997 by Brown and Uhlmann [BU97]. The uniqueness result
of Nachman [Nac96] was proved in a constructive way. Numerical verification of the
reconstruction method has been performed by Siltanen for radial symmetric objects on
synthetic data [Sil99]. In its’ current form, the reconstruction method is not a real-time
reconstructions method. Suggestion for how to build a reconstruction method from the
uniqueness result of Brown and Uhlmann has been undertaken by Knudsen and Tamasan



5. The Conductivity Problem 67

[KT01], but is not yet conclusive. Applications to clinical data of these reconstruction
methods are still to be performed.

For clinical trials a vast number of linearized and iterative methods for reconstructing
the conductivity has been suggested. References for the mathematical litterature may
be found in the survey article [CIN99] and for engineering litterature in [IEE02]. As
an example one experimental setup that has been applied is by a Research group at
Rensselaer Polytechnic Institute (RPI). It works in real-time using a one-step Newton
method for reconstructing the conductivity, enabling them to achieve an update rate of
60 reconstructions per second.

Another relevant question is how to incorporate a-priori information into the re-
construction, and to develop simple, stable, and fast reconstruction methods. One such
question is the study of internal cracks in metal constructions [FV89], for which an ex-
tensive amount of literature is available. Another is how much can be reconstructed from
partial Cauchy data, in the case where only part of the boundary is accessible. A third
question is what can be reconstructed from a finite number of experiments. It is found
that one experiment can be sufficient for determining internal boundaries for polygons,
convex polyhedra, multiple disks, and balls.

Subsequently let the conductivity be a piecewise constant function � defined as

� ����� � � ��� � � @ � �
� �  � � � � @

 � ��	 � � � 	 � ���	��0 �� �
Assume that � � S �� � � � � � 
 is known for one

�
� ] �
	 	� � �� � . The natural questions to ask

are

� Can 	 � and � � be uniquely determined?
� How to reconstruct 	 � and � ?
� Is there stability for reconstructing 	 � and � � , and how?
� What is the optimal

�
to use?

Partial answers exist to these questions.

To fix ideas, let � � � , � � be fixed (known) and denote �
� the solution of � � �E� �

� �� with � � compactly supported on 	 � and denote � 	 the solution when � � is compactly
supported on 	 	 . Let � � S �@  � � � � � 
 denote the Cauchy data for � � .

For discussing uniqueness of different objects the natural tool to use is harmonic
continuation. We will use this to describe some of the geometrical constraints for which
uniqueness is well-known. The first observation that is made for two different domains	 � and 	 	 is that if their Cauchy data coincide, then 	 � � 	 	 ���� . Assume to the
contrary that there exist two models with the same Cauchy data, but where the inho-
mogenities are disjoint when overlayed onto � , i.e. 	 � � 	 	 ��� . Then the Cauchy data
can be extended from � � to � "��
	 � � 	 	 � . Since, say, �

� has a harmonic extension onto
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	 	 and � � is continuous across ��	 	 , �
� �

� 	 inside 	 	 . But then

� � � � � � S� � 	 � � �� � 	 � � �� �
� � �

S� �
� � �

S� � 	 � � ��	 	 (5.9)

and it follows that � � � � � for � � , contradicting that � is piecewise constant.

If 	 ��� 	 	 and �
@
� � � � � � @ � � � � then Alessandrini found that 	 � � 	 	 . To

show this denote � related to 	 � as � � , 0 � � ��� , and assume w.l.o.g. that � 	 � � � . Using
Green’s formula he wrote the integral identity (with � � � � )> �

� � 4 � �
� 4 	 � >



� �
� � � � � � >



� � 	 � � � 	 � > �

�
	 4 � � 	 4 	 9 > �

� � 4 � � 	 4 	
This however, contradicts that �

� is a solution, since the variational formulation of
(5.1) yields that �

� is the unique minimizer of the energy integral. See Rudnicki et
al. [NRS96] for a discussion of the Dirichlets principle.

To prove uniqueness of convex polyhedra, we first establish that if two convex poly-
hedra 	 � have a piece of their boundary in common, then 	 � ��	 	 if their Cauchy data
on � � coincide. To see this observe that they have harmonic continuation that coincide
on � "�� 	 � � 	 � � and on 	 � � 	 	 . Let 	 � "�	 	 �� � , then the boundary consist in part
of �8�
	 � � 	 	 � and �8�
	 � � 	 	 � . Again �

� and � 	 coincide hereon, and hence inside.
Similar to (5.9) �

� and � 	 coincide globally, hence 	 � � 	 	 . This result can easily be
extended to a larger class of domains having a part of the boundary in common. Isakov
[Isa98] defines this class as 0 -contact domains.

For the class of convex polygons satisfying 6H02� � �
	 � �  6T0 � �#�
	 � ��� � � uniqueness
is also established. It is based upon the following lemma for unique continuation across
a vertex. We state the lemma since it is important for the indication of which

�
�] S �
	 	 � �� � to use.

Lemma 5.1 ([Isa98, 4.3.6]). Let � solve � � �E� � ����� � � with � �� 

�

not a constant,
and � � � 	 . Let the origin be a vertex of a convex polygon 	 and let � have a harmonic
continuation onto a ball

� �
� � � � . Then there is a rotation of the plane such that � on this
ball is invariant with respect to this rotation.

Since two distinct convex polygons can not have a part of a boundary in common
neither be disjoint if their Cauchy data coincide , they must intersect. In this case there
exist a vertex for which � 	 has a harmonic continuation, but for which �

� not readily is
harmonic. From lemma 5.1 let the angle of rotation be � 5 � � , � ��� . Since 	 is convex
under the distance condition 6H02� � �
	 � �  6T0 ���"�
	 � ���� � , there is a sector � of

� �
� ��� �
with � ��6T02� � �
	 � � and angle � 5

that is contained in � "�	 � . Rotating � , � times by
� 5 � � yield that �

� has a harmonic continuation from � "�	 � onto 	 � , hence �
� �

� 	 ,
[Isa98].

Barceló, Fabes, and Seo [BFS94] first relaxed the distance condition by assuming
that � � � 4 
 � � � +

such that � � did not have a harmonic continuation across �� .
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Alessandrini, Powell, and Isakov [AIP95] subsequently found that

� � � � ����4 � � � 
 � � index of � � � for � � � � 

A function

�
� � 	� � � � � is of index zero if � � � � � 4 � ����� 9 �� is connected for

any � � � . From lemma 5.1 follows that if � has a harmonic continuation across a vertex
then � � � � . Hence by assuming � � � to be of index zero they established uniqueness
for polygons. This result is only valid in

� 	
since it relays on techniques from complex

analysis.

For multiple disjoint disks, Isakov and Powell [IP90] used another result for har-
monic continuation. If � is harmonic and bounded on � " � where � is a discrete set of
points without any accumulation points, then � has a harmonic extension to � . Through
a series of complicated geometrical reflection and inversion arguments, they proved that
if � � � � � � � � � � has compact support on

� � �� then uniqueness hold for mul-
tiple disk. For one disk however Kang [KS97] proved uniqueness through a simpler
argument. He found that the weak solution � of � � �E� � � � can be represented as� � � ��� � @  � 	 � �

@
 where � � ] 	 � � � and

� �
@
 � 	 �

�
@
 � ] 	 � � " � 	 � a single-layer

potential (for the derivation hereof see (6.30) page 79). Relaying on this representation
formula he found that for disks

� � � � � � � � �
�A� � � �

� � � � � � � � � ��	 �
He established that if two disk 	 � have the same Cauchy data, i.e. �

@
� � � � � � @ � � � � on

� � , then 	 � ��	 	 .
For balls in

� �
Kang [KS99] again used the representation, � � � ��� � @  � 	 � �

@
 � He

proceeded to show that for 	 � � �
� �*67� a ball with center � and radius 6
� �

@
� 	 �

� � � � � 64 � �X�`4 � � @ � 	 � � � � � �
	 ��� ��� � � � �
where � � �
	�� is � reflected over ��	 , has a harmonic continuation onto a neighbor-
hood of ��	 . From somewhat complicated geometrical arguments he concluded that if
�
@
� � � � � � @ � � � � on �� , then 	 � ��	 	 .
A last important result for the single measurement problem, is the local uniqueness

that only holds for
� 	

. If

�
is of index zero, 6H0 ���#�
	 � �*	 	 � is small and �

@
� � � � �

�
@ � � � � , then 	 � � 	 	 . In [Isa98] arguments for why it may not be readily extended

to
� �

are given.

Several search strategies have been proposed for recovering the location and shape
of 	 . In the paper [KSY02] numerical experiments for small objetcs with a periodic
paramatrization in

� 	
are made. They used a Levenberg-Marquadt algorithm for recov-

ering the shape of 	 . From the result of [KS01] for the bounds on 	 , they made an
adequate initial estimate for the location of 	 . Starting from a disk their algorithm then
found the unknown body 	 . Their numerical experiments have led them to conjecture
that uniquenes can be obtained for larger classes than what is currently known.
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A final problem to be adressed is the Inverse Problem when both 	 and � are un-
known. Not many results exist for this problem.

In [KS99] it was shown that if 	 � are disks and � �  �
@
 � � � � � � O � @ O � � � , then 	 �

and 	 	 are concentric disks. Also if

�
� � 	� � �� � is not continuous at a point  � � � ,

where �� is continuously differentiable, then � � � �
@
� � � � � � � � � @ � � � � implies � � � � 	

and 	 � ��	 	 .
If 	 itself consist of two nested domains, i.e. � � 	 � 	 � , uniqueness will not

hold for all possible currents. This example is due to Alessendrini. Using a perturbation
argument Kang furthermore showed that stability doesn’t hold for the class of simply
connected domains.

Example 5.2 (non-uniqueness). Assume � � �
	
. There exist current patterns

�
�

� � �� � , such that for different domains 	 � ���	 	 with same conductivity � � , � � � �
@
� � � � �

� � � �
@ � � � � . The “classical” example given in [AIP95] is depicted in figure 5.1 when�
� 
 � � � ��� � . In [KS97] it was furthermore proved that if

$&%&'  ) � 	 ( � 	 ( then the
example holds for two domains with � "�	 ( and � "�	 	 both connected.
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Figure 5.1. Figure (a) shows the domain 	 � ��
 	 ���� ���
 	 ���� 
. Figure (b) is the

domain 	
�
��
 	 ���� 

with
�
�
����� � � ���� � O�� � � and Figure (c) is the approximate domain 	�� �

with  �"! .

When the location of 	 is known, uniqueness results may be established for both
two nested inhomogenieties and for multiple disjoint inhomogenieties.

For multiple disjoint inhomogenieties this follows by applying a method of [Ber02]
for the Inverse Scattering Problem at fixed frequency. The unknown, either field or cur-
rent, may in � be expressed as a combination of a Single-layer Potential and a Harmonic
function. This defines a density

�
on � 	 , proportional to the unknown current. The un-

known conductivity constants may be uniquely found as the solution of the algebraic
equations on � 	 � ,

� � �
� �

�A� � � � � � � � � �$# � �
@
 � % �

� � � �
��� � � � � � % � � �

S �� � � � � L'& � �
� � � � � @ ( � % � � L � � � 	 � �
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The problem of two nested inhomogenieties, or when � � is unknown, may not be
treated as for � disjoint inhomogenieties. The densities

� � defined on � 	 � are not
uniquely determined from Cauchy Data. Instead the algebraic expression, for some
special known functions � � and �

@
, is

� �
� � - ��� � � � � � � ����� 
 � �

� � � � ��� � � ��� 
 � 2 � � � � � � � � � @ � 
 � � � � � � ��� � � @ � 
 � �
(5.10)

determines � � � � � . It has been shown that (5.10) has at most two diffferent pais of � � � � �
that solves (5.10). The two last results are found in theorem 6.31 and 6.38.





Chapter 6

The Single Measurement
Conductivity Problem

When a current is applied to the boundary � � of a body � the elliptic PDE (Poisson’s
Equation) modeling the voltage distribution inside � is � � �E� � � � . Boundary data
for the voltage distribution is referring to the current and the associated potential at the
boundary �� .

Let � ����� denote a piecewise constant function describing a conductivity distribution
in an object � . Assume that the location of the jumps in � ����� is known. The question
is whether one set of boundary data is sufficient for the Inverse Conductivity Problem
of reconstructing � . The general boundary value problem, for finding the potential in � ,
will be formulated and uniqueness results for recovering � ����� from one set of boundary
data proved when � ����� is either

� � disjoint piecewise constant conductivities in � , or as
� two nested piecewise constant conductivities in � .

The conditions on both � ����� and � ����� will be made precise in section 6.1, where the
forward problem is defined. In section 6.2 the inverse problem is defined and different
technical results related to the Cauchy problem is proved. These are used in section 6.3
for establishing an algebraic equation and from this algebraic equation prove uniqueness
and continuous dependence of � ����� on the measured data.

6.1. Forward Problem

Let � � � �
, � � �	��
 , and 	 � � be simply connected domains with Lipschitz

boundaries. Let ��� denote the characteristic function for a set
�

. For 	 � � � simply

73



74 6. The Single Measurement Conductivity Problem

connected domains with Lipschitz boundary � 	 � � � let 	 be given as

	��
� � ����� � �  � 	 � � � where

	 � � � � 	 � � � ��� � 0 �� �	 � � � � 	 � � � � .9 �
� 	 � � � � � 	 � � � ��� � 0 �� �	� or  �� � �

(6.1)

The first index 0 in 	 � � � is henceforth labeling disjoint domains, whereas the second
index � is labeling nested sequels of domains. If 	 does not contain nested sequels of
domains, then � � � and the second index in 	 � � � is suppressed. Define � ����� as

� ����� � � � � � � � � @ � � � � ��� � �  � � � � � � @
 � � � � 	

@
 � � � � � � � � � � (6.2)

For a function �<����� defined on the boundary denote the limit value, that if � ��� 	 � � �
and �E����� denotes the outward normal derivative of 	 � � � when it exists, as$&% '

� ) �
� � � �<��� � ���E������� �	� � ����� � � � 	 � � � �

Let � �� and


 �
�

denote normal derivatives.

For a given � ����� the voltage distribution � ����� in � induced by a current flux

�
applied to �� satisfies the Neumann Problem

� � � �*	 � � � � �� � � � �E� � ��� � � �
�
� �
� �

S
�

� � � �� �
��� 	� � �� � (6.3)

where � 	� � � � � denotes the space of square integrable functions on �� satisfying � 

� �

�� . Define the Neumann-Dirichlet map by

� � � � � " � � 4 
 � �
� � 	� � �� ��" � I � 4 � ��� 	 � �� � � > 


� �
��� � (6.4)

Definition 6.1 (Forward problem). The forward problem of the Conductivity Problem
is from knowledge of � , 	 and

�
to find the solution � of � � � �*	 � � � .

The problem � � � �*	 � � � is conveniently reformulated as the following transmission
value problem, for � � ] � � � � � ] 	 � � " � 	 � , where again ] denotes Sobolev spaces.
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� � � � ��� � � � " � � � � ��	 � � � � � �	��
 (6.5)

� � � � � �� � � � ����� � � �� �
��� 	� � �� � (6.6)>



� � ��� (6.7)� �

� � S � � � 	 � � � (6.8)

� � � � � � �
� � � � � � � � � � � S

��� � � � 	 � � � (6.9)

where (6.9) and (6.9) is to be understood in � 	 sense. The solution � ����� of (6.5)-(6.9)
can be expressed as harmonic functions on domains 	 � � � "�	 � � � � � etc. We define this type
of functions as semi-harmonic.

Definition 6.2 (Semi-harmonic function). Let ��	 � � � and � � be of class � 	 . A function� ����� � ] � � � � � ] 	 � � "�� ��	 � � ��� is semi-harmonic in � if there exist � � � � � � such
that

� � � � � � � "���� � 	 � � ���� S � � � � � ��	 � � �� � � � 
 � �
 � � � � � � S � 
 � �
 � � � ��	 � � � (6.10)

where � 	 � � � is a finite set of non-intersecting hyper-surfaces. The ratio � � � � ��� � � � S � ��� � � �
denotes the conductivity ratio.

When definition 6.2 is extended to Lipschitz domains, the conditions on ��	 � � � are to
be understood as equalities in � 	 . The subsequent results will however only be derived
for � 	 boundaries.

Define the Neumann Green’s function % ��� ��C8� as the solution of

� R % ��� ��CD� � � � ��� �=C8� C � � (6.11)

� % ��� ��CD�
� �E����� � � �

��� � � � C � � � � �� (6.12)>


�
% ��� ��CD�G6��7����� ��� C � � (6.13)

where ��� � � � is the measure of the boundary � � , [Hac92]. The Neumann Green’s
functions can be expressed as

% � � ���V� � � � � � �V� � �`� � ���V� (6.14)

where
� � � � �V� is the fundamental solution for Laplace’s equation and ��� � ���A� is an

analytic function in � .
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Denote the single- and double-layer potentials for densities
� ��� 	 � � 	�� and weakly

singular kernels % defined on � as� � � @ � % � � �"����� � >


@
% ��� ��CD� � ��CD�G6��7��C8� � � � ��� � 	 � (6.15)

��� �
@
� % �

� �"����� � >


@ � %
� �E����� ��� ��C8� � ��C8�G6�� ��CD� � � � ��� � 	 � � �� � 	 (6.16)

which satisfy the well-known jump-conditions

� �

���
� �

@
� % �

� �
/
� ��

� # � �
@
� % � 3 � � (6.17)

�
� �
@
� % �

� �
/
� �
�

� # �
@
� % � 3 � � (6.18)

where # �
@
� % � is the � 	 adjoint of

# � �
@
� % �

� �  � � � > 

@ � % ��� ��CD�

� �E����� � ��C8�G6�� � � � � 	 �
# � �

@
� % �

�
is well-defined for � 	 boundaries, hence the principal value only applies to less

regular boundaries.

The operator # �
@
� % � is a Singular Integral Operator and is bounded on � � , ( � 

  � ). If � 	 is of class ��� then # � �
@
� % � is a compact operator on the space � 	 � � 	 �

[KS97]. For � 	 Lipschitz and any real number 4 �84  � , ��� � � # � �
@
� 	 � � is invertible on� 	 � � 	 � , [KS97]. From [EFV92] follows the estimate6 � � � @ � 	 � � � 6 � �

��

@
� � 6 � � @ � 	 � ��6 � �

��

@
� � � 6 ��6 � �

��

@
� (6.19)

where � depends on the Lipschitz character of 	 .

6.1.1. Representation of the Forward Map for one Inhomogeneity. The weak solu-
tion of (6.5)-(6.9) is naturally represented through integral equations. Throughout this
section let 	 be a Lipschitz domain consisting of only one component, i.e. that � � �
and �

� � in (6.1) and � � � � �
� � . The general case is discussed in section 6.3.3.

The representation of the forward map based on the Green’s function was derived
in [Hof98]. Hofmann subsequently applied a Newton scheme to find the shape and
conductivity from knowledge of the full Neumann-Dirichlet map. To establish if (6.3)
is well-posed, existence, uniqueness, and continuous dependence on boundary data is
found.

Theorem 6.3 ([Hof98]). For � � � + � � � with
%��
�

( K � �P� 0 � � � � � �
� � and

�
� ] S �
	 	� � � �

there exist a unique � � ] � � � � satisfying � 

� � 6�� �5� solving the weak formulation

(6.20) of (6.3) given by> �
�E� � � � �Y6�� � >



� �

�:6�� � � � ] � � � � � (6.20)
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In [Hof98] the solution of (6.5)-(6.9) was subsequently sought for � � � � � � �
� 	 � � " � 	 � , ��	 � � 	 and � � � 	

.

Theorem 6.4 ([Hof98] Theorem 1). The transmission problem (6.5)-(6.9) is uniquely
solvable for � � � � � � � � 	 � � " ��	�� , with � 	 � � 	 provided that � 


� � 6�� � � .

Let % be the Neumann function given by (6.11)-(6.13) on � and � � � � � � � % � � �
S �� � �

the unique harmonic function in � with Neumann boundary data �
S �� �

on �� . If
� 

� � � 6�� ��� , then the solution � can be represented as the sum� � � � � � � @ � % � �

� � � � � (6.21)

where
�

� � � � � � � is the unique solution of the boundary integral equation�
� � � # � �
@
� % � � �

� �
� � �
��� � � � ��	 � � � � � �

� �
�A� � � � � � � � (6.22)

satisfying � 

@

�

� 6�� ��� .

Proof. Assume � � � � � � � � 	 � � " � 	�� solves the transmission problem (6.5)-(6.9)
then from Green’s theorem follows that for any � � ] � � � �

� � >


� �	� S� � 6�� � � � > �

�
@ � � � � �Y6 � �

� �
>�@ � � ��� ��6 � � (6.23)

If � is a solution to the homogeneous transmission problem

�
� � then by setting

� � � we obtain � � � � on � " � 	 . Since � � � � � � and � 

� � � � , then � � � in � .

Therefore the transmission problem admits at most one solution.

Attempting to represent � � � � � � , with � � � �
@
� % �

�

� the solution � satisfies the
transmission-condition (6.9) if and only if � satisfies

� � � � �� � � � �
� � S
� � � � � � � � � � � � ���� � � � 	 � (6.24)

From the jump-condition (6.17) follows that the density
�

� satisfies the condition (6.24)
if and only if

�

� is a solution of (6.22).

From the Green’s function properties (6.12) and (6.13) follows that

� �
� � �

�
� 5 >



@ �

� 6�� � � � � � and
>


� ��6�� ����� (6.25)

Since � � and � S are harmonic in 	 , and � � is harmonic in � " 	 we have>


@ � � �
��� � 6�� � >



@ � � S
��� 6�� ��� >



� � � �
��� 6�� � >



@ � � �
� � 6�� � � (6.26)

From (6.25) follows that the Neumann boundary data of � on � � are constant and from
(6.26) must be zero.

Therefore if
�

� is a solution of the homogeneous equation �
� � � # � �
@
� % � � �

� � � ,

� � � �
@
� % �

�

� solves the homogeneous transmission problem (6.5)-(6.9); i.e. that



�
 � � �
for � � �� . Therefore from (6.17), and since the transmission problem has at most one
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solution, � � � . From the jump conditions (6.17) follows that
�

� � � . Hence, the Null
space of the integral equation (6.22) is zero and from the Riesz-Fredholm theory [CK83]
follows that (6.22) is uniquely solvable and that �
� � �$# � �

@
� % � � S � is a bounded operator

on � 	 � ��	�� . �
We prove that � solving (6.3) is uniform bounded in � for � � � � � ! � with � � ! � � � .

Lemma 6.5. Assume

�
��� 	 � �� � and that ��	 � � 	 . Then � solving (6.3) satisfies6 � 6 � �

��

@
� � ��6 � S� � 6 � �

��

�
� (6.27)

uniformly in � for � � � � � � � � � � � � � � .

Proof. Firstly
� �

@
� % � � is independent of � � , � � . Let � � �A� � � � � � ����� � � �

� � � hence
for � � � � � � � � � � � � � � , � is in a closed interval. For 4 ��4  � , � � � � has
a bounded inverse and 6 � 6 � �

��

@
� is bounded by 6 � � � � � � % � � �

S �� � � 6 � �
��


@
� . Since both

� �
@
� % � and � � � �

@
� % � also are bounded on � 	 � � 	 � , see (6.19), � satisfies (6.27). �

The extension of ��	 to being Lipschitz follows from Green’s Theorem being valid
for Lipschitz domains and that the jump-conditions for the Single Layer Potential also
hold for Lipschitz domains. However the solution is then no longer a classical solution,
but merely a week solution in ] � � � � ] 	 � � " � 	 � .
6.2. Inverse Problem

This section consists of 2 parts. First some representation formulas will be derived.
These are different from the one used in section 6.1 for the forward map, and the equiv-
alence between these different representation formulas is established. Secondly the
Cauchy problem for extending Cauchy data from one boundary to another is discussed.
It is found that a functional using the trace data on the opposite boundary can depend
continuously upon the Cauchy data, even though the problem of extending Cauchy data
is severely ill-posed. The latter are technical results that are used in section 6.3 for
proving new partial uniqueness results for an Inverse Conductivity Problem.

Let � and 	 be defined as 	 � 	 ����� and � � � � � � � @ �
� � �

@
. Assume ��� � � ,

� � �	��
 .

Definition 6.6. The problems IP1-IP3 for the Inverse Conductivity Problem with data
on �� for one experiment � � �`� � � � �  , with

�
� � 	� � � � � is defined as

IP1 Finding � � and the location of 	 given ��� and 	 a disk

IP2 Finding � � and � � given 	 .

Since IP1-IP2 only assumes knowledge of � �
@ � � � � �  for one

�
� � 	� � �� � more

humble results must be expected, than when the full Neumann-Dirichlet map is known.
For problems IP1-IP2 the following questions are of interest
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� Uniqueness,
� Construction,
� Stability of reconstructing � , respectively 	 .

6.2.1. Equivalence of Different Representation Formulas. In this section some fun-
damental results related to representing the weak solution of (6.3) using integral oper-
ators is established. First a common result used for proving uniqueness of balls and
disks is repeated in theorem 6.7. An unprecise formulation of this theorem in [KS97],
[KSS97] claims uniqueness of both

� � � � � " ��	�� and � � � � � " �� � to be defined
in (6.29). In the recent publication [AK01] Kang et al. no longer use that formulation
of theorem 6.7. The representation from Theorem 6.7 can not be used for calculating� � � solving (6.3), it is however of great use when discussing the inverse problem.

In theorem 6.9 a fundamental equality related to seeking the representation of �
solving (6.3) using a harmonic function in � and a single layer potential is established.

This is the first result relating the equivalence between different single layer potential
representations. A different but in spirit similar result is found in [AK01]. There, it is
found how the Neumann and Dirichlets Green functions at the boundary �� are related
to the fundamental solution through a Second-kind Fredholm integral operator.

Theorem 6.7 ([KS97] Theorem 2.1). Assume � � , and � 	 are Lipschitz. Let � be the
weak solution of the Neumann problem � � � �*	 � � � , with � � � 4 
 � , and

�
� � � � 4 
 � .

One representation for � is � � � � �
@

in � (6.28)

with

� � � � � � � 	 � � �
S �� � � �

� �
�
� 	 � � and

�
@
�
� �

@
� 	 �

� 	 (6.29)

and where
� 	 ��� 	� � � 	 � is the unique solution of�
� � �$# � �

�
� 	 � � � 	 � � �

��� � � � 	 � � � � �
� �

�A� � � � � � � � (6.30)

Moreover � � ] � � � � " �� � and
�

@
� ] � � � � " � 	�� and� �	� � �

@ � � � � " � � (6.31)

Proof. If � has a representation as � � � � �
@

then as in theorem 6.4 follows that
� 	 must be a solution of (6.30). Furthermore �
� � � # � �

�
� 	 � � has a bounded inverse on� 	 � � 	 � for 4 �H4 � � � � . Hence

� 	 is unique. That � � � � �
@

also solves (6.3), may
be found as a computational result. However, consider instead the two functions � � and
� 	
� � ����� �JI � �����[� � �� � � � � " � � 	 ����� � � � � � � 	 � � �

S �� � � � � �
�
� 	 � �

� � � @ � 	 � � 	 � � � � �
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Both � � and � 	 may be shown to be weak solutions in ] � � � � " � � � of the following
transmission problem�

��
�

� � � � � � � � ) � � @ �
� � �

@ � � � � ��� � � � � " �� �
�A�
� S � � �

� � � � � � ��!#�
� � S
� � � � � �

� � � �
S �� � � � � � �
� � (6.32)

The function � � satisfies (6.32b) and (6.32c) by construction. Since � is a weak
solution of (6.32a) in � and zero is a weak solution of (6.32a) in

� � " � , the function � �
satisfies (6.32).

By the jump-conditions (6.17) and (6.18) follows that � 	 satisfies (6.32b) and (6.32c).
Since

� 	 is the unique solution of (6.30) � 	 is a solution of (6.32a) in � . Also since �
and

�
@

are harmonic in
� � " � , the function � 	 satisfies (6.32).

To prove uniqueness of � � ] � � � � " �� � solving (6.32) suppose � is a solution of
(6.32) with � �

�
��� . Then � is a solution to � � � � � � � )

� �
@ �

� � �
@ � � � � � � in

� �
.

Therefore for large �>
��� 4 � � 4 	 � ��� �

� �
� � � �

>
��� � � � � � � � � � � ��� @ �#4 � � 4 	 � ��� �

� �
� � � � >


 ��� �
� �
� �

� � � � �
� �

� � � � >)
� � � � 4 � �`4 	 � �

This holds for all � hence � is constant. Since � � ] � � � � � , it follows that � � �
establishing uniqueness for the solution of (6.32), and therefore � 	 � � � .

Hence � � � � �
@

indeed is a representation for the weak solution of � � � �*	 � � �
and satisfies (6.31). �
Theorem 6.8 ([KS97] Theorem 2.1). Let � be the weak solution of of the Neumann prob-
lem � � � �*	 � � � . If

�
@

is given as
�

@
�
� �

@
� 	 � � � 	 � , then when seeking a representation

of � as � � � � �
@

in � �

where � � ] � � � � ] 	 � � " ��	�� and
� 	 � � 	� � ��	�� are unique in � and ��	 , respec-

tively.

Proof. To prove uniqueness of � and
� 	 , assume that

� �
� � � @ � 	 � �� 	 � � 	 � � � @ � 	 � � 	 � � � �

Then
� �

@
� 	 � � �� 	 � � 	 � is harmonic in � and the jump-condition for the single-layer po-

tential imply �
� 	 � � 	 ��� in � , and therefore � � � � 	 . �
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The representation (6.28) may be motivated by the following algebra utilizing the
divergence theorem where however the assumptions are not satisfied. Firstly formally

�
� � > � � � � � � � @ �

� � �
@ � � � � � � ���_�XC8�G6�� ���V�

�
>


� � ��� �=C8� � �� � 6��`���V� � � � � � 	 � � � � � �

and secondly since formally

�
� � > � � ��� � � � @ �

� � �
@ � � � � � � ���_�XC8�G6�� ���V�

� � � � � �
� � > @ � � � � � 6��7���V� � > � � � � � � 6�� ���V�

�
� �

@
� 	 �

� � � � ���
� � � � � � � � ����� �

� �
�
� 	 � � � �

which motivates (6.28) as a combination of a Single-layer potential and a harmonic
function. It must be emphasized that this is not a derivation, since it is not possible to
make

�
harmonic in � .

Remark In the proof of theorem 6.8 uniqueness of ] and
�

is shown given the
kernel of the single layer potential

� �
@
� 	 � , but the uniqueness of the single layer kernel

�
itself is not and can not be established. Doing this would contradict that both theorem 6.4
and 6.7 are valid. However the uniqueness of

� �
@
� 	 � was claimed by Kang in [KS97],

[KSS97]. However in the recent publication [AK01] that claim was removed. If however
the additional assumptions$&%&')

� �
�

� 0 ) 

� � ��� � � ��� � � � � " �

are included then the theorems of Kang et al. claiming uniqueness hold.

A central result established in theorem 6.9 for the density
�

of the integral operators
� �

@
� 	 � � and

� �
@
� % � � is that for both representations the densities are the same.

In section (6.3.2) the inverse problem IP2 is discussed when � � is known. In order
to reconstruct � � , first a density

� � on ��	 is recovered from anyone of a number of
boundary integral representation. Subsequently � � can then be found from an algebraic
equation.

The consequence of theorem 6.9 is that the different boundary integral representa-
tions all give the same

�
. This in particular means that the different boundary integral

representations may be combined to give better reconstruction of
�
.

Theorem 6.9. Assume ��� � +� � � � and let
�

be the fundamental solution for Laplace
equation. For all functions ����� ��C8� harmonic in � � � , any solution of (6.3) satisfies in
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the distributional sense that

� � � � � �
@
� 	 � ��� � � � �

� � � ��� � �  � � � � � � � � � � S �
� � � � � 


@
 � � � �� � ����� �

Proof. Denote the space of test-functions � � ���Y4 � � � + � � �  8���D� � �  , and let
�
� � � � � +

be an approximation to � defined by (6.2) such that �
� � � � � for all � with

distance larger than � � to the boundary ��	 . Firstly, observe that$&%&'
� ),+ � �E� � � �_� �

� � � S � �8� � � � � � � $&%&'
� ),+ � �_� �

� � � S � �E� � � � � � � � � ��� �
which means that the distributional differential equation of � � �E� � � � is

� � � $&%&'
� ),+ �E� � � �_� �

� � � S � � � $ %&'
� ),+ �_� �

� � � S � �E� � � �
Denoting

�

��	 � � � " � � �  8���_� �
� � � S � ��� � � � 4 6H0 ���#��� ����	��  � �  . It follows from

Green’s theorem and the continuity of �E� � across � 	 � � � that

� � � � � � � $&%&'
� ),+ >

�

@
� � �

� � �
� � � S � �E� � ���������G6�� ������� >



@
� � �

� �������������G6�� � (6.33)

where

� ����� � � � ��� � �  �
/

� � � �F� � � � � S �
� � � � � 


@
 � � � ��  � � � ����� � � ��	 � � � 3 � (6.34)

Since for any function � harmonic in � � � ,� � ��� �XC8� � ����� ��C8� � � R �Y����� � � ����C8� �
changing the order of integration proves

� �_� � � @ � 	 � ��� � � � � � � >


@
� � �

� ��C8���Y��C8��6��7��C8� � (6.35)

Combining (6.33) and (6.35) concludes the proof. �
Theorem 6.9 established the equality between different integral representation for-

mulas, i.e. (6.22) and (6.30).

Corollary 6.10 (The density function). Assume � � � � � � % � � �
S �� � � � � � @ � % � �

� and � �� � � � � 	 � � �
S �� � � � � �

�
� 	 � � � ��� � ��� � � � @ � 	 � � 	 are weak solutions of (6.3) for

�
��� 	� � �� � .

The densities
�

� and
� 	 from (6.22) and (6.30), respectively, satisfy

�

� �
� � � � � � �

� �

� � �
� � � � � � � �

� � � � S
� � � � 	 � (6.36)

Proof. This follows from theorem 6.9, since
�

is the same for all representations. �
Using the results of theorem 6.4 and theorem 6.7 we have the relation (6.38) between

the harmonic functions � and ����� ��CD� at the boundary.
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Corollary 6.11. Let � � ��� � � � �  � � � �
�
 be Cauchy data for � solving (6.3) with

��	 Lipschitz. For any ����� ��C8� harmonic in � � � � � a weak solution of (6.3) can be
represented as � � � ��� � @ � 	 � ��� �

where
�

is given by (6.34) and � is the harmonic
function solving

� � ��� � � � � (6.37)

� �
� � � �

S �� � � �
���
� �

@
� 	 � ��� � � � �� � (6.38)

If �`��� ��C8� is either zero or the harmonic function solving (6.14) then the harmonic func-
tion � is � � � � or � � � � � � � 	 � �

S �� � �
� �
�
� 	 � � respectively.

A central relation to be established for the inverse problem is (6.39) which holds
for one unknown function, with known traces, and all semi-harmonic functions. Be-
sides the unknown � � , (6.39) also contains unknown boundary integrals

� � � � �  � � � 

@
 � � .

The subsequent section on the Cauchy problem will establish the necessary spaces and
functions needed to express these unknown boundary integrals

� � � � �  � � � 

@
 � � in terms of

known boundary integrals. When
� � � � �  � � � 


@
 � � is replaced by known boundary integrals

(6.39) may then be reduced to an algebraic equation for � � . This is done for � � � and
� � � , and leads to the new stability estimates for reconstructing � � from one boundary
experiment.

Theorem 6.12. Assume 	 � � 	 � � � � � , with � 	 � � � Lipschitz. Let � � � � ] 	 � � " � 	�� �] � � � � denote two semi-harmonic functions defined on � and with conductivity ratios
defined with respect to 	 as � � � � � � � � � S � � � � � � and � � � � � � � � � S � ��� � � � , respectively. Let
� �  � � denote the current of � on the boundaries � 	 � � � then
� � � ��� � �  � �

/
�

� � 3 � � /
�

� � 3 S � � � � � �  � � � 

@
 � � � � >



� � � � � � � � � � � � (6.39)

� � �
S � � ��� � � S � 
 � � � � � �

S � � � S � 
 � �
Proof. Since � � � � ] � � � � , the gradient of � � � is in � 	 � � � . Let 	 be composed of
one component, i.e. let 	�� 	 ����� , and divide Green’s formula as� � > � � �T� � �

� ��� � � � �E� � �76 � �> �
�
@ � � � � �

� � � � � � �E� � �76 � � > @ � � � � �

� ��� � � � �E� � �76 � � (6.40)

Since � � and � 	 are Lipschitz, the product � � � � � � ��� � �E� � � is differentiable on � "�	
and 	 respectively, and Green’s formula is valid for Lipschitz domains, [Gri85, pp50],
an application of the divergence theorem reduces (6.40) to� � >



� � � �T� � �

� ��� � � � �E� � �D� >


@ � � � �T� � � � ��� - - �

� 2 ��
�
@ � - �

� 2 @ 2 S
�

(6.41)
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where � �
is the normal derivative into

� � " � and
� � "�	 respectively and � ��� � � ��� is

continuous across � 	 . The same result applies to each strip 	 � � � "�	 � � � � � and the result
(6.39) follows. �
6.2.2. Extending Cauchy data. It is advantageous for extending Cauchy data from
one boundary to another to consider the boundary to be of class � 	 . Since Green’s
theorem still hold for Lipschitz domains, [NRS96], many of the results may be extended
to Lipschitz domains.

Solving the Cauchy Problem means finding a harmonic function � solving

� � ��� � � � "�	� � ��D����� � � � 	 (6.42)

� �
� � � �

� ����� � � � 	
with � and 	 open sets and, say �

�
� �� � � 	 � � 	 � . This is not a well-posed problem,

since the solution � (if it exists) does not depend continuously on boundary data, and
does in general not even exist [Had23]. If, however, a solution exits, then from Holm-
green’s Theorem for harmonic continuation, it is also unique. There is a vast number
of methods for solving the Cauchy problem. In for instance [CHWY01b] analogies to
the solution of the moment problem is studied, and in [CDJP01] a method for extending
� �� � �

�
 from part of � 	 to � 	 using Tikhonov regularization is discussed.

The notion of solving a Cauchy problem like (6.42), will here be defined by in-
troducing finite dimensional spaces, in which unique optimal solutions for (6.42) exist.
These optimal solutions will not solve (6.42), since both boundary conditions will not
be satisfied. However, the error hereon may be controlled, by considering a construction
of sequences of finite dimensional spaces.

Firstly some denseness results are established.

Theorem 6.13 (Denseness of harmonic functions). Consider the subset of harmonic
functions

� � � I � ���
� � � � � � � � "�	 � � � � 	 � � "�	 � �� � � � � � � � � � � � � 	 � � (6.43)

The normal derivative of all functions in � � restricted to �� is dense in � 	 � �� � .
Proof. Denote the space of normal derivatives at � � for functions in � � as � � ,

� � � �
� 4 � � � � �

��� � �� � � � � � *� (6.44)

If � � is not dense in � 	 � � � � then there exist a nontrivial � ��� 	 � �� � such that>


� �

� 6�� � � �

�
� � � � (6.45)
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Let � be the solution of

� � ��� � � � "�	 �
� ��� � � � � � (6.46)

� �
� � ��� � � ��	 �

From the divergence theorem, and that � and � are harmonic, follows that>


@

� 

� � � ���Y6�� � > �

�
@ � �T� �:� � �76T� � >



@

� 

� � � � � 6���

Inserting (6.45) and the homogeneous boundary conditions for � and � in this identity
implies that � � >



@ � � � � 6�� � � � � � �

In particular this holds for all � � � � � 	 � ��	�� , therefore � �J� for � � ��	 and since
� then has homogeneous Cauchy data on � 	 , � � � for � � � "�	 , contradicting that
������ . �

A similar theorem is

Theorem 6.14 ([CHWY01a]). Consider the subset of harmonic functions

� � I � ���
� � � � � � � � "�	 � � � � 	 � � "�	��
 �
 � � � � � � �� �� � � 	 � � (6.47)

The trace of all functions in � restricted to �� is dense in � 	 � � � � .
For both theorem 6.13 and 6.14 the denseness results are independent of whether

� � is the inner or outer boundary.

If � � ] 	 � � "�	 � is a solution of

��� ��� � � � "�	 �
� � �� � � ��	 � (6.48)

���
� � ��� � � ��	 �

and � � ] 	 � � "�	�� is a solution of

� � � � � � � "�	 �
� � � � � � 	 � (6.49)

� �
��� � �

� � � � 	 �
then � � � � � is a solution of (6.42). This is the motivation for defining finite dimen-
sional spaces that satisfy a homogeneous boundary condition on � 	 .
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Definition 6.15 (Functions spaces � � � � ). Let � � denote an orthonormal basis on� 	 � �� � and let � � solve

� � � ��� � � � "�	 � (6.50)

� � � � ��� � � � 	 � (6.51)

� � ��� � � � �� � (6.52)

Define the space � � and � � for any ! � � as

� � � � �D4�� � �  � � � � � �	�	�	� ��� �  
 � � ��� � � 4 � � �  � � � � � �	�	�	� � ���  
 �
The optimal solution of (6.48) obtained by the functions from � � is defined as:

Definition 6.16. For �� ��� 	 � � 	 � , a function � � � � is an optimal solution in � � of
the Cauchy problem

� � ��� � � � "�	 �
� ��� ��� � � � 	 �
� � �� � � � 	 �

if � is the unique element in � � with minimal distance to � in � 	 � � 	 � , i.e.6�� � ��&6 	� �
��


@
� � %��
�

�� � ��� 6��� � ��&6 	� �
��

@
� �

We now proof a denseness result of the optimal solutions for an arbitrary �� �� 	 � � 	 � , thereby obtaining control of the error for between the optimal solutions on
��	 and �� ��� 	 � ��	�� .
Theorem 6.17. Assume �� � � 	 � � 	 � . For each ! ��� there exist a unique harmonic
function in � "�	 , � � � � � , satisfying ��� � � � � for � ��� 	 , which is the optimal
solution in � � of the Cauchy problem (6.48). The optimal solutions � � � � � satisfies
that

$&% '
� ),+ 6�� � � ��&6 � �

��

@
� ��� .

Proof. For any ! let � � and � � be as in definition 6.15. Define �� � " � � � �� 
 @ . Since

� ��� � �� 
 @ � � , the functions �� � must be linear independent. Assume the contrary, then
there exist a nontrivial linear combination of elements in � � , that is harmonic in � "�	
and has homogeneous Neumann and Dirichlets conditions on ��	 . From Unique Con-
tinuation of Cauchy Data, this function is identically zero contradicting that the � � are
orthogonal.

Let � � � �
� � �	�	�	� �*��� � be an M-tuple in
� � and denote

�
the functional

� � �
�

.
� ��� �_� � 6 �� � �

� �  � �
� � � � � 6 	�
�
��


@
� � 6 �� � �

� �  � �
� � �� � � 6 	� �
��


@
� � (6.53)

Let �� � � � �� � �	�	�	� � �� � � be the unique M-tuple minimizing
� ��� � � , then � � ��� ��  � �� � � �

defines the optimal solution from definition 6.16.
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From theorem 6.14 follows that the spaceI � ���
� � � � � � � � "�	 � � � � 	 � � "�	��
 �
 � � � � � � � 	 �� � � 	 � �

is dense in � 	 � �� � . Therefore,
$&%&' � ) + �  � � � �� �  is dense in � 	 � �� � .

For increasing ! , � � is therefore a non-negative monotonic decreasing sequence
converging to zero. �

Similar to theorem 6.17 yielding optimal solutions to (6.48) optimal solutions can
be found for (6.49). Similar to definition 6.16 define the following finite dimensional
space:

Definition 6.18 (Functions spaces � �� � �� ). Let � � denote an orthonormal basis on� 	 � �� � and let � � solve

��� � ��� � � � "�	 � (6.54)

� � ��� � � � 	 � (6.55)

� � � � �
�
� � � �� � (6.56)

Define the space � �� and � �� for any ! � � as

� �� � �
� 4 � ������ � � � � �	�	�	� � � �  
 � � �� � � � 4 � � �  � � � � � �	�	�	� � �	�  
 �

Definition 6.19. For �

�
� � 	 � ��	�� , a function ��� � �� is an optimal solution in � ��

of the Cauchy problem

��� ��� � � � "�	 � (6.57)

� ��� � � � 	 � (6.58)

� � � � �

� � � � 	 � (6.59)

if � is the unique element in � �� with minimal distance of �&� � to

�
in � 	 � � 	 � , i.e.6 � � ��� � 6 	� �

��

@
� � %��
�

�� � ���� 6 � � �� � � 6 	� �
��


@
� �

Similar to Theorem 6.17 we prove the denseness result using optimal solutions.

Theorem 6.20. Assume �

�
��� 	 � ��	�� . For each ! � � there exist a unique � � � � ��

satisfying � � � � for ��� ��	 which is the optimal solution in � �� of the Cauchy
problem (6.57)-(6.59). The optimal solutions ��� � � �� satisfies that$&%&'

� ),+ 6 � � � � � �

� 6 � �
��


@
� ���

.

Proof. Interchange the roles of �

�
and �� in the proof of theorem 6.17. �
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Consider the two Cauchy problems (that generally doesn’t have a solution in ] 	 � � "�	 � )
� ��� � � � � � � � "�	 � �

@
� � � � � � � "�	

� � � � � �� � � � 	 �
@
� � � � � � � 	
 �
 � � � � � � � � � � 	 
 �
 � �

@
� � � �

� � � � 	 � (6.60)

where ��� � � and �
@
� � are optimal solutions as in definition 6.16 and 6.19.

For � solving (6.42), an optimal decomposition into a sum of functions in � �� and
� � is � � � ��� � �

� �
@
� � . This function, � � , will not solve (6.42), however it will be

a function that in � 	 � � 	 � , for increasing ! , minimizes the � 	 difference between � �
and �� and the � 	 difference between � � � � and �

�
.

For ! fixed the functions �
@
� � , are harmonic in � "�	 , with one homogenous

boundary condition. From Green’s formula therefore follows the reduced inequality
(6.61).

Lemma 6.21. If � is a fixed harmonic function in � "�	 then for � � � there exist
an ! � � � such that the optimal solution, �

@
� � , as defined in (6.60), minimizing6 � � � @ � �J� �

� 6 � �
��


@
� for �

�
� � 	 � � 	 � , satisfies

���
� � � �� � 
 @ � � � ��� � � @ � � � 
 � � �

� � � � � @ � � � 
 � ���  � � for ! � ! �$� (6.61)

Since �

�
� � 	 � ��	�� is fixed, a corollary of lemma 6.21 is the convergens of� � � ��� � � @ � � � 
 � � �

� � � � � @ � � � 
 � � (6.62)

Corollary 6.22. If � is harmonic in � "�	 and �
@
� � are optimal solutions, as defined in

(6.60), for �

�
��� 	 � � 	�� , then (6.62) converges in

�
for ! ��� .

The boundary integrals in (6.62) are over the opposite boundary of where the split-
ting in (6.60) is constructed. Besides the convergence of (6.62) also the individual terms
herein may converge if further space restrictions are imposed. This is done firstly by
considering some special finite dimensional spaces. These spaces will also allow us to
prove a continuous dependence in � 	 � � � � of the limit of the individual terms in (6.62)
upon � � � �� 


�
. For the Inverse Conductivity Problem the continuity of the individual

terms are attained by assuming that � � does not attain an extremal value (in
� � ), and

that � � � lies in a specified finite dimensional space.

6.2.2.1. Convergence and Continuity of Some Boundary Integrals of Optimal Solutions.
In order to show convergence and continuity of, say

� � ����� �
@
� �
� 

�

, it is advantageous
for technical reasons, to introduce yet another finite dimensional space.

Definition 6.23 (Function spaces � �� � �� ). Let � � denote an orthonormal basis on� 	 � � 	 � , and let �
� � � ] 	 � � "�	 � solve

� �
� � � � � � � "�	 � (6.63)

�
� � � � � � �� � (6.64)

�
� � � � � � � � 	 � (6.65)
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Denote �

�
� � � � �� � ����� for � � � � and define

� �� � �
�

��
�
� ���� � � �� � �3�3�3� � �� �  
 � � �� � � � �� � � �  � � � �� � �	�	�	� � �� �  
 �

Again, the function �

�
� are linear independent, because of unique continuation for

harmonic functions. The space � � defined in (6.43) is the space of harmonic functions
for which � �� 


�
�5� . The normal derivative at �� of all functions in � � contains � �� .

The space � � is natural to consider when seeking convergence of the individual terms
from lemma 6.21.

Lemma 6.24. Let �
@
� � and � � � � be optimal solutions as defined in (6.60). For �

� �
� � , the sequence of boundary integral

�
� � �� � � @ � � � 
 � converges in

�
for ! � � to�

�
� � �� � 
 @ .

Proof. From Green’s formula follows that for �
@
� � , as defined in (6.60), and for �

� �
� � , �

� � �� � � @ � � � 
 � � �
�
� ��� � � @ � � � 
 @ �

Since 6 � � � @ � � � �

� 6 � �
��


@
� � � ��� � , and � ��� �

� � , for fixed �
� � � � , the boundary

integral
�
� � �� � � @ � � � 
 � converges in

�
to
�
�
� � �� � 
 @ . �

Lemma 6.25. Let �
@
� � and ��� � � be optimal solutions as defined in (6.60). Let

�
�

� �� ��� 	 � � � � and let � be any harmonic function in � "�	 with � � � �� 

�
�

�
. The limits� " � $&%&'

� ),+ � � � � � � @ � � � 
 � and 	 " � $&%&'
� ),+ � � � � � ��� � � � 
 � (6.66)

are continuous from � �� to
�

, when � �� is equipped with the topology of � 	 .
Proof. If ��� � � � �� then there exist a unique element �

� � � �� solving

� �
� � � � � � "�	
�
� � � � � ��

� � �� � � � � � � ��
Since both

�
and 	 does not depend on � �� 


�
it is sufficient to prove (6.66) for �

� .

Consider first
�

. Since �
� � � � , we have from lemma 6.24 that

�
converges to�

�
� � �� � 
 @ .

For � � �� � � �� , there exist a unique � -tuple such that at � � � � ,

� � �� � �
� �  � � � �

� � � for �

� � � � �� �

where the �

� � are linear independent in � 	 � � � � . Therefore � � � � depends continuously
on � � �� � � �� � � 	 � �� � . Now, � �� is a finite dimensional space and,

�
� �� 


@
�

�
� �  � � � � �� 


@
and � � �� �� 


@
�

�
� �  � � � � � � �� 


@
(6.67)



90 6. The Single Measurement Conductivity Problem

are both finite series of � 	 � ��	�� functions. Hence �
� �� 


@
depends continuously in � 	 � � 	 �

on � � �� �� 

�
� � �� . Since �

�
��� 	 � � 	 � is fixed,

�
depends continuously on � � �� �� 


�
� � ��

in the � 	 topology.

The proof for 	 is similar. �
Remark. For each fixed ! , the optimal solutions � � � � (respectively �

@
� � ) are

harmonic functions. Since �
@
� � does not converge in � 	 � �� � the limit of these optimal

solutions does in general, not define semi-harmonic functions. This also means that the
continuity argument of lemma 6.25 can not be extended from � �� to � 	 � �� � . Also, if
this was indeed the case, then the Cauchy problem (6.42) would always have a solution.

6.2.3. Denseness of Solutions to the Conductivity Equation. The last lemma is relat-
ing the results for the Cauchy problem to the Conductivity problem.

Lemma 6.26. Let � � � � � � � @ � � � �
@

be fixed with � � � � � . For � � � and�
��� 	� � ��	�� there exist a ��� ] 	 � � " � 	�� � ] � � � � solving� � ����� ��� � � � � (6.68)

satisfying 6 � �� ��� � 6 � �
��

@
�  �*�

Proof. Following the definition of optimal solutions there exist � 	 � � � � �� solving

� � 	 � ����� � � � "�	 � (6.69)

� 	 � � ��� � � ��	 � (6.70)

� ��� 	 � � �
� � � ��	 � (6.71)

with 6 � � � 	 � � � � 6 � �
��


@
�  � 	 � � and � 	 � �

� � for increasing ! .

Define for � � 	 the function � ��� � as

� � ��� � ��� � �_	 � (6.72)

�
S� � ��� � � � �� � � �� � 	 � � � � � 	 � (6.73)

For � � � "�	 define � ��� � � ] 	 � � "�	�� as the solution of

� � ��� � ��� � � � "�	 � (6.74)

� �
��� � � � S��� � � � � 	 � (6.75)

� ��� � ��� � � �� � (6.76)

and denote �

�
� � �� � ��� � for � � � 	 .
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Following the definition of optimal solutions for ! � ��� , there exist �� ��� � � � � �� �
solving

� �� ��� � � ��� � � � "�	 � (6.77)

� � �� ��� � � � � �

� � � � 	 � (6.78)

with 6 � ��� ��� � � �
�

� 6 � �
��


@
�  �� ��� � � . Denote � ��� � � � � � � ��� �

�
�� ��� � � �

�
�
@

, then
� ��� � � � � satisfies by construction6 � �� � ��� � � � � 6 � �

��

@
�  �� ��� � and 6�� �

��� � � � � � � S��� � � � � 6 � �
��


@
� � ���

Assume � solving � � � ��� ��� is given as

� " � � ��� � � � � � � 	 � � �
�
�
@ � � � @ � 	 � � ��C8� �

where
�

is the fundamental solution for Laplace equation,
� ��� 	 � � 	 � , and

� �
@
� 	 � is a

single layer potential as defined in (6.15).

Using the same algebra as in the proof of theorem 6.4 for the normal derivative of
� , the function � solves � � � ��� ��� if and only if

�
solves�

� � �A� � � � � � �� � � � � # � �
@
� 	 � � � � � � �

� � � � � � �� � ��� � � � � �� (6.79)

Since the spectrum of # � �
@
� 	 � is � � �	���H� (given on page 76), the density

�
satis-

fies that 6 � 6 � �
��


@
� � ��6  6 � �

��

@
� . From (6.19) follows that 6 �&� � �

@
� 	 �

� 6 � �
��


@
� �

� � 6 � �� � ��� � � � � 6 � �
��


@
� . The estimate

6 � �� ��� � 6 	� �
��


@
� �6 � � � 	 � � � � 6 	� �

��

@
� � 6 � � � ��� � � � � 6 	� �

��

@
� � � 	 6 � 6 	� �

��

@
�  �

shows that for any ��� � , there exist an ! � , such that for an ! � ! � and for all
! � � ! �
� � , the inequality 6 ��� ��� � 6 	� �

��

@  � holds. �

6.3. Uniqueness and Continuous Dependence of � on Boundary Data

6.3.1. Two Nested Domains with Unknown Conductivity Constants. In theorem 6.12
the fundamental algebraic relation between two semi-harmonic functions was derived as
the projection of one onto the other. Consider subsequently two domains � "�	 , and	 , with unknown conductivities � � , and � � , respectively. Assume �`����� is any semi-
harmonic function solving (6.3) with conductivities � � �E� � � � @ � � � �

@
. We will

assume that � � � � � �
� � � � � � for some � � � � and �  � .

For

�
� � �� let � be a solution of � � � �*	 � � � . Assume � �� 


�
� � and denote

�
� 	 � 	 � � � � � � �  . Define the space � of semi-harmonic functions having these traces
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as

� " � �� � � ������

�
� � � � � � � � � � � � � � @ �

� � �
@ � �� � �E� � � � ��� � � �� ��� � � � � S� � � �

� � � � � � � �
� 	 � 	

���

� �
The formula from theorem 6.12 reduces to/ /

� �� �
3 � /

� �
�V� 3 3 � � � � �

� 

@
� � � � � ��� ��� S � 
 � � � � � � � � � � S � 
 � � (6.80)

for � � � and � any known semi-harmonic function defined as above. Through the use
of results from section 6.2.2 for solving the Cauchy problem

� � ��� � � � "�	 � (6.81)

� � ��D����� � � � 	 �
� �
� � � �

� ����� � � � 	 �
the unknown boundary integral

� � � � �

� 

@

in (6.80) can be rewritten in terms of known
boundary integrals on � � .

Let �
@
� � and ��� � � be optimal solution in � �� and � � respectively of

� ��� � � � � � � � "�	 � �
@
� � � � � � � "�	 �

��� � � � �� � � � 	 �
@
� � � � � � ��	 �
 �
 � ��� � � � � � � � 	 � � 
 �
 � �

@
� � � �

� � � ��	 � (6.82)

The optimal solutions satisfies that 6 �*� � � � @ � � � �

� 6 � �
��

@
� � � ��� � and �

@
� � ��� , and

that 6���� � � � ��&6 � �
��


@
� � � 	 � � and � ��� � � � ��� , respectively. Denote

�
� �

�
� � � � � � � @ � � � 
 � � �

� �
� � ��� � � @ � � � 
 � �

� � �
�

��� � � � � � � � � � 
 � � 	 � �
� � ��� � � � � � � 
 � �� ��� � �

�
� � � � � � � � � �� � 


@
� � 	 � � �

� � � � � � ��� @ � �J� �

�
� 


@ � (6.83)

Lemma 6.27. Assume

�
� � �� , that � � � � � �

� � � � � � , and � is a solution of � � � �*	 � � � .
Then the boundary integrals

�
� �3�3�3� �*	 � , as defined above, converges for ! � �

and fixed

�
. The limits of these boundary integrals depends continuously in � 	 upon�

� � �� .

Proof. From lemma 6.25 follows that
�
� converges and depends continuously on � � � � � �

� �� in the � 	 -topology.

From corollary 6.21 and the boundedness estimate of lemma 6.5 follows that
�
� �

� � � � converges and depends continuously on � � � � � � � 	 � � � � . In particular for
� � � � � � � �� then

�
� and

�
� converges, and their limits depend continuously on

� � � � � � � �� in the � 	 norm.

A similar argument proves that � � converges and that the map from

�
is continuous

with respect to the induced norm. �
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Remark. The boundedness of � in � � � � � aids
�
� and

�
� being convergent

sequences, and having continuous limits. For the results of section 6.2.2.1 a similar
boundedness argument is not easy and was there substituted through the introduction of
the finite dimensional space � �� . This has made it necessary here to assume � � � � � ��
� � �� for � � �� .

Theorem 6.28. For

�
� � �� and � � � � � � � @ �

� � �
@

with � � � � � �
� � � � � � , let �

be the solution of � � � �*	 � � � . For each semi-harmonic function � with � � � � � � � @ �
� � �

@
there exist boundary integrals

�
� �	�	�	� �*	 � with convergent limits

� �	�	�	� �*	 .
The limits for ! � � depends continuously on

�
� � �� � � 	 � �� � with the induced

topology, and satisfy that

� � � �
� � � � � � � �

� � 	 � � � � � � � (6.84)

Proof. Denote

�
� � � � � �� � and let ��� � � and �

@
� � be defined as optimal solutions of

(6.82). Repeated applications of Green’s formula for fixed ! yields that
� �� �
� � � � � � 
 @ � �

� � � � � � ��� � � � 
 � � � � � � ��� � ��� � � � 
 � ��� ��� � � ��� � (6.85)

���
� � � � � � � � 
 @ � � � � � � � � � � @ � � � 
 � �

� � � � ��� � � @ � � � 
 � ��� ��� � � 	 � � (6.86)

with � ��� � and � 	 � � as defined in (6.83). From lemma 6.27 follows that
�
� �	�	�	� �*	 �

converges and depends continuously on boundary data

�
. �

Futhermore for any finite ! the continuity of
�
� �	�	�	� �*	 � on

�
and � 4 
 � follows

from the continuity of the � 	 scalar product.

Equation (6.84) is the central expression from which to reconstruct � � and � � for one
experiment. The fundamental relationship between two semi-harmonic functions (6.80)
may also readily be obtained from (6.84). However, from the fundamental relationship
it is only through the advantageous definition of optimal solutions that the unknown
boundary integral can be analyzed.

Since (6.84) contains both unknowns, two different functions satisfying � � � ��� � �� , 0 � � ��� are needed, thereby establishing two nonlinear equations in two unknowns.
The solution hereof will be the objective for the remaining of this section.

To fix ideas. Let � � � � � � and �
@
� � � � , 0 � � ��� be optimal solutions as defined in

(6.82) and such that � � � ��� � � � � � �
@
� � � � solves � � � � � for � " � 	 and � �� ; � S� and

� � � �� � � ; � � �
S� � � for ��� � 	 . The limits of the functions � � � � � � and �

@
� � � � hence

defines
� � � �� � � � � � � � � � � 	 � � � �

� � � � � � (6.87)

and
�V� ���
� � � �

� � � 	 �
� � 	 	 � � � 	 � � � � 	 � (6.88)
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To discuss solvability of (6.87) and (6.88) for � � and � � , it is necessary to define
some mild conditions for the data.

Definition 6.29. For � � � the triplet � 	 � � 4 
 � ��� � � 4 
 �  is admissible if � 	 solving

� � 	 ��� � � � "�	 � (6.89)� 	 ��� � � ��	 � (6.90)� 	 ����� � � ����� � � � � � (6.91)

satisfies that � � � 	 4 
 � �� � � � 4 
 � .

The condition on � 	 in definition 6.29 for admissibility is a condition to guaranty
that in (6.87) there exist a function � solving � � � � � � � such that

�
� �
�
� �� � , but

such that (albeit � � is unknown)
�
� � � � � � � � .

Lemma 6.30. Assume � � � and that the triplet � 	 � � 4 
 � ��� � � 4 
 �  is admissible. There
exist a � satisfying

� � � � � � � "�	 � (6.92)

� � � � � ��	 � (6.93)

and such that
� � ��� ���`����� � 
 @ ��� � (6.94)> �
�
@ � � ��� �,6H� ������ (6.95)

For � � � � � � � @ � � � �
@

with � � � � � there exist a semi-harmonic function � � in �
such that for any � � � 6 � ��� � � �����<� �`������� 6 � �

��

@
�  �*�

Proof. Decompose � � � as � � � � @ � �
� �
�
�
@ � � 	 � � � @ where the � � are harmonic

in � "�	 and solves�
� �

� � � � 	 � � 	 ��� � � � 	 � (6.96)�
� � � � � � � � � 	 � � � � � � � (6.97)

For any � satisfying (6.92) and (6.93), Green’s formula readily yields the identities
� � ��� ��� � 
 @ �

� �
� � � �

� 

@
�
�
� � � � � � � 
 � � (6.98)� � ��� � � � 
 � � � � 	 ��� � � � 
 � � �
� � � 	 � � � 
 � � (6.99)

For � denoting the outward normal to � "�	> �
�
@ � � � � �76H� � � � ��� ��� � 
 @ � � � ��� � � � 
 � (6.100)

�
�
� � � � � � � 
 � � �

� � � 	 � � � 
 � (6.101)
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Since � is admissible �&��� � � � � 	 � �� 
 � �� � � � � �� 
 � . Then, ��� � 	&�� 

�
�� � � � � �� 
 � and

in the orthogonal complement (in � 	 � �� � ) to � � � � , there exist an element

�
�

such that
�
� � � � � � � � 


�
� � and

�
� � � 	 � � � � 


�
���� �

are satisfied. Define �� as solving the boundary value problem consisting of (6.92), (6.93),
and �� �� 


�
�

�
�

. This �� satisfies (6.95) and from (6.98) follows that �� also satisfies
(6.94).

The denseness result follow from lemma 6.26. �
We may now prove the main uniqueness theorem for two inhomogeneities.

Theorem 6.31. Let the triplet � 	 � � 4 
 � ��� � � 4 
 �  be admissible for

�
� � �� , and � the

solution of � � � �*	 � � � with � � � � � � � � � � � � . If
� �3�3�3� �*	 denote limits of decompositions,

as in (6.82) of harmonic functions solving � � ��� in � , then either:

(a) � � � � � � � � �*	 � for all � harmonic in � , and then � � � � � �  is uniquely deter-
mined, or

(b) There exist a harmonic function � in � , such that � � � � � �� � � �*	 � , in which
case there exist 2 pairs of � � � � � �  solving (6.87)-(6.88).

For both �
�A� and ��!#� , the coefficients � � � � � �  depends continuously on

�
� � �� in the

induced topology from � 	 .
Proof. Assume the coefficients are proportional for all � solving � � � � , i.e. that� � � � � � � � �*	 � . For � 	 a harmonic function in � and satisfying

� � ��� � � 	 � 
 @ ���� � (6.102)

denote
� 	 �3�3�3� �*	 	 the optimal solutions related to the decomposition (6.82) of � 	 .

Since � � 	 � � 	 � � � � 	 �*	 	 � , with ratio � � , then (6.88) defines � � � � � � � S �� . From
(6.80) follows that if � � � � with ��� "�� � � � � ( � � known) then� � � � � � ��� � � S� � 
 � � � � � � � � � � � S � 
 � �
By choosing

� � ��� � � � � 
 � �� � , � � gets uniquely determined. Hence � � � � � �  gets
uniquely determined. This concludes �
��� .

Let � 	 be the harmonic function in � such that � � 	 � � 	 � �� � � 	 �*	 	 � .
From lemma 6.30 follows that there always exist a harmonic function � in � , such

that � � ��� � � � 
 @ � � �
and for the limit of optimal functions �

@
� � as in (6.82)� � $&%&'

� ),+ � � � � � � @ � � � 
 � ���� and
� � $&%&'

� ) + � � ��� � � @ � � � 
 � ������
Then

�
� ��� � �

� and � � � � �[	 � for this � . Therefore the coefficients are linear
dependent, say � � � � � � � � � � � � �*	 � � .
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The two equations (6.87)-(6.88) then reduces, by insertion, to the polynomial� � � � �
�
�

� � � � �"��� � 	 � � � 	 	 �D� �D� � 	 � � � � 	 ��� � (6.103)

By selection
�
� �� � �� �

� , and � � 	 � � 	 � �� � � 	 �*	 	 � . The polynomial therefore is
not the zero polynomial, and has at most two distinct solutions � � . For each � � , with � 	
satisfying (6.102), � � gets uniquely determined. This proves ��!"� .

Since
� �3�3�3� �*	 depends continuously on � � � � � �� , by construction so does � �`� � � �  .�

As a corollary we emphasize when the coupled equations (6.87)-(6.88) may define
an proper polynomial, i.e. are not just proportional.

Corollary 6.32. Let the triplet � 	 � � 4 
 � ��� � � 4 
 �  be admissible for

�
� � �� , ��� � � � �� � � � � � , and � the solution of � � � �*	 � � � . If

� �3�3�3� �*	 denote limits of decompositions as
in (6.82) of harmonic functions solving � � � � , and � � � � � �� � � �*	 � for one harmonic
function, then there exist another harmonic function such that the polynomial � �

	� ��
� � � � ��� with

� � 	 	 � � � � 	 	 � � � � � 	 � � � � 	 � � � � � � � 	 � � � 	 	 � � � � � � 	 � 	 � � 	 � �
is not the zero polynomial.

Theorem 6.33. Let the triplet � 	 � � 4 
 � ��� � � 4 
 �  be admissible for

�
� � �� , � � � � � �� � � � � � , and � the solution of � � � �*	 � � � . If

� �3�3�3� �*	 denote limits of decompositions
as in (6.82) of harmonic functions solving � � � � , that satisfy

� � � � � � � �� � � � �*	 � � and � � � � 	 � � 	 � � � � 	 �*	 	 � (6.104)

where � �� � � , then � �
	� � �

� � � � ��� defines a proper polynomial.

Proof. If the constants of proportionality are different, then at least one of the coeffi-
cients � or

�
will be nonzero. �

6.3.2. IP2 with � � known. Assume furthermore that � � is known for IP2, then there
exist an explicit boundary map that uniquely determines � � . The well known non-
constructive uniqueness result also applies:

Theorem 6.34. Let � � � � � , 	 � � � 	 � with 	 � � � disjoint sets with ��	 � � � 	 and�
��� 	 � � � � . If � � solves � � � � �*	 � � � , 0 � � ��� and �

� �� 

�
� � 	 �� 
 � then � � � � 	 .

Proof. That �
� �� 

�
� � 	 �� 
 � implies that there exist a semi-harmonic function in � , such

that � �� 

�
� � � � � � �� 


�
. From unique continuation of harmonic functions follows that� � � in � "�	 . Therefore since � is semi-harmonic, � � � S

�
�� 

@
� � 	 � � � � � � S	 �� 


@
, and� � �� 


@
� � S �� 


@
. From the maximum principle follows that since �

� �
� 	 on � 	 then�

� �
� 	 on 	 . Hence � 	 � � � � � . �
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In sections 6.1.1 different expressions for � ����� solving (6.5)-(6.9) was described.
Using integral equations � was expressed as � � ] ��� �

where ] was either (6.29)
or � � �

� �
�
� % � � �

S �� � � and
�

solved (6.22) or (6.30), respectively. Denote � � �
� �
�
� % � � �

S �� � � �� 
 � and � � � @ � � � � �"����� � � � @ � � � �
for � ���� . The restriction of (6.21)

and (6.28) to � � are found to be,
� �

@
� % �

� ��� � � � � � � � (6.105)

� �
@
� 	 �

� � �
� � � � � � � � # � �

�
� 	 � � � � � � � � � � � � (6.106)

These boundary maps are ill-posed from �X� � � to
�
, since � � @ � % � , respectively� � @ � 	 � , is compact operators on � 	 � �� � .

Theorem 6.35. For � � � � � � � @ �
� � �

@
and

�
��� 	� � ��	�� , let � � �

�
 be Cauchy data

for � solving � � � �*	 � � � . If � � � � � � % � � �
S �� � � � � � @ � % � �

then � � � � � � �
for � � ��

if and only if � 

@

� � � . There exists a unique
� � � 	 � � 	�� with � 


@
� � � solving

� � � �
�
� % � � � � � � �

@
� % �

�
, and � � is given as the unique solution of

� �
�

� �
�A� � � � � � � � ��# � �

@
� % �

� � �
� �
� �
�
� % � � � � � � ��	 (6.107)

Proof. Let ������� � � �
@
� % �

�
for � � � � and

� � � 	� � � 	�� . From (6.12) is seen that

� � � �� � � � � �
� �

�
� � �� � � � @ � % � � �

� � � �
� 5 >



@ � � � �� �

If � �5� for ��� � "�	 then from analytic continuation follows that ������� �J� for � �
� "�	 . Since ������� solves the homogeneous interior Dirichlet Problem for the Laplacian,
� � � for � � � . From the jump condition on ��	 ,

� � � . Equation (6.107) is a simple
calculation as derived in (6.22). �

If � is considered to be a half-space, i.e.
� � � for � � �	��
 , then any solution

� �� 	 � � 	 � of (6.105) will satisfy that for � � � � ) � � % � � � � � � � @ � % � �
,� ����� ��� for � � � � � � � � ���� ����� � �

for � � � � �
This is seen from the definition of the Green’s function % , since if � is the half-space
then the Green’s function satisfies

� % ��� ��C8�
���E����� � � � � � � � ���T� � � � �TS � � C � � � � �

Therefore for any
� ��� 	 � ��	��

�
� �E� � � � � % � @ � � ��� � � � � � ���T� � � � � S � � �
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6.3.3. The Forward and Inverse Map for Multiple Inhomogeneities. The obtained
results for IP2 with ��� known, generalizes straight forward to � disjoint domains 	 �
satisfying that 	 � � 	 � � � if 0 �� � . For nested domains the result can not be used.
The reason therefore is that the boundary maps have a constructive unique way to map
Cauchy data from one boundary to the next. For nested domains the method only yields
the potential and a proportional current, where the constant of proportionality depends
on the unknown conductivity. Hence, techniques as in section 6.2.2 must be applied.

Denote by 	 � the set of distinct scatters satisfying (6.1), 	 � � 	 � � � if 0 �� � , and
define

� 	 �
���  � ��	 � � ����� � ���  � � � � @

 � ����� � ���  � � � � @
 � (6.108)

The formulation (6.21), (6.22) is for multiple disk replaced by, with � � � � � � � % � �
S �� � � ,� � � � � �

�
�  �
� �

@
�
� % �

� � (6.109)

where � � � � � � ��� � � � � � � "�� �A� � � ��� � � � � � ��� and
� � solves

����
�

� � �

�� 	 � 	
...� � � �

�����
� �

�����
�

# � �
�
� % �



 � � � �
@
� % � �3�3� 

 � � � �

@
� � % �

 �

� � � � � % � # � �
@
� % � �3�3� 

 �

� � � @ � � % �
...

...
. . .

...

 � � � �
�
� % �



 � � � �
@
� % � �3�3� # � �

@
� � % �

������
�

����
�

�

�� 	
...
� �

�����
� �

����
�
� � � � � � �� � � � � � 	
...
� � � � � � �

�����
�

(6.110)

Theorem 6.36 (Multiple domains). Assume � � is as in theorem 6.4 and � � � � � � ,� � � � � , then the transmission problem (6.5)-(6.9) has a unique solution given as� ����� � � � � �
�
�  �

� �
@
�
� % �

� � � (6.111)

if and only if the densities
� � solves

� � ��� � � � � �
�A� � � ��� � � � � � � � � �$# � �

@
 � % �

� � � � � �
� � � � � L'& � �

��� � � � @ ( � % � � L � � ��	 � � 0 � � �3�3�3� � �
(6.112)

The solution � ����� of (6.5)-(6.9) may therefore always be represented as the semi-
harmonic function (6.109).

Definition 6.37 (IP2a). The Inverse Conductivity Problem with one experiment, IP2a,
is defined as recovering � � for 0 � � �3�3�3� � � from knowledge of � ��� � � � � �  for one

�
,

given that 	 � and � � are known.
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The inverse problem IP2a of finding the conductivities are found from the bound-
ary maps (6.105) or (6.106) with the appropriate extensions, as the solution of (6.112),
compare with theorem 6.35.

Theorem 6.38 (Uniqueness for IP2a). For � � � � � � � @ � � � � � � @
 and

�
��� 	 � ��	�� ,

let � � �
�
 be Cauchy data for � solving � � � �*	 � � � . Then there exist unique

� � �� 	 � � 	 � with � 

@
 � � ��� solving

� � � �
�
� % � � �

S �� � � � �
� �  � � � � @  � % � � � � �� 
 � � �

� �  � � �
@
 � % �

� � (6.113)

The potential � � � � % � � � � �
S �� � � ��� � % � @ � �

solves (6.5)-(6.9) where � � is given as the
unique solution of (6.112).

The method for determining � � from an equation on ��	 � involving the density
�

from boundary data, has been applied by [Ber02] to the Inverse Medium Problem with
� disjoint homogeneous scatterer. He used it to prove uniqueness of the permittivity
in such a finite set of homogeneous disjoint scatters with fixed location embedded in a
half-space, from one boundary measurement.





Chapter 7

Numerical Calculations for
the Inverse Conductivity
Problem

In this chapter the reconstruction that was established for the Inverse Conductivity Prob-
lem with one measurement, using First-kind Integral Equations will be numerically
tested in

� 	
. Two phantoms to be used, will consist of both one and two disjoint ob-

stacles 	 � , embedded in a body � � � 	 , both shown in figure 7.1.

To solve the Inverse Conductivity Problem for � disjoint piecewise constant inho-
mogeneities the measured Cauchy data on � � should be mapped to densities defined
on the boundary of the inhomogeneities. From these densities the unknown conduc-
tivity constant can then be found from the algebraic equation (7.3). For simplicity the
obstacles 	 � , 	 	 and � are chosen as disks.

One Inhomogeniety Two Inhomogenieties

-

+ +

-

�

@
�

@ � @ +
�

Figure 7.1. The two types of inhomogeneities to be considered. The plus and the minus
indicates where the current

�
will have support, and the sign of

�
thereon.
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7.1. Different Boundary Maps.

The conductivity problem is for given

�
and � � to solve� �7� � � � � � @ �

� � �
@ � � � ��� � � � � (7.1)

� � � � � � �
��� 	 � � � � � � �� � (7.2)

In theorem 6.9 it was proved that the solution of the conductivity problem, (7.1)-
(7.2), may be represented as the sum of a harmonic function � on � and a Single-layer
potential

� �
@
� 	 � ��� �

on � 	 . If
�

is the fundamental solution for the Laplacian and � any
harmonic function on � then the density,

�
, for the Single-layer potentials is the same

for all kernels.

For the Inverse Conductivity Problem, first
�

was determined from� �� 

� � � � � � % � � �� 


�
�
� �

@
� % �

� �� 

�

where % is the Neumann Green’s function, which for a disk is

% ��� ��C8� � $
�����*4 � �=CY4Z�D� $

��� - ��� 4 CY4 �W� C4 C:4 ��� 2 �
From

�
, the conductivity � � was then found from the algebraic equation

�A� �?� � � � � � �
� �

�A� � � � � � � � � � � � � R � � � � # � � % � � � � � � � R � � � @ � � % � � � � � 	 � � 0 �� � � (7.3)

Since there are many different integral representations for � , and hence for
�
, from

just (6.22) and (6.30) derived in Chapter 6 the following four explicit boundary maps are
given
�
� " � �

@
� % �

� ��� 

�
� � � � � � � % � � �

S �� � � � (7.4)

� 	 " � �
@
� 	 �

� ��� 

�
� �
� � � � � � � � % � � �

S �� � ��� � # � �
�
� 	 � � � � � � � � % � � �

S �� � ��� �
(7.5)

�
� " � �
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� % S 	 � � ��� 


�
� �
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S �� � ���D�$# � �
�
� 	 � � � � � � � � % � � �

S �� � ��� �
(7.6)

� \ " �
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@
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S �� � �D� � � � � � � 	 � � �
S �� � � �

� �
�
� 	 � �`��� ��� 
 @ �

(7.7)

For the remaining of this chapter we will refer to these maps as
�
� through

� \ , and
consider these compact integral operators as being replaced by discretized operators, i.e.
finite dimensional matrices. Since both % and

�
are smooth on ��	 for � � � � , the

discretization of the kernel is made using Simpson’s quadrature rule, [Ste96].

Since our inverse method is closely related to the integral formulation of theorem
6.4, the solution of (7.1)-(7.2) will be found using a Finite Element Method formulation.
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The current,

�
, will be a piecewise constant function, with compact support on

roughly 10 percent of the boundary � � . The current,

�
, and the solution � of (7.1)-

(7.2) with � � � � , � � � � , 	 � � � � � � �	�*��� �H� and ��� � �
� � � � is plotted in figure 7.2.
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Figure 7.2. (a), the current
�

. (b) the potential on ��� given
�

. (c) the difference�
����� � � 	�
 	� � �O � 

at ������� . (d) the solution of forward problem, with
� � ��� and� O � � .

7.2. Regularized Solutions

Since the
� � are compact operators on � 	 � ��	�� , the inverse operators

� S �� are un-
bounded and the problem is ill-posed. For each

� � there exists a Single Value De-
composition (SVD) � � � � � � � � ��� � � � , such that 6 � � � 6 � �

� � � 6 � � � 6 � �
and ��� � � � .

The functions � � � and � � � are the eigenfunctions for
� � and the adjoint

� �� , respectively.
The � � � � � � are the singular values, where

� � � are the eigenvalues for
� �� � � . The

singular values decays rapidly to � . This decomposition admits the representation of
� �

as
� � ��� � � �

�
�  �

� � � � � � � �	� � � � �
The eigenfunctions will for increasing � become more oscillatory. Let

� � � �
. If

� � � 	 then for a compact operator
�

the estimate 6 � �T� � � � �E� � ��6 � � � � � 6 ��6 � �
shows that

� � will reduce the high frequency components of � .

From the decomposition of
� � follows that � (� " � � S �� �

is given as

� (� � �
�
�  �

�
� � � � � ��� � � � � � � � (7.8)

Since the ��� � decay rapidly to zero the inner products � � ��� � � � should also decay rapidly
in order for

$&% ' � ),+ � � � ( � � to hold in � 	 . The finite series will always exist,
however the norm of � (� increases exponentially for these problems, and there is no
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stability for � (
� on

�
. To ensure both convergence and stability of such a series, a filter

function depending on a parameter � , say �A� � � � � � ), is introduced as

� � � �
�
�  �

��� � � � � � �� � � � � ��� � � � � � � �
such that for large � , �A� � � ��� � � � � . When the filter function is � 	� � ��� � � � 	� � � , this
problem is equivalent to the formulation considered by Tikhonov [Kir96],' % �

� � � � 6 � � � � � � 6 	� � � �,6 � � 6 	� �
(7.9)

where � penalizes the norm of � .

Instead of regularizing with just � 6 ��6 , any reasonable operator �,6 � ��6 that applies
to the problem (7.9), which might be the first or second derivative, may be used. The
choice of � determines how many of the high-frequency components in � should be
ignored, and the filter-function tries to tweak out some more information from

�
than

just truncating the series.

One way to determine the value of � is by inspection of the Picard plot. This is
a plot of � � � ��� � � � ��� � � � for increasing values of � . If the series (7.8) is to converge,
then on average the coefficients � � � ��� � � � � should decay faster than � � � . For (7.4) with
�<� � � � � % � � �

S �� � � as in figure 7.2, the Picard plot is illustrated in figure 7.3. It is observed
that for � � � 
 the products � � � ��� � � ��� � � increases, hence the value of � should be such
that it damps all the coefficients for � ��� 
 . For noisy data � 9 � 
 should be expected.
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Figure 7.3. The Picard plot for the SVD decomposition of � ��� ��� using
�

as in figure 7.2c
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7.3. The Regularized Solution

The solution of anyone of (7.4)-(7.7) for determining
�

is considered as solving for any0 , ' % �
� 6 � � � �  � 6 � �

��

�
� � � � 6 � 6 � �

��

@
� � (7.10)

Subsequently comparison between Conjugated gradient, Tikhonov regularization
and Truncated SVD to solve this minimization problem will be made.

For all methods either a penalizer as in (7.10), or equivalently a stopping-rule for an
iterative scheme is defined. Different discrepancy principles can be used for defining the
penalizing parameter. If the level of noise is a-priori known, this can be implemented
a-priori in Mozorow’s discrepancy principle. Two other methods are the L-curve method
and the Regińska principle. The latter two are both based on a log-log plot of 6 � � � !6
versus 6 � 6 for different values of � . This yields a plot like figure 7.4, where the L-curve
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Figure 7.4. The L-curve plot for TSVD and Tikhonov regularization.

for Truncated SVD is discrete and the L-curve for Tikhonov regularization is continuous.
The same plot may be readily constructed for any iterative solution strategy of (7.10).

The problem is how to define what the optimal solution is. From geometrical obser-
vations it is at the “corner” that the transition from over to under regularization occur.
But where? The choice of � should be chosen in such a way that as much information
as possible from

�
gets extracted, and such that noise in

�
gets filtered out. The L-curve

method defines the optimal point as where the curvature is greatest. The method of
Regińska is on the contrary to find when a line with ratio � � intersects the L-curve. We
will consider the optimal regularization parameter as where the curvature of the L-curve
in the log-log plot is greatest.
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For the integral operators
�
� �	�	�	�

� \ , the decay of the singular values depend on
where 	 is located. The further away 	 is from the boundary � � , the more ill-posed
the problem becomes. The decay rate for the singular values of the operators

�
� �
� \

as-well as for different depths and only partial Cauchy data are plotted in figure 7.5. It is
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Figure 7.5. The decay of the singular values for � � and � � ������� � � . The singular
values for �

�
and �

+
are the same as those for � � .

observed that the singular values decay the slowest when partial data is used. The decay
rate for the singular values of

� 	 and
�
� are the same as those those of

�
� , since � is

a disk. This may be observed by considering % to be the half-space Neumann Greens
function.

7.4. Reconstructing
�

For � 4 
 � as in figure 7.2, the reconstruction of
�

using Truncated SVD, Tikhonov Reg-
ularization, and Conjugated Gradient Least Squares iteration is displayed in figure 7.6.

For most applications the data has some inherent noise. For Cauchy data with �#���
noise the reconstruction of

�
is plotted in figure 7.6 using Truncated SVD, Tikhonov

regularization, and Conjugated Gradient Least Squares iteration

7.5. Reconstructing �

Using the L-curve stopping criteria for reconstruction
�

from forward data, calculated
using a FEM method, and subsequent solving the algebraic equation (7.3) is done for
different values of � � . The result hereof is plotted in figure 7.7. It is apparent that for
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Figure 7.6. The reconstruction of � using Truncated SVD, Tikhonov regularization,
Conjugated Gradient Least squares, when 	 is a the disk
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.

larger values of � the reconstructions becomes worse (roughly 3 % error). The reason
for this should be seen in the least squares estimate of � in' %��� � ) 6 � � � � � � # � �

@
� % S 	 � � �8��� � 6 � �

��

@
� �

Since � � � � � �
� ����� � � � � � is nonlinear, errors in � will be amplified the smaller the

value of � is.
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Figure 7.7. Reconstruction of
�

for different values of
�

, sizes and locations. (a) is for
a disk located at � � � and

� � � �
. (b) for a disk located at

� � � � �
and

� � � � �
. (c)

for a disk located at
� ��� � �

and � ��� .

Assume that the noise is additive white noise. Reconstruction based on noisy data
is made when the Cauchy data is known only on part of �� and when there are two
inhomogeneities. The reconstructions are made for noise-levels � � , � � and �#��� and
displayed in figure 7.8. The reconstruction of � is for both � � , � � and �#��� at the same
levels as for unperturbed data. It is observed, that generally Tikhonov regularization
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Figure 7.8. The reconstruction from noisy data for a disk

 	 � � � � � � � � � � � � � 

, with
� �

� � � �� � � � � �
, respectively.

yields a reconstructed value of � that is more erroneous than that of both Truncated
SVD and Conjugated Gradient Least Squares. The latter two methods generally agree
and achieve good reconstructions of � .

7.6. Partial Data

Using the integral formulation (7.5) it is apparent that to calculate � � � � � � � 	 � � �
S �� � � �

� �
�
� 	 � � � �� 


� � the Cauchy data are needed on all of �� . For the integral formulation (7.4)
however it is possible to use only partial Cauchy data. Considering the decay rate of the
singular values in figure 7.5 is appears that

�
� has a slower decay rate than say

�
� , and

therefore is expected to reconstruct
�

better. However from the Picard plot and the ex-
periment with full Cauchy data it is seen that only a small number of eigenfunctions are
needed, less than � 
 .

From the forward data plotted in figure 7.2 it is seen that the extrema of � 4 
 � is
located near the support of � � � 4 
 � because of the particular choice of � � � 4 
 � . The three
different sizes of partial Cauchy data that are tested are

� � �
� � � � � S � � 
H� 4 ����� � � S � � 
H� 4 � � : The angle between the support of � � � 4 
 � .

� 	 � � � � � � S � � 4 � 
H����� � � S � � 4 � 
H� � : � � and the support of � � � 4 
 � .

� � � � � 5 � � � 5 � � � : A subset of �� containing � 	 .
The reconstruction for one conductivity and the dependence on location and size

using partial Cauchy data is plotted in figure 7.9. Again, it is apparent that for noise free
data good reconstructions can be achieved for smaller values of � .

7.6.1. Two inhomogeneities. For two inhomogeneities
� �

@
� �

@ �
� % �

� �  , with
� �

�

� �


@
� � � 	 � 


@ �
is the integral operator

�
� . If the number of evaluation points on ��

is held fixed
�

� and
� 	 must together have less evaluation points. This is just an artificial

problem since � 4 
 � can be interpolated onto more points on �� . The same does however
not hold for � � � �� 


�
, since � � � �� 


�
may not be continuous, thereby introducing large

interpolation errors.
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Figure 7.9. The reconstruction using Truncated SVD for partial Cauchy data with
noise free data. (a) is a disk at

	 � � � � � � � 
and radius

� � �
. (b) is a disk at

	 � � � � � 
and radius

� � �
. (c) is a disk at

	 � � � � � � � 
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The equation for � � is now

�A� �?� � � � � �
���

�A� � � � � � � � � � � � � � � # � � @ � � % � � � � � � � R � � � @ � � % � � � � 	 � � 0 �� � (7.11)

Consider the geometry of two inhomogeneities in figure 7.1. 	 � can be interpreted as
shadowing for 	 	 in this model. The reconstruction of ��4 @ � and ��4 @ �

is tabulated in
table 1 for different values of ��4 @ �

and different locations of 	 	 , where 	 	 is translated
in the up-down direction, and where the 	 � are of same size.

Again good reconstructions of � � and � 	 is achieved for smaller values of � � . If
either � � or � 	 is erroneous, then also the other is determined poorly.

y �
� ( ���
� �

( � � # �
� � �

� ( ���
� �

� ( ���	 �
( � � # �	 � �

� ( ���	
0 3 1 2 1.03
0 3 1.02 3 1
0 3 1.03 4 0.98
0 3 1.09 10 0.91

0.3 3 0.96 2 1.07
0.3 3 0.98 3 1.03
0.3 3 1 4 0.99
0.3 3 1.07 10 0.87

Table 1. Reconstructed values of
�

for two inhomogeneities

The functions from (7.11) involved in finding an estimate for �<� � � � are plotted in
figure 7.10. The

� �� 

@

, for 0 � � ��� , appear to have more oscillatory behavior then the
�

in figure 7.6
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Figure 7.10. The functions involved in estimating
�  for two inhomogeneities. The

true values are
� � � �

and
� � ��� �

and the reconstructed values are
� ���� � � � � � ���

and
� �� � � � ��� � ���

Conclusion

The numerical investigation of the Inverse Conductivity Problem with piecewise con-
stant conductivity show that � may be reconstructed well for small values of � . Both
the Conjugated Gradient Least Squares and Truncated Singular Value Decomposition
appear to be superior to Tikhonov regularization when the L-curve method is used for
discrepancy principle. Extending the method of section 6.3.3 to nested domains, the
non-uniqueness of the

� � are observed. Hence, the proposed method for disjoint inho-
mogeneities can not be extended to nested objects.
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